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ABSTRACT

Graph neural networks stand as the predominant technique for graph representa-
tion learning owing to their strong expressive power, yet the performance highly
depends on the availability of high-quality labels in an end-to-end manner. Thus
the pretraining and fine-tuning paradigm has been proposed to mitigate the label
cost issue. Subsequently, the gap between the pretext tasks and downstream tasks
has spurred the development of graph prompt learning which inserts a set of graph
prompts into the original graph data with minimal parameters while preserving
competitive performance. However, the current exploratory works are still limited
since they all concentrate on learning fixed task-specific prompts which may not
generalize well across the diverse instances that the task comprises. To tackle this
challenge, we introduce Instance-Aware Graph Prompt Learning (IA-GPL) in this
paper, aiming to generate distinct prompts tailored to different input instances.
The process involves generating intermediate prompts for each instance using a
lightweight architecture, quantizing these prompts through trainable codebook
vectors, and employing the exponential moving average technique to ensure stable
training. Extensive experiments conducted on multiple datasets and settings show-
case the superior performance of IA-GPL compared to state-of-the-art baselines.

1 INTRODUCTION

Graphs function as pervasive data structures employed across various real-world applications, in-
cluding but not limited to social networks Guo & Wang (2020); Liu et al. (2021c), molecular
structures Mercado et al. (2021); Guo et al. (2021), and knowledge graphs Liu et al. (2021a); Ye et al.
(2022), due to their efficacy in modeling intricate relationships. With the rise of deep learning, Graph
Neural Networks (GNNs) have emerged as a formidable technique for analyzing graph data.

Nevertheless, GNNs trained end-to-end exhibit a strong dependency on large-scale high-quality
labeled data for supervision, which can be challenging or costly to obtain in real-world scenarios.
To overcome this challenge, researchers have explored self-supervised or pre-trained GNNs Zhu
et al. (2021); Jin et al. (2020); Xia et al. (2022); You et al. (2020a) inspired by the advancements in
vision Fan et al. (2021) and language Bao et al. (2021) domains. The pre-training methodologies
using readily accessible label-free graphs aim to capture intrinsic graph properties (e.g., node features,
node connectivity, or sub-graph pattern) that exhibit generality across tasks and graphs within a given
domain. The acquired knowledge is then encoded in the weights of pre-trained GNNs. When it comes
to downstream tasks, the initial weights can be efficiently refined through a lightweight fine-tuning
step, leveraging a limited set of task-specific labels. However, as discussed in Sun et al. (2023a), the
"pre-train and fine-tuning" paradigm is susceptible to the negative transfer problem.

Specifically, pre-trained GNN models focus on preserving the intrinsic graph properties, while
fine-tuning seeks to optimize the weights on the downstream tasks, which may significantly differ
from the pretext tasks employed in pre-training. For instance, consider the scenario where a GNN
is pre-trained using link prediction objective Kipf & Welling (2016b), a prevalent pretext task that
aims to bring the representations of adjacent nodes closer in latent space. Subsequently, fine-tuning is
performed using the node classification objective. In such a case, the model might exhibit suboptimal
performance or even break down, especially if the graph dataset is heterophilic, where adjacent nodes
may have different labels.

Consequently, in an effort to narrow the gap between pre-training and downstream tasks, sev-
eral exploratory graph prompting learning frameworks Liu et al. (2023); Sun et al. (2023a); Fang
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et al. (2023) have been introduced. The concept of prompt tuning initially found application in
the language domain Liu et al. (2022a); Li & Liang (2021a); Bhardwaj et al. (2022). In gen-
eral, a piece of fixed or trainable prompt text is appended to the input text, aligning the down-
stream task with the text generation capabilities of pre-trained large language models (LLMs).

(b) NC(N)=Nc1nc(-c2cccc(N)c2)cs1(a) CCc1ccccc1

Figure 1: Two example molecules from the BBBP dataset. Molecule
(a) with simple structures suffices with a universal prompt. However,
molecule (b) with diverse atoms and intricate structures requires the use
of instance-aware prompts.

This approach not only preserves
performance but also contributes
to a reduction in training resource
consumption. In the graph do-
main, prompt learning has re-
cently demonstrated its poten-
tial as an alternative to fine-
tuning, exemplified by methods
such as GPPT Sun et al. (2022),
GraphPrompt Liu et al. (2023),
GPF Fang et al. (2023), and All-
in-One Sun et al. (2023a). Sim-
ilar to language prompts, these
methods modify the original in-
put graphs into prompted graphs which are further fed into frozen pre-trained graph models. The
distinctions among these methods lie in the approach of inserting prompts into graphs and detailed
training strategies. Nevertheless, the existing graph prompt learning approaches collectively operate
under an assumption: that the learned task-specific prompts perform well across all input instances
within the task. In other words, these prompts are considered static concerning the input, a limitation
that we deem critical. We argue that the dependency of prompts on the input instance is an essential
characteristic that aids in generalization over unseen samples, both in-domain and out-of-domain.
Using two molecules from the BBBP dataset as an example, as shown in Figure 1, for molecule (a), it
is acceptable to use one universal prompt vector for all the atoms (nodes). However, for molecule (b)
with complex structures, it is evident that these highlighted atoms with red circles (i.e., S, C, and N),
contain distinct features and should be prompted in different ways.

To this end, our paper delves into the exploration of instance-aware prompt learning for the graph
domain. This non-trivial research problem raises two questions: (1) what model should we use
to generate instance-aware prompts with additional use of a minimal number of parameters? It
is important to identify an effective and parameter-efficient method to transform the feature space
into the prompt space, as the primary advantage of prompting lies in the minimization of trainable
parameters. (2) how can we ensure the instance-aware prompts are meaningful and distinctive as
expected? Employing parameterized methods for prompt generation runs the risk of converging to
trivial solutions, where all prompts collapse into a singular solution. Consequently, guaranteeing the
generation of diverse and meaningful prompts becomes a pivotal aspect of the entire pipeline.

In response to these challenges, we introduce a novel instance-aware graph prompt learning framework
named IA-GPL designed to generate distinctive prompts for each instance by leveraging its individual
information. Specifically, to tackle the first question, we feed the representations of the input instance
into parameterized hypercomplex multiplication (PHM) layers Zhang et al. (2020) which transform
the feature space into the prompt space with minimal parameters. To solve the second question, we
resort to the vector quantization (VQ) GRAY (1998) technique. VQ discretizes the continuous space
of intermediate prompts, mapping each prompt to a set of learnable codebook vectors. The mapped
vectors after VQ then replace the original prompts and are incorporated into the original features. For
the training of codebooks, the exponential moving average technique is utilized to prevent the model
from converging to trivial solutions. To summarize, our main contributions are as follows:

• We propose IA-GPL, a novel instance-aware graph prompting framework. To the best of our
knowledge, IA-GPL is the first graph prompting method capable of generating distinct prompts
based on different instances within the dataset.

• In IA-GPL, we utilize a parameter-efficient bottleneck architecture for prompt generation followed
by the vector quantization process via a set of codebook vectors and the exponential moving average
technique to ensure effectiveness and stability.

• We conduct extensive experiments under different settings to evaluate the performance of IA-GPL.
Our results demonstrate its superiority over other state-of-the-art competitors.
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Figure 2: Comparison between different paradigms of graph representation learning.

2 RELATED WORK

Due to space limit, an extended related work section is provided in Appendix B. As mentioned in
the introduction, to mitigate the reliance on graph labels, numerous GNN pre-training techniques
have been proposed which can be implemented at node-level, edge-level, or graph-level Zhu et al.
(2021); Jin et al. (2020); You et al. (2020a). Since fully fine-tuning the pre-trained GNN models may
cause the negative transfer problem between pre-training tasks and downstream tasks, prompt-based
methods Sun et al. (2023a); Liu et al. (2024), emerged to mitigate this issue. Existing graph prompt
learning methods either integrate a prompt graph into the original graph Sun et al. (2023a) or inject
a feature vector Fang et al. (2023) into the original features. However, these approaches do not
differentiate between input instances and process them uniformly, which could be sub-optimal in
certain scenarios. Note that a concurrent work GPF-plus does incorporate different prompts for
different nodes using the attention mechanism. However, we believe that our method has several
advantages over GPF-plus: (1) our method includes a lightweight down- and up-sample projector
model that transforms the node hidden representations to another prompt vector space, while GPF-
plus directly computes attention in the original feature space and then averages the weighted candidate
prompts. An additional alignment between these two spaces is beneficial for the disentanglement of
distinct information. (2) instead of using original node features to compute similarities, we use node
features after the frozen GNN, which contain rich neighbor-aware information, further aiding in the
prompt generation process.

Thus, in this work, we propose IA-GPL, a novel methodology designed to address the aforementioned
issue by generating instance-aware prompts using the distinctive features in individual instances.

3 PRELIMINARIES

Graphs. Let G = (V,E,X,A) represent an undirected and unweighted graph, where V is the set of
nodes and E is the set of edges. X ∈ R|V |×d is the node feature matrix where the i-th row xi is the
d-dimensional feature vector of node vi ∈ V . A ∈ R|V |×|V | denotes the binary adjacent matrix with
Ai,j = 1 if ei,j ∈ E and Ai,j = 0 otherwise. N (v) denotes the neighboring set of node v.

Graph Neural Networks. Generally, GNNs with a message-passing mechanism can be divided
into two steps. First, the representation of each node is updated by aggregating messages from
its local neighboring nodes. Second, the aggregated messages are combined with the node’s own
representation. Given a node v, these two steps are formulated as:

m(l)
v = AGGREGATE(l){h(l−1)

v ,∀u ∈ N (v)}, (1)

h(l)
v = COMBINE(l){h(l−1)

v ,m(l)
v }, (2)

where m
(l)
v and h

(l)
v denote the message vector and representation of node v in the l-th layer,

respectively. In the first layer, h0
v is initialized as the node features X and the output of the last layer

hl
v can be used in downstream tasks.
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GNN Pre-training and Fine-tuning. Given a pre-trained GNN model fθ(·) parameterized
by θ, a learnable projection head parameterized by ϕ and a downstream graph dataset G =
{(G1, y1), (G2, y2), · · · , (Gn, yn)}, we update the parameters of the pre-trained model and the
projection head to maximize the likelihood of predicting the correct labels Y of the dataset G:

max
θ,ϕ

Pθ,ϕ(Y |G). (3)

Specifically, if we only update the parameters of the projection head, it is referred to as linear probing:

max
ϕ

Pθ,ϕ(Y |G). (4)

Graph Prompt Learning. Compared with fine-tuning, prompt learning introduces a prompt gen-
eration model that aims to obtain a prompted graph gΦ : G → G parameterized by Φ. This model
transforms an input graph G to a prompted graph gΦ(G) which replaces the original graph and is
fed into the pre-trained graph model as normal. The pre-trained graph model is fixed while only the
parameters of the projection head and the prompt generation model are updated:

max
ϕ,Φ

Pθ,ϕ(Y |gΦ(G)}). (5)

A visual comparison of these methods is presented in Figure 2. Note that, unlike other prevailing
prompting frameworks that employ a universal prompt, our model integrates instance-aware prompts.

4 METHODOLOGY

In this section, we introduce the proposed framework of IA-GPL, as depicted in Figure 3. Firstly, we
present a conceptual overview of the entire framework in section 4.1. Subsequently, we delve into
the key components of IA-GPL - a lightweight bottleneck architecture consisting of PHM layers in
section 4.2, a prompt quantization process via a set of codebook vectors in section 4.3, and model
optimization with the exponential moving average technique in section 4.4.

4.1 NAIVE APPROACH

To generate prompts associated with input instances, the first step involves obtaining specific repre-
sentations of these instances. So naturally we employ the pre-trained graph model fθ(·) as an encoder
to generate the hidden embeddings:

H = fθ(G), z = READOUT(H), (6)

where G = (X,A) is the input graph, H ∈ R|V |×d is the obtained node representations and z ∈ Rd

is the graph representation after READOUT operation.

In IA-GPL, we consider node-level instance-aware prompts which means we generate different
prompts for each node in the graph, as we unify different tasks into a general graph-level task
following Sun et al. (2023a); Liu et al. (2024). Thus, after getting the node representations H, we
employ an efficient bottleneck multi-layer perceptron architecture as the prompt generation model
to transform them into the prompt space. Specifically, we first project H ∈ R|V |×d from d to d

′

dimensions (d
′
< d) followed by a nonlinear function. Then it is projected back to d dimensions to

get instance-aware prompts P ∈ R|V |×d, matching the same shape as X so that they can be added
back to the original node features. Mathematically it can be formulated as:

gΦ(·) = UPPROJECT(RELU(DOWNPROJECT(·))), (7)

P = gΦ(H), Xp = X+P, (8)

where gΦ(·) represents the prompt generation model, X is the original node features while Xp

is the prompted node features which contain instance-dependent information. By far, we have
established a general yet naive instance-aware prompt learning framework by replacing G = (X,A)
with Gp = (Xp,A), and train the prompt generation model and the projection head using the
back-propagation algorithm. To expand on this simple concept, the following sections will elaborate
on the details of the lightweight prompt generation model and the optimization process.

4
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Figure 3: Overall Framework of IA-GPL.

4.2 LIGHTWEIGHT BOTTLENECK ARCHITECTURE

The prompt generation model which transforms H from the feature space into the prompt space
consists of a down-sample projector and an up-sample projector. Instead of the common option, FCN
layers, we adopt PHM layers Zhang et al. (2020) which are more parameter-efficient.
FCN layers. One straightforward approach for implementing these two projectors is through fully
connected layers (FCNs) which transform an input x ∈ Rd into an output y ∈ Rk by:

y = FC(x) = Wx+ b, (9)

where the weight matrix W ∈ Rk×d and the bias vector b ∈ Rk are trainable parameters. We can
control the number of parameters by controlling the hidden dimension d

′
, but it is a trade-off between

performance and efficiency. In other words, it contradicts the original objective of prompt learning,
which aims to reduce the number of trainable parameters, if we set d

′
large to maintain performance.

PHM layers. To mitigate this problem, we turn to parameterized hyper-complex multiplication
(PHM) layers as a compromise solution which can also be written in the similar way:

y = PHM(x) = Mx+ b, (10)

where the replaced parameter matrix M ∈ Rk×d is constructed by a sum of Kronecker products of
several small matrices. The Kronecker product X⊗Y is defined as a block matrix:

X⊗Y =

x11Y . . . x1nY
...

. . .
...

xm1Y . . . xmnY

 ∈ Rmp×nq, (11)

where xij is the element of X ∈ Rm×n at its i-th row and j-th column and Y ∈ Rp×q. Given a
user-defined hyperparameter n ∈ Z>0, for i = 1, 2, . . . , n, let each parameter matrix be denoted as
Ai ∈ Rn×n and Si ∈ R k

n× d
n . Finally the parameter M is calculated by:

M =

n∑
i=1

Ai ⊗ Si. (12)

By replacing W with M, the number of trainable parameters is reduced to n× (n× n+ m
n × d

n ) =

n3 + m×d
n . As n is usually set as a small number (e.g., 2, 4, 8), the parameter size of a PHM layer is

approximately 1
n of that of an FCN layer.

In the case of our approach, after we have node representations H through the pre-trained graph
model, we feed them into the parameter-efficient PHM layers instead of standard FCN layers to
generate instance-aware intermediate prompts Pc.

5
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4.3 PROMPT QUANTIZATION

Directly using Pc as prompts suffers from the high variance problem since there is no explicit
constraint in the PHM layers, thus Vector Quantization (VQ) GRAY (1998) is utilized to discrete the
intermediate prompt space Pc to Pq. VQ is a natural and widely used method in signal processing
and data compression that represents a set of vectors by a smaller set of representative vectors. This
approach not only helps reduce the high variance caused by the PHM layers but also clusters similar
hidden prompt representations together to provide the beneficial property of clustering.

Specifically, we maintain K trainable codebook vectors E = (e1, e2, . . . , ek) ∈ Rk×d shared across
all the intermediate prompts Pc. For every prompt pc ∈ Pc, we sample M codebook vectors from
E corresponding to pc to obtain the quantized pq. Please note that the quantization process for
each intermediate prompt pc operates independently of other prompts. In detail, we first compute
the squared Euclidean distance dic between the prompt pc and every codebook vector ei, and the
corresponding sampling logits lic:

dic = ∥pc − ei∥22, lic = −1

τ
dic, (13)

where τ is a temperature hyperparameter used to control the diversity of the sampling process.
Then we sample M latent codebook vectors with replacement for prompt pc from a Multinomial
distribution over the logits lic:

z1c , z
2
c , . . . , z

M
c ∼ Multinomial(l1c , l

2
c , . . . l

K
c ). (14)

Finally, the quantized prompt pq can be computed by averaging over the M sampled vectors:

pq =
1

M

M∑
i=1

ezi
c
. (15)

After the VQ process, we ensure that for semantically similar instances, the quantized prompts will
also have similar representations by treating VQ as a clustering mechanism. In the meanwhile, the
limited set of learnable codebook vectors explicitly constrains the information capacity of prompt
representations pq , reducing the variance w.r.t. the output of PHM layers, pc.

Notably, we also introduce a learnable instance-agonist prompt ps which is shared across all instances
and incorporated into each quantized prompt pq to have the final prompts pf :

pf = pq + βps, (16)

where β is a balancing hyperparameter. This allows us to effectively fuse the learned information
from the input-dependent aspects captured by pq with the input-agnostic prompt ps.

In summary, given the high-variance prompts pc after PHM layers in the last section, the application
of VQ discretizes them into robust quantized prompts pq that encapsulate intrinsic clustering property.

4.4 MODEL OPTIMIZATION

The PHM layers PHM(·), instance-independent static prompt ps, codebook vectors E and the
projection head ϕ comprise the trainable parameters while we freeze the pre-trained GNN backbone
fθ(·). The loss function is defined as:

L = LCE(Y, Yp) + λ

n∑
i=1

∥pqi − pci∥22, (17)

which consists of two parts: (1) Cross-entropy loss between the ground truth Y and the predicted
labels Yp with prompted graphs as input. (2) Consistency loss that encourages the quantized prompts
pq to be consistent with the intermediate prompts pc after PHM layers for all the n instances (nodes)
in the graph. These two terms collectively aim to preserve performance while minimizing information
loss during the vector quantization process. λ is a hyperparameter used to balance the two loss terms
which is set to 0.01.

However, a potential limitation of directly training the model using back-propagation (BP) is repre-
sentation collapse where all prompts become a constant embedding that disregards the input, causing

6
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our model to degrade to GPF Fang et al. (2023). Thus to solve this problem, we still use the standard
BP algorithm to update the PHM layers PHM(·), instance-independent static prompt ps and the
projection head ϕ but adopt the exponential moving average (EMA) strategy to update the codebook
vectors E following Angelidis et al. (2021); Roy et al. (2018). Specifically, for each batch in the
training process, we perform the following two steps:

Step 1: Count the number of times the j-th codebook vector is sampled and update the count cj :

cj(new)
= α · cj(old) + (1− α) ·

n∑
i=1

m∑
k=1

I[ezk
i
= ej ]. (18)

Step 2: Update the embedding of j-th codebook vector ej by calculating the mean of PHM layer
outputs for which that codebook vector was sampled during Multinomial sampling:

ej(new)
= α · ej(old) + (1− α) ·

n∑
i=1

m∑
k=1

I[ezk
i
= ej ]p

c
i

cj
, (19)

where n and m stand for batch size and sample number, α is a hyperparameter set to 0.99 and I[·]
is the indicator function. By incorporating the EMA mechanism, we can avoid the representation
collapse problem and also obtain a more stable training process than gradient-based methods.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Tasks and datasets. We evaluate IA-GPL using both node-level and graph-level tasks. Following Sun
et al. (2023a); Liu et al. (2024), we unify these tasks into a general graph-level task by generating
local subgraphs for the nodes of interest. For graph-level tasks, we use eight molecular datasets from
MoleculeNet Wu et al. (2018). For node-level tasks, we use three citation datasets from Yang et al.
(2016). These datasets vary in size, labels, and domains, serving as a comprehensive benchmark for
our evaluations. A comprehensive description of these datasets can be found in Appendix C.

Baselines. To evaluate the effectiveness of IA-GPL, we compare it with state-of-the-art approaches
across three primary categories. (1) Supervised learning: we employ GCN Kipf & Welling (2016a),
GraphSAGE Hamilton et al. (2017) and GIN Xu et al. (2018). The base models and the projection
head are all trained end-to-end from scratch. (2) Pre-training and fine-tuning: The base model
is pre-trained using edge prediction Jin et al. (2020) for molecular datasets and graph contrastive
learning You et al. (2020a) for citation datasets. For the complete fine-tuning (FT), the pre-trained
model is fine-tuned along with the projection head. For linear probing (LP), we freeze the pre-trained
model and exclusively train the projection head. (3) Prompt learning: All in One Sun et al. (2023a),
GPF Fang et al. (2023) and GPF-plus Fang et al. (2023) are included. They all freeze the pre-trained
base model while training the projection head and their respective prompt generation models.

Settings and implementations. To evaluate the performance of IA-GPL in both in-domain and
out-of-domain scenarios, we split the molecular datasets in two distinct manners: random split and
scaffold split. Scaffold split is based on the scaffold of the molecules so that the train/val/test set is
more structurally different, making it appropriate for evaluating the model’s generalization ability. In
contrast, the random split is used to assess the model’s in-domain prediction ability. We test IA-GPL
using 5 different pre-training strategies: edge prediction Jin et al. (2020) (denoted as EdgePred), Deep
Graph Infomax Veličković et al. (2018) (denoted as InfoMax), Attribute Masking Hu et al. (2020a)
(Denoted as AttrMasking), Context Prediction Hu et al. (2020b) (Denoted as ContextPred) and Graph
Contrastive Learning You et al. (2020b) (Denoted as GCL) methods to demonstrate our model’s
robustness. We report results in both full-shot and few-shot settings, utilizing the ROC-AUC score as
the metric. The few-shot setting is tested because prompt learning with fewer parameters is naturally
less susceptible to the risk of overfitting when given limited supervision. We perform five rounds of
experiments and report the mean and standard deviation. GCN is adopted as our backbone model. For
the baselines, based on the authors’ code and default settings, we further tune their hyperparameters
to optimize their performance. Additional implementation details are provided in Appendix E. The
anonymous source code is publicly available at https://anonymous.4open.science/r/IA-GPL-ICLR25.
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Table 1: 50-shot ROC-AUC (%) performance comparison on molecular prediction benchmarks
using random split. Bold numbers represent the best results in the graph prompting field (shaded
region) to which our method belongs. Underlined numbers represent the best results achieved by
other methods.

Tuning
Strategies Methods BBBP Tox21 ToxCast SIDER ClinTox BACE HIV MUV Avg.

Supervised
GIN 80.20±1.70 64.55±1.14 53.77±2.32 52.11±1.51 52.68±4.62 69.14±1.17 62.87±2.52 49.17±5.92 60.56
GCN 83.97±0.86 64.65±0.73 51.35±1.43 48.54±0.75 59.22±2.64 71.91±1.74 59.91±1.06 50.85±4.02 61.3

GraphSAGE 80.72±1.37 63.91±1.08 52.09±0.43 49.14±1.19 59.57±2.40 71.33±0.97 61.06±1.34 53.08±5.38 61.36

Pre-training+
Fine-tuning

Linear Probing 79.67±1.31 69.99±0.27 61.74±0.48 52.61±0.39 70.33±3.76 76.17±0.77 65.04±1.49 59.12±1.33 66.83
Fine Tuning 88.30±3.09 69.25±0.73 60.42±0.55 52.32±0.10 72.09±2.74 74.97±0.62 64.12±0.90 54.17±2.11 66.95

All in One 49.49±5.32 52.45±2.23 50.33±5.05 51.24±2.06 57.65±11.11 53.22±7.14 46.31±7.50 - 51.52
GPF 82.86±1.98 69.56±2.50 61.11±0.43 52.24±0.16 73.31±4.08 76.54±1.76 63.21±0.53 59.14±1.02 67.24Prompt

Learning GPF-plus 83.08±1.57 71.31±0.80 60.85±1.69 52.44±0.83 73.85±2.15 76.02±0.99 64.49±1.19 59.93±0.83 67.74
IA-GPL 85.62±0.52 72.55±0.40 61.63±0.40 52.85±0.84 74.50±0.76 76.64±0.83 64.60±0.95 59.32±1.13 68.46

Table 2: 50-shot ROC-AUC (%) performance comparison on molecular prediction benchmarks using
scaffold split. Bold numbers represent the best results in the graph prompting field (shaded region) to
which our method belongs. Underlined numbers represent the best results achieved by other methods.

Tuning
Strategies Methods BBBP Tox21 ToxCast SIDER ClinTox BACE HIV MUV Avg.

Supervised
GIN 56.92±2.54 46.83±1.51 52.50±0.68 48.85±2.16 50.00±7.53 51.08±2.14 68.09±3.89 49.11±2.45 52.92
GCN 57.05±5.50 47.40±3.56 49.67±0.61 49.93±1.06 59.84±5.54 61.84±2.12 62.82±2.56 42.44±3.40 53.87

GraphSAGE 59.13±7.28 48.42±3.01 51.90±1.43 49.60±1.92 40.53±4.25 59.28±1.60 64.28±1.09 49.11±2.90 52.78

Pre-training+
Fine-tuning

Linear Probing 52.54±5.77 64.40±0.42 57.46±0.33 50.76±0.74 62.54±4.26 59.75±4.23 61.89±4.10 63.07±3.09 59.05
Fine-tuning 48.88±0.68 60.95±1.46 55.73±0.43 51.30±2.21 57.78±4.03 61.27±6.10 62.20±4.95 64.75±2.03 57.85

All in One 53.46±7.98 56.19±4.96 55.35±2.12 51.51±2.82 48.91±16.03 52.90±7.90 39.89±6.09 - 51.17
GPF 52.13±1.21 63.48±0.41 57.60±0.19 51.07±1.08 65.18±1.76 58.78±5.04 65.59±2.31 66.94±3.91 60.09Prompt

Learning GPF-plus 54.73±5.20 63.29±0.55 57.19±0.67 50.31±1.60 64.14±2.95 55.87±7.40 61.4±4.30 67.11±2.09 59.25
IA-GPL 56.54±2.35 64.14±0.44 58.11±0.38 53.18±1.18 63.28±3.52 61.95±4.00 66.52±2.10 69.03±3.02 61.59

5.2 PERFORMANCE EVALUATION

Due to the page limit, we present the experimental results of 50-shot random split and scaffold split
settings on molecular datasets using edge prediction pre-training strategy in Table 1 and Table 2.
The results of full-shot learning, node-level tasks, larger graph datasets and more pre-training
strategies results are provided in Appendix D.

In-domain performance. Table 1 illustrates the results for 50-shot graph classification under
the in-domain setting (random split). We have the following observations: (1) Compared to the
pre-training and fine-tuning approach, IA-GPL achieves competitive results despite employing a
significantly lower number of trainable parameters. This underscores the key advantage of prompt
learning, particularly when confronted with limited supervision. (2) While fine-tuning occasionally
outperforms IA-GPF on certain datasets, IA-GPF consistently surpasses other graph prompt learning
methods as shown in the shaded area, highlighting the significance of employing instance-aware
prompts. (3) Unexpectedly, the All-in-One approach lags behind other prompting methods, exhibiting
the highest variance. This discrepancy may be attributed to an unstable training process.

Out-of-domain performance. Table 2 illustrates the results for 50-shot graph classification under
the out-of-domain setting (scaffold split). We have the following observations: (1) Overall, IA-GPL
attains optimal results across these eight datasets, underscoring its efficacy even when confronting
the out-of-distribution (OOD) challenge. We attribute this success to the vector quantization process,
which captures the clustering property of molecules. The disentangled clustering information
can enhance performance in the presence of OOD samples by facilitating the transfer of learned
knowledge. (2) Across different datasets, the performance trends of supervised learning, pre-training
and fine-tuning, and prompt learning paradigms vary a lot. For instance, training GCN, GIN, or
GraphSAGE in an end-to-end manner yields the highest performance in the BBBP dataset, whereas
it performs less effectively in other datasets such as Tox21 and SIDER. These fluctuations in
performance may be attributed to the distinctive intrinsic properties characterizing each dataset.

When considering the broader context, several key observations emerge: (1) Comparing linear probing
(LP) and fine-tuning (FT), the performance trend differs between random and scaffold split. For
random split, FT outperforms LP, whereas the reverse is observed for scaffold split. This observation
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Figure 4: Codebook visualization.
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Figure 5: Ablation study.

Models #Tuning
parameters

Relative
ratio

Training time
per epoch

GPU memory
consumption

Fine-tuning 1.86M 100% ∼0.68s ∼796MB

GPF 0.3K 0.02% ∼0.81s ∼768MB
GPF-plus 3-12K 0.16-0.65% ∼0.82s ∼740MB

All-in-One 3K 0.16% - -
IA-GPL (Ours) 20K 1.08% ∼0.86s ∼780MB

Figure 6: Model efficiency analysis.

confirms the negative transfer drawback associated with the "pre-training and fine-tuning" paradigm:
the existence of a gap between pretext tasks and downstream tasks leads to suboptimal performance.
(2) The performance gain achieved by IA-GPL is more pronounced in the out-of-domain scenario,
emphasizing the importance of vector quantization within our model. (3) The overall performance
for in-domain classification remains significantly better than that for out-of-domain classification,
underscoring the imperative to design effective methods to address the OOD problem.

5.3 MODEL ANALYSIS

Codebook visualization. We conduct a visualization and interpretability analysis on the learned code-
book using a molecule from the BACE dataset with the SMILES string O=C1NC(=NC(=C1)CCC)N
as an example. The model is configured to have 50 codebook vectors in the VQ space. For every
node (atom), we sample 5 vectors using Equation 14, which are then averaged and used as quantized
prompts. Figure 4 presents the t-SNE Van der Maaten & Hinton (2008) plots of the samples of two
carbon atoms and two nitrogen atoms in this molecule.

Two characteristics of the learned codebooks are observed: (1) Samples corresponding to different
atoms manifest substantial distinctions (i.e., the regions of samples in the plot). However, samples
corresponding to the same atoms tend to exhibit in proximate regions in the codebook vector space.
This observation affirms that IA-GPL effectively generates instance-aware prompts. (2) Each atom’s
samples may also demonstrate a clustering property. This phenomenon may be attributed to the
disentanglement of representations for individual instances within the prompt space, which potentially
encompasses general information.

Ablation study. To assess the individual contributions of each component, we conduct an ablation
study by comparing IA-GPL with two different variants: (1) w/o VQ: After getting Pc through the
PHM layers, we directly use it as the final prompts without the vector quantization process. (2) w/o
PHM: We replace PHM layers in the prompt generation model with the standard MLP layers. Note
that to maintain a fair comparison and ensure a roughly equivalent number of trainable parameters,
we reduce the size of the hidden dimension to 1

n of that of PHM layers, as discussed in Section 4.2.

We conduct the ablation study under 50-shot learning with scaffold split and illustrate the results in
Figure 5. We have the following observations: (1) Replacing PHM layers with MLP layers of the
same parameter size adversely affects performance to varying degrees across these datasets. This
result highlights the advantage of PHM layers over MLP layers when training resources are limited.
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(2) Without the VQ process, the results drop as there is no constraint to prevent codebook vectors
from collapsing which leads to inferior performance or an unstable training process.

Efficiency analysis. We analyze IA-GPL’s parameter efficiency and training efficiency in Table 6.

In terms of parameter efficiency, we compute the number of tunable parameters for different strategies.
(excluding the task-specific projection head). Specifically, fine-tuning demands the update of all
parameters, making it the most time- and resource-consuming process. In the prompt learning domain,
GPF is the most efficient since it requires only one universal prompt while GPF-plus incorporates
multiple attentive prompts. All-in-One also utilizes more than one prompt node to construct a prompt
graph. In our model, the parameter size is predominantly dominated by the prompt generation
model (i.e., PHM layers), which aligns with the scale of other graph prompt learning methods and is
significantly smaller than the fine-tuning approach.

In terms of training efficiency, we compute the training time per epoch and GPU memory consumption
on the ToxCast dataset using a single Nvidia RTX 3090. We keep all hyper-parameters the same
including batch size, dimensions, etc. All-in-One is omitted due to its unsatisfactory performance
and unstable training process. Surprisingly, prompt-based methods are slower than traditional fine-
tuning which may be due to additional procedures such as computing attention scores and sampling.
Regarding GPU memory consumption, prompt-based methods occupy slightly less GPU space since
they do not need to save the gradients and optimizer states for the frozen GNN backbone. But all of
them are at the same level considering the dominant overhead GPU consumption.

Impacts of the shot number. We study the impact of the number of shots on the BBBP and BACE
datasets in the few-shot random split setting. We vary the number of shots within the range of
[5,10,20,30] and results are illustrated in Figure 7. In general, our method IA-GPL consistently
surpasses or attains comparable results with other graph prompt learning frameworks in most cases
especially when given very limited labeled data. As the number of shots increases, the overall
performance increases while conventional supervised methods become more competitive.

Impacts of the codebook hyperparameters. We investigate the impact of the number of codebook
vectors and the number of samples in the vector quantization process. Specifically, we vary the size
of the codebook within the range of [5, 10, 20, 50, 100] and the sample size within [3, 5, 10, 15,
20], while keeping the remaining hyperparameters constant. Results are illustrated in Figure 8. We
observe that for most of the datasets, our model achieves a relatively stable performance with respect
to the hyperparameters, alleviating the need for meticulous and specific tuning.

6 CONCLUSIONS

In this paper, we introduce a novel prompting method on graphs named Instance-Aware Graph
Prompt Learning (IA-GPL), which is designed to generate distinct and specific prompts for individual
input instances within a downstream task. Specifically, we initially generate intermediate prompts
corresponding to each instance using a parameter-efficient bottleneck architecture. Subsequently, we
quantize these prompts with a set of trainable codebook vectors and employ the exponential moving
average strategy to update the parameters which ensures a stable training process. Extensive experi-
mental evaluations under full-shot and few-shot learning settings showcase the superior performance
of IA-GPL in both in-domain and out-of-domain scenarios.
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A BROADER IMPACTS AND LIMITATIONS

Broader Impacts. Research that is focused on parameter-efficient fine-tuning methods (PEFT)
including our approach, IA-GPL, can usually bring several broad positive societal impacts such as:
(1) Accessibility and Sustainability. By reducing the computational, financial, and environmental
resources needed for fine-tuning pre-trained models, PEFT methods make advanced AI technologies
accessible to a wider range of individuals, organizations, and communities, including those with
limited resources. (2) Improved Quality of AI Applications. IA-GPL also enhances numerous
graph-related tasks and applications. By incorporating node-level instance-aware prompts, IA-GPL
is particularly well-suited for complex and heterogeneous graphs, such as molecules and social
networks. Consequently, IA-GPL can positively impact areas like drug discovery, protein structure
prediction, fraud detection, and so on.

Limitations. (1) Larger parameter size. IA-GPL demands a larger parameter size, primarily due
to the PHM layers when generating prompts. As discussed in section 5.3, compared to the huge
pre-trained GIN model, the increase in the number of parameters remains acceptable considering the
performance improvement achieved. However, it does introduce additional trainable parameters. (2)
More hyperparameters. In addition to the standard hyperparameters such as the number of layers
and embedding size, IA-GPL introduces new hyperparameters: the number of codebook vectors,
the number of samples, and the temperature factor. However, as analyzed in Appendix 5.3, IA-GPL
exhibits limited sensitivity to these hyperparameters across most datasets, obviating the need for
meticulous and specific tuning.

B RELATED WORK

Graph Representation Learning. The objective of graph representation learning is to proficiently
encode sparse high-dimensional graph-structured data into low-dimensional dense vectors. These
vectors are subsequently employed in various downstream tasks, such as node/graph classification
and link prediction. The methods span from classic graph embeddings Grover & Leskovec (2016) to
recent graph neural networks Kipf & Welling (2016a); Veličković et al. (2017); Yun et al. (2019a)
with the remarkable success of deep learning. GNNs, which derive effective node representations by
recursively aggregating information from neighbor nodes, have emerged as a predominant standard
for graph representation learning. GNNs find applications in diverse domains, such as social network
analysis Guo & Wang (2020); Liu et al. (2021c), bioinformatics Mercado et al. (2021); Guo et al.
(2021), recommendation systems Fan et al. (2019); Tian et al. (2022), and fraud detection Dou et al.
(2020); Liu et al. (2021b). This is attributed to the fact that many real-world datasets inherently possess
a graph structure, making GNNs well-suited for effectively modeling and extracting meaningful
representations from such data. We refer the readers to a comprehensive survey Ju et al. (2023) for
details.
GNNs Pre-training. Supervised learning methods applied to graphs heavily depend on graph
labels, which may not always be adequate in real-world scenarios. To overcome this limitation, a
pre-training and fine-tuning paradigm has been introduced. In this approach, GNNs are initially
pre-trained to capture extensive knowledge from a substantial volume of labeled and unlabeled graph
data. Subsequently, the implicit knowledge encoded in the model parameters is transferred to a
new domain or task through the fine-tuning of partially pre-trained models. Existing effective pre-
training strategies can be implemented at node-level like GCA Zhu et al. (2021), edge-level like edge
prediction Jin et al. (2020), and graph-level such as GraphCL You et al. (2020a) and SimGRACE Xia
et al. (2022). However, these methods overlook the gap that may exist between the pre-training phase
and downstream objectives, limiting their overall generalization ability.
Graph Prompt Learning. Prompt Learning seeks to bridge the gap between pre-training and fine-
tuning by formulating task-specific prompts that guide downstream tasks, with the pre-trained model
parameters usually kept static during downstream applications. Many effective prompt methods were
initially proposed in the natural language processing community, including hand-crafted prompts Gao
et al. (2020); Schick & Schütze (2020) and continuous prompts Gu et al. (2021); Li & Liang (2021b);
Liu et al. (2022b). Drawing inspiration from these works, several exploratory graph prompt learning
methods, such as GPPT Sun et al. (2022), GraphPrompt Liu et al. (2023), GPF Fang et al. (2023) and
All-in-One Sun et al. (2023a) have been proposed in the last two years. We recommend referring to the
comprehensive survey provided in Sun et al. (2023b). These existing methods introduce virtual class-
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prototype nodes or graphs with learnable links into the input graph or directly incorporate learnable
embeddings into the representations, facilitating a closer alignment between downstream applications
and the pretext tasks. However, all existing graph prompt tuning methods have predominantly
concentrated on task-specific prompts, failing to generate instance-specific prompts which are critical
since a universal prompt template may not effectively accommodate input nodes and graphs with
significant diversity as shown in Figure 1. In this work, we introduce IA-GPL, a novel methodology
designed to address the aforementioned issue by generating prompts that leverage the distinctive
features in individual instances.

C ADDITIONAL DATASET DETAILS

We have two kinds of tasks and corresponding datasets: graph-level tasks: molecular datasets and
node-level tasks: citation networks. The statistics of these datasets are illustrated in Table 3.

For molecular datasets, during the pre-training process, we sample 2 million unlabeled molecules
from the ZINC15 Sterling & Irwin (2015) database, along with 256K labeled molecules from the
preprocessed ChEMBL Mayr et al. (2018); Gaulton et al. (2011) dataset. For downstream tasks,
we use the molecular datasets from MoleculeNet Wu et al. (2018) encompassing molecular graphs
spanning the domains of physical chemistry, biophysics, and physiology. Specifically, they involve 8
molecular datasets: BBBP, Tox21, ToxCast, SIDER, Clintox, BACE, HIV and MUV. All datasets
come with additional node and edge features introduced by open graph benchmarks Hu et al. (2020c).

For citation networks, we use 3 commonly used datasets: Cora, CiteSeer, and PubMed from Yang
et al. (2016). Nodes represent documents and edges represent citation links. Each document
(node) in the graph is described by a 0/1-valued word vector indicating the absence/presence of the
corresponding word from the dictionary. During the pre-training phase, we use them without labels
in a self-supervised learning approach. In the fine-tuning stage, we convert the node-level task to
the graph-level task following Sun et al. (2023a) and process them in the same way as the molecular
datasets.

Table 3: Statistics of the datasets.

Tasks Name #graphs #nodes #edges #features #binary tasks/classes

Graph-level

BBBP 2,050 ∼23.9 ∼51.6 9 1
Tox21 7,831 ∼18.6 ∼38.6 9 12

ToxCast 8,597 ∼18.7 ∼38.4 9 617
SIDER 1,427 ∼33.6 ∼70.7 9 27
ClinTox 1,484 ∼26.1 ∼55.5 9 2
BACE 1,513 ∼34.1 ∼73.7 9 1
MUV 93,087 ∼24.2 ∼52.6 9 17
HIV 41,127 ∼25.5 ∼54.9 9 1

Node-level
Cora 1 2,708 10,556 1,433 7

CiteSeer 1 3,327 9,104 3,703 6
PubMed 1 19,717 88,648 500 3

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 RESULTS OF FULL-SHOT LEARNING

We present the experimental results using the full datasets to train the model in both scaffold split and
random split scenarios in Table 4 and Table 5, respectively.

In-domain performance. Table 5 illustrates the results for full-shot graph classification under the
in-domain setting (random split). We have the following observations: (1) Overall, fine-tuning
exhibits superior performance across all methods including supervised schemes and prompt learning
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Table 4: Full-shot ROC-AUC (%) performance comparison on molecular prediction benchmarks
using scaffold split. Bold numbers represent the best results in the graph prompting field (shaded
region) to which our method belongs. Underlined numbers represent the best results achieved by
other methods.

Tuning
Strategies Methods BBBP Tox21 ToxCast SIDER ClinTox BACE HIV MUV Avg.

Supervised
GIN 67.30±2.80 74.23±0.65 62.22±1.31 57.43±1.24 48.83±3.03 72.78±2.48 75.82±2.89 74.79±1.37 66.68
GCN 62.18±3.49 74.48±0.55 62.74±0.59 62.51±1.06 56.58±3.22 73.44±1.64 78.26±2.01 71.98±2.34 67.77

GraphSAGE 67.91±2.58 74.14±0.55 63.79±0.70 62.80±1.15 58.04±5.68 69.27±2.91 75.77±3.09 71.90±1.43 67.95

Pre-training+
Fine-tuning

Linear Probing 69.45±0.58 79.55±0.12 65.41±0.41 66.39±0.79 67.41±1.77 83.10±0.44 76.87±1.98 80.42±1.03 73.57
Fine Tuning 66.56±3.56 78.67±0.35 66.29±0.45 64.35±0.78 69.07±4.61 80.90±0.92 79.79±2.76 81.76±1.80 73.42

GPPT 64.13±0.14 66.41±0.04 60.34±0.14 54.86±0.25 59.81±0.46 70.85±1.42 60.54±0.54 63.05±0.34 62.49
GPPT (w/o ol) 69.43±0.18 78.91±0.15 64.86±0.11 60.94±0.18 62.15±0.69 70.31±0.99 73.19±0.19 82.06±0.53 70.23
GraphPrompt 69.29±0.19 68.09±0.19 60.54±0.21 58.71±0.13 55.37±0.57 67.70±1.26 59.31±0.93 62.35±0.44 62.67

All in One 58.01±4.89 52.38±3.46 55.07±7.22 53.33±2.16 50.91±9.33 55.86±12.75 58.32±4.40 - 54.84
GPF 68.87±0.57 79.93±0.08 65.63±0.41 65.93±0.64 66.40±2.77 80.37±4.07 75.20±1.30 80.87±1.76 73.47

GPF-plus 68.16±0.78 79.59±0.09 65.22±0.32 66.08±0.85 71.23±3.01 82.15±1.64 76.99±2.01 81.93±1.68 73.91

Prompt
Learning

IA-GPL 69.25±0.06 80.28±0.20 65.87±0.64 66.62±1.23 71.96±0.41 83.38±0.94 78.86±1.38 83.26±1.77 74.93

frameworks which is not surprising. Given an ample amount of labeled training data, fine-tuning can
effectively adapt the pre-trained model that already encapsulates intrinsic graph properties, thereby
contributing to optimal performance. (2) IA-GPL consistently attains the highest results in the
realm of graph prompt learning, demonstrating its exceptional performance in this category and the
importance of instance-aware prompts.

Table 5: Full-shot ROC-AUC (%) performance comparison on molecular prediction benchmarks
using random spilt. Bold numbers represent the best results in the graph prompting field (shaded
region) to which our method belongs. Underlined numbers represent the best results achieved by
other methods.

Tuning
Strategies Methods BBBP Tox21 ToxCast SIDER ClinTox BACE HIV MUV Avg.

Supervised
GIN 93.09±0.94 82.47±0.68 70.71±0.45 57.76±1.42 75.61±3.57 87.90±1.49 81.96±1.90 80.57±2.02 78.76
GCN 92.59±0.79 81.82±0.23 72.50±0.55 57.10±0.95 80.45±3.26 88.09±0.60 83.06±0.45 79.18±1.86 79.35

GraphSAGE 91.98±0.49 82.52±0.32 72.55±0.42 56.65±1.18 80.57±2.02 88.05±1.90 83.43±1.34 79.61±2.93 79.42

Pre-training+
Fine-tuning

Linear Probing 88.21±0.05 82.86±0.12 74.55±0.25 61.16±0.54 85.51±1.09 89.73±0.52 85.42±0.68 89.53±0.42 82.12
Fine Tuning 93.06±0.35 85.46±0.26 75.35±0.33 63.89±0.69 87.22±1.12 90.93±0.55 86.84±0.72 87.26±0.76 83.75

All in One 62.88±9.60 52.38±3.46 45.24±8.53 48.78±4.17 44.86±18.81 51.82±4.01 54.78±1.76 - 51.53
GPF 92.71±0.38 83.00±0.22 73.53±0.35 61.96±1.08 90.65±0.33 86.83±0.36 85.63±0.39 90.29±0.14 83.08Prompt

Learning GPF-plus 89.91±0.22 83.04±0.70 74.24±0.36 62.50±1.38 88.72±0.64 88.56±0.52 85.26±0.81 91.13±0.16 83.67
IA-GPL 91.77±0.40 84.15±0.29 75.64±0.44 62.61±0.73 87.27±0.97 90.14±0.14 86.02±0.90 91.57±0.19 85.90

Out-of-domain performance. Table 4 illustrates the results for full-shot graph classification under
the out-of-domain setting (scaffold split). We have the following observations: (1) When addressing
the out-of-domain problem, IA-GPL consistently showcases superior performance compared to other
baselines, confirming the clustering benefit derived from the vector quantization process. (2) While
supervised learning can yield acceptable results in the in-domain setting, it notably lags behind
fine-tuning and prompt learning approaches when confronted with the out-of-domain challenge.
This underscores the benefit in generalization gained from the graph pre-training phase when a
substantial amount of labeled and unlabeled data are available to equip the pre-trained model with
prior knowledge.

D.2 RESULTS OF NODE-LEVEL TASKS

We present the experimental results using node-level datasets-Cora, CiteSeer and PubMed in Table
6. We unify the task into a general graph-level task by generating local subgraphs for the nodes
of interest and use the 100-shot setting following Sun et al. (2023a). We observe that (1) IA-GPL
achieves the best performance on all three datasets, demonstrating its capacity in node-level tasks. (2)
Supervised learning outperforms the fine-tuning approach by a large margin, showcasing the implicit
negative transfer problem.
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Table 6: 100-shot test accuracy (%) performance on node-level citation network datasets. Bold
numbers represent the best results in the graph prompting field (shaded region) to which our method
belongs. Underlined numbers represent the best results achieved by other methods.

Tuning
Strategies Methods Cora CiteSeer PubMed Avg.

Supervised
GCN 78.06±1.37 82.11±1.02 74.33±1.44 78.17
GAT 79.71±0.77 82.27±0.68 74.44±0.68 78.81

TransformerConv 78.50±0.68 82.66±0.36 75.00±1.24 78.72

Pre-training+
Fine-tuning

Linear Probing 60.53±4.07 82.05±0.20 70.22±1.25 70.93
Fine Tuning 55.16±3.87 80.33±0.40 60.11±0.10 65.20

All in One 63.96±7.23 80.38±0.20 58.33±1.44 67.56
GPF 70.13±1.58 77.67±1.24 58.67±1.58 68.82Prompt

Learning GPF-plus 71.43±1.04 78.67±0.92 61.33±1.29 70.48
IA-GPL 71.51±0.97 81.33±1.29 63.33±0.67 72.06

Table 7: 50-shot and full-shot performance comparison on PPI dataset.

Setting GraphSAGE GCN GIN Linear Probing Fine Tuning All-in-One GPF GPF-plus IA-GPL
50-shot 37.20 40.75 39.56 49.70 46.23 42.90 50.64 52.56 53.13
full-shot 77.43 79.90 78.86 70.94 72.41 48.67 75.43 75.06 77.70

D.3 RESULTS OF MORE PRE-TRAINING STRATEGIES

Besides the edge prediction Jin et al. (2020) pre-training strategies, we also use Deep Graph Info-
max Veličković et al. (2018) (denoted as InfoMax), Attribute Masking Hu et al. (2020a) (Denoted as
AttrMasking), Context Prediction Hu et al. (2020b) (Denoted as ContextPred) and Graph Contrastive
Learning You et al. (2020b) (Denoted as GCL) methods to compare with IA-GPL to demonstrate our
model’s robustness. Note that we test under the full-shot scaffold split setting. Results are illustrated
in Table 8. We observe that IA-GPL achieves state-of-the-art results in 27 out of 32 cases within the
graph prompt learning area.

D.4 RESULTS OF LARGER GRAPH DATASETS

Beyond the results of the previous molecular datasets, here we show the performance comparison of
a relatively large biological dataset, PPI dataset which has 88k graphs and 40 classes. We tested it
using the edge prediction pre-training strategy under both few-shot and full-shot settings. Results are
illustrated in Table 7.

E ADDITIONAL IMPLEMENTATION DETAILS

Table 9 presents the hyperparameter settings used during the adaptation stage of pre-trained GNN
models on downstream tasks in IA-GPL. For molecular datasets, we adopt the widely used 5-layer
GIN Xu et al. (2018) as the underlying architecture for our models. For citation networks, we
adopt 2-layer Graph Transformers Yun et al. (2019b) as the underlying architecture. Grid search is
used to find the best set of hyperparameters. You can also visit our code repository to obtain the
specific commands for reproducing the experimental results. All the experiments are conducted using
NVIDIA V100 graphic cards with 32 GB of memory and PyTorch framework. For the details, please
visit our code repository.
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Table 8: Full-shot ROC-AUC (%) performance comparison on molecular prediction benchmarks
with Deep Graph Infomax, Attribute Masking, ContextPred and GCL as pre-training methods. Bold
numbers represent the best results in the graph prompting field to which our method belongs.
Underlined numbers represent the best results achieved by other methods.

Pre-training
Strategies

Tuning
Strategies Methods BBBP Tox21 ToxCast SIDER ClinTox BACE HIV MUV Avg.

InfoMax

Supervised
GraphSAGE 69.12 74.17 62.65 63.22 55.43 74.70 70.44 73.60 67.92

GCN 68.07 74.63 59.03 63.89 55.24 63.39 76.85 71.82 66.62
GIN 70.43 73.20 60.73 60.42 51.19 71.70 74.21 71.77 66.71

Pre-training+
Fine-tuning

Linear Probing 66.52 78.02 66.49 65.18 73.74 84.55 77.68 80.02 74.03
Fine Tuning 69.81 78.92 66.50 66.54 71.86 82.68 76.33 81.01 74.21

Prompt
Learning

All-In-One 58.50 66.09 52.43 46.09 58.98 69.69 48.08 - 57.12
GPF 67.33 77.53 65.91 65.46 73.59 83.27 74.89 79.96 73.49

GPF-Plus 67.61 79.67 65.78 64.96 72.17 81.41 71.68 78.61 72.74
IA-GPL 68.86 78.95 66.58 66.16 78.90 85.08 75.90 82.25 75.34

AttrMasking

Supervised
GraphSAGE 71.68 73.94 61.96 62.16 61.01 63.86 73.90 76.27 68.10

GCN 67.02 74.47 60.83 61.88 56.21 70.82 75.55 73.20 67.50
GIN 66.43 73.69 60.98 60.29 56.65 79.63 73.48 72.75 67.99

Pre-training+
Fine-tuning

Linear Probing 66.56 79.37 66.15 67.65 74.52 86.61 78.55 81.34 75.09
Fine Tuning 67.51 78.66 67.33 65.16 74.68 80.73 78.31 77.22 73.70

Prompt
Learning

All-In-One 49.79 52.78 68.26 49.57 41.69 53.46 34.97 - 50.07
GPF 67.70 79.16 66.75 66.39 72.24 85.82 77.51 79.08 74.33

GPF-Plus 67.73 78.42 67.95 68.13 73.02 84.08 78.08 84.11 75.19
IA-GPL 69.35 79.30 68.52 69.66 80.15 86.78 78.90 84.70 77.17

ContextPred

Supervised
GraphSAGE 64.12 72.05 60.20 61.99 72.94 77.77 74.18 75.85 69.89

GCN 63.58 71.40 62.98 57.65 70.60 79.84 78.09 75.61 70.21
GIN 61.88 75.42 64.92 61.39 69.46 80.74 75.79 77.64 70.91

Pre-training+
Fine-tuning

Linear Probing 65.78 80.62 59.33 65.55 70.87 78.10 76.58 83.19 72.25
Fine Tuning 67.99 78.24 63.71 63.88 73.20 81.90 79.71 81.41 73.75

Prompt
Learning

All-In-One 55.93 62.18 61.62 45.91 59.19 48.01 39.10 - 53.13
GPF 67.35 78.24 68.98 63.25 70.78 83.32 78.60 82.60 74.14

GPF-Plus 68.05 77.17 68.57 64.95 75.83 81.06 76.34 85.12 74.63
IA-GPL 69.92 80.49 68.18 66.07 77.30 82.62 79.90 85.53 76.07

GCL

Supervised
GraphSAGE 67.88 68.79 63.79 51.08 72.47 68.41 71.10 68.50 66.50

GCN 65.20 66.88 61.50 55.54 74.72 65.86 74.90 73.09 67.21
GIN 67.56 68.65 67.14 51.17 75.79 71.06 69.07 70.69 67.73

Pre-training+
Fine-tuning

Linear Probing 71.82 74.81 60.89 58.75 76.92 65.49 74.02 73.91 69.83
Fine Tuning 69.90 72.56 63.17 56.26 74.64 68.20 73.89 75.73 69.41

Prompt
Learning

All-In-One 61.07 47.33 49.54 41.07 57.70 54.24 46.17 - 50.87
GPF 70.54 73.19 61.08 61.77 72.10 67.53 73.61 74.92 69.34

GPF-Plus 70.94 73.70 60.90 62.48 71.54 70.62 76.84 77.07 70.51
IA-GPL 72.58 76.08 60.86 64.22 75.07 71.24 75.59 77.33 71.62

Table 9: The hyperparameter settings for 50-shot learning.

Dataset split Learning rate #Codebook vectors #Samples #MLP layers (Proj. head)

BBBP Scaffold 0.005 20 10 3
Tox21 Scaffold 0.0005 50 10 3

ToxCast Scaffold 0.0001 50 10 4
SIDER Scaffold 0.005 10 5 2
ClinTox Scaffold 0.0001 50 10 4
BACE Scaffold 0.0001 20 10 2
HIV Scaffold 0.005 20 10 4

MUV Scaffold 0.0005 20 10 2

BBBP Random 0.001 20 50 4
Tox21 Random 0.001 20 50 2

ToxCast Random 0.005 50 5 2
SIDER Random 0.005 50 5 4
ClinTox Random 0.001 20 10 2
BACE Random 0.001 50 5 4
HIV Random 0.005 50 10 3

MUV Random 0.005 20 10 2

18


	Introduction
	Related Work
	Preliminaries
	METHODOLOGY
	Naive Approach
	Lightweight Bottleneck Architecture
	Prompt Quantization
	Model Optimization

	Experiments
	Experimental Setup
	Performance Evaluation
	Model Analysis

	Conclusions
	Broader Impacts and Limitations
	Related Work
	Additional Dataset Details
	Additional Experimental Results
	Results of Full-shot Learning
	Results of Node-level tasks
	Results of More Pre-training Strategies
	Results of larger graph datasets

	Additional Implementation Details

