

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LIGHT-X: GENERATIVE 4D VIDEO RENDERING WITH CAMERA AND ILLUMINATION CONTROL

Anonymous authors

Paper under double-blind review

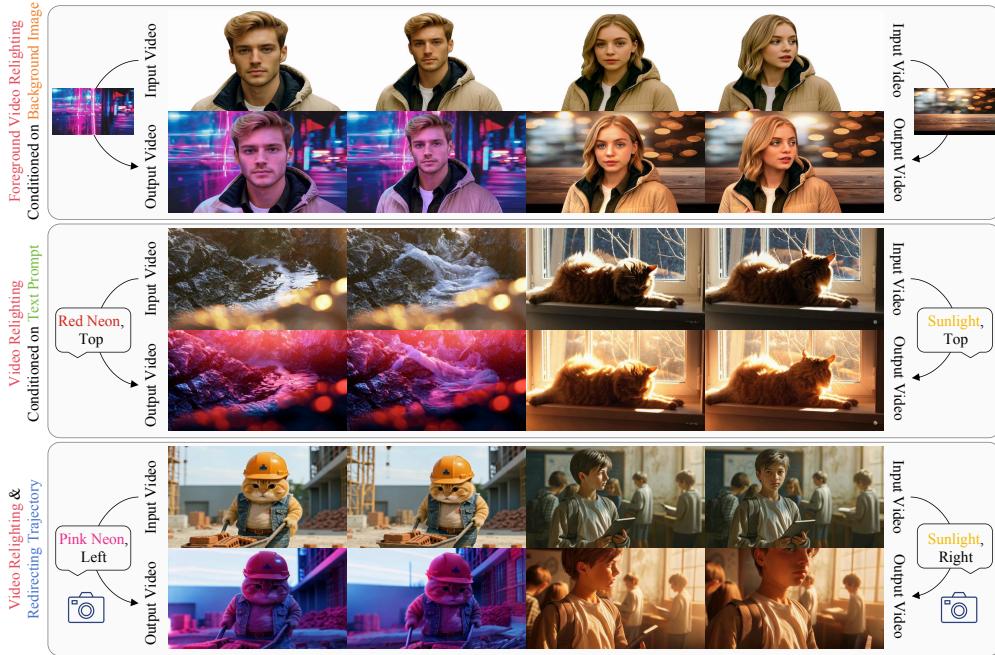


Figure 1: **Light-X** enables controllable video relighting and redirection from monocular video inputs, supporting illumination editing guided by either background images (**top**) or text prompts (**middle**), as well as camera trajectory redirection with user-defined trajectories (**bottom**).

## ABSTRACT

Recent advances in illumination control extend image-based methods to video, yet still facing a trade-off between lighting fidelity and temporal consistency. Moving beyond relighting, a key step toward generative modeling of real-world scenes is the joint control of camera trajectory and illumination, since visual dynamics are inherently shaped by both geometry and lighting. To this end, we present **Light-X**, a video generation framework that enables controllable rendering from monocular videos with both viewpoint and illumination control. **1)** We propose a disentangled design that decouples geometry and lighting signals: geometry and motion are captured via dynamic point clouds projected along user-defined camera trajectories, while illumination cues are provided by a relit frame consistently projected into the same geometry. These explicit, fine-grained cues enable effective disentanglement and guide high-quality illumination. **2)** To address the lack of paired multi-view and multi-illumination videos, we introduce **Light-Syn**, a degradation-based pipeline with inverse-mapping that synthesizes training pairs from in-the-wild monocular footage. This strategy yields a dataset covering static, dynamic, and AI-generated scenes, ensuring robust training. Extensive experiments show that Light-X outperforms baseline methods in joint camera–illumination control. Besides, our model surpasses prior video relighting methods in text- and background-conditioned settings. Ablation studies further validate the effectiveness of the disentangled formulation and degradation pipeline. Code, data and models will be made public.

054  
055  

## 1 INTRODUCTION

056  
057  
058  
059  
060  
061  
Real-world scenes are inherently rich, dynamic, and high-dimensional, shaped jointly by geometry,  
motion, and illumination. Yet monocular videos, the dominant medium for capturing everyday life,  
record only a 2D projection of this complexity. Unlocking controllable video generation with camera  
and illumination control would allow us to revisit such footage from novel viewpoints and under  
diverse lighting, thereby enabling immersive AR/VR experiences and flexible filmmaking pipelines.062  
063  
064  
065  
066  
067  
068  
069  
070  
Progress toward this goal has evolved along two largely independent lines of research: video relighting  
and camera-controlled video generation. **In the relighting domain**, existing video relighting  
methods typically extend single-image pipelines such as IC-Light (Zhang et al., 2025b) to the video  
setting, either through training-free fusion (Zhou et al., 2025) or by introducing architectural modifi-  
cations (Fang et al., 2025). But they suffer from a fundamental trade-off between lighting fidelity  
and temporal coherence, and crucially, they do not support camera control. **On the other hand**,  
camera-controlled video generation approaches (YU et al., 2025; Bai et al., 2025; Zhang et al.,  
2025a; Liu et al., 2025a) enable novel-view video synthesis with accurate camera motion and strong  
spatio-temporal consistency. However, they are limited to viewpoint manipulation and lack the ability  
to edit illumination, leaving the joint control of lighting and camera trajectory an open challenge.071  
072  
073  
074  
075  
076  
077  
078  
In this paper, we aim to develop a video generation model that jointly controls camera trajectory  
and illumination from monocular videos. This goal raises two key challenges: **1) Joint control**.  
Controlling camera trajectory and illumination together is inherently difficult, as it demands disen-  
tangled yet coherent modeling of geometry, motion, and lighting. Even for video relighting alone,  
existing methods struggle to balance lighting fidelity with temporal consistency. Viewpoint changes  
exacerbate this trade-off, making joint camera-illumination control especially challenging. **2) Data  
scarcity**. Training requires paired multi-view and multi-illumination videos to disentangle geometry  
and lighting, but such data are unavailable in real-world settings.079  
080  
081  
082  
083  
084  
085  
086  
087  
088  
089  
090  
To address these challenges, we propose the following solutions. **1) Disentangled control for-  
mulation**. We introduce a conditioning scheme that explicitly decouples geometry/motion from  
illumination. Camera trajectories are modeled through dynamic point cloud rendering like (YU et al.,  
2025), while illumination cues are provided by projecting a relit frame (obtained via (Zhang et al.,  
2025b)) into the same geometry, so that the model simultaneously receives projected original frames  
for geometry and motion, and a projected relit frame for lighting. These fine-grained cues greatly  
facilitate model learning. In addition, we introduce a light-DiT layer that enforces global illumination  
consistency. **2) Degradation-based data curation**. Since paired multi-view and multi-illumination  
videos are scarce, we design Light-Syn, a degradation-based pipeline with inverse mapping that  
synthesizes training pairs from in-the-wild footage. Degraded video variants (*e.g.*, relit or edited)  
serve as inputs, while the originals provide supervision<sup>1</sup>. By applying the inverse mapping of the  
degradation process, we project geometry and lighting cues from the original video into the degraded  
view, yielding diverse pairs from AI-generated, static, and dynamic scenes for robust generalization.091  
092  
093  
094  
095  
096  
097  
098  
099  
Building on these foundations, we present Light-X, the first framework for video generation with joint  
control of camera and illumination from monocular videos. As shown in Fig. 1, by decoupling camera  
and lighting conditioning, our method supports joint camera-illumination control, video relighting,  
and novel-view synthesis within a single model. Extensive evaluations demonstrate that our approach  
consistently outperforms baselines in joint camera-illumination control (Table 1). For individual  
tasks, it delivers superior lighting fidelity and temporal consistency in video relighting under both  
text (Table 3) and background conditions (Table 5). In addition, a soft-weighted illumination mask  
enables seamless integration of diverse lighting cues, such as environment maps and reference images,  
further improving the flexibility.100  
101  
102  
103  
104  
105  
106  
In summary, **1) We propose Light-X**, the first framework for video generation with joint control of  
camera trajectory and illumination from monocular videos. **2) We develop Light-Syn**, a degradation-  
based data pipeline with inverse geometric mapping, which constructs paired training data under  
controlled camera viewpoints and lighting. **3) We introduce a disentangled conditioning scheme** that  
explicitly separates geometry and motion from illumination cues, enabling both independent and  
coupled control. **4) Extensive experiments show that Light-X achieves SOTA performance in joint  
camera-illumination control and video relighting under text- and background-conditioned settings.**107  
<sup>1</sup>As method outputs are typically lower in fidelity than natural footage, we refer to them as *degraded*.

108  
109  

## 2 RELATED WORK

110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  

**Video Generative Models** have progressed from GANs (Goodfellow et al., 2020; Clark et al., 2019; Tulyakov et al., 2018; Vondrick et al., 2016; Wang et al., 2020) and VAEs (Kingma & Welling, 2013; Kalchbrenner et al., 2017; Mathieu et al., 2015; Ranzato et al., 2014; Wu et al., 2021) to autoregressive transformers (Wu et al., 2022). Then research focuses shifted to diffusion models (Ho et al., 2020). VDM (Ho et al., 2022) first used a 3D U-Net for video synthesis, and Make-A-Video (Singer et al., 2023) improved resolution and frame rate via super-resolution and interpolation. Latent diffusion (Rombach et al., 2022) was later adopted for efficiency (Blattmann et al., 2023; Zhou et al., 2022; He et al., 2022; Xing et al., 2023; Chen et al., 2024b; Guo et al., 2023b; Wang et al., 2024b). Most recently, Sora (Brooks et al., 2024) demonstrated the scalability of Diffusion Transformers (DiT) (Peebles & Xie, 2023), inspiring many DiT-based models (Wan et al., 2025; Yang et al., 2024b; Kong et al., 2024; Fan et al., 2025; Ma et al., 2025; Lin et al., 2024). Building on these advances, we leverage video diffusion priors for controllable video synthesis.

122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  

**Learning-Based Illumination Control** enables manipulation of scene lighting in images or videos. Early studies leveraged physical illumination models (Barren & Malik, 2014) or deep networks with explicit lighting representations (Zhou et al., 2019; Sun et al., 2019), especially for portraits (Shu et al., 2017; Shih et al., 2014; Sengupta et al., 2018). The recent success of diffusion models has greatly advanced relighting fidelity (Cha et al., 2025; Jin et al., 2024; Kim et al., 2024; Zhang et al., 2025b; He et al., 2025; Liang et al., 2025; Chaturvedi et al., 2025; Chadebec et al., 2025). IC-Light (Zhang et al., 2025b) employs a light-transport consistency loss with large-scale datasets to achieve high-quality image relighting. Recent works (Zhou et al., 2025; Fang et al., 2025; Zeng et al., 2025; Lin et al., 2025) have extended image relighting to videos. Light-A-Video (Zhou et al., 2025) employs cross-frame light attention and progressive fusion in a training-free manner, while RelightVid (Fang et al., 2025) extends IC-Light’s 2D U-Net to a 3D backbone with temporal attention. Yet, these methods still struggle with the trade-off between lighting fidelity and temporal consistency. In this paper, we propose a unified video generation framework that achieves temporally consistent and high-fidelity video relighting, while also supporting camera control.

135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  

**Camera-Controlled Video Generation.** Recent advances in video generation have emphasized conditional signals for controllable synthesis (Yin et al., 2023; Guo et al., 2023a; Xing et al., 2024; Fu et al., 2024). Camera-controlled methods (Yang et al., 2024a; Bahmani et al., 2024; Zheng et al., 2024; 2025) integrate camera parameters into diffusion models for viewpoint control. In static scenes, Zero-1-to-3 (Liu et al., 2023c) pioneered pose-conditioned diffusion for novel view synthesis of single objects, later extended to complex scenes (Gao et al., 2024; Ren et al., 2025; Sargent et al., 2023; Liu et al., 2024; Yu et al., 2024). For dynamic settings, some approaches (Wang et al., 2024c; He et al., 2024; Sun et al., 2024; Xiao et al., 2024; Bai et al., 2025) exploit camera parameters or trajectories for novel-view videos, while others (Wu et al., 2025; Kuang et al., 2024; Bian et al., 2025; Liu et al., 2025a; Wang et al., 2025a) develop multi-view video diffusion frameworks for cross-view consistency. Another direction (You et al., 2025; Gu et al., 2025; Zhang et al., 2025a; YU et al., 2025) leverages explicit geometric cues such as depth or tracking to guide camera control. However, existing methods remain focused solely on camera trajectory control. We instead pursue joint control of camera motion and illumination for high-quality, controllable video generation.

152  
153  
154  
155  
156  
157  
158  
159  
160  
161  

## 3 METHOD

152  
153  
154  
155  
156  
157  
158  
159  
160  
161  

Given a monocular source video  $\mathbf{V}^s = \{\mathbf{I}_i^s\}_{i=1}^f$ , our objective is to synthesize a target video  $\mathbf{V}^t = \{\mathbf{I}_i^t\}_{i=1}^f$  of the same dynamic scene, but re-rendered under user-specified camera trajectories and illumination conditions. The camera trajectory is denoted as  $\mathcal{C} := \{[\mathbf{R}_i, \mathbf{t}_i] \in \mathbb{R}^{3 \times 4}\}_{i=1}^f$ , where  $\mathbf{R}_i$  and  $\mathbf{t}_i$  represent the rotation and translation of the  $i$ -th frame relative to the original coordinate system. The illumination condition is denoted as  $\mathcal{L}$ , which may be provided in various forms (e.g., a text prompt, an HDR environment map, or a reference image) and will be discussed later. The generated video  $\mathbf{V}^t$  should faithfully preserve the appearance and dynamics of  $\mathbf{V}^s$  while adhering to  $\mathcal{C}$  and  $\mathcal{L}$ . In the following sections, we first introduce the camera–illumination decoupling strategy (Sec. 3.1), then present the camera–illumination conditioned video diffusion model (Sec. 3.2). We next describe the data curation pipeline Light-Syn (Sec. 3.3) and finally discuss the framework’s flexibility under diverse illumination conditions (Sec. 3.4).

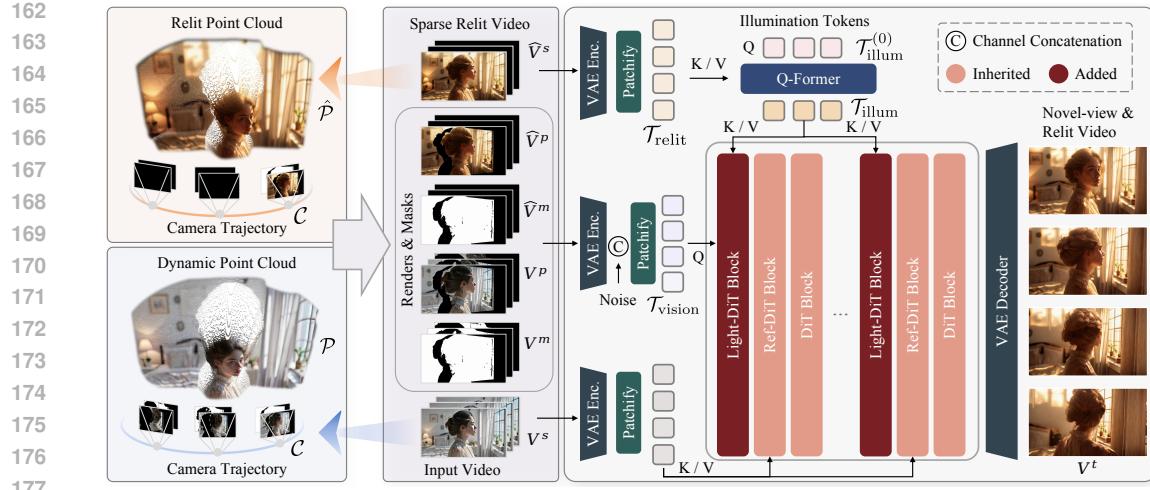


Figure 2: Overview of **Light-X**. Given an input video  $\mathbf{V}^s$ , we first relight one frame with (Zhang et al., 2025b), conditioned on a lighting text prompt, to obtain a sparse relit video  $\hat{\mathbf{V}}^s$ . We then estimate depths to construct a dynamic point cloud  $\mathcal{P}$  from  $\mathbf{V}^s$  and a relit point cloud  $\hat{\mathcal{P}}$  from  $\hat{\mathbf{V}}^s$ . Both point clouds are projected along a user-specified camera trajectory, producing geometry-aligned renders and masks ( $\mathbf{V}^p, \mathbf{V}^m$ ) and ( $\hat{\mathbf{V}}^p, \hat{\mathbf{V}}^m$ ). These six cues, together with illumination tokens extracted via a Q-Former, are fed into DiT blocks for conditional denoising. Finally, a VAE decoder reconstructs a high-fidelity video  $\mathbf{V}^t$  faithful to the target trajectory and illumination.

### 3.1 FORMULATION: CAMERA-ILLUMINATION DECOUPLING

As illustrated in Fig. 2, given a input source video  $\mathbf{V}^s$ , we disentangle camera and illumination control by constructing two point clouds that separately encode geometric and lighting information.

**Camera control.** To accurately regulate the camera trajectory, inspired by (Yu et al., 2024; YU et al., 2025; Guo et al., 2025; Hu et al., 2025), we leverage dynamic point clouds as an explicit inductive bias for modeling viewpoint transformations. Concretely, we first estimate a sequence of depth maps  $\mathbf{D}^s = \{\mathbf{D}_i^s\}_{i=1}^f$  from the source video  $\mathbf{V}^s$  using video depth estimation approaches (Hu et al., 2024). Each frame is then back-projected to 3D space to form a dynamic point cloud  $\mathcal{P} = \{\mathbf{P}_i\}_{i=1}^f$ :

$$\mathbf{P}_i = \Phi^{-1}(\mathbf{I}_i^s, \mathbf{D}_i^s; \mathbf{K}), \quad (1)$$

where  $\Phi^{-1}$  denotes the inverse perspective projection and  $\mathbf{K} \in \mathbb{R}^{3 \times 3}$  is the camera intrinsics matrix. Given a user-specified trajectory  $\mathcal{C} = \{[\mathbf{R}_i, \mathbf{t}_i]\}_{i=1}^f$ , the point clouds are projected into the target viewpoints, yielding geometry-aligned views  $\mathbf{V}^p = \{\mathbf{I}_i^p\}_{i=1}^f$  and visibility masks  $\mathbf{V}^m = \{\mathbf{M}_i^p\}_{i=1}^f$ :

$$\mathbf{I}_i^p, \mathbf{M}_i^p = \Phi(\mathbf{R}_i \mathbf{P}_i + \mathbf{t}_i; \mathbf{K}). \quad (2)$$

Together, these projected views and their masks serve as a strong geometric prior, guiding the diffusion model to produce videos that remain geometrically coherent along the specified trajectory.

**Illumination control.** For illumination, we apply IC-Light (Zhang et al., 2025b) to an arbitrary frame from the source video (the first frame is used for illustration in Fig. 2), producing an image relit according to the desired textual prompt. Subsequently, we construct a sparse relit video  $\hat{\mathbf{V}}^s = \{\hat{\mathbf{I}}_i^s\}_{i=1}^f$ , in which the relit frame is retained while all other frames remain blank. Using the previously estimated depths  $\{\mathbf{D}_i^s\}$ , together with the camera intrinsics  $\mathbf{K}$  and extrinsics  $\{[\mathbf{R}_i, \mathbf{t}_i]\}$ , this sparse relit video is lifted into a relit point cloud  $\hat{\mathcal{P}} = \{\hat{\mathbf{P}}_i\}_{i=1}^f$ :

$$\hat{\mathbf{P}}_i = \Phi^{-1}(\hat{\mathbf{I}}_i^s, \mathbf{D}_i^s; \mathbf{K}). \quad (3)$$

We reuse the depths predicted from the original video, rather than estimating them again from the relit video, to ensure geometric alignment between the relit and original content. Analogous to the source video branch, the relit point cloud is projected along the target trajectory, yielding geometrically

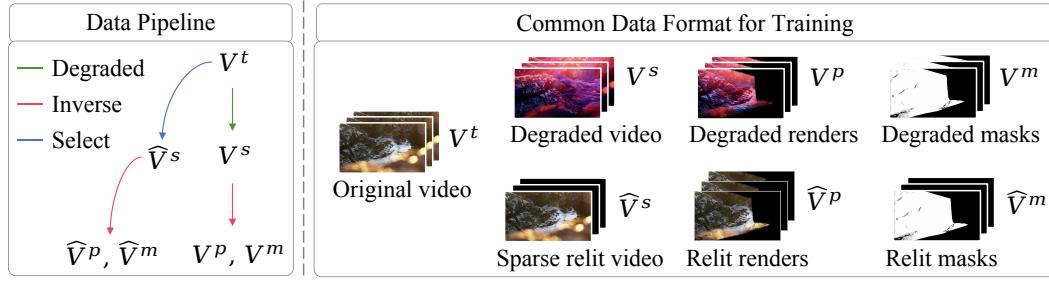


Figure 3: Overview of **Light-Syn**. From an in-the-wild video  $V^t$ , we generate a degraded  $V^s$  and derive renders, masks ( $V^p, V^m$ ), and relit counterparts ( $\hat{V}^p, \hat{V}^m$ ) via inverse transformations.

aligned relit views  $\hat{V}^p = \{\hat{I}_i^p\}_{i=1}^f$  with corresponding binary masks  $\hat{V}^m = \{\hat{M}_i^p\}_{i=1}^f$ , which indicate where illumination information is available and serve as lighting cues:

$$\hat{I}_i^p, \hat{M}_i^p = \Phi(\mathbf{R}_i \hat{P}_i + \mathbf{t}_i; \mathbf{K}). \quad (4)$$

### 3.2 ARCHITECTURE: CAMERA-ILLUMINATION CONDITIONED VIDEO DIFFUSION

With the obtained projected source views  $V^p$  and masks  $V^m$ , together with the relit projections  $\hat{V}^p$  and masks  $\hat{V}^m$ , the target video can be formulated as a conditional distribution as

$$\mathbf{x} \sim p(\mathbf{x} | V^s, \hat{V}^s, V^p, \hat{V}^p, V^m, \hat{V}^m), \quad (5)$$

which not only provides explicit geometric and illumination cues, but also disentangles the two factors in a geometrically aligned space, offering fine-grained guidance and enabling effective learning.

**Fine-grained cues.** The conditional cues  $V^p, V^m, \hat{V}^p$ , and  $\hat{V}^m$  are first fed into the VAE encoder. The resulting latents are concatenated with sampled noise (see the middle of Fig. 2) along the channel dimension and then patchified into a sequence of vision tokens  $\mathcal{T}_{\text{vision}}$ . These tokens encode two complementary fine-grained cues: the projected views  $V^p$ , which carry scene content, geometry, and motion, and the projected relit views  $\hat{V}^p$ , which provide illumination cues. These tokens are then merged along the sequence axis with text tokens  $\mathcal{T}_{\text{text}}$  (not shown in Fig. 2 due to space limit) obtained from the source video via (Li et al., 2022) and (Raffel et al., 2020). The fused text-vision tokens are then passed through DiT blocks for denoising.

**Global control.** While the rendered fine-grained cues facilitate learning of camera and illumination control, we observe that illumination strength gradually diminishes as the synthesized frames move further away from the relit frame. To mitigate this issue, we introduce a global illumination control module. Specifically, we encode the relit frame with a VAE encoder and patchify its latent to obtain the relit token  $\mathcal{T}_{\text{relit}}$ . Inspired by (Liu et al., 2023a; Xing et al., 2023), we employ a Q-Former (Li et al., 2023) to extract illumination information. A set of learnable illumination tokens  $\mathcal{T}_{\text{illum}}^{(0)}$  serves as queries, while the relit token  $\mathcal{T}_{\text{relit}}$  provides the keys and values (Fig. 2 right top). The resulting tokens  $\mathcal{T}_{\text{illum}}$  are then injected into our introduced Light-DiT layer through cross-attention:

$$\mathcal{T}'_{\text{vision}} = \text{CrossAttn}(Q = \mathcal{T}_{\text{vision}}, K = V = \mathcal{T}_{\text{illum}}) \quad (6)$$

In addition, we retain the original DiT and Ref-DiT modules from (YU et al., 2025), which respectively aggregate text-vision information and preserve 4D consistency with the input source video.

### 3.3 DATA CURATION

Effective training requires paired videos with varied camera viewpoints and illumination, yet collecting such data in the real world is almost infeasible. We first analyze the training data requirements in detail and then introduce Light-Syn, a degradation-based pipeline with inverse mapping for synthesizing paired data from in-the-wild monocular videos, as illustrated in Fig. 3.

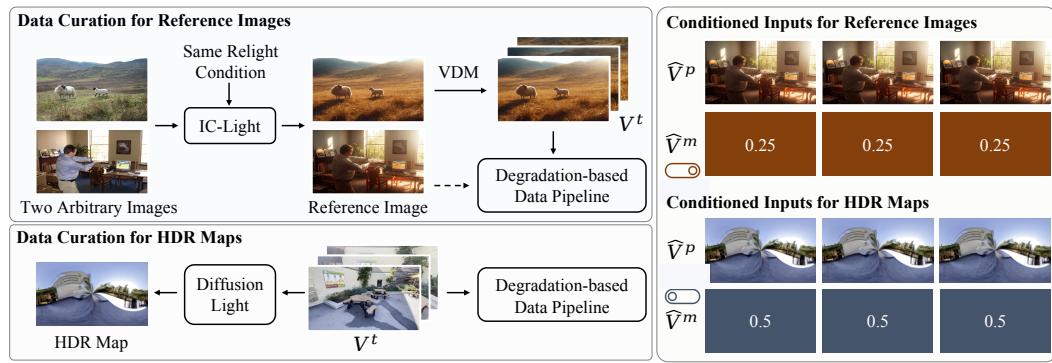


Figure 4: Left: Data curation pipelines for reference-image and HDR-map conditioned video generation. Right: Conditioning cues with soft masks used for model training.

**Training Data Requirements.** Our model takes as input a source video  $V^s$ , a target video  $V^t$ , and conditioning sequences  $V^p$ ,  $\hat{V}^s$ , and  $\hat{V}^p$ , each with specific requirements. The target  $V^t$  should have high quality and consistency, and the input  $V^s$  must remain 4D-consistent with  $V^t$  in overlapping regions. Projected source views  $V^p$  provide reliable geometric priors aligned with the target, while the sparse relit video  $\hat{V}^s$  provides explicit illumination cues matching the target’s lighting, and the projected relit views  $\hat{V}^p$  deliver fine-grained lighting information geometrically aligned with  $V^p$ .

**Light-Syn Pipeline.** To construct such training pairs, we take an in-the-wild video as target  $V^t$ , degrade it to obtain  $V^s$ , and record the degradation transformations. Applying their inverses transfers the geometry and illumination of  $V^t$  onto  $V^s$ , producing spatially aligned conditioning cues. We curate our dataset from three complementary sources: static scenes (8k), dynamic scenes (8k), and AI-generated videos (2k), where the first provide accurate multi-view data, the second capture realistic motion, and the third enrich illumination diversity. All sources satisfy the training requirements, yielding paired inputs, targets, and geometrically aligned conditioning cues. Detailed construction procedures are illustrated in Fig. C and described in detail in Sec. B of the Appendix.

### 3.4 FRAMEWORK FLEXIBILITY

**Camera–illumination decoupled control.** Although our training data are curated for joint control, the decoupling and masking mechanisms also allow for independent usage flexibly. For camera control, the conditioned relit frame is replaced with the original frame to preserve lighting. For illumination control (*i.e.*, video relighting), we set  $V^p = V^s$ , make  $V^m$  fully visible, and substitute  $\hat{V}^p$  with the sparse relit video  $\hat{V}^s$ , with  $\hat{V}^m$  updated accordingly. Our framework also supports foreground video relighting conditioned on background images, where  $V^s$  is composed of the foreground video and background using foreground masks, and the sparse relit video  $\hat{V}^s$  is generated with IC-Light (Zhang et al., 2025b). Further details are provided in Sec. A.2 of the Appendix.

**Extension to diverse illumination conditions.** Our framework has the potential to accommodate diverse illumination hints as conditioning inputs, such as HDR environment maps and reference images. A reference image here denotes an image from a different scene that conveys lighting information, analogous to a style-transfer source. As shown in Fig. 4, we extend the data curation pipeline accordingly. For HDR maps, we extract environment lighting with DiffusionLight (Phongthawee et al., 2024) and apply the degradation pipeline to obtain 16k samples from (Wang et al., 2023; Ling et al., 2024). For reference-image conditioning, we generate pairs of IC-Light (Zhang et al., 2025b) relit images with matched prompts (Lin et al., 2014; Team, 2024): one serves as the illumination reference, while the other is animated into  $V^t$  by a commercial video model (Team, 2024), yielding about 1k samples for each of the text- and background-conditioned settings. During training, conditioning inputs are assigned by modality:

$$(\hat{V}^p, \hat{V}^m) = (V_k, \alpha_k \mathbf{1}), \quad k \in \{\text{ref, hdr}\}, \quad (7)$$

with  $\alpha_{\text{ref}} = 0.25$  and  $\alpha_{\text{hdr}} = 0.50$ . These soft masks act as domain indicators (Chen et al., 2025), enabling a single model to generalize across diverse illumination conditions.



Figure 5: Qualitative comparison for camera-illumination control with light prompts “neon light” (left) and “sunlight” (right). Our method outperforms baselines in relighting quality, temporal consistency, and novel-view content generation. Refer to the supplementary video for clearer comparisons.

Table 1: Quantitative results for the joint camera–illumination control task. User preference indicates the percentage of participants who selected our method.

| Method      | Image Quality |              | Video Smoothness |              | User Study (%, Ours) |      |      |      | Time ↓   |
|-------------|---------------|--------------|------------------|--------------|----------------------|------|------|------|----------|
|             | FID ↓         | Aesthetic ↑  | Motion Pres. ↓   | CLIP ↑       | RQ                   | VS   | IP   | 4DC  |          |
| TC+IC-Light | /             | 0.573        | 6.558            | 0.976        | 89.3                 | 91.7 | 88.3 | 88.5 | 3.25 min |
| TC+LAV      | 138.89        | 0.574        | 4.327            | 0.986        | 86.0                 | 84.4 | 88.0 | 89.0 | 4.33 min |
| LAV+TC      | 144.61        | 0.596        | 5.027            | 0.987        | 85.1                 | 89.3 | 88.8 | 87.5 | 4.33 min |
| TL-Free     | 122.73        | 0.595        | 3.356            | 0.987        | 88.0                 | 89.2 | 88.2 | 88.2 | 5.50 min |
| Ours        | <b>101.06</b> | <b>0.623</b> | <b>2.007</b>     | <b>0.989</b> | /                    | /    | /    | /    | 1.83 min |

## 4 EXPERIMENTS

### 4.1 EXPERIMENTAL SETTINGS

**Baselines.** Our evaluation focuses on two tasks: joint camera–illumination control and video relighting. For the joint control, as no prior work addresses it directly, we construct baselines by combining existing methods: TrajectoryCrafter (TC) (YU et al., 2025) + IC-Light (Zhang et al., 2025b), Light-A-Video (LAV) (Zhou et al., 2025) + TC, TC+LAV, and a training-free baseline TL-Free (Sec. A.1). For video relighting, we assess both text- and background-conditioned settings, comparing with IC-Light (Zhang et al., 2025b), IC-Light+AnyV2V (Ku et al., 2024), Light-A-Video (Zhou et al., 2025), and RelightVid (Fang et al., 2025). More details are provided in Sec. A.3 of the Appendix.

**Metrics.** Following (Zhou et al., 2025), the evaluation focuses on two aspects: relighting quality and temporal consistency. Relighting quality is measured by FID (Heusel et al., 2017) between each method’s outputs and frame-wise IC-Light results, and by the Aesthetic Preference metric, defined as the mean of the aesthetic score and image quality in (Huang et al., 2024). Temporal consistency is assessed through the average CLIP (Radford et al., 2021) similarity between consecutive frames and Motion Preservation, computed as the deviation between RAFT (Teed & Deng, 2020) estimated optical flow and that of the source video. Considering that IC-Light-referenced FID may induce a bias toward the reference model, we additionally perform an evaluation that compares model outputs directly against real in-the-wild videos. In this evaluation protocol, real videos are treated as ground truth. Their lighting descriptions are extracted using LLaVA (Liu et al., 2023b), and a degraded counterpart is synthesized using LAV (Zhou et al., 2025) under a neutral-lighting prompt to serve as the model input. At test time, the degraded video is paired with its LLaVA-inferred lighting prompt, which is provided as the illumination condition. The relit outputs are then assessed against the real

378 Table 2: Evaluation of joint camera-illumination control using real in-the-wild videos as reference.  
379

| Method        | PSNR $\uparrow$ | SSIM $\uparrow$ | LPIPS $\downarrow$ | FVD $\downarrow$ |
|---------------|-----------------|-----------------|--------------------|------------------|
| TC + IC-Light | 10.963          | 0.4557          | 0.4744             | 58.8538          |
| TC + LAV      | 12.178          | 0.4702          | 0.5082             | 73.7790          |
| LAV + TC      | 12.476          | 0.4626          | 0.4793             | 60.9497          |
| TL-Free       | 13.486          | 0.5466          | 0.4180             | 54.4410          |
| Ours          | <b>13.955</b>   | <b>0.5819</b>   | <b>0.3777</b>      | <b>45.9116</b>   |

387 Table 3: Quantitative results for video relighting. \* indicates evaluation on the first 16 frames.  
388

| Method          | Image Quality    |                      | Video Smoothness          |                 | User Study (%), Ours |      |      | Time $\downarrow$ |
|-----------------|------------------|----------------------|---------------------------|-----------------|----------------------|------|------|-------------------|
|                 | FID $\downarrow$ | Aesthetic $\uparrow$ | Motion Pres. $\downarrow$ | CLIP $\uparrow$ | RQ                   | VS   | IP   |                   |
| IC-Light        | /                | 0.632                | 3.293                     | 0.983           | 88.3                 | 90.3 | 91.7 | 1.42 min          |
| LAV             | 112.45           | 0.614                | 2.115                     | 0.991           | 85.2                 | 88.5 | 92.5 | 2.50 min          |
| Ours            | <b>83.65</b>     | <b>0.645</b>         | <b>1.137</b>              | <b>0.993</b>    | /                    | /    | /    | 1.50 min          |
| IC-Light+AnyV2V | 106.05           | 0.612                | 3.777                     | 0.985           | 97.6                 | 95.1 | 98.4 | 1.67 min          |
| Ours*           | <b>77.97</b>     | <b>0.625</b>         | <b>1.452</b>              | <b>0.992</b>    | /                    | /    | /    | /                 |

398 videos using standard perceptual and temporal metrics, including PSNR, SSIM (Wang et al., 2004),  
399 LPIPS (Zhang et al., 2018), and FVD (Unterthiner et al., 2019). We also conduct a user study with 57  
400 participants to evaluate relighting quality (RQ, lighting fidelity and alignment with the prompt), video  
401 smoothness (VS), ID preservation (IP, consistency of the object’s identity and albedo after relighting),  
402 and 4D consistency (4DC, spatio-temporal coherence in the novel-view setting). During evaluation,  
403 lighting prompts, directions, and camera trajectories are randomly sampled for each video.

404 **Datasets.** For evaluation data, we collect 200 high-quality videos from Pexels (Pexels, 2025) and  
405 Sora (Brooks et al., 2024), covering humans, animals, objects, and a variety of scenes with substantial  
406 motion, including both in the wild and AI-generated content. For background conditioned relighting,  
407 we use 10 background images and 30 foreground videos from (Zhang et al., 2025b) and (Team, 2024),  
408 producing 300 combinations. None of these videos is used for training in any compared methods.

409 **Implementation Details.** The framework is based on (CogVideoX-Fun, 2024; Yang et al., 2024b).  
410 Training uses videos of resolution  $384 \times 672$  and 49 frames, for 16,000 iterations with a learning rate  
411 of  $2 \times 10^{-5}$  and a batch size of 8 on eight H100 GPUs. Video depths are estimated with (Hu et al.,  
412 2024) to construct dynamic point clouds, with camera intrinsics set empirically.

## 414 4.2 CAMERA-ILLUMINATION CONTROL RESULTS

416 Qualitative results are shown in Fig. 5 and better inspected in supplementary videos. TC (YU et al.,  
417 2025)+LAV (Zhou et al., 2025) is limited by LAV’s weak relighting, especially under large camera  
418 motion, causing poor lighting quality and temporal instability. For LAV+TC, relit outputs degrade  
419 point cloud reconstruction, leading TC to produce artifacts from novel viewpoints. TL-Free suffers  
420 from a trade-off between fidelity and consistency. In contrast, our approach achieves a good balance  
421 of relighting quality, novel-view synthesis, and temporal stability, and outperforms all baselines in  
422 both fidelity and smoothness (Table 1). We additionally assess joint camera-illumination control  
423 using real in-the-wild videos as ground truth. Table 2 shows that our method achieves the best  
424 PSNR, SSIM, LPIPS, and FVD scores, further confirming its advantages in both lighting fidelity and  
425 temporal consistency. User studies further validate these improvements.

## 426 4.3 VIDEO RELIGHTING RESULTS

428 **Text-conditioned relighting.** Fig. 6 shows qualitative comparisons. Frame-wise IC-Light (Zhang  
429 et al., 2025b) achieves high single-frame quality but lacks temporal constraints, causing flicker in  
430 lighting and appearance. LAV (Zhou et al., 2025) integrates VDM (Wan et al., 2025) priors via a  
431 training-free fusion, improving stability but reducing fidelity. Our method attains both significant  
lighting accuracy and temporal coherence. Quantitative results in Table 3 confirm consistent gains

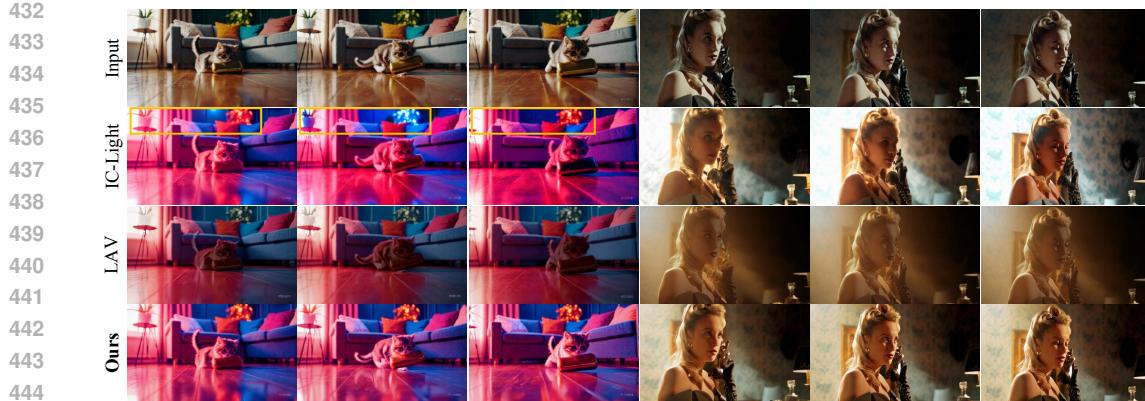


Figure 6: Qualitative comparison for video relighting with light prompts “neon light” (left) and “sunlight” (right). Our method outperforms baseline methods in both relighting quality and temporal consistency. Please refer to the supplementary video for clearer comparisons.

Table 4: Evaluation of video relighting using real in-the-wild videos as reference.

| Method   | PSNR $\uparrow$ | SSIM $\uparrow$ | LPIPS $\downarrow$ | FVD $\downarrow$ |
|----------|-----------------|-----------------|--------------------|------------------|
| IC-Light | 11.75           | 0.517           | 0.422              | 67.50            |
| LAV      | 12.66           | 0.530           | 0.429              | 74.64            |
| Ours     | <b>13.84</b>    | <b>0.581</b>    | <b>0.369</b>       | <b>56.60</b>     |

Table 5: Quantitative results for background image-conditioned foreground video relighting. Methods marked with \* are evaluated on the first 16 frames.

| Method        | Image Quality    |                      | Video Smoothness                 |                 | User Study (%), Ours |      |      |
|---------------|------------------|----------------------|----------------------------------|-----------------|----------------------|------|------|
|               | FID $\downarrow$ | Aesthetic $\uparrow$ | Motion Preservation $\downarrow$ | CLIP $\uparrow$ | RQ                   | VS   | IP   |
| IC-Light      | /                | 0.645                | 0.374                            | 0.987           | 81.8                 | 91.7 | 88.0 |
| Light-A-Video | 76.05            | 0.619                | 0.296                            | 0.990           | 85.5                 | 87.1 | 88.0 |
| Ours          | <b>61.75</b>     | <b>0.680</b>         | <b>0.220</b>                     | <b>0.992</b>    | /                    | /    | /    |
| RelightVid    | 86.94            | 0.635                | 0.230                            | 0.988           | 81.8                 | 87.1 | 87.3 |
| Ours*         | <b>56.60</b>     | <b>0.682</b>         | <b>0.199</b>                     | <b>0.990</b>    | /                    | /    | /    |

in relighting fidelity and temporal smoothness, further supported by user studies. We additionally evaluate text-conditioned relighting using real in-the-wild videos as ground truth. As shown in Table 4, our method achieves the best performance across all metrics, further demonstrating its strengths in lighting fidelity and temporal stability.

**Background-conditioned relighting.** We also evaluate foreground video relighting conditioned on background images. As shown in Table 5, our method clearly surpasses all baselines in image quality and video smoothness. Additional qualitative results for background image (Sec. D.3), HDR map (Sec. D.4), and reference image (Sec. D.5) conditioning are provided in the Appendix.

#### 4.4 ABLATION STUDIES

We conduct ablation studies on (a) training data, (b) architecture and lighting design, and (c) training and conditioning strategy. Quantitative results are in Table 6, and qualitative comparisons are shown in Fig. D of the Appendix. Removing static data (a.i) weakens unseen-view synthesis, as static videos provide natural cross-view pairs. Excluding dynamic data (a.ii) causes motion artifacts, while omitting AI-generated data (a.iii) lowers robustness to rare lighting, such as neon, where brightness may decay. Skipping fine-grained cues (b.i) limits the use of illumination priors from IC-Light (Zhang et al., 2025b), degrading relighting quality. Disabling global control (b.ii) causes fading or abrupt

486  
487 Table 6: Qualitative ablation results for the joint camera-illumination control across different compo-  
488  
489  
490  
491  
492  
493  
494  
495  
496  
497  
498  
499  
500  
501  
502  
503  
504  
505  
506  
507  
508  
509  
510  
511  
512  
513  
514  
515  
516  
517  
518  
519  
520  
521  
522  
523  
524  
525  
526  
527  
528  
529  
530  
531  
532  
533  
534  
535  
536  
537  
538  
539

| Method                                | FID Score ↓  | Aesthetic ↑  | Motion Pres. ↓ | CLIP Score ↑ |
|---------------------------------------|--------------|--------------|----------------|--------------|
| (a.i) w/o static data                 | 123.35       | 0.594        | 3.749          | 0.987        |
| (a.ii) w/o dynamic data               | 108.70       | 0.621        | 2.635          | 0.988        |
| (a.iii) w/o AI-gen data               | 102.09       | 0.613        | 2.498          | 0.988        |
| (b.ii) w/o fine-grained lighting cues | 143.02       | 0.602        | 2.242          | <b>0.989</b> |
| (b.ii) w/o global lighting control    | 103.13       | 0.612        | 2.348          | <b>0.989</b> |
| (b.iii) light+text concat             | 137.05       | 0.596        | 2.654          | <b>0.989</b> |
| (c.i) algorithm-generated GT          | 137.83       | 0.524        | 4.066          | 0.986        |
| (c.ii) relit all frames               | <b>71.10</b> | 0.571        | 4.238          | 0.986        |
| (c.iii) w/o soft mask                 | 148.51       | 0.545        | 2.879          | 0.988        |
| <b>Ours</b>                           | 101.06       | <b>0.623</b> | <b>2.007</b>   | <b>0.989</b> |

shifts under complex lighting, whereas adding it stabilizes results. Replacing our conditioning with light–text concatenation (b.iii), as in (Fang et al., 2025), also fails to leverage fine-grained lighting priors. Reversing supervision (c.i) by treating algorithm-generated outputs as ground truth harms fidelity, consistency, and novel-view synthesis. Relighting all frames instead of a single frame (c.ii) increases cost and reduces temporal coherence despite better FID. Discarding the soft mask (c.iii) blurs illumination domains and introduces interference, lowering overall performance.

## 5 CONCLUSION

We introduce Light-X, the first video generation framework that jointly controls camera trajectory and illumination from monocular videos. Our disentangled conditioning design leverages dynamic point clouds along user-defined trajectories to provide geometry and motion cues, while a relit frame is re-projected into the same geometry to provide illumination cues. To enable training, we further propose Light-Syn, a degradation-based data synthesis pipeline that constructs paired videos without requiring multi-view, multi-illumination captures. Extensive experiments show that Light-X consistently surpasses existing baselines in both joint camera–illumination control and video relighting, while flexibly adapting to diverse lighting conditions. We believe this work paves the way toward scalable generative modeling and controllable editing of complex real-world scenes.

## ETHICS STATEMENT

All data used in this work are derived from publicly available, open-access sources with clearly defined usage policies. Our objective is to advance controllable video generation, specifically joint camera–illumination control from monocular videos without introducing additional ethical or safety risks beyond those already inherent in existing generative models. Nevertheless, potential issues such as dataset biases or unintended misuse of generated content cannot be fully excluded. We therefore stress the importance of rigorous data curation, responsible deployment, and transparent reporting to safeguard integrity, fairness, and reproducibility.

## REPRODUCIBILITY STATEMENT

We emphasize reproducibility by providing detailed descriptions of the proposed framework, including the disentangled design, degradation-based data curation pipeline, and training/evaluation protocols. To support independent validation, we will release the source code, pretrained weights, and curated datasets. This commitment promotes transparency, enables replication, and encourages the research community to extend and improve upon our work in controllable video generation.

540 REFERENCES  
541

542 Sherwin Bahmani, Ivan Skorokhodov, Aliaksandr Siarohin, Willi Menapace, Guocheng Qian, Michael  
543 Vasilkovsky, Hsin-Ying Lee, Chaoyang Wang, Jiaxu Zou, Andrea Tagliasacchi, et al. Vd3d: Taming  
544 large video diffusion transformers for 3d camera control. *arXiv preprint arXiv:2407.12781*, 2024.

545 Jianhong Bai, Menghan Xia, Xiao Fu, Xintao Wang, Lianrui Mu, Jinwen Cao, Zuozhu Liu, Haoji  
546 Hu, Xiang Bai, Pengfei Wan, et al. Recammaster: Camera-controlled generative rendering from a  
547 single video. *arXiv preprint arXiv:2503.11647*, 2025.

548 Jonathan T Barron and Jitendra Malik. Shape, illumination, and reflectance from shading. *IEEE  
549 transactions on pattern analysis and machine intelligence*, 37(8):1670–1687, 2014.

550 Weikang Bian, Zhaoyang Huang, Xiaoyu Shi, Yijin Li, Fu-Yun Wang, and Hongsheng Li. Gs-dit:  
551 Advancing video generation with pseudo 4d gaussian fields through efficient dense 3d point  
552 tracking. *arXiv preprint arXiv:2501.02690*, 2025.

553 Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik  
554 Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling  
555 latent video diffusion models to large datasets. *arXiv preprint arXiv:2311.15127*, 2023.

556 Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe  
557 Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video  
558 generation models as world simulators. 2024. URL [https://openai.com/research/  
559 video-generation-models-as-world-simulators](https://openai.com/research/video-generation-models-as-world-simulators).

560 Junuk Cha, Mengwei Ren, Krishna Kumar Singh, He Zhang, Yannick Hold-Geoffroy, Seunghyun  
561 Yoon, HyunJoon Jung, Jae Shin Yoon, and Seungryul Baek. Text2relight: Creative portrait  
562 relighting with text guidance. In *Proceedings of the AAAI Conference on Artificial Intelligence*,  
563 volume 39, pp. 1980–1988, 2025.

564 Clément Chadebec, Onur Tasar, Sanjeev Sreetharan, and Benjamin Aubin. Lbm: Latent bridge  
565 matching for fast image-to-image translation. *arXiv preprint arXiv:2503.07535*, 2025.

566 Sumit Chaturvedi, Mengwei Ren, Yannick Hold-Geoffroy, Jingyuan Liu, Julie Dorsey, and Zhixin  
567 Shu. Synthlight: Portrait relighting with diffusion model by learning to re-render synthetic faces.  
568 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 369–379, 2025.

569 Boyuan Chen, Diego Martí Monsó, Yilun Du, Max Simchowitz, Russ Tedrake, and Vincent Sitzmann.  
570 Diffusion forcing: Next-token prediction meets full-sequence diffusion. *Advances in Neural  
571 Information Processing Systems*, 37:24081–24125, 2024a.

572 Haoxin Chen, Yong Zhang, Xiaodong Cun, Menghan Xia, Xintao Wang, Chao Weng, and Ying Shan.  
573 Videocrafter2: Overcoming data limitations for high-quality video diffusion models, 2024b.

574 Zhaoxi Chen, Tianqi Liu, Long Zhuo, Jiawei Ren, Zeng Tao, He Zhu, Fangzhou Hong, Liang  
575 Pan, and Ziwei Liu. 4dnex: Feed-forward 4d generative modeling made easy. *arXiv preprint  
576 arXiv:2508.13154*, 2025.

577 Aidan Clark, Jeff Donahue, and Karen Simonyan. Adversarial video generation on complex datasets.  
578 *arXiv preprint arXiv:1907.06571*, 2019.

579 CogVideoX-Fun. Cogvideox-fun, 2024. URL [https://github.com/aigc-apps/  
581 CogVideoX-Fun](https://github.com/aigc-apps/<br/>580 CogVideoX-Fun).

582 Weichen Fan, Chenyang Si, Junhao Song, Zhenyu Yang, Yinan He, Long Zhuo, Ziqi Huang, Ziyue  
583 Dong, Jingwen He, Dongwei Pan, et al. Vchitect-2.0: Parallel transformer for scaling up video  
584 diffusion models. *arXiv preprint arXiv:2501.08453*, 2025.

585 Ye Fang, Zeyi Sun, Shangzhan Zhang, Tong Wu, Yinghao Xu, Pan Zhang, Jiaqi Wang, Gordon  
586 Wetzstein, and Dahua Lin. Relightvid: Temporal-consistent diffusion model for video relighting.  
587 *arXiv preprint arXiv:2501.16330*, 2025.

594 Xiao Fu, Xian Liu, Xintao Wang, Sida Peng, Menghan Xia, Xiaoyu Shi, Ziyang Yuan, Pengfei Wan,  
 595 Di Zhang, and Dahua Lin. 3dtrajmaster: Mastering 3d trajectory for multi-entity motion in video  
 596 generation. *arXiv preprint arXiv:2412.07759*, 2024.

597

598 Hang Gao, Ruilong Li, Shubham Tulsiani, Bryan Russell, and Angjoo Kanazawa. Dynamic novel-  
 599 view synthesis: A reality check. In *NeurIPS*, 2022.

600 Ruiqi Gao, Aleksander Holynski, Philipp Henzler, Arthur Brussee, Ricardo Martin-Brualla, Pratul  
 601 Srinivasan, Jonathan T Barron, and Ben Poole. Cat3d: Create anything in 3d with multi-view  
 602 diffusion models. *arXiv preprint arXiv:2405.10314*, 2024.

603

604 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,  
 605 Aaron Courville, and Yoshua Bengio. Generative adversarial networks. *Communications of the  
 606 ACM*, 63(11):139–144, 2020.

607 Zekai Gu, Rui Yan, Jiahao Lu, Peng Li, Zhiyang Dou, Chenyang Si, Zhen Dong, Qifeng Liu, Cheng  
 608 Lin, Ziwei Liu, et al. Diffusion as shader: 3d-aware video diffusion for versatile video generation  
 609 control. In *Proceedings of the Special Interest Group on Computer Graphics and Interactive  
 610 Techniques Conference Papers*, pp. 1–12, 2025.

611 Jiazhe Guo, Yikang Ding, Xiwu Chen, Shuo Chen, Bohan Li, Yingshuang Zou, Xiaoyang Lyu,  
 612 Feiyang Tan, Xiaojuan Qi, Zhiheng Li, et al. Dist-4d: Disentangled spatiotemporal diffusion with  
 613 metric depth for 4d driving scene generation. *arXiv preprint arXiv:2503.15208*, 2025.

614

615 Yuwei Guo, Ceyuan Yang, Anyi Rao, Maneesh Agrawala, Dahua Lin, and Bo Dai. Sparsectrl: Adding  
 616 sparse controls to text-to-video diffusion models. *arXiv preprint arXiv:2311.16933*, 2023a.

617

618 Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang, Yaohui Wang, Yu Qiao, Maneesh Agrawala,  
 619 Dahua Lin, and Bo Dai. Animatediff: Animate your personalized text-to-image diffusion models  
 620 without specific tuning. *arXiv preprint arXiv:2307.04725*, 2023b.

621 Hao He, Yinghao Xu, Yuwei Guo, Gordon Wetzstein, Bo Dai, Hongsheng Li, and Ceyuan Yang. Cam-  
 622 eractrl: Enabling camera control for text-to-video generation. *arXiv preprint arXiv:2404.02101*,  
 623 2024.

624

625 Kai He, Ruofan Liang, Jacob Munkberg, Jon Hasselgren, Nandita Vijaykumar, Alexander Keller,  
 626 Sanja Fidler, Igor Gilitschenski, Zan Gojcic, and Zian Wang. Unirelight: Learning joint decompo-  
 627 sition and synthesis for video relighting. *arXiv preprint arXiv:2506.15673*, 2025.

628

629 Yingqing He, Tianyu Yang, Yong Zhang, Ying Shan, and Qifeng Chen. Latent video diffusion models  
 for high-fidelity long video generation. *arXiv preprint arXiv:2211.13221*, 2022.

630

631 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans  
 632 trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in neural  
 633 information processing systems*, 30, 2017.

634

635 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *NeurIPS*,  
 pp. 6840–6851, 2020.

636

637 Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J  
 638 Fleet. Video diffusion models. In *NeurIPS*, pp. 8633–8646, 2022.

639

640 Tao Hu, Haoyang Peng, Xiao Liu, and Yuewen Ma. Ex-4d: Extreme viewpoint 4d video synthesis  
 via depth watertight mesh. *arXiv preprint arXiv:2506.05554*, 2025.

641

642 Wenbo Hu, Xiangjun Gao, Xiaoyu Li, Sijie Zhao, Xiaodong Cun, Yong Zhang, Long Quan, and Ying  
 643 Shan. Depthrafter: Generating consistent long depth sequences for open-world videos. *arXiv  
 644 preprint arXiv:2409.02095*, 2024.

645

646 Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianxing  
 647 Wu, Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark suite for video  
 generative models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern  
 Recognition*, pp. 21807–21818, 2024.

648 Haian Jin, Yuan Li, Fujun Luan, Yuanbo Xiangli, Sai Bi, Kai Zhang, Zexiang Xu, Jin Sun, and Noah  
 649 Snavely. Neural gaffer: Relighting any object via diffusion. *Advances in Neural Information  
 650 Processing Systems*, 37:141129–141152, 2024.

651

652 Nal Kalchbrenner, Aäron Oord, Karen Simonyan, Ivo Danihelka, Oriol Vinyals, Alex Graves, and  
 653 Koray Kavukcuoglu. Video pixel networks. In *International Conference on Machine Learning*, pp.  
 654 1771–1779. PMLR, 2017.

655

656 Hoon Kim, Minje Jang, Wonjun Yoon, Jisoo Lee, Donghyun Na, and Sanghyun Woo. Switchlight:  
 657 Co-design of physics-driven architecture and pre-training framework for human portrait relighting.  
 658 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.  
 659 25096–25106, 2024.

660

661 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint  
 arXiv:1312.6114*, 2013.

662

663 Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,  
 664 Bo Wu, Jianwei Zhang, et al. Hunyuandvideo: A systematic framework for large video generative  
 665 models. *arXiv preprint arXiv:2412.03603*, 2024.

666

667 Max Ku, Cong Wei, Weiming Ren, Harry Yang, and Wenhui Chen. Anyv2v: A tuning-free framework  
 for any video-to-video editing tasks. *arXiv preprint arXiv:2403.14468*, 2024.

668

669 Zhengfei Kuang, Shengqu Cai, Hao He, Yinghao Xu, Hongsheng Li, Leonidas Guibas, and Gordon.  
 670 Wetzstein. Collaborative video diffusion: Consistent multi-video generation with camera control.  
 671 In *arXiv*, 2024.

672

673 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-  
 674 training for unified vision-language understanding and generation. In *International conference on  
 675 machine learning*, 2022.

676

677 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image  
 678 pre-training with frozen image encoders and large language models. In *International conference  
 on machine learning*, pp. 19730–19742. PMLR, 2023.

679

680 Zhengqi Li, Richard Tucker, Forrester Cole, Qianqian Wang, Linyi Jin, Vickie Ye, Angjoo Kanazawa,  
 681 Aleksander Holynski, and Noah Snavely. Megasam: Accurate, fast and robust structure and motion  
 682 from casual dynamic videos. In *Proceedings of the Computer Vision and Pattern Recognition  
 683 Conference*, pp. 10486–10496, 2025.

684

685 Ruofan Liang, Zan Gojcic, Huan Ling, Jacob Munkberg, Jon Hasselgren, Chih-Hao Lin, Jun Gao,  
 686 Alexander Keller, Nandita Vijaykumar, Sanja Fidler, et al. Diffusion renderer: Neural inverse and  
 687 forward rendering with video diffusion models. In *Proceedings of the Computer Vision and Pattern  
 688 Recognition Conference*, pp. 26069–26080, 2025.

689

690 Bin Lin, Yunyang Ge, Xinhua Cheng, Zongjian Li, Bin Zhu, Shaodong Wang, Xianyi He, Yang Ye,  
 691 Shenghai Yuan, Liuhan Chen, et al. Open-sora plan: Open-source large video generation model.  
 692 *arXiv preprint arXiv:2412.00131*, 2024.

693

694 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr  
 695 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *European  
 696 conference on computer vision*, pp. 740–755. Springer, 2014.

697

698 Yuanze Lin, Yi-Wen Chen, Yi-Hsuan Tsai, Ronald Clark, and Ming-Hsuan Yang. Illumicraft:  
 699 Unified geometry and illumination diffusion for controllable video generation. *arXiv preprint  
 700 arXiv:2506.03150*, 2025.

701

702 Lu Ling, Yichen Sheng, Zhi Tu, Wentian Zhao, Cheng Xin, Kun Wan, Lantao Yu, Qianyu Guo, Zixun  
 703 Yu, Yawen Lu, et al. Dl3dv-10k: A large-scale scene dataset for deep learning-based 3d vision.  
 704 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.  
 705 22160–22169, 2024.

702 Fangfu Liu, Wenqiang Sun, Hanyang Wang, Yikai Wang, Haowen Sun, Junliang Ye, Jun Zhang, and  
 703 Yueqi Duan. Reconx: Reconstruct any scene from sparse views with video diffusion model. *arXiv*  
 704 *preprint arXiv:2408.16767*, 2024.

705 Gongye Liu, Menghan Xia, Yong Zhang, Haoxin Chen, Jinbo Xing, Xintao Wang, Yujiu Yang, and  
 706 Ying Shan. Stylecrafter: Enhancing stylized text-to-video generation with style adapter. *arXiv*  
 707 *preprint arXiv:2312.00330*, 2023a.

708 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023b.

709 Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov, and Carl Vondrick.  
 710 Zero-1-to-3: Zero-shot one image to 3d object, 2023c.

711 Tianqi Liu, Zihao Huang, Zhaoxi Chen, Guangcong Wang, Shoukang Hu, Liao Shen, Huiqiang Sun,  
 712 Zhiguo Cao, Wei Li, and Ziwei Liu. Free4d: Tuning-free 4d scene generation with spatial-temporal  
 713 consistency. *arXiv preprint arXiv:2503.20785*, 2025a.

714 Yang Liu, Chuanchen Luo, Zimo Tang, Yingyan Li, Yuanyong Ning, Lue Fan, Junran Peng, Zhaoxiang  
 715 Zhang, et al. Tc-light: Temporally coherent generative rendering for realistic world transfer. In  
 716 *The Thirty-ninth Annual Conference on Neural Information Processing Systems*, 2025b.

717 Xin Ma, Yaohui Wang, Xinyuan Chen, Gengyun Jia, Ziwei Liu, Yuan-Fang Li, Cunjian Chen, and  
 718 Yu Qiao. Latte: Latent diffusion transformer for video generation. *Transactions on Machine  
 719 Learning Research*, 2025.

720 Michael Mathieu, Camille Couprie, and Yann LeCun. Deep multi-scale video prediction beyond  
 721 mean square error. *arXiv preprint arXiv:1511.05440*, 2015.

722 Kepan Nan, Rui Xie, Penghao Zhou, Tiehan Fan, Zhenheng Yang, Zhijie Chen, Xiang Li, Jian Yang,  
 723 and Ying Tai. Openvid-1m: A large-scale high-quality dataset for text-to-video generation. *arXiv*  
 724 *preprint arXiv:2407.02371*, 2024.

725 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *ICCV*, 2023.

726 Pexels. Pexels. <https://www.pexels.com>, 2025.

727 Pakkapon Phongthawee, Worameth Chinchuthakun, Nontaphat Sinsunthithet, Varun Jampani, Amit  
 728 Raj, Pramook Khungurn, and Supasorn Suwajanakorn. Diffusionlight: Light probes for free by  
 729 painting a chrome ball. In *Proceedings of the IEEE/CVF conference on computer vision and  
 730 pattern recognition*, pp. 98–108, 2024.

731 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,  
 732 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual  
 733 models from natural language supervision. In *International conference on machine learning*, pp.  
 734 8748–8763. PMLR, 2021.

735 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi  
 736 Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text  
 737 transformer. *Journal of Machine Learning Research*, 2020.

738 MarcAurelio Ranzato, Arthur Szlam, Joan Bruna, Michael Mathieu, Ronan Collobert, and Sumit  
 739 Chopra. Video (language) modeling: a baseline for generative models of natural videos. *arXiv*  
 740 *preprint arXiv:1412.6604*, 2014.

741 Xuanchi Ren, Tianchang Shen, Jiahui Huang, Huan Ling, Yifan Lu, Merlin Nimier-David, Thomas  
 742 Müller, Alexander Keller, Sanja Fidler, and Jun Gao. Gen3c: 3d-informed world-consistent video  
 743 generation with precise camera control. In *Proceedings of the Computer Vision and Pattern  
 744 Recognition Conference*, pp. 6121–6132, 2025.

745 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-  
 746 resolution image synthesis with latent diffusion models. In *CVPR*, 2022.

747 Kyle Sargent, Zizhang Li, Tanmay Shah, Charles Herrmann, Hong-Xing Yu, Yunzhi Zhang, Eric Ryan  
 748 Chan, Dmitry Lagun, Li Fei-Fei, Deqing Sun, et al. Zeronvs: Zero-shot 360-degree view synthesis  
 749 from a single real image. 2023.

756 Soumyadip Sengupta, Angjoo Kanazawa, Carlos D Castillo, and David W Jacobs. Sfsnet: Learning  
 757 shape, reflectance and illuminance of faces in the wild'. In *Proceedings of the IEEE conference on*  
 758 *computer vision and pattern recognition*, pp. 6296–6305, 2018.

759

760 YiChang Shih, Sylvain Paris, Connelly Barnes, William T Freeman, and Frédo Durand. Style transfer  
 761 for headshot portraits. 2014.

762

763 Zhixin Shu, Sunil Hadap, Eli Shechtman, Kalyan Sunkavalli, Sylvain Paris, and Dimitris Samaras.  
 764 Portrait lighting transfer using a mass transport approach. *ACM Transactions on Graphics (TOG)*,  
 765 36(4):1, 2017.

766

767 Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry  
 768 Yang, Oron Ashual, Oran Gafni, et al. Make-a-video: Text-to-video generation without text-video  
 769 data. In *ICLR*, 2023.

770

771 Tiancheng Sun, Jonathan T Barron, Yun-Ta Tsai, Zexiang Xu, Xueming Yu, Graham Fyffe, Christoph  
 772 Rhemann, Jay Busch, Paul E Debevec, and Ravi Ramamoorthi. Single image portrait relighting.  
 773 *ACM Trans. Graph.*, 38(4):79–1, 2019.

774

775 Wenqiang Sun, Shuo Chen, Fangfu Liu, Zilong Chen, Yueqi Duan, Jun Zhang, and Yikai Wang.  
 Dimensionx: Create any 3d and 4d scenes from a single image with controllable video diffusion.  
 776 *arXiv preprint arXiv:2411.04928*, 2024.

777

778 KLING AI Team. Kling image-to-video model, 2024. URL [https://klingai.com/  
 image-to-video/](https://klingai.com/image-to-video/).

779

780 Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow. In *European  
 conference on computer vision*, pp. 402–419. Springer, 2020.

781

782 Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan Kautz. Mocogan: Decomposing motion  
 783 and content for video generation. In *Proceedings of the IEEE conference on computer vision and*  
 784 *pattern recognition*, pp. 1526–1535, 2018.

785

786 Thomas Unterthiner, Sjoerd Van Steenkiste, Karol Kurach, Raphaël Marinier, Marcin Michalski, and  
 787 Sylvain Gelly. Fvd: A new metric for video generation. 2019.

788

789 Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Generating videos with scene dynamics.  
 790 *Advances in neural information processing systems*, 29, 2016.

791

792 Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,  
 793 Haiming Zhao, Jianxiao Yang, et al. Wan: Open and advanced large-scale video generative models.  
 794 *arXiv preprint arXiv:2503.20314*, 2025.

795

796 Chaoyang Wang, Peiye Zhuang, Tuan Duc Ngo, Willi Menapace, Aliaksandr Siarohin, Michael  
 797 Vasilkovsky, Ivan Skorokhodov, Sergey Tulyakov, Peter Wonka, and Hsin-Ying Lee. 4real-video:  
 798 Learning generalizable photo-realistic 4d video diffusion. In *Proceedings of the Computer Vision  
 and Pattern Recognition Conference*, pp. 17723–17732, 2025a.

799

800 Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and David  
 801 Novotny. Vggt: Visual geometry grounded transformer. In *Proceedings of the Computer Vision  
 and Pattern Recognition Conference*, pp. 5294–5306, 2025b.

802

803 Qianqian Wang, Vickie Ye, Hang Gao, Jake Austin, Zhengqi Li, and Angjoo Kanazawa. Shape of  
 motion: 4d reconstruction from a single video. *arXiv preprint arXiv:2407.13764*, 2024a.

804

805 Yaohui Wang, Piotr Bilinski, Francois Bremond, and Antitza Dantcheva. Imaginator: Conditional  
 806 spatio-temporal gan for video generation. In *Proceedings of the IEEE/CVF winter conference on*  
 807 *applications of computer vision*, pp. 1160–1169, 2020.

808

809 Yaohui Wang, Xinyuan Chen, Xin Ma, Shangchen Zhou, Ziqi Huang, Yi Wang, Ceyuan Yang, Yinan  
 He, Jiashuo Yu, Peiqing Yang, et al. Lavie: High-quality video generation with cascaded latent  
 diffusion models. *IJCV*, 2024b.

810 Yiran Wang, Min Shi, Jiaqi Li, Zihao Huang, Zhiguo Cao, Jianming Zhang, Ke Xian, and Guosheng  
 811 Lin. Neural video depth stabilizer. In *Proceedings of the IEEE/CVF International Conference on*  
 812 *Computer Vision*, pp. 9466–9476, 2023.

813 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from  
 814 error visibility to structural similarity. *IEEE TIP*, 13(4):600–612, 2004.

815 Zhouxia Wang, Ziyang Yuan, Xintao Wang, Yaowei Li, Tianshui Chen, Menghan Xia, Ping Luo, and  
 816 Ying Shan. Motionctrl: A unified and flexible motion controller for video generation. In *ACM*  
 817 *SIGGRAPH 2024 Conference Papers*, pp. 1–11, 2024c.

818 Chenfei Wu, Lun Huang, Qianxi Zhang, Binyang Li, Lei Ji, Fan Yang, Guillermo Sapiro, and  
 819 Nan Duan. Godiva: Generating open-domain videos from natural descriptions. *arXiv preprint*  
 820 *arXiv:2104.14806*, 2021.

821 Chenfei Wu, Jian Liang, Lei Ji, Fan Yang, Yuejian Fang, Dixin Jiang, and Nan Duan. Nüwa: Visual  
 822 synthesis pre-training for neural visual world creation. In *ECCV*, pp. 720–736, 2022.

823 Rundi Wu, Ruiqi Gao, Ben Poole, Alex Trevithick, Changxi Zheng, Jonathan T Barron, and Alek-  
 824 sander Holynski. Cat4d: Create anything in 4d with multi-view video diffusion models. In  
 825 *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 26057–26068, 2025.

826 Zeqi Xiao, Wenqi Ouyang, Yifan Zhou, Shuai Yang, Lei Yang, Jianlou Si, and Xingang Pan. Trajectory  
 827 attention for fine-grained video motion control. *arXiv preprint arXiv:2411.19324*, 2024.

828 Jinbo Xing, Menghan Xia, Yong Zhang, Haoxin Chen, Wangbo Yu, Hanyuan Liu, Xintao Wang,  
 829 Tien-Tsin Wong, and Ying Shan. Dynamicrafter: Animating open-domain images with video  
 830 diffusion priors. *arXiv preprint arXiv:2310.12190*, 2023.

831 Jinbo Xing, Menghan Xia, Yuxin Liu, Yuechen Zhang, Yong Zhang, Yingqing He, Hanyuan Liu,  
 832 Haoxin Chen, Xiaodong Cun, Xintao Wang, et al. Make-your-video: Customized video generation  
 833 using textual and structural guidance. *IEEE Transactions on Visualization and Computer Graphics*,  
 834 2024.

835 Shiyuan Yang, Liang Hou, Haibin Huang, Chongyang Ma, Pengfei Wan, Di Zhang, Xiaodong Chen,  
 836 and Jing Liao. Direct-a-video: Customized video generation with user-directed camera movement  
 837 and object motion. In *ACM SIGGRAPH 2024 Conference Papers*, pp. 1–12, 2024a.

838 Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,  
 839 Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models  
 840 with an expert transformer. *arXiv preprint arXiv:2408.06072*, 2024b.

841 Shengming Yin, Chenfei Wu, Jian Liang, Jie Shi, Houqiang Li, Gong Ming, and Nan Duan. Dragnuwa:  
 842 Fine-grained control in video generation by integrating text, image, and trajectory. *arXiv preprint*  
 843 *arXiv:2308.08089*, 2023.

844 Meng You, Zhiyu Zhu, Hui Liu, and Junhui Hou. Nvs-solver: Video diffusion model as zero-shot  
 845 novel view synthesizer. In *International Conference on Learning Representations*, 2025.

846 Mark YU, Wenbo Hu, Jinbo Xing, and Ying Shan. Trajectorycrafter: Redirecting camera trajectory  
 847 for monocular videos via diffusion models. *arXiv preprint arXiv:2503.05638*, 2025.

848 Wangbo Yu, Jinbo Xing, Li Yuan, Wenbo Hu, Xiaoyu Li, Zhipeng Huang, Xiangjun Gao, Tien-  
 849 Tsin Wong, Ying Shan, and Yonghong Tian. Viewcrafter: Taming video diffusion models for  
 850 high-fidelity novel view synthesis. *arXiv preprint arXiv:2409.02048*, 2024.

851 Jianshu Zeng, Yuxuan Liu, Yutong Feng, Chenxuan Miao, Zixiang Gao, Jiawang Qu, Jianzhang  
 852 Zhang, Bin Wang, and Kun Yuan. Lumen: Consistent video relighting and harmonious background  
 853 replacement with video generative models. *arXiv preprint arXiv:2508.12945*, 2025.

854 David Junhao Zhang, Roni Paiss, Shiran Zada, Nikhil Karnad, David E Jacobs, Yael Pritch, Inbar  
 855 Mosseri, Mike Zheng Shou, Neal Wadhwa, and Nataniel Ruiz. Recapture: Generative video  
 856 camera controls for user-provided videos using masked video fine-tuning. In *Proceedings of the*  
 857 *Computer Vision and Pattern Recognition Conference*, pp. 2050–2062, 2025a.

864 Lvmín Zhang, Anyi Rao, and Maneesh Agrawala. Scaling in-the-wild training for diffusion-based  
 865 illumination harmonization and editing by imposing consistent light transport. In *The Thirteenth*  
 866 *International Conference on Learning Representations*, 2025b.

867 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable  
 868 effectiveness of deep features as a perceptual metric. In *CVPR*, pp. 586–595, 2018.

870 Shiwei Zhang, Jiayu Wang, Yingya Zhang, Kang Zhao, Hangjie Yuan, Zhiwu Qin, Xiang Wang, Deli  
 871 Zhao, and Jingren Zhou. I2vgan-xl: High-quality image-to-video synthesis via cascaded diffusion  
 872 models. *arXiv preprint arXiv:2311.04145*, 2023.

873 Guangcong Zheng, Teng Li, Rui Jiang, Yehao Lu, Tao Wu, and Xi Li. Cami2v: Camera-controlled  
 874 image-to-video diffusion model. *arXiv preprint arXiv:2410.15957*, 2024.

876 Sixiao Zheng, Zimian Peng, Yanpeng Zhou, Yi Zhu, Hang Xu, Xiangru Huang, and Yanwei Fu.  
 877 Vidcraft3: Camera, object, and lighting control for image-to-video generation. *arXiv preprint*  
 878 *arXiv:2502.07531*, 2025.

879 Daquan Zhou, Weimin Wang, Hanshu Yan, Weiwei Lv, Yizhe Zhu, and Jiashi Feng. Magicvideo:  
 880 Efficient video generation with latent diffusion models. *arXiv preprint arXiv:2211.11018*, 2022.

882 Hao Zhou, Sunil Hadap, Kalyan Sunkavalli, and David W Jacobs. Deep single-image portrait  
 883 relighting. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp.  
 884 7194–7202, 2019.

886 Yujie Zhou, Jiazi Bu, Pengyang Ling, Pan Zhang, Tong Wu, Qidong Huang, Jinsong Li, Xiaoyi Dong,  
 887 Yuhang Zang, Yuhang Cao, et al. Light-a-video: Training-free video relighting via progressive  
 888 light fusion. *arXiv preprint arXiv:2502.08590*, 2025.

889  
 890  
 891  
 892  
 893  
 894  
 895  
 896  
 897  
 898  
 899  
 900  
 901  
 902  
 903  
 904  
 905  
 906  
 907  
 908  
 909  
 910  
 911  
 912  
 913  
 914  
 915  
 916  
 917

918 LLM USAGE  
919920 We acknowledge large language models (LLMs) in the preparation of this manuscript. Specifically,  
921 we utilized LLMs for text polishing, grammar correction, and improving the clarity. The core  
922 experimental results and scientific contributions remain entirely our own work.  
923924 A MORE IMPLEMENTATION DETAILS  
925926 A.1 TRAINING-FREE BASELINE: TL-FREE  
927928 The baseline method TL-Free is inspired by Light-A-Video (LAV) (Zhou et al., 2025), which  
929 integrates TrajectoryCrafter (YU et al., 2025) and IC-Light (Zhang et al., 2025b) in a training-free  
930 manner. LAV introduces three key components: consistent light attention, progressive light fusion,  
931 and details compensation, to achieve temporally coherent video relighting. However, unlike LAV,  
932 which directly processes original video frames for relighting, our objective is to simultaneously  
933 perform relighting and camera viewpoint changes. Thus, the model input is not the raw video but  
934 point-cloud projected views, which are geometrically aligned yet inevitably contain black borders  
935 and holes. This critical difference necessitates adapting the LAV modules as follows: **1) Details**  
936 **compensation.** While effective in LAV for enhancing frame-level fidelity, this module relies on  
937 the input video to supplement missing details. For our projected views, however, it propagates  
938 black borders and holes, severely degrading the results. We thus discard this module in TL-Free.  
939 **2) Progressive light fusion.** In LAV, the fusion ratio between IC-Light and the video diffusion  
940 backbone is controlled by a schedule: IC-Light dominates early denoising steps and gradually  
941 diminishes. For our projected views, applying IC-Light early is problematic, since relighting images  
942 with black borders or incomplete regions is ill-posed. We therefore disable IC-Light fusion during  
943 early denoising and only activate it in later steps, once the model has filled in missing content. **3)**  
944 **Consistent light attention.** This module is retained, as it ensures temporally consistent illumination  
945 across frames and remains effective even when operating on projected views.  
946947 A.2 BACKGROUND-CONDITIONED CONTROL  
948949 As shown in Fig. A, our framework supports background-conditioned video relighting. Specifically,  
950 the source video  $V^s$  is obtained by fusing a foreground video with a background video using  
951 foreground masks. IC-Light (Zhang et al., 2025b) is then applied to generate a sparse relit video  $\hat{V}^s$ ,  
952 which provides illumination cues. Finally, both  $V^s$  and  $\hat{V}^s$  are fed into our model to produce the  
953 relit video with consistent illumination and motion.  
954955 A.3 BASELINE  
956957 For Light-A-Video (LAV) (Zhou et al., 2025), we adopt the officially released Wan2.1 (Wan et al.,  
958 2025) implementation and use the default hyperparameter settings. For AnyV2V (Ku et al., 2024),  
959 we evaluate the officially released model built on I2VGen-XL (Zhang et al., 2023) under its default  
960 configuration. The released model generates 16-frame videos at a resolution of  $512 \times 512$ . For  
961 RelightVid (Fang et al., 2025), as it currently only provides a background-image-conditioned model  
962 without text-conditioned variants or training code, we evaluate it exclusively under the background-  
963 conditioned setting using the official model released by the authors. Its outputs also have 16 frames  
964 with a spatial resolution of  $512 \times 512$ . For fair comparison, all baseline outputs are uniformly resized  
965 to match the resolution adopted in our evaluation.  
966967 A.4 EVALUATION PROTOCOL AND USER STUDY  
968969 **Evaluation Protocol.** For text-conditioned relighting, we randomly select one lighting prompt  
970 (*e.g.*, sunlight, soft light, neon light, or red and blue neon light) and one lighting direction (top,  
971 bottom, left, or right) for each video. For novel-view video generation, one of four predefined camera  
972 trajectories is randomly chosen. After the condition is determined, we apply the same lighting prompt  
973 and camera trajectory to all methods to ensure fair comparison. In the joint camera–illumination  
974 control evaluation, we first employ TrajectoryCrafter (YU et al., 2025) to generate the novel-view  
975

972 sequence. This sequence is then compared against relit sequences produced by other methods under  
 973 the same trajectory to compute the flow error (*i.e.*, Motion Preservation). Additionally, we apply  
 974 IC-Light (Zhang et al., 2025b) to relight the novel-view video from TrajectoryCrafter, which serves  
 975 as the reference for calculating FID with respect to the relit outputs of all baselines.

976 **User Study.** We conducted a user study to evaluate the effectiveness of our method across three  
 977 tasks: 1) joint camera-illumination control, 2) text-conditioned video relighting, and 3) background-  
 978 conditioned video relighting. The study was conducted online, and screenshots of the interface  
 979 are shown in Fig. B. The interface displayed the input video, the corresponding relighting prompt  
 980 (text or background image), and two relit results (denoted as Method 1 and Method 2) side by side.  
 981 Participants could play both videos in parallel and directly compare their quality. On the left panel,  
 982 four criteria were listed with radio buttons for selection: Relighting Quality (RQ, lighting fidelity,  
 983 and alignment with the condition), Video Smoothness (VS, temporal stability across frames), Identity  
 984 Preservation (IP, consistency of the object’s identity and appearance), and 4D Consistency (4DC,  
 985 spatio-temporal coherence under novel-view settings). For each criterion, participants were required  
 986 to select which method performed better. They were also allowed to choose “Hard to judge” or  
 987 skip to the next example if necessary. To reduce fatigue and ensure reliable feedback, the system  
 988 required participants to submit responses after completing 10 groups of comparisons. The study was  
 989 conducted anonymously, and no personally identifiable data were collected. In total, we collected  
 990 responses from 57 participants.

## 991 B DETAILED DATA CURATION

994 **Training Data Requirements Analysis.** As discussed in Sec. 3.3 in the main text, training our  
 995 framework requires an input video  $V^s$ , a paired target video  $V^t$ , and conditioning sequences  $V^p$ ,  
 996  $\hat{V}^s$ , and  $\hat{V}^p$ . To ensure effective training, these modalities should satisfy the following requirements:

- 997 • **Target video  $V^t$ .** Serving as the ground truth, the target video should be of high visual quality and  
 998 exhibit temporal consistency.
- 1000 • **Input video  $V^s$ .** Serving as the reference sequence injected into the network, the input video  
 1001 should remain 4D-consistent with the target video  $V^t$  in their overlapping regions.
- 1002 • **Projected source views  $V^p$ .** Serving as a geometric view-transformation prior, these projections  
 1003 should maintain content consistency with the target video  $V^t$  in shared visible regions.
- 1004 • **Sparse relit video  $\hat{V}^s$ .** Serving as an explicit lighting prior for the diffusion model, the relit frame  
 1005 should share the same illumination as the target video  $V^t$ .
- 1006 • **Projected relit views  $\hat{V}^p$ .** Serving as fine-grained illumination cues, these projections should be  
 1007 geometrically aligned with the corresponding projected source views  $V^p$ , ensuring that illumination  
 1008 information is accurately fused with the geometric prior.

1010 **Pipeline Design.** As shown in Fig. C, we design a degradation-based pipeline to construct paired  
 1011 videos based on these requirements. Specifically, we treat an in-the-wild video as the target sequence  
 1012  $V^t$  and generate its degraded counterpart as the input sequence  $V^s$  to satisfy the above constraints.  
 1013 Furthermore, by recording the transformations applied during the degradation process, we apply their  
 1014 inverses to map the geometry and illumination of the target video back to the degraded sequence,  
 1015 thereby producing the corresponding conditioning cues  $V^p$ ,  $\hat{V}^s$  and  $\hat{V}^p$  that conform to the training  
 1016 requirements and enable training with the degraded video as input.

1017 **Data Sources.** We curate training pairs from three complementary sources:

- 1019 • **Static scenes.** Monocular videos of static scenes naturally provide multi-view observations of  
 1020 the same scene. We adopt two strategies to construct paired samples with only varied viewpoints:  
 1021 1) sample a video clip as one view and create the other by repeating a randomly selected frame  
 1022 from the same sequence; 2) select two clips with overlapping content as a pair. For both cases, we  
 1023 employ VGGT (Wang et al., 2025b) to reconstruct depths and camera poses, thereby establishing  
 1024 the geometric transformations between views. To further introduce illumination variation, we  
 1025 process the data according to the pairing type: 1) relight the image-repeated video using IC-  
 Light (Zhang et al., 2025b), which serves as the degraded input  $V^s$  while naturally maintaining

1026 temporal consistency due to the repeated frames, and take the other video as  $\mathbf{V}^t$ ; 2) relight one clip  
 1027 with Light-A-Video (LAV) (Zhou et al., 2025), treating the relit clip as  $\mathbf{V}^s$  and the remaining clip as  
 1028  $\mathbf{V}^t$ . Although the latter approach yields slightly weaker temporal consistency, it still preserves the  
 1029 scene content and meets our data requirements. Finally, leveraging the geometric transformations  
 1030 estimated by (Wang et al., 2025b), we warp the information in  $\mathbf{V}^s$  to the viewpoint of  $\mathbf{V}^t$ , thereby  
 1031 constructing the data required for training. With this approach, we curate 8k static training samples  
 1032 from the DL3DV (Ling et al., 2024) dataset.

1033 • **Dynamic scenes.** Given a dynamic monocular video  $\mathbf{V}^t$ , we construct degraded counterparts  $\mathbf{V}^s$   
 1034 using three strategies: 1) relight  $\mathbf{V}^t$  with Light-A-Video (Zhou et al., 2025) and then synthesize a  
 1035 novel-view video  $\mathbf{V}^s$  via TrajectoryCrafter (YU et al., 2025); 2) synthesize a novel-view video  
 1036 using (YU et al., 2025) and then apply (Zhou et al., 2025) to introduce illumination variations,  
 1037 producing  $\mathbf{V}^s$ . 3) directly generate a relit and novel-view video  $\mathbf{V}^s$  through our designed training-  
 1038 free pipeline TL-Free (details are provided in the Sec. A.1). The degraded videos  $\mathbf{V}^s$  produced  
 1039 by these strategies are used as inputs for model training. Although their temporal consistency  
 1040 and visual quality are not perfect, they satisfy our data requirements, such as maintaining content  
 1041 consistency with the target video  $\mathbf{V}^t$  in overlapping regions. To ensure geometric alignment,  
 1042 all warping operations rely on depths estimated once from the original video rather than being  
 1043 re-estimated from intermediate results. During degradation, we derive the correspondence flow  
 1044  $F_{t \rightarrow s}$  from the depth and relative pose and warp the original frame to the degraded view. When  
 1045 constructing the training set, we then apply the reverse flow  $F_{s \rightarrow t}$  to warp the degraded samples  
 1046 back to the original viewpoint, thereby obtaining geometrically aligned conditions. Using this  
 1047 procedure, we curate 8k dynamic training samples from the VDW (Wang et al., 2023) dataset.

1048 • **AI-generated videos.** While the above methods use high-quality real-world videos as supervision,  
 1049 most videos exhibit relatively uniform and soft lighting, limiting the diversity of illumination  
 1050 conditions. To address this, we design a data pipeline based on commercial video generation  
 1051 models to synthesize videos with richer lighting variations. Specifically, we first employ (YU et al.,  
 1052 2025) to generate a novel-view video from the original sequence  $\mathbf{V}^t$ , then extract its first frame and  
 1053 relight it using (Zhang et al., 2025b). The relit frame, together with the novel-view video, is fed  
 1054 into the first-frame-guided video-to-video mode of a commercial generative model (*e.g.*, Runway  
 1055 or Luma) to produce a relit video, resulting in the paired video  $\mathbf{V}^s$ . This approach yields videos  
 1056 with diverse illumination while maintaining high temporal consistency, thanks to the commercial  
 1057 model’s powerful capability. For this set of data, we follow the standard training strategy, using  $\mathbf{V}^t$   
 1058 as the input and  $\mathbf{V}^s$  as the target video. However, a limitation of this approach is that, although it  
 1059 ensures temporal consistency, the commercial model tends to generate content inconsistent with the  
 1060 original video when the scene or camera motion is relatively large, violating the data requirements  
 1061 discussed above and adversely affecting the learning of our model. Therefore, we only retain videos  
 1062 with small motion, which we identify and filter using an optical-flow-based criterion (Huang et al.,  
 1063 2024), and we ultimately curate 2k samples from the OpenVid-1M (Nan et al., 2024) dataset.

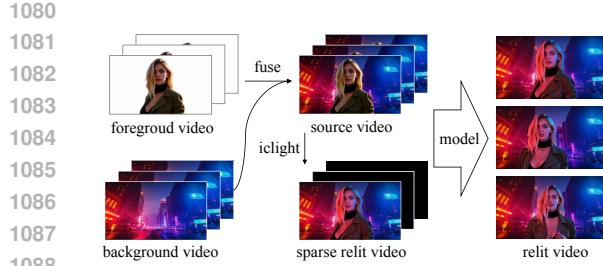
1064 Together, the three data sources provide complementary training pairs for our framework: static scenes  
 1065 offer accurate multi-view data, dynamic scenes supply samples with scene motion, and AI-generated  
 1066 videos enrich illumination diversity. All of them satisfy the training requirements, providing paired  
 1067 inputs, targets, and geometrically aligned conditioning cues.

## C PRELIMINARY: VIDEO DIFFUSION MODELS

1069 Video diffusion models consist of two stages: a forward process and a reverse process. The forward  
 1070 process starts from clean video data  $\mathbf{x}_0 \in \mathbb{R}^{f \times 3 \times h \times w}$  and gradually injects noise to create noisy  
 1071 states as  $\mathbf{x}_t = \alpha_t \mathbf{x}_0 + \sigma_t \epsilon$ , where  $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$  and  $\alpha_t^2 + \sigma_t^2 = 1$ . The reverse process removes noise  
 1072 with a predictor  $\epsilon_\theta(\mathbf{x}_t, t)$ , optimized by

$$\min_{\theta} \mathbb{E}_{t \sim \mathcal{U}(0,1), \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} [\|\epsilon_\theta(\mathbf{x}_t, t) - \epsilon\|_2^2]. \quad (8)$$

1073 For computational efficiency, videos are first compressed into latents  $\mathbf{z} = \mathcal{E}(\mathbf{x})$  using a pre-trained 3D  
 1074 VAE (Kingma & Welling, 2013; Rombach et al., 2022). The latents are then patchified, concatenated  
 1075 with text embeddings, and fed into the noise estimator. Recent works (Yang et al., 2024b; Wan  
 1076 et al., 2025; Lin et al., 2024; Kong et al., 2024; Brooks et al., 2024; Team, 2024) commonly adopt  
 1077 the Diffusion Transformer (DiT) (Peebles & Xie, 2023) as the noise estimator, owing to its strong  
 1078 1079



1089  
1090  
1091  
1092  
1093  
1094  
1095  
1096  
1097  
1098  
1099  
1100  
1101  
1102  
1103  
1104  
1105  
1106  
1107  
1108  
1109  
1110  
1111  
1112  
1113  
1114  
1115  
1116  
1117  
1118  
1119  
1120  
1121  
1122  
1123  
1124  
1125  
1126  
1127  
1128  
1129  
1130  
1131  
1132  
1133

Figure A: Overview of background-conditioned video relighting. A foreground video is fused with a background video to form the source video, while IC-Light generates a sparse relit video. Both are fed into our model to produce the final relit video with consistent illumination and motion.

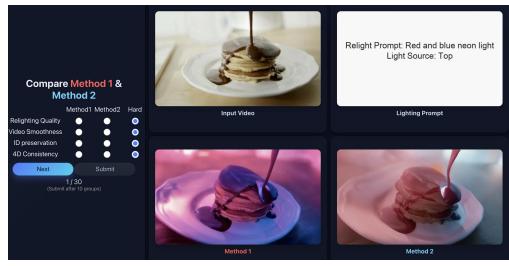


Figure B: The web interface of our user studies. Participants were shown the input video, the relighting prompt (text or background image), and results of two methods (Method 1 and Method 2) side by side. They evaluated each pair across four criteria by selecting the better method.

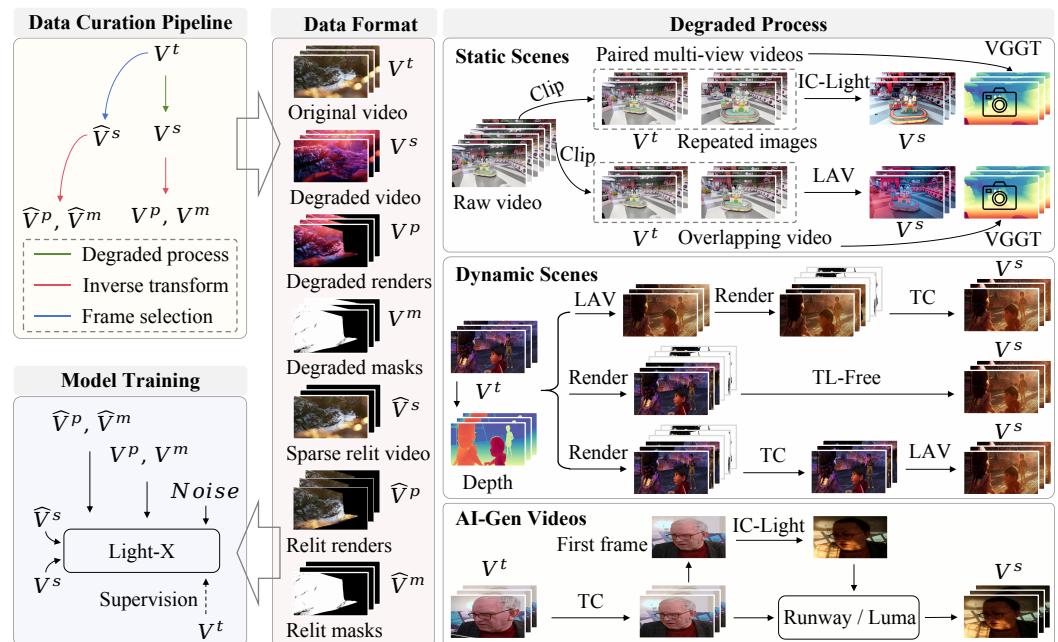


Figure C: Detailed Data curation pipeline **Light-Syn**. Given an original in-the-wild video  $V^t$ , we synthesize a degraded counterpart  $V^s$  using different strategies for static, dynamic, and AI-generated scenes. From  $V^s$ , we obtain geometry-aligned renders and masks ( $V^p, V^m$ ) and relit counterparts ( $\hat{V}^p, \hat{V}^m$ ) via inverse geometric transformations. The curated data provide paired videos for training, with Light-X taking the degraded video as input, the other signals as conditions, and the original video as ground truth.

modeling capacity and flexible scalability. During inference, noisy latents are iteratively denoised, then reconstructed by the VAE decoder to produce the final video  $\hat{x} = \mathcal{D}(z)$ .

## D MORE EXPERIMENTAL RESULTS

### D.1 ADDITIONAL RESULTS ON CAMERA-ILLUMINATION CONTROL

**Additional Visual Comparisons.** Fig. Q presents further results on joint camera-illumination control. TC (YU et al., 2025)+LAV (Zhou et al., 2025) inherits the limited relighting capacity of

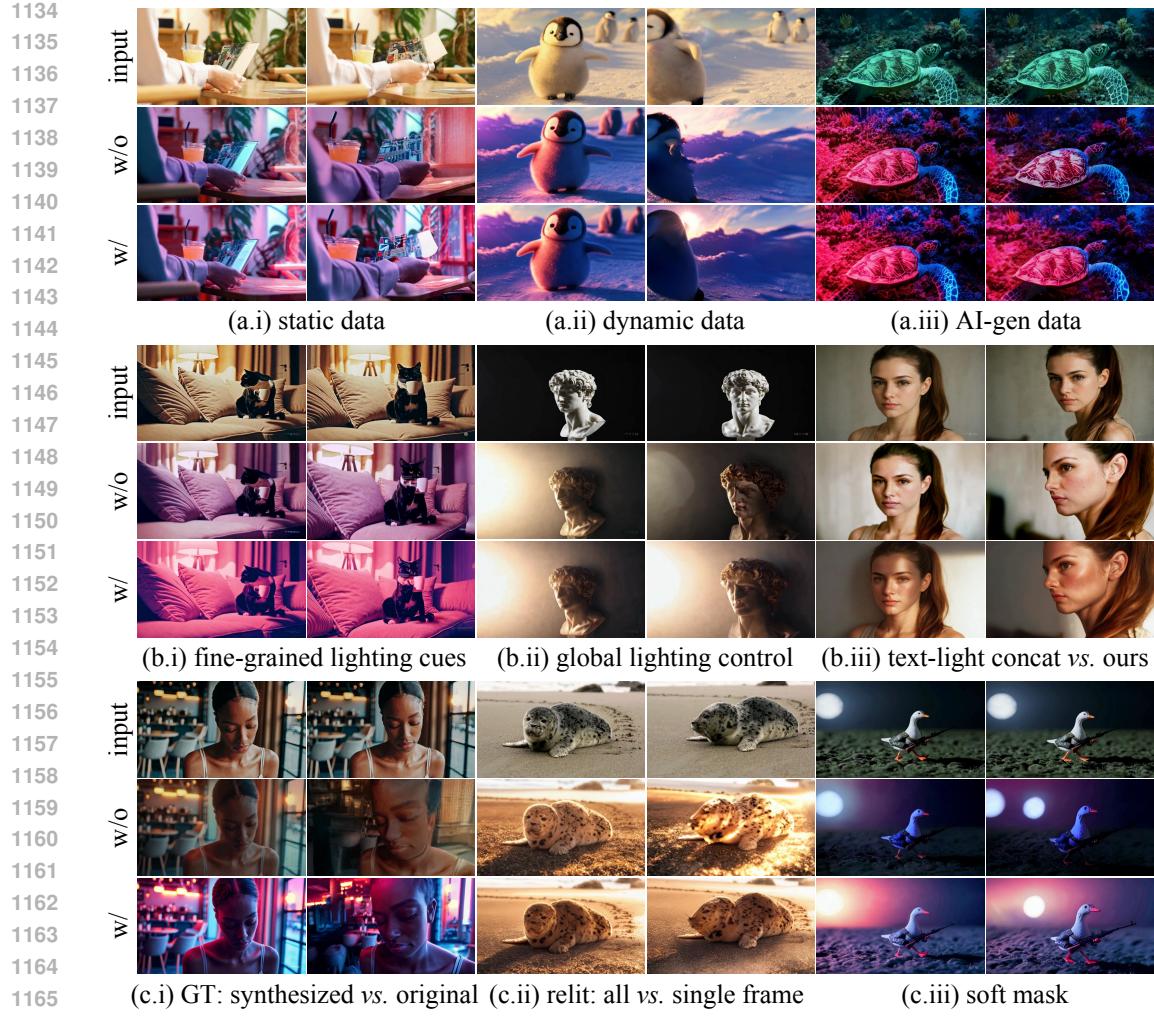


Figure D: Qualitative ablation results for the joint camera-illumination control task.

Table A: Quantitative comparison with baseline methods for joint camera-illumination control on the iPhone (Gao et al., 2022) multi-view dataset.

| Method                            | FID $\downarrow$ | Aesthetic $\uparrow$ | Motion Preservation $\downarrow$ | CLIP $\uparrow$ |
|-----------------------------------|------------------|----------------------|----------------------------------|-----------------|
| Target-view video + IC-Light      | /                | <b>0.571</b>         | 5.412                            | 0.973           |
| TrajectoryCrafter + Light-A-Video | 236.57           | 0.516                | 5.757                            | 0.987           |
| Light-A-Video + TrajectoryCrafter | 218.72           | 0.520                | 4.620                            | 0.986           |
| TL-Free                           | 198.55           | 0.488                | 6.428                            | 0.985           |
| Ours                              | <b>155.36</b>    | 0.557                | <b>3.316</b>                     | <b>0.987</b>    |

Table B: Quantitative comparison of video relighting under HDR-map conditioning.

| Method            | PSNR $\uparrow$ | SSIM $\uparrow$ | LPIPS $\downarrow$ | Consistency<br>(Temp. / Subj. / Backg.) $\uparrow$ | Motion<br>Smooth. $\uparrow$ | Aesthetics<br>(Qual. / Img.) $\uparrow$ |
|-------------------|-----------------|-----------------|--------------------|----------------------------------------------------|------------------------------|-----------------------------------------|
| DiffusionRenderer | 11.88           | 0.4510          | 0.4931             | 0.9921 / 0.9560 / 0.9599                           | 0.9944                       | 0.5262 / 0.4495                         |
| Ours              | 16.98           | 0.6653          | 0.2504             | 0.9933 / 0.9608 / 0.9676                           | 0.9927                       | 0.5909 / 0.6277                         |

LAV, which becomes particularly fragile under large camera motion, leading to distorted illumination and unstable temporal transitions. When LAV is applied after TC, the relit results undermine the

1188 geometric reconstruction, causing TC to introduce noticeable artifacts in novel views. TL-Free, on  
 1189 the other hand, fails to balance fidelity and consistency, often yielding either excessively simplified  
 1190 lighting effects or severe temporal flickering. In contrast, our method achieves high-quality relighting  
 1191 under diverse lighting prompts (*e.g.*, neon, soft, sunlight) while preserving temporal consistency and  
 1192 realistic novel-view content generation, consistently outperforming baseline methods.

1193 **Results on iPhone Multi-view Dataset.** We further adopt the iPhone dataset (Gao et al., 2022),  
 1194 which contains 7 dynamic scenes captured with a casually moving camera and two static cameras.  
 1195 Following prior work (YU et al., 2025; Wang et al., 2024a), we discard the “Space-out” and “Wheel”  
 1196 scenes due to camera and LiDAR errors, and use the remaining 5 refined scenes, namely *Apple*, *Block*,  
 1197 *Paper*, *Spin*, and *Teddy*. These data provide multi-view videos of the same dynamic scenes, serving as  
 1198 a valuable benchmark for assessing novel-view content generation with or without relighting. In our  
 1199 evaluation, the casually moving camera videos are used as input to synthesize target static-camera  
 1200 views with relighting, while the ground-truth static-camera videos serve as references for computing  
 1201 motion preservation. For FID computation, we relight the ground-truth static-camera videos using  
 1202 IC-Light (Zhang et al., 2025b) as the reference. As shown in Table A, our method achieves the  
 1203 best overall performance on this dataset. In particular, it attains the lowest FID, indicating superior  
 1204 visual fidelity, and significantly improves motion preservation compared to baselines. Although  
 1205 IC-Light applied to target-view videos yields a slightly higher aesthetic score, since it does not require  
 1206 novel-view generation, our approach achieves a better overall balance across all metrics, consistently  
 1207 outperforming baselines in relighting quality, temporal stability, and novel-view generation.

## 1208 D.2 ADDITIONAL RESULTS ON TEXT-CONDITIONED RELIGHTING

1209 We provide more qualitative results of text-conditioned video relighting in Fig. R. Frame-wise IC-  
 1210 Light (Zhang et al., 2025b) delivers high-quality relighting on individual frames, but the absence of  
 1211 temporal modeling leads to noticeable flickering across videos. LAV (Zhou et al., 2025) leverages  
 1212 video diffusion priors through a training-free fusion strategy, which improves temporal stability but  
 1213 often compromises lighting fidelity and detail. In contrast, our method achieves high-quality and  
 1214 consistent video relighting under diverse lighting prompts while preserving temporal consistency,  
 1215 consistently outperforming baseline methods.

## 1217 D.3 ADDITIONAL RESULTS ON BACKGROUND-CONDITIONED RELIGHTING

1218 We further present qualitative comparisons of background image-conditioned video relighting in  
 1219 Fig. E. IC-Light (Zhang et al., 2025b) often produces inconsistent illumination across frames due to  
 1220 its frame-wise nature, resulting in flickering and mismatched tones. RelightVid (Fang et al., 2025)  
 1221 improves temporal stability but tends to over-smooth the lighting effects, leading to a loss of realism.  
 1222 LAV (Zhou et al., 2025) enhances consistency but sacrifices fine details, producing less faithful  
 1223 relighting results. In contrast, our method effectively integrates the subject with the target background  
 1224 illumination, achieving natural lighting and temporally stable outputs. As shown in Fig. F, our  
 1225 framework generalizes well to diverse background images, adapting the relighting smoothly while  
 1226 preserving subject identity and fine-grained details.

## 1228 D.4 ADDITIONAL RESULTS ON HDR MAP-CONDITIONED RELIGHTING

1229 We further present qualitative results of HDR map-conditioned video relighting in Fig. S. Given  
 1230 an input video and an HDR environment map, our model generates plausible relit videos that  
 1231 faithfully reflect the target illumination, demonstrating the potential of our soft-mask design to  
 1232 adapt to diverse lighting conditions. To quantitatively evaluate this setting, we also compare against  
 1233 DiffusionRenderer (Liang et al., 2025). Since no paired in-the-wild dataset is available, we adopt  
 1234 a strategy similar to our data curation pipeline. Specifically, for each in-the-wild video in the  
 1235 evaluation set, we extract HDR maps using DiffusionLight (Phongthawee et al., 2024), and use  
 1236 Light-a-Video (Zhou et al., 2025) to produce aligned relit videos. These relit videos are then used as  
 1237 model inputs, while the extracted HDR maps serve as conditions. We compute metrics (*e.g.*, PSNR,  
 1238 SSIM, LPIPS) between the model outputs and the original in-the-wild videos, where our approach  
 1239 achieves superior scores. However, this evaluation setting inherently favors our training paradigm.  
 1240 To provide a more balanced assessment, we further evaluate video quality on VBench (Huang et al.,  
 1241 2024). The results show that our outputs are comparable to DiffusionRenderer in terms of overall

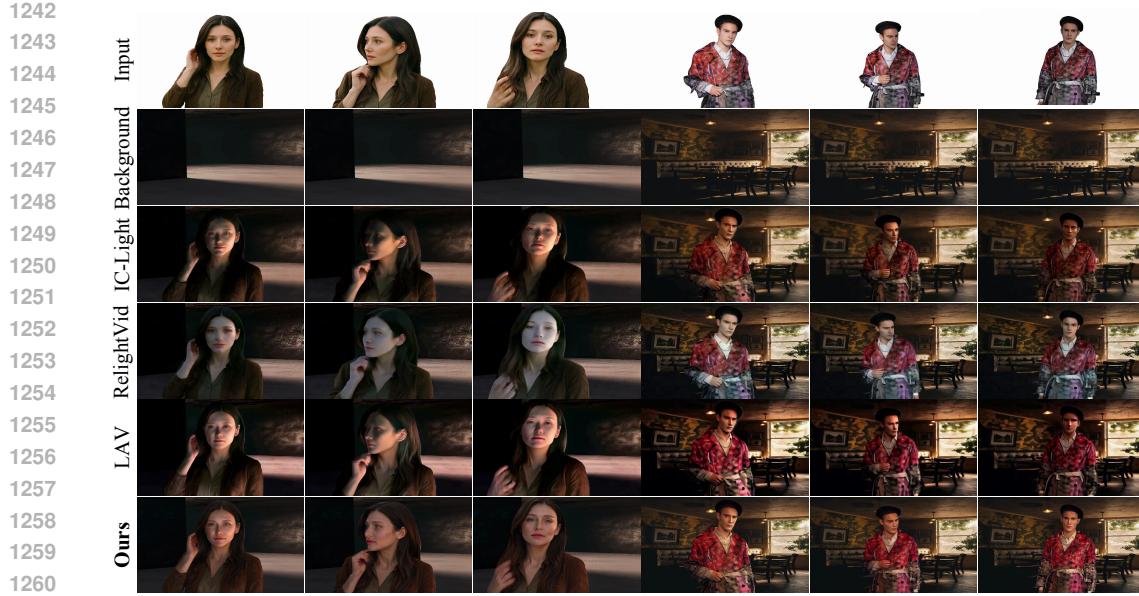


Figure E: Qualitative comparison of background image-conditioned video relighting. Our method achieves superior both relighting quality and temporal consistency compared to baseline methods.

visual quality, demonstrating the generalization ability of our framework to diverse lighting conditions and the potential of HDR maps as a versatile control signal.

#### D.5 ADDITIONAL RESULTS ON REFERENCE IMAGE-CONDITIONED RELIGHTING

We present the results of reference image-conditioned video relighting in Fig. T, where a single reference image specifies the target illumination style to be transferred to the input video. To the best of our knowledge, our framework is the first to enable this setting. Furthermore, as shown in Fig. U, our approach also supports simultaneous relighting and novel-view synthesis, achieving both illumination control and camera trajectory manipulation.

#### D.6 ADDITIONAL RESULTS ON NOVEL VIEW SYNTHESIS

To further evaluate novel-view video generation, we compare our method with TrajectoryCrafter (YU et al., 2025) on the multi-view iPhone (Gao et al., 2022) dataset. As shown in Table C, our method achieves higher PSNR and lower LPIPS, while maintaining comparable SSIM. This suggests that our framework performs on par with its baseline method in novel-view video synthesis, while providing additional flexibility for joint camera–illumination control.

#### D.7 GEOMETRY CONSISTENCY EVALUATION

To further validate the geometric coherence of our relighting results, we conduct a comprehensive point-cloud-based evaluation. Specifically, we reconstruct dynamic and static 3D geometry from both the input and relighted videos using two state-of-the-art methods: the dynamic reconstruction method MegaSAM (Li et al., 2025) and the static reconstruction model VGGT (Wang et al., 2025b). For each video, we extract per-frame point clouds and compute the Chamfer Distance (CD) between the input and relighted reconstructions. We report multiple statistics, including *Mean*, *Median*, *Standard Deviation*, *Minimum*, and *Maximum* Chamfer Distance (CD), to provide a comprehensive assessment of geometric discrepancies. As shown in Table D, our method achieves the lowest mean and median

Table C: Quantitative comparison between our method and TrajectoryCrafter (YU et al., 2025) on the iPhone (Gao et al., 2022) dataset.

| Method            | PSNR $\uparrow$ | SSIM $\uparrow$ | LPIPS $\downarrow$ |
|-------------------|-----------------|-----------------|--------------------|
| TrajectoryCrafter | 14.6204         | 0.5725          | 0.3801             |
| Ours              | 15.6016         | 0.5696          | 0.3519             |

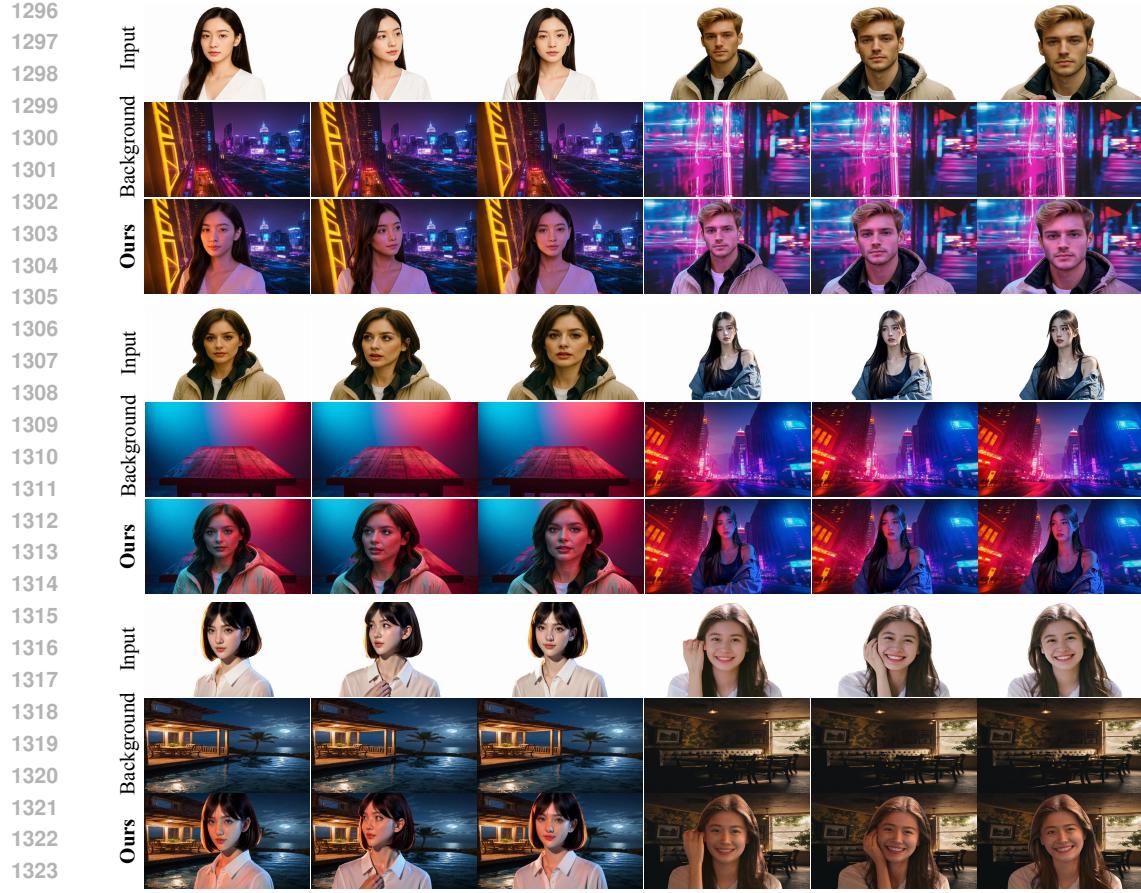


Figure F: Visual results of background image-conditioned video relighting. Our method adapts the foreground subject to diverse background images, producing natural illumination and consistent appearance across frames.

Table D: **Geometry consistency evaluation.** Chamfer Distance (CD) between point clouds reconstructed from the input and relighted videos. \* denotes evaluation on the first 16 frames.

| Method            | Avg CD $\downarrow$ | Median $\downarrow$ | Std $\downarrow$ | Min $\downarrow$ | Max $\downarrow$ |
|-------------------|---------------------|---------------------|------------------|------------------|------------------|
| IC-Light          | 0.5012              | 0.1933              | 1.3300           | 0.0056           | 15.6113          |
| LAV               | 0.8979              | 0.1903              | 4.5258           | 0.0096           | 58.0839          |
| Ours              | <b>0.3753</b>       | <b>0.1581</b>       | 0.7228           | 0.0063           | 5.9780           |
| IC-Light + AnyV2V | 0.8896              | 0.2813              | 1.8282           | 0.0055           | 19.9080          |
| Ours*             | <b>0.3784</b>       | <b>0.1577</b>       | 0.7535           | 0.0064           | 5.8883           |

CD, demonstrating substantially better preservation of geometric structure. Qualitative point cloud visualizations are included in the supplementary video.

#### D.8 ANALYSIS ON NON-LAMBERTIAN SURFACES

As shown in Fig. G, we present additional results on non-Lambertian surfaces, showing that the model preserves specular effects without washing out fine details. The corresponding video results are provided in the supplementary video.

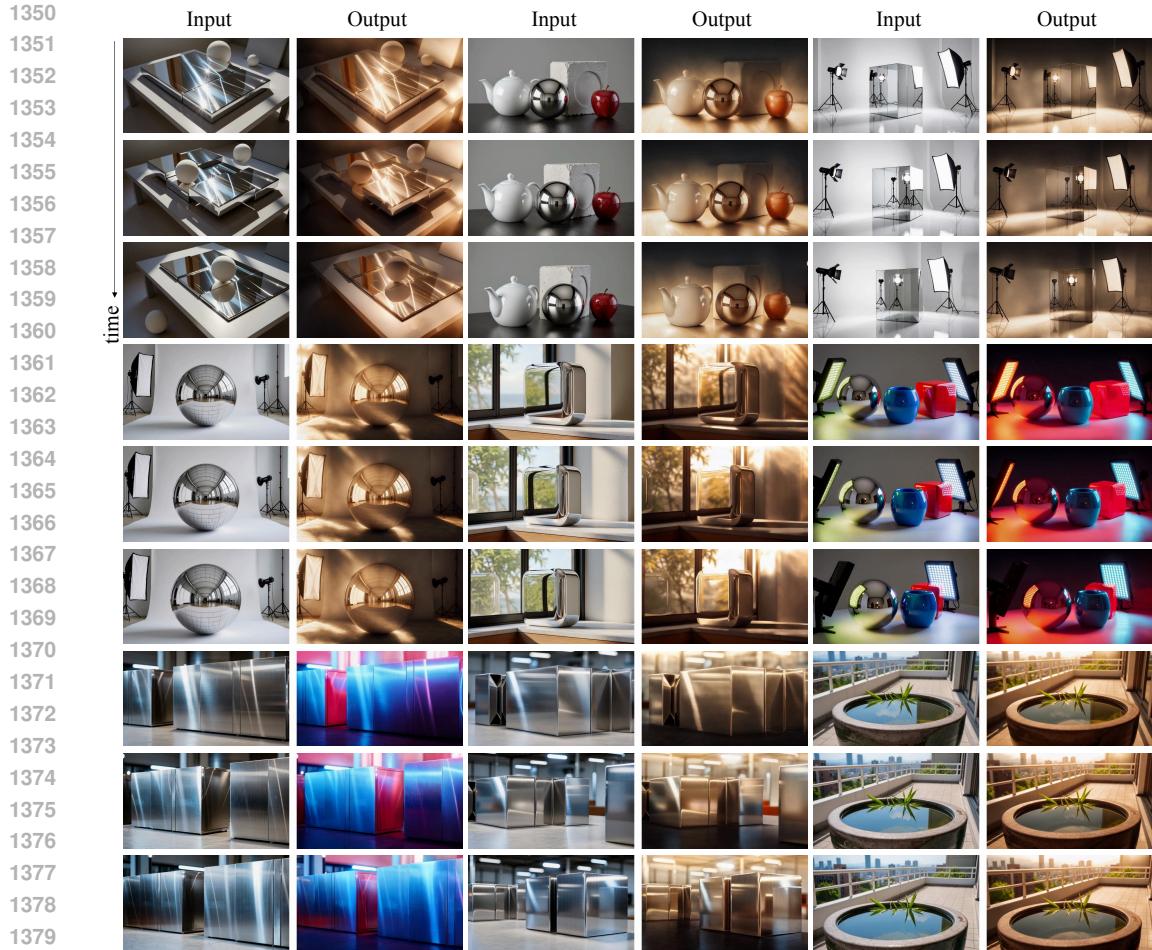


Figure G: Results on non-Lambertian surfaces.

### D.9 LARGE CAMERA TRAJECTORIES

Similar to other approaches (Yu et al., 2024; YU et al., 2025; Liu et al., 2025a) that condition on point-cloud priors, our method relies on point-cloud cues to guide viewpoint-consistent generation. Under extremely wide camera motions, these cues become sparse or even unavailable, which can negatively affect synthesis quality. Nevertheless, the model remains robust under substantial viewpoint deviations, roughly up to  $60^\circ$ , as shown in Fig. H. The corresponding video results are provided in the supplementary video.

### D.10 COMPARISON WITH MORE RECENT METHODS

We further compare Light-X with several recent systems that provide either camera control or lighting control capabilities, covering the latest advances in controllable video generation. For camera control, we include ReCamMaster (Bai et al., 2025), which does not rely on explicit 3D representations, and Free4D (Liu et al., 2025a), which incorporates an explicit 3D representation. For lighting control, we further compare against TC-Light (Liu et al., 2025b). The results for joint camera–illumination control and video relighting are reported in Tables E and F. Across all comparisons, Light-X maintains superior image fidelity, aesthetic quality, and motion consistency, demonstrating strong state-of-the-art performance even against these recent systems. Since Free4D requires per-scene optimization, typically taking over an hour per scene, we evaluate it on the 10 scenes provided on its official project page for practical comparison. The corresponding results are shown in Table G.

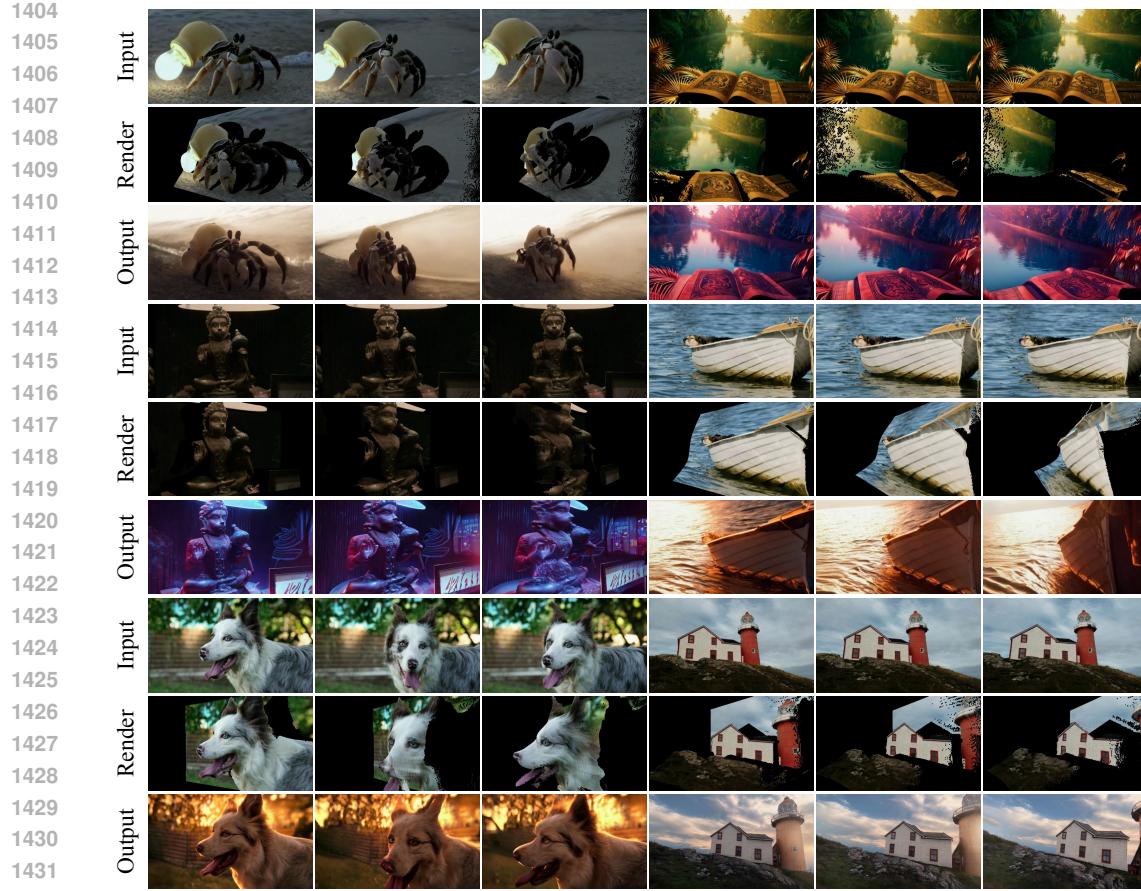


Figure H: Qualitative results under large camera trajectories.

Table E: Comparison with more recent methods for joint camera-illumination control.

| Method           | FID $\downarrow$ | Aesthetic $\uparrow$ | Motion Pres. $\downarrow$ | CLIP $\uparrow$ |
|------------------|------------------|----------------------|---------------------------|-----------------|
| TC + IC-Light    | /                | 0.573                | 6.558                     | 0.976           |
| TC + LAV         | 138.89           | 0.574                | 4.327                     | 0.986           |
| LAV + TC         | 144.61           | 0.596                | 5.027                     | 0.987           |
| TL-Free          | 122.73           | 0.595                | 3.356                     | 0.987           |
| ReCam + IC-Light | /                | 0.513                | 6.511                     | 0.973           |
| LAV + ReCam      | 163.56           | 0.514                | 7.259                     | <b>0.989</b>    |
| ReCam + LAV      | 152.03           | 0.501                | 3.157                     | 0.987           |
| TC + TC-Light    | 154.99           | 0.534                | 4.276                     | 0.986           |
| TC-Light + TC    | 161.76           | 0.555                | 5.563                     | 0.988           |
| Ours             | <b>101.06</b>    | <b>0.623</b>         | <b>2.007</b>              | <b>0.989</b>    |

## D.11 FID DEGRADATION WITH TEMPORAL DISTANCE

We analyze how FID changes with increasing temporal distance from the relit reference frame. As shown in Fig. J, FID gradually increases because it is computed against the IC-Light (Zhang et al., 2025b) relit reference: the first frame is directly relit by IC-Light, whereas later frames rely on Light-X to propagate illumination cues over time.

For video relighting, FID increases smoothly from 38 to 82 over 49 frames. For joint camera-illumination control, FID rises from 56 to 100. Importantly, even the last frame still outperforms baseline methods such as LAV (Zhou et al., 2025) (FID: 112.45) and TL-Free (FID: 122.73).

1458 Table F: Comparison with more recent lighting control methods on video relighting.  
1459

| Method   | FID ↓        | Aesthetic ↑  | Motion Pres. ↓ | CLIP ↑       |
|----------|--------------|--------------|----------------|--------------|
| IC-Light | /            | 0.632        | 3.293          | 0.983        |
| LAV      | 112.45       | 0.614        | 2.115          | 0.991        |
| TC-Light | 144.32       | 0.546        | 1.657          | 0.991        |
| Ours     | <b>83.65</b> | <b>0.645</b> | <b>1.137</b>   | <b>0.993</b> |

1466 Table G: Evaluation results on the 10 scenes released on the Free4D (Liu et al., 2025a) project page.  
1467

| Method            | FID ↓        | Aesthetic ↑  | Motion Pres. ↓ | CLIP ↑       |
|-------------------|--------------|--------------|----------------|--------------|
| Free4D + IC-Light | /            | 0.576        | 0.823          | 0.990        |
| Free4D + LAV      | 98.85        | 0.574        | 0.549          | 0.996        |
| Ours              | <b>73.98</b> | <b>0.583</b> | <b>0.349</b>   | <b>0.997</b> |

## 1474 D.12 PERFORMANCE WITH OCCLUDED RELIT FRAMES

1476 As shown in Fig. I, Light-X remains robust even when the relit reference frame (the first frame in  
1477 the illustrated example) is partially occluded or contains incomplete scene information. Illumination  
1478 cues are propagated coherently even under occlusions such as a book or a mask covering parts  
1479 of the face. Furthermore, in zoom-out scenarios where later frames reveal previously unseen regions,  
1480 Light-X continues to produce reasonable and consistent relighting for these newly visible areas. The  
1481 corresponding video results are provided in the supplementary video.

## 1483 D.13 ROBUSTNESS TO DEPTH NOISE

1485 Since Light-X relies on projected point-cloud views as soft geometric cues, inaccuracies in depth  
1486 estimation may introduce biased geometry and affect performance. Nevertheless, the method does  
1487 not require highly accurate depth and remains robust under moderate noise levels. We conducted a  
1488 controlled experiment on 12 randomly selected scenes. Using DepthCrafter (Hu et al., 2024) as the  
1489 default depth estimator, we injected Gaussian noise into the depth maps:

$$D = D + \epsilon \cdot D, \quad \epsilon \sim \mathcal{N}(0, \text{rate}),$$

1491 where *rate* controls the perturbation strength. The performance under different noise levels is summa-  
1492 rized in Table H. As shown in Fig. K, Light-X maintains coherent illumination and motion consistency  
1493 even when depth maps are perturbed with moderate Gaussian noise. Light-X degrades gracefully  
1494 as noise increases and consistently outperforms baseline methods. Corresponding qualitative video  
1495 results are provided in the supplementary video.

## 1497 D.14 CHOICE OF THE RELIGHTING REFERENCE FRAME

1499 Light-X does not rely on using the first frame as the relighting reference. During training, the relit  
1500 frame is randomly sampled, and during inference any frame may be selected. In the main text, we  
1501 adopt the first frame purely for implementation convenience and reproducibility.

1502 To assess robustness to the choice of reference frame, we evaluate four strategies (“first”, “middle”,  
1503 “last”, “random”) on 200 videos. As shown in Table I, Light-X achieves similar performance across  
1504 all strategies, showing that the method is robust to the selection of the relighting reference frame.

## 1506 D.15 USING LIGHT-X FOR DATA GENERATION

1508 We investigate whether Light-X can be used to generate higher quality relit videos to further improve  
1509 the training data. To this end, we relight 2k samples from the training set using Light-X and fine-tune  
1510 the original model with this additional data. As shown in Table J, the fine-tuned model shows only  
1511 marginal improvements, suggesting that the original Light-Syn data already provides sufficiently  
strong supervision and that real in-the-wild videos remain the primary source of learning signals.



Figure I: Qualitative results showing robustness under occluded reference frames. Light-X maintains coherent illumination propagation even when the reference frame contains partial occlusions.

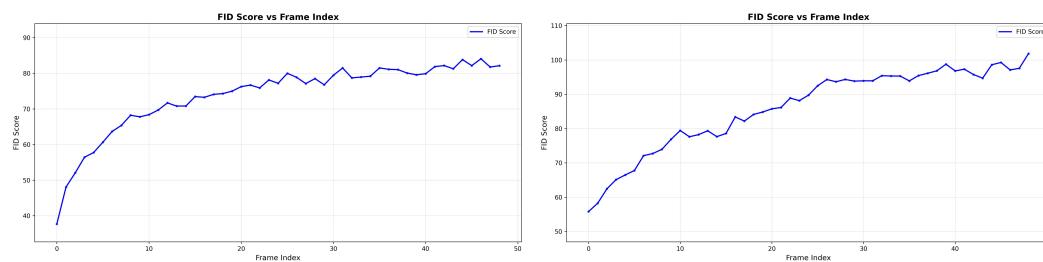


Figure J: FID variation as a function of temporal distance from the reference frame (the first frame). The left part corresponds to the video relighting setting, while the right part corresponds to the joint camera-illumination control setting.

Because synthetic relighting serves only as input rather than ground-truth supervision, its impact is naturally limited. However, the small but consistent gains indicate that generating a larger portion of the training data with Light-X, or exploring iterative self improvement strategies, could still offer potential benefits and represents an interesting direction for future work.

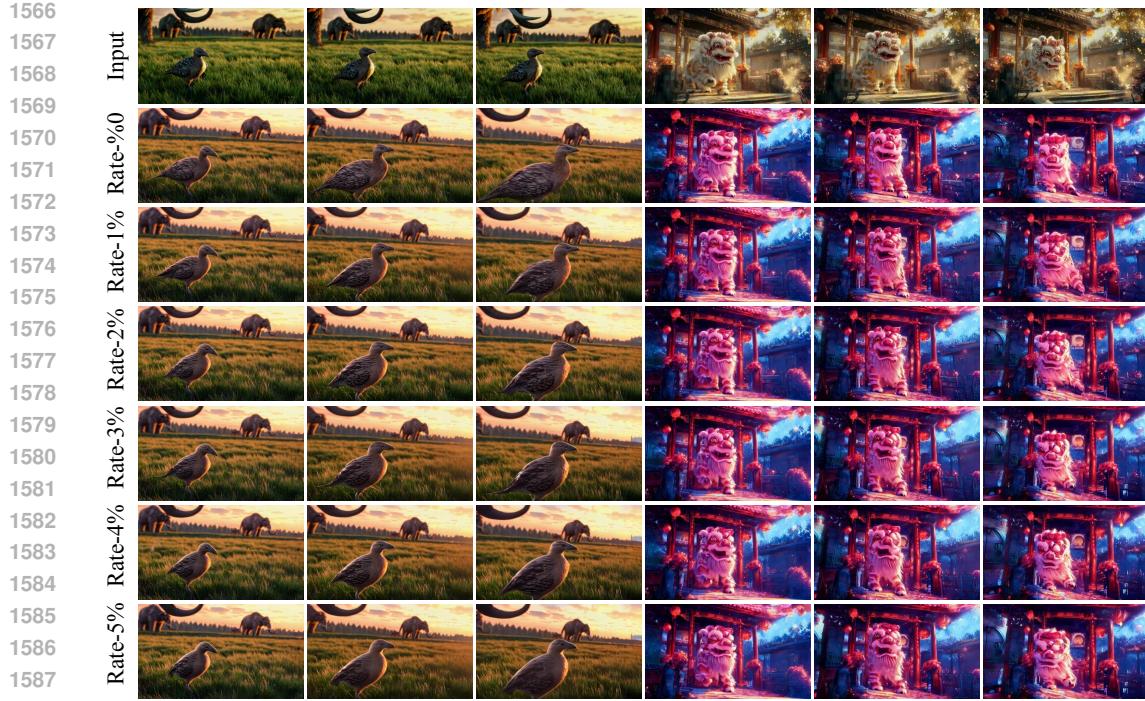


Figure K: Qualitative results under different depth noise levels. Light-X maintains coherent illumination and motion consistency even when depth maps are perturbed with moderate Gaussian noise.

Table H: Performance under increasing depth noise levels.

| Method             | FID $\downarrow$ | Aesthetic $\uparrow$ | Motion Pres. $\downarrow$ | CLIP $\uparrow$ |
|--------------------|------------------|----------------------|---------------------------|-----------------|
| TC + IC-Light      | /                | 0.556                | 14.199                    | 0.977           |
| TC + LAV           | 138.71           | 0.567                | 9.883                     | 0.989           |
| LAV + TC           | 155.09           | 0.581                | 13.768                    | 0.989           |
| TL-Free            | 127.77           | 0.585                | 9.533                     | 0.990           |
| Ours (rate = 0)    | <b>101.51</b>    | <b>0.622</b>         | <b>7.266</b>              | <b>0.991</b>    |
| Ours (rate = 0.01) | 107.01           | 0.619                | 9.632                     | 0.989           |
| Ours (rate = 0.02) | 111.97           | 0.609                | 9.948                     | 0.989           |
| Ours (rate = 0.03) | 111.44           | 0.607                | 10.672                    | 0.989           |
| Ours (rate = 0.04) | 115.14           | 0.602                | 10.549                    | 0.989           |
| Ours (rate = 0.05) | 116.67           | 0.602                | 10.350                    | 0.988           |

## D.16 USE OF SYNTHETIC RELIGHTING DATA

We do not adopt synthetic relighting data from graphics engines because such data often fails to capture the complexity and variability of real-world illumination. Our Light-Syn degradation pipeline instead uses in-the-wild videos as ground truth, providing lighting behavior that better matches the model’s training requirements. Moreover, IC-Light (Zhang et al., 2025b) already provides strong illumination priors learned from large-scale real and synthetic data, reducing the need for additional synthetic relighting.

To assess whether synthetic data can still bring benefits, we generated 2k synthetic samples with diverse viewpoints and lighting conditions using a DiffusionRenderer-style procedure (Liang et al., 2025). Representative examples are shown in Fig. L. These synthetic samples were mixed with Light-Syn data for training. As reported in Table K, incorporating synthetic relighting consistently degrades performance, suggesting that the domain gap between synthetic and real illumination distributions

1620

Table I: Performance under different choices of the relighting reference frame.

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

| Strategy | FID $\downarrow$ | Aesthetic $\uparrow$ | Motion Pres. $\downarrow$ | CLIP $\uparrow$ |
|----------|------------------|----------------------|---------------------------|-----------------|
| first    | 83.65            | 0.645                | 1.137                     | 0.993           |
| mid      | 84.85            | 0.634                | 1.249                     | 0.993           |
| last     | 89.78            | 0.639                | 1.133                     | 0.993           |
| random   | 85.97            | 0.639                | 1.277                     | 0.993           |

Table J: Performance of models fine-tuned with Light-X generated data on the video relighting and joint camera-illumination control tasks.

| Task                   | Method            | FID $\downarrow$ | Aesthetic $\uparrow$ | Motion Pres. $\downarrow$ | CLIP $\uparrow$ |
|------------------------|-------------------|------------------|----------------------|---------------------------|-----------------|
| Video Relighting       | Ours (original)   | 83.65            | 0.645                | 1.137                     | 0.993           |
|                        | Ours (fine-tuned) | 82.00            | 0.643                | 1.134                     | 0.993           |
| Joint Cam-Illumination | Ours (original)   | 101.06           | 0.623                | 2.007                     | 0.989           |
|                        | Ours (fine-tuned) | 99.35            | 0.622                | 2.171                     | 0.989           |

adversely affects learning. While synthetic relighting offers well-controlled illumination variations, more realistic and diverse synthetic pipelines are needed for it to become truly beneficial.

## E ADDITIONAL ABLATION ANALYSES

Beyond the quantitative ablations presented in Table 6 in the main text and the qualitative comparisons shown in Fig. D, we provide further analysis to better understand the roles of different components, with a focus on the training data composition and the global illumination control module.

### E.1 TRAINING DATA

The three data sources in Light-Syn, including static, dynamic, and AI-generated data, contribute complementary information to the joint camera-illumination control task. Removing static data (a.i) weakens unseen-view synthesis, as static videos provide natural cross-view pairs for stabilizing geometry, as shown in Fig. N. Excluding dynamic data (a.ii) introduces motion artifacts and reduces temporal reliability, as illustrated in Fig. O. Omitting AI-generated data (a.iii) lowers robustness to rare lighting conditions, such as neon or scenes with very bright highlights, where brightness may decay; corresponding qualitative effects are shown in Fig. M. These observations align with the quantitative trends in Table 6 and further demonstrate that the full data mixture helps maintain fidelity, consistency, and stability under diverse lighting.

### E.2 GLOBAL ILLUMINATION CONTROL MODULE

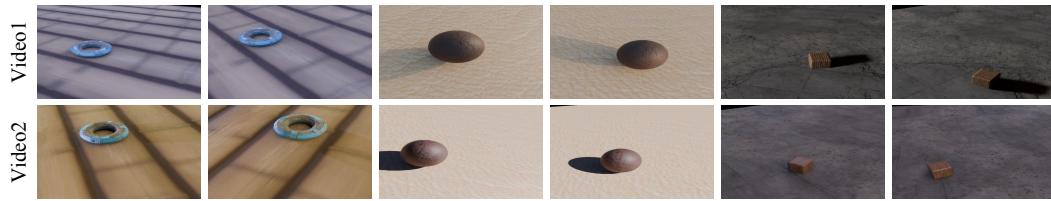
The global illumination control module is crucial for maintaining stable lighting behavior under complex illumination changes. Disabling this module (b.ii) leads to fading or abrupt shifts in brightness, particularly when the scene contains strong directional or spatially varying lighting. With the module enabled, the model is able to preserve coherent global lighting trends, preventing brightness drift and improving temporal consistency. The qualitative results are shown in Fig. P.

## F LIMITATIONS AND FUTURE WORK

Despite its promising results, our method still has several limitations. 1) It relies on single-image relighting priors (e.g., IC-Light (Zhang et al., 2025b)) to provide fine-grained lighting cues. In some scenes, the lighting quality of these priors may be suboptimal, which can in turn affect the quality of subsequent video generation. 2) The approach depends on point clouds as priors for novel camera viewpoints. When depth estimation is inaccurate, the resulting biased geometry may degrade generation quality, and the framework also struggles with very wide camera motions (e.g.,

1674  
1675 Table K: Performance comparison with and without synthetic relighting data on the video relighting  
1676 and joint camera–illumination control tasks.  
1677

| Task                   | Method             | FID $\downarrow$ | Aesthetic $\uparrow$ | Motion Pres. $\downarrow$ | CLIP $\uparrow$ |
|------------------------|--------------------|------------------|----------------------|---------------------------|-----------------|
| Video Relighting       | Ours (original)    | 83.65            | 0.645                | 1.137                     | 0.993           |
|                        | Ours (+ synthetic) | 98.35            | 0.623                | 1.802                     | 0.993           |
| Joint Cam-Illumination | Ours (original)    | 101.06           | 0.623                | 2.007                     | 0.989           |
|                        | Ours (+ synthetic) | 118.56           | 0.600                | 3.904                     | 0.989           |

1683  
1684 Figure L: Examples of synthetic relighting data generated using graphics engines. These samples  
1685 exhibit controlled illumination and viewpoint variations.  
1686  
1687  
1688  
16891690  
1691 360°) due to limited 3D cues and the constrained generation length of the video diffusion model. 3)  
1692 Like other video diffusion approaches, handling fine details (e.g., hands) remains challenging, and  
1693 the multi-step denoising process is computationally expensive. Future work may explore stronger  
1694 video-generation backbones (e.g., Wan2.2 (Wan et al., 2025)) to enhance video quality, progressive  
1695 point-cloud expansion to better support large camera ranges, and techniques such as Diffusion  
1696 Forcing (Chen et al., 2024a) to extend video length. In addition, the depth-estimation module could  
1697 be replaced by future state-of-the-art methods.  
1698  
1699  
1700  
1701  
1702  
1703  
1704  
1705  
1706  
1707  
1708  
1709  
1710  
1711  
1712  
1713  
1714  
1715  
1716  
1717  
1718  
1719  
1720  
1721  
1722  
1723  
1724  
1725  
1726  
1727

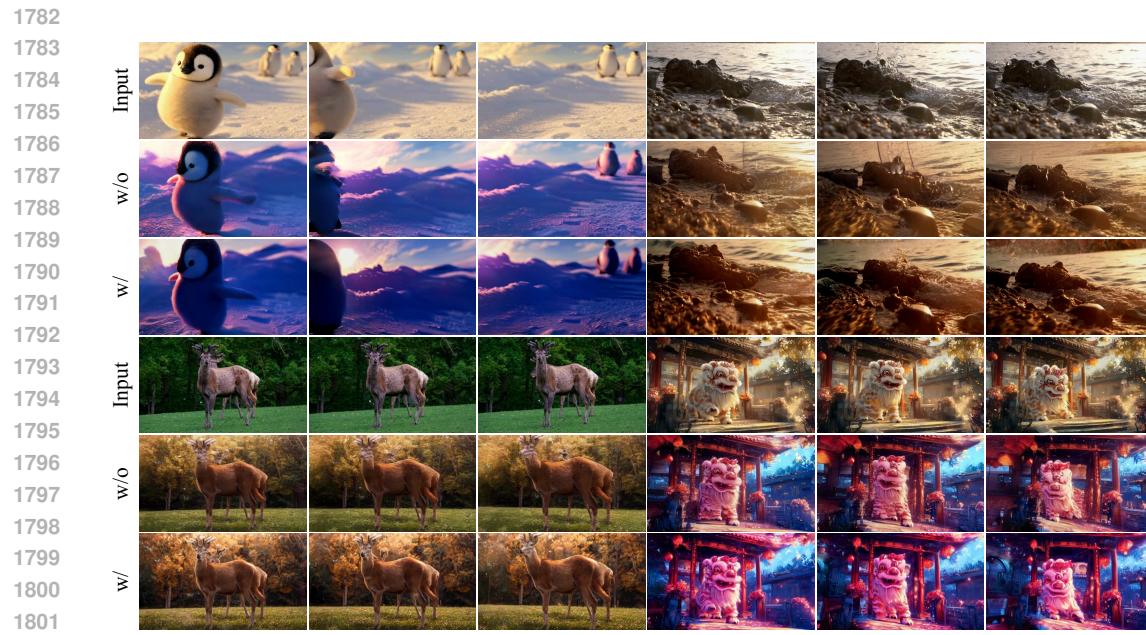
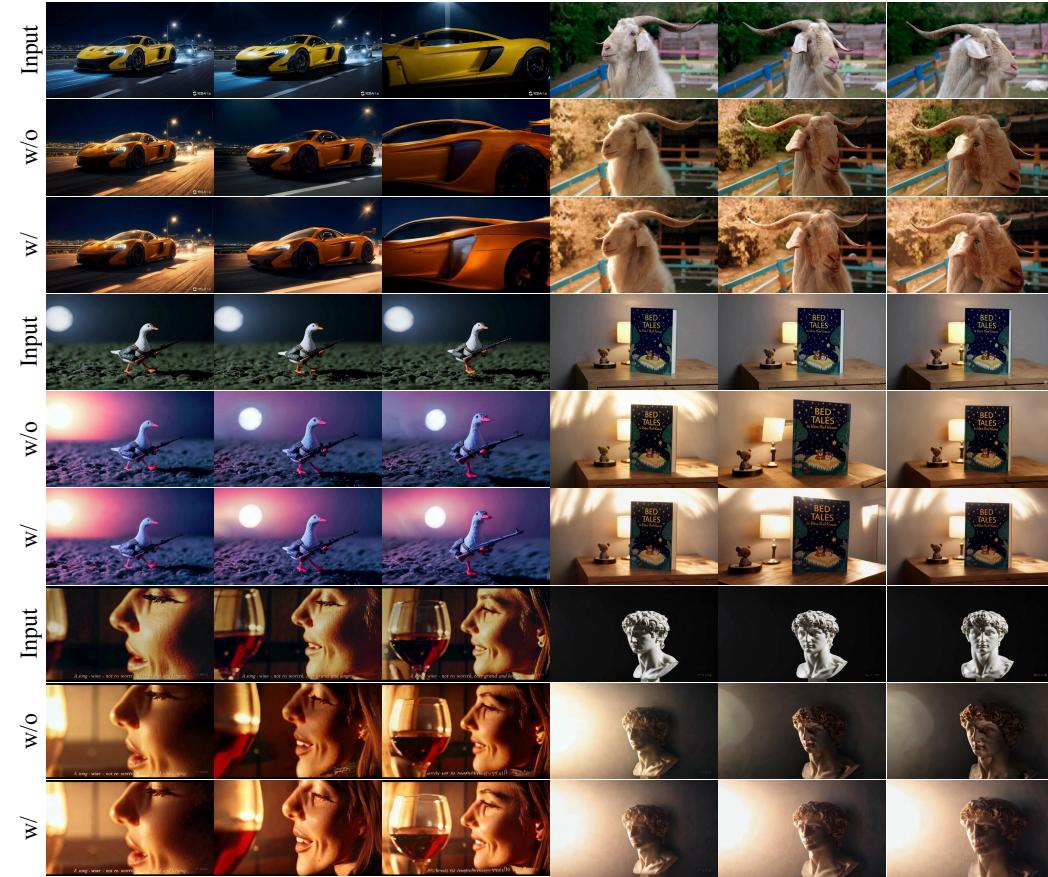
1728  
1729  
1730  
1731  
1732  
1733  
1734  
1735  
1736  
1737  
1738  
1739  
1740  
1741  
1742  
1743  
1744  
1745  
1746  
1747  
1748  
1749  
1750

Figure M: Qualitative ablation of the AI-generated data.

1752  
1753  
1754  
1755  
1756  
1757  
1758  
1759  
1760  
1761  
1762  
1763  
1764  
1765  
1766  
1767  
1768  
1769  
1770  
1771  
1772  
1773  
1774

Figure N: Qualitative ablation of the **Static data**.

1779  
1780  
1781

Figure O: Qualitative ablation of the **Dynamic data**.Figure P: Qualitative ablation of the **global illumination control**.

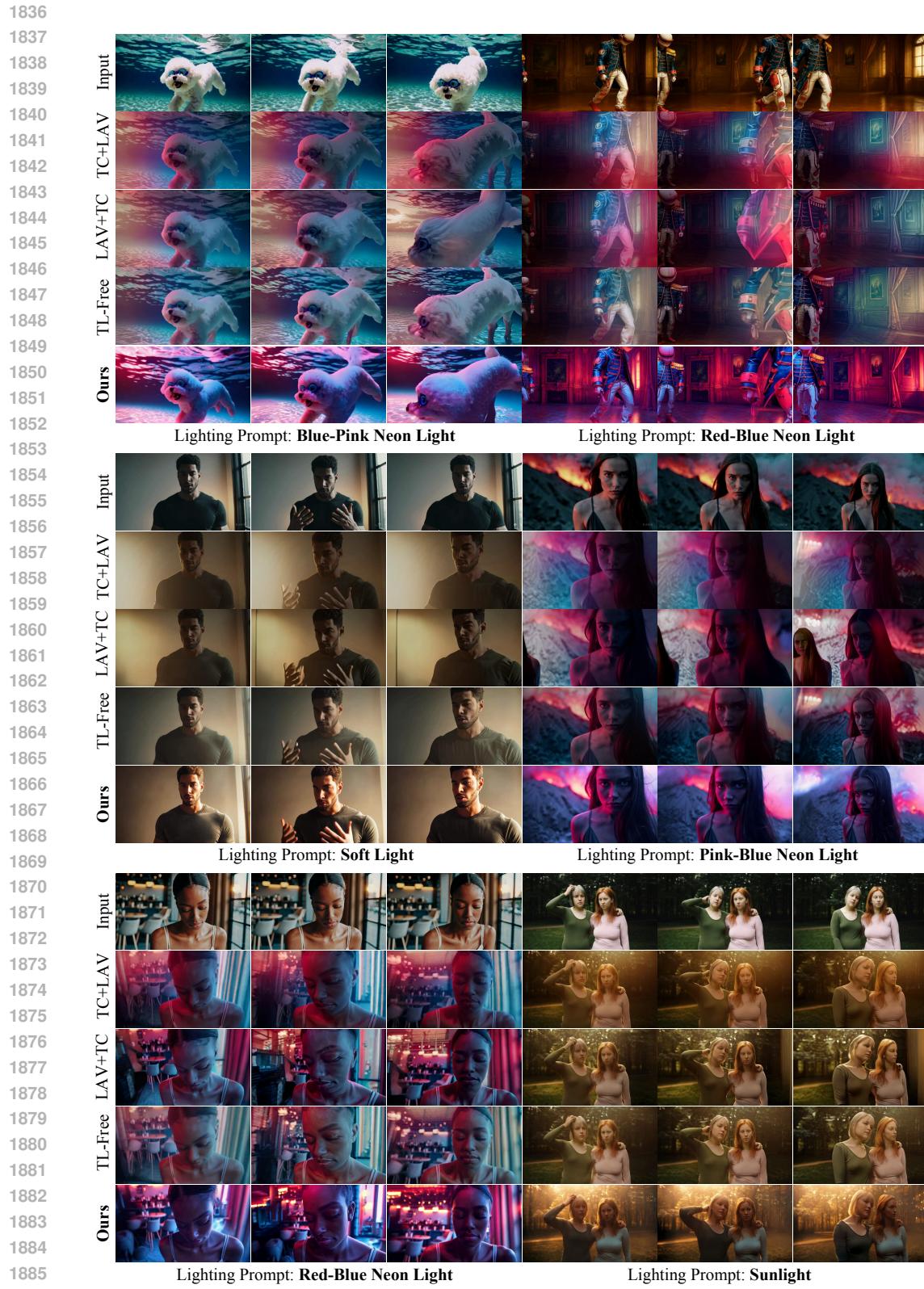


Figure Q: Qualitative comparison of joint camera-illumination control. Our method achieves superior relighting quality, temporal consistency, and realistic novel-view content generation compared to baseline methods.

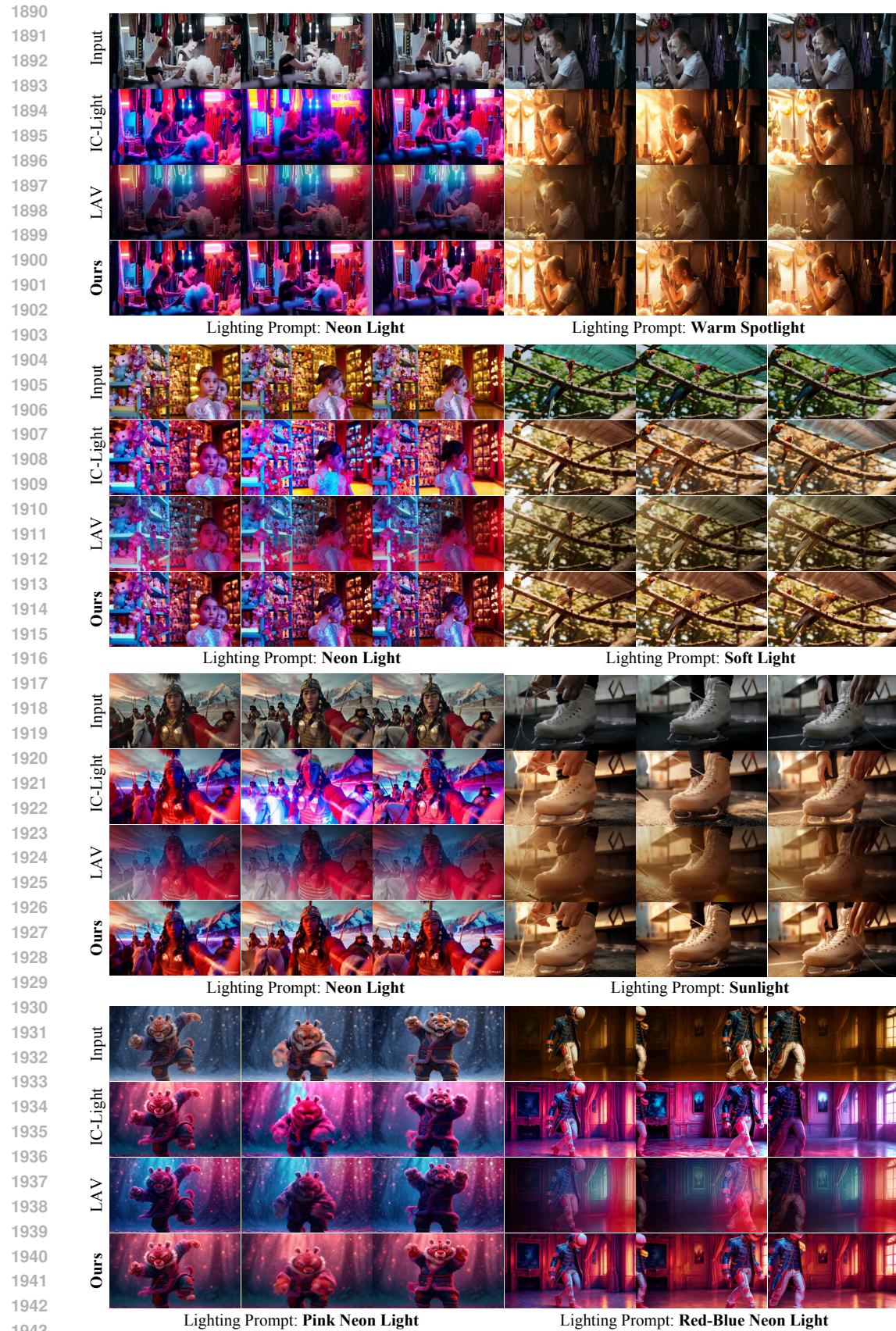


Figure R: Qualitative comparison of text-conditioned video relighting. Our method achieves superior both relighting quality and temporal consistency compared to baseline methods.

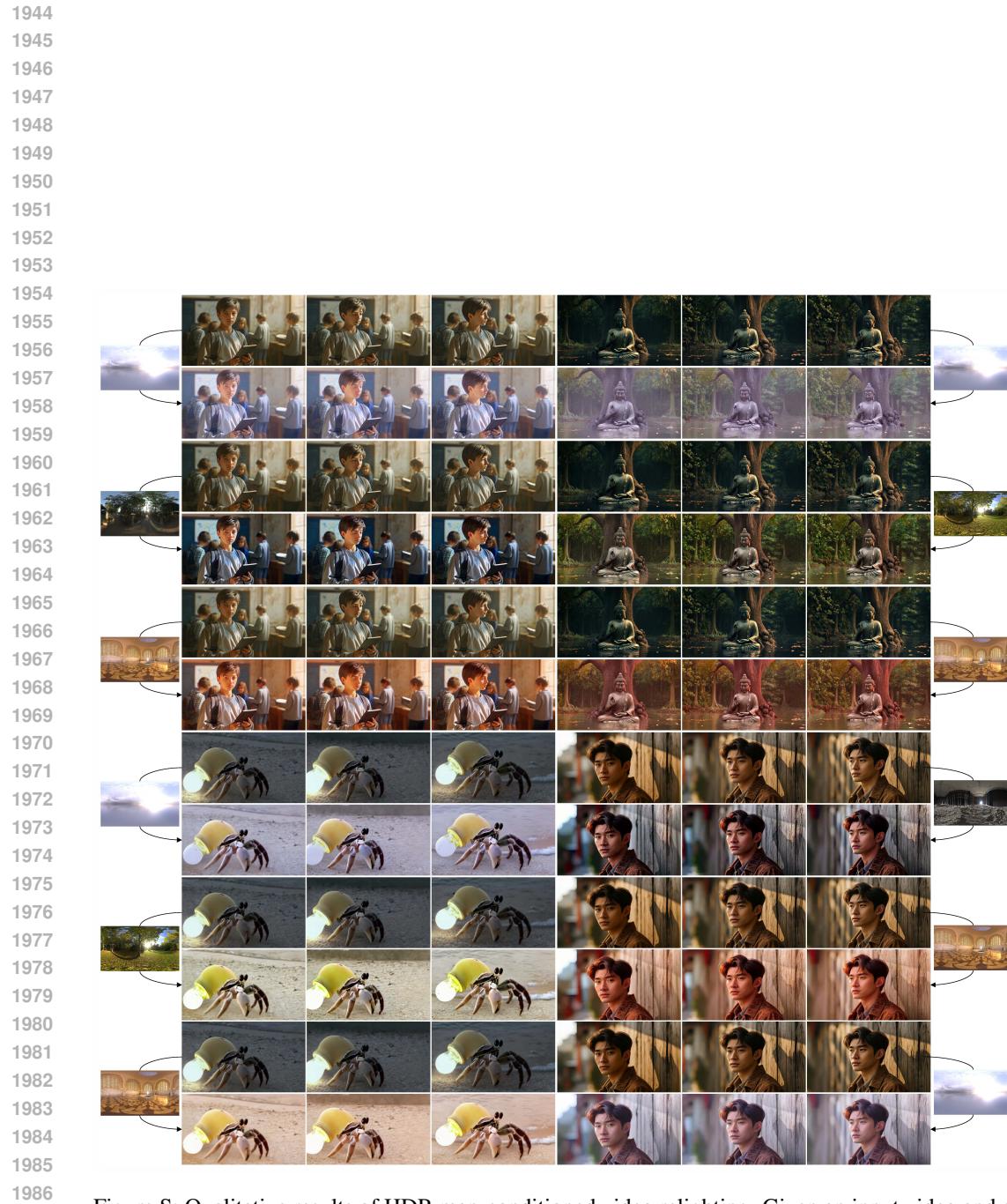


Figure S: Qualitative results of HDR map-conditioned video relighting. Given an input video and an HDR environment map, our model generates a relit video.

1989  
1990  
1991  
1992  
1993  
1994  
1995  
1996  
1997

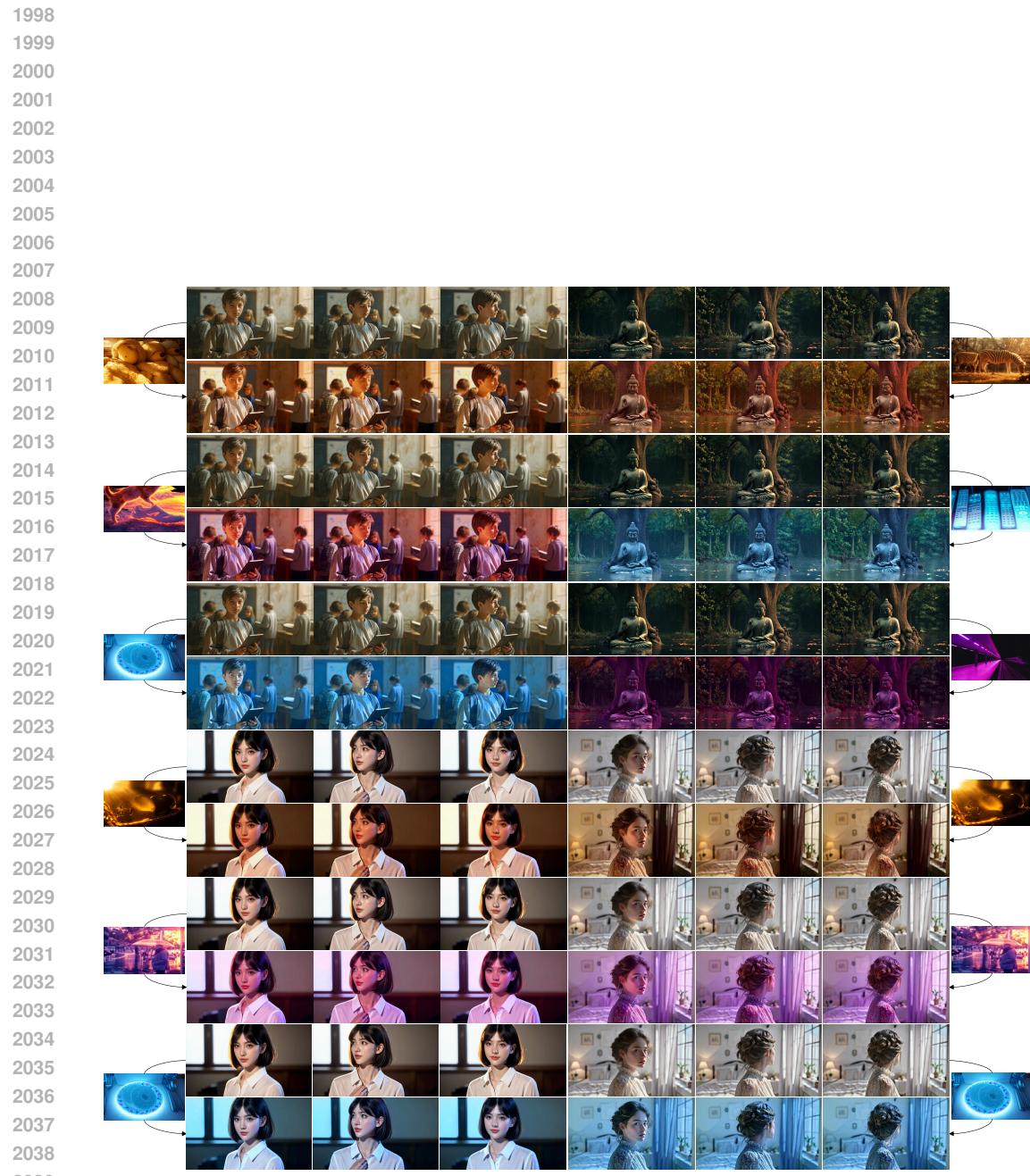


Figure T: Qualitative results of reference image-conditioned video relighting. Here, a reference image provides the target illumination style, which is transferred to the input video while preserving its content and motion.

2043  
2044  
2045  
2046  
2047  
2048  
2049  
2050  
2051



Figure U: Qualitative results of reference image-conditioned joint camera trajectory and illumination control. Here, a reference image provides the target illumination style, which is transferred to the input video while preserving its content and motion.

2052  
2053  
2054  
2055  
2056  
2057  
2058  
2059  
2060  
2061  
2062  
2063  
2064  
2065  
2066  
2067  
2068  
2069  
2070  
2071  
2072  
2073  
2074  
2075  
2076  
2077  
2078  
2079  
2080  
2081  
2082  
2083  
2084  
2085  
2086  
2087  
2088  
2089  
2090  
2091  
2092  
2093  
2094  
2095  
2096  
2097  
2098  
2099  
2100  
2101  
2102  
2103  
2104  
2105