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Abstract001

Instruction tuning is an important step in mak-002
ing language models useful for direct user in-003
teraction. However, the legal domain is un-004
derrepresented in typical instruction datasets005
(e.g., only 10 out of 1600+ tasks in Super-006
NaturalInstructions). To study whether instruc-007
tion tuning on legal datasets is necessary for008
strong legal reasoning, we aggregate 58 anno-009
tated legal datasets and write instructions for010
each, creating LawInstruct. LawInstruct covers011
17 global jurisdictions, 24 languages and a total012
of 12M examples across diverse tasks such as013
legal QA, summarization of court cases, and014
legal argument mining. We evaluate our mod-015
els on LegalBench, measuring legal reasoning016
across five categories in 162 challenging and017
realistic legal tasks, and MMLU, to measure po-018
tential drops in general reasoning capabilities.019
We find that legal-specific instruction tuning020
on Flan-T5 – yielding FLawN-T5 – improves021
performance on LegalBench across all model022
sizes, with an aggregate increase of 15 points or023
50% over Flan-T5 for the base size. No model024
size shows performance drops in MMLU. We025
publish LawInstruct as a resource for further026
study of instruction tuning in the legal domain.027

1 Introduction028

In recent years, Large Language Models (LLMs)029

advanced significantly, evident in their perfor-030

mance gains across numerous benchmarks, in-031

cluding SuperGLUE (Wang et al., 2019), MMLU032

(Hendrycks et al., 2021a), and various human exam-033

inations (OpenAI, 2023), such as the U.S. bar ex-034

ams for law practice admission (Katz et al., 2023).035

However, the interplay between domain-specific036

training and within-domain evaluation is poorly037

understood. This work examines how training038

on domain-specific legal corpora affects perfor-039

mance on the widest set of legal-domain evaluation040

benchmarks known to the authors. We thus con-041

duct a study of the ability of models to answer042

questions, classify, make judgments, extract in- 043

formation, and otherwise perform decision mak- 044

ing or higher-order cognitive tasks (i.e., to “rea- 045

son”) within a limited domain, as opposed to broad- 046

domain benchmarking. We present evidence that 047

domain-specific pretraining and instruction tuning 048

improve performance—but the effect does not gen- 049

eralize across all tasks, training regimes, model 050

sizes, and other factors. 051

Although large closed models also still halluci- 052

nate heavily on legal texts (Dahl et al., 2024), they 053

achieve much better performance on LegalBench 054

than smaller open models (e.g., 77.3 for GPT-4 vs. 055

60.1 for Flan-T5 XXL, the state-of-the-art open 056

model). In the legal domain it is often crucial for 057

reasons of trust and data protection not to use pub- 058

lic models, so many firms need on-premise deploy- 059

ments. Therefore models like Claude or GPT-4 060

cannot be used, stressing the need for open models. 061

In this study, we explore the potential of enhancing 062

model performance through in-domain instruction 063

tuning and continued pretraining on Flan-T5, the 064

current state-of-the-art open model on LegalBench 065

in both the 3B and 11B range. 066

To study this, we use the MultiLegal- 067

Pile (Niklaus et al., 2023b), a 689GB multilingual 068

legal corpus, for continued pretraining. Because no 069

instruction dataset for legal reasoning is available, 070

we introduce LawInstruct, spanning 24 languages 071

in 17 jurisdictions on four continents. It contains 072

12M training examples for QA, entailment, sum- 073

marization, and information extraction tasks in the 074

legal domain, each presented as a bespoke instruc- 075

tion with corresponding output. With this large in- 076

struction dataset in hand, we fine-tune models and 077

then perform quantitative analyses of their outputs 078

on the LegalBench (Guha et al., 2023) and MMLU 079

(Hendrycks et al., 2021b) benchmark suites. In- 080

struction tuning Flan-T5 models on LawInstruct, 081

we achieve a balanced accuracy of 58.1 on Legal- 082

Bench for the XL size, improving by 8 points or 083
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Figure 1: We continue pretraining on MultiLegalPile, instruction tune on LawInstruct and evaluate on LegalBench
and MMLU.

16% over the baseline. The Small model even im-084

proves by 9.6 points or 38.1% and by 14 points or085

55.4% when we also continue pretraining it.086

The contributions of this paper are four-fold:087

First, we curate the first legal instruction dataset by088

standardizing and writing instructions for 58 high-089

quality annotated datasets covering diverse legal090

tasks to make them usable for instruction tuning in091

the first place. Second, we continue pretraining and092

instruction tune T5, mT5, and Flan-T5 models and093

achieve new state-of-the-art on LegalBench in all094

tested parameter ranges. Third, we perform a wide095

range of ablations across different dataset config-096

urations deepening our understanding of adapting097

models to specific domains. Finally, we publicly098

release the permissively-licensed portion of the cu-099

rated dataset on the Hugging Face Hub1 and release100

the code used to create the dataset2 including point-101

ers on how to access the portions of the data that102

require special agreements.103

2 Experimental Setup104

In this section, we describe the experimental setup105

we used to test the effect of pretraining and in-106

struction tuning on in-domain legal data. We use107

random seed 42 throughout. Our experiments were108

performed with T5X 3 on TPUv4 pods using 2 to109

512 cores. We present the mean across tasks per110

LegalBench category and for LegalBench overall111

by aggregating over the categories. We consider112

T5 v1.1+LM adaptation (Raffel et al., 2020; Lester113

et al., 2021), Flan-T5 (Chung et al., 2022) and114

mT5 (Xue et al., 2021) models in the sizes Small,115

Base, XL and XXL, allowing us to study effects116

over different model scales. We selected the T5117

1URL available upon acceptance
2URL available upon acceptance
3https://github.com/google-research/t5x

family of models over other models for three rea- 118

sons: 1) Flan-T5 XL and XXL perform best in their 119

parameter range on LegalBench, 2) T5 and mT5 120

allow us to measure the effect of multilinguality in 121

a controlled setting, and 3) the T5 model family 122

contains models from 60M parameters (Small) to 123

11B (XXL) allowing us to study scaling behaviour 124

also at smaller scales. 125

2.1 Continued Pretraining 126

We continue pretraining on the 127

MultiLegalPile (Niklaus et al., 2023b), a 128

689GB corpus in 24 languages from 17 juris- 129

dictions. It includes diverse legal data sources 130

with varying licenses and allows for pretraining 131

NLP models under fair use, with more permissive 132

licenses for the Eurlex Resources and Legal mC4 133

subsets. It consists of four large subsets: a) Native 134

Multi Legal Pile (112 GB), b) Eurlex Resources 135

(179 GB), c) Legal mC4 (106 GB), and d) Pile 136

of Law (292 GB). For our mT5 experiments, we 137

use the entire corpus, and for T5 and Flan-T5 138

experiments, we use only English texts. 139

We continued pretraining (a.k.a. domain adap- 140

tation of) with 512 tokens in both inputs and tar- 141

gets on the MultiLegalPile (Niklaus et al., 2023b) 142

whereas the original models were pretrained on C4 143

(Raffel et al., 2020). We used the UL2 mixture (Tay 144

et al., 2022) due to its promise to enable improved 145

training efficiency with its mixture of denoisers. In 146

initial experiments we used batch size 1024 and 147

warmed up the learning rate linearly for the first 148

10K steps from 2.5e-3 to 5e-3, then decayed it to 149

1.5e-3. However, we noticed training instabilities 150

for the XXL models. We switched to a constant 151

learning rate of 1e-3 and ran a sweep over batch 152

sizes 64, 128, 256, 512, 1024. The XXL model 153

trained stably only with batch size 128. 154
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2.2 Instruction Tuning155

In this paper, we are interested in the ability of156

LLMs to answer questions, make judgments, and157

perform decision making (i.e., to “reason”) within158

the legal domain. Legal reasoning is often highly159

sensitive, and the struggles of factuality in LLMs160

lead to legalese with “bogus judicial decisions, bo-161

gus quotes, and bogus internal citations” (Weiser,162

2023; Dahl et al., 2024). In the absence of legal in-163

struction datasets and to evaluate the effect of legal164

instruction tuning on models’ capability to reason165

in legal domains, we develop LawInstruct: a large166

instruction dataset that normalizes and adapts 58167

existing or novel legal-domain datasets with cus-168

tom templates. LawInstruct is the first instruction169

dataset in the legal domain known to the authors.170

We attempted to collect a broad sample of datasets171

to expose the model to a variety of legal systems172

and concepts. We started by taking the datasets173

operating on legal data from Natural Instructions174

(Mishra et al., 2022; Wang et al., 2022) and then175

surveyed the literature to select high-quality legal176

datasets. The resulting dataset contains a total of al-177

most 12M examples in 24 languages. Data sources178

and detailed statistics including license, language179

and jurisdiction are given in Appendix B Table 2.180

Each example is built from a human-written task-181

specific template: We write a simple instruction per182

task (107 in total), we take the input of the super-183

vised dataset as the prompt and the output as the184

answer (see Figure 2 for an example). We show pie185

charts visualizing the composition of LawInstruct186

across the jurisdiction and task types calculated187

by the number of examples in Figure 3 and by188

datasets in Appendix B Figure 11. Figure 4 shows189

the length distribution of the instructions, prompts190

and answers following Wang et al. (2023b).191

We finetuned the models with 2048 input and192

512 target tokens. We ran a hyperparameter sweep193

for the XL model over the learning rate (5e-5, 1e-5,194

5e-4, 1e-4, 5e-4) and dropout (0, 0.05, 0.1, 0.15,195

0.2, 0.25), with learning rate 5e-4 and dropout 0.15196

achieving the best validation loss. Unless specified197

otherwise, we trained the models for 2K steps with198

batch size 64. In addition to LawInstruct, we used199

an updated Flan mixture (Chung et al., 2022). We200

built the input by concatenating the prompt with201

two new lines, the instruction and two additional202

new lines. Per LawInstruct config, we used the203

first 16 examples for validation and the remaining204

ones for training. We selected the model with the205

Instruction: Answer the following legal question. Cite
relevant evidence when possible.

Prompt: Question: So say a bank robber walks
into a bank and hands the teller a note saying simply
"please give me $1,000" (or maybe even just verbally
saying "I need $1,000 please") and if the teller accepts,
which they probably would because they’re supposed to
comply with the robber, he takes the money, otherwise
if they refuse, he leaves. How is this different than say
people asking for charity donations in the street? He just
politely requested money without making any threats.

Answer: Answer: As a concrete example, con-
sider Missouri v. Coleman, where Coleman handed
a teller a plastic bag and said "I need you to do me
a favor. Put the money in this bag", and later as the
manager approached, said "Ma’am, stop where you are
and don’t move any farther". Coleman was convicted
of second degree robbery: but the appeals court found
that he had not acted forcibly, so his conviction was
overturned. Instead, the court entered a conviction for the
lesser offense of stealing which is when one appropriates
property or services of another with the purpose to deprive
him or her thereof, either without his or her consent or
by means of deceit or coercion. The act may also be
termed "theft", as in Washington state. The thief is acting
deceptively and thereby gaining control over property.

Figure 2: Instruction template in LawInstruct for Stack-
ExchangeQuestionsLegal populated with instruction,
prompt and answer. Models are trained to generate the
answer conditioned on the instruction and prompt.

best LawInstruct validation loss. While in-context 206

learning has achieved strong results in many tasks 207

(Brown et al., 2020), further finetuning language 208

models for specific tasks may still be necessary for 209

better results (Mosbach et al., 2023). 210

2.3 Evaluation 211

We evaluate our models on LegalBench and 212

MMLU to test in-domain and generalization per- 213

formance, respectively. LegalBench (Guha et al., 214

2023) consists of 162 tasks evaluating different as- 215

pects of legal classification and reasoning. Each 216

task is assigned to one of five categories, depend- 217

ing on the broader type of legal reasoning impli- 218

cated. LegalBench tasks are sourced from both 219

previously constructed datasets and novel tasks col- 220

lected from different members of the legal com- 221

munity (e.g., lawyers, legal impact organizations, 222

legal academics). As such, LegalBench is thought 223

to capture tasks of interest and practical applicabil- 224

ity. LegalBench tasks span a wide range of legal 225

subject areas (e.g., contracts, civil procedure, tax, 226

etc.) and text-types (natural language, contractual 227

terms, judicial opinions, etc.). The majority of 228

tasks are either classification or extraction tasks, 229

thus enabling automated evaluation. Massively 230
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Figure 3: Jurisdiction and task type by examples.
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Figure 4: Mean length distributions for instructions, prompts and answers.

Multilingual Language Understanding (MMLU)231

benchmarks models factual knowledge (Hendrycks232

et al., 2021b). MMLU contains multiple-choice233

questions on 57 subjects, including three related234

to law: jurisprudence, international law, and pro-235

fessional law. While multilingual benchmarks like236

LEXTREME (Niklaus et al., 2023a) exist, they237

remain challenging for generative models not fine-238

tuned per task. Therefore, we focus on LegalBench239

and MMLU, both in English.240

For evaluation, we set temperature to 0 in line241

with accepted practice for LegalBench evaluation242

(Guha et al., 2023) that focuses on the highest-243

likelihood token sequence with minimal variance.244

We removed the following prefixes before scoring:245

“label”, “target”, “option”, “answer”, “a:”. We did246

not evaluate Rule QA because it necessitated man-247

ual evaluation. We show paper baseline results248

compared with our runs in Appendix E Table 5.249

Our XL model is quite close to the XL model in the250

LegalBench paper, but there are significant differ-251

ences for the XXL model. We provide a more de-252

tailed analysis of possible causes in Appendix C.1.253

Unless specifically mentioned, we compare to our254

baselines results. We hold out LegalBench tasks255

overlapping with LawInstruct tasks unless specified256

otherwise (see Appendix C.2 for details).257

3 Results 258

This section discusses the main results from instruc- 259

tion tuning and continued pretraining Flan-T5. 260

Figure 5 and Table 1 show the performance pro- 261

gression from the baseline over instruction tun- 262

ing to domain adaptation + instruction tuning on 263

LegalBench and MMLU. Instruction tuning leads 264

to a large performance increase for all model sizes 265

(38.1% for Small, 50.2% for Base, 16% for XL, 266

and 90.5% for XXL). Domain adaptation + instruc- 267

tion tuning only improves further for the Small 268

model size (55.4% vs. 38.1%). It seems like larger 269

models benefit less from in-domain pretraining 270

than smaller models, possibly because they can 271

“remember” more from the pretraining phase due 272

to increased capacity. Alternatively, a reason for 273

non-consistent improvements of domain adapta- 274

tion could be the switch from the UL2 tasks in 275

continued pretraining to standard next-token pre- 276

diction in instruction tuning. Finally, we conjec- 277

ture that the switch from input length 512 tokens 278

in continued pretraining to 2048 tokens in instruc- 279

tion tuning could have led lower performance for 280

domain-adapted models. 281

To analyze the change in performance in more 282

detail, we show the difference to the baseline for 283

the XL model on LegalBench and MMLU across 284

tasks (see Figure 6) and across categories (see Fig- 285
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Figure 5: Performance progression on LegalBench and MMLU from baseline to instruction tuning (IFT) and
continued pretraining followed by instruction tuning (PRE-IFT+IFT).

Table 1: Progression of performance from baseline to instruction tuning (IFT) and continued pretraining followed
by instruction tuning (PRE-IFT+IFT).

LLM Issue Rule Conclusion Interpretation Rhetorical LegalBench Improvement

Small Baseline 0.3 ± 0.7 30.4 ± 20.3 39.8 ± 20.8 28.2 ± 21.6 27.7 ± 21.9 25.3 ± 14.8 -
Small IFT 25.0 ± 22.0 38.1 ± 25.4 43.0 ± 17.1 36.1 ± 26.5 32.6 ± 24.2 34.9 ± 6.7 9.6 (38.1%)
Small PRE-IFT+IFT 51.6 ± 2.7 37.7 ± 25.2 39.8 ± 18.4 33.7 ± 23.3 33.8 ± 22.4 39.3 ± 7.4 14.0 (55.4%)

Base Baseline 44.7 ± 12.4 18.0 ± 23.6 20.9 ± 24.8 28.9 ± 21.2 37.0 ± 21.3 29.9 ± 11.1 -
Base IFT 50.3 ± 2.4 38.8 ± 25.9 40.5 ± 15.7 49.5 ± 19.1 45.2 ± 22.0 44.9 ± 5.2 15.0 (50.2%)
Base PRE-IFT+IFT 51.6 ± 4.8 38.2 ± 25.5 44.0 ± 13.4 45.4 ± 16.5 44.1 ± 19.0 44.6 ± 4.8 14.8 (49.5%)

XL Baseline 53.5 ± 6.0 32.1 ± 24.6 46.8 ± 15.6 58.7 ± 21.3 59.6 ± 25.6 50.1 ± 11.3 -
XL IFT 65.7 ± 15.2 45.1 ± 30.3 49.5 ± 14.2 61.7 ± 17.1 68.6 ± 24.1 58.1 ± 10.3 8.0 (16.0%)
XL PRE-IFT+IFT 60.3 ± 10.6 44.3 ± 29.7 50.5 ± 15.4 57.3 ± 15.9 67.3 ± 23.1 55.9 ± 8.9 5.8 (11.6%)

XXL Baseline 36.1 ± 21.5 18.8 ± 24.6 25.2 ± 26.0 35.1 ± 22.2 41.1 ± 18.4 31.3 ± 9.1 -
XXL IFT 55.2 ± 23.7 46.3 ± 31.6 56.2 ± 18.3 66.3 ± 19.7 73.8 ± 24.4 59.6 ± 10.6 28.3 (90.5%)
XXL PRE-IFT+IFT 52.2 ± 14.7 47.4 ± 30.8 59.2 ± 18.3 66.6 ± 18.5 70.0 ± 24.1 59.1 ± 9.5 27.8 (89.0%)

GPT-4 Guha et al. (2023) 82.9 59.2 89.9 75.2 79.4 77.3 -

ure 7). We find that FLawN-T5 outperforms base-286

line Flan-T5 in most LegalBench tasks in most287

categories. The exception are tasks in the inter-288

pretation category, specifically CUAD (Hendrycks289

et al., 2021c), where the fine-tuned model is actu-290

ally worse than the baseline by around 10 points291

on average. A possible explanation could be nega-292

tive transfer from the instruction tuning data since293

the task formulations are very different to the in-294

structions in LegalBench. In MAUD (Wang et al.,295

2023a) and Contract-NLI (Koreeda and Manning,296

2021), the instructions are much more similar from297

LawInstruct to LegalBench, leading to improve-298

ments compared to the baseline. On MMLU, most299

categories and tasks see increases in performance,300

especially the categories social sciences and other.301

We find that performance suffers mostly in the302

STEM category and to some extent in the human-303

ities. Interestingly, the largest drop is in machine304

learning but the largest rise is in high school com-305

puter science. In the humanities, more “hard” disci-306

plines are affected by performance decrease, such 307

as formal logic and logical fallacies. 308

Across categories overall we see lower improve- 309

ments in conclusion and interpretation. Conclusion 310

is one of LegalBench categories requiring more 311

sophisticated reasoning capabilities; maybe larger 312

models would see larger gains there. Concurrent 313

work (Colombo et al., 2024) instruction tuned on 314

synthetic legal data. They even saw a drop in per- 315

formance in conclusion tasks compared to the base- 316

line arguing, that conclusion tasks “require much 317

more pure deductive reasoning than actual legal 318

knowledge” compared to tasks from the other cate- 319

gories. Lower improvement in interpretation could 320

be explained by negative transfer caused through 321

different instructions in CUAD. Our hypothesis of 322

a potential negative transfer is corroborated by our 323

results on LegalBench by categories when we re- 324

move the datasets or tasks that overlap between 325

LawInstruct and LegalBench (see Figure 14): We 326

see larger gains compared to the baseline for both 327
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Figure 6: Difference to the baseline for the XL model across tasks on LegalBench and MMLU. For LegalBench, we
excluded tasks with a difference between -10 and 10 for clarity.

the conclusion and the interpretation categories.328

4 Ablations329

In this section, we perform controlled experiments330

across the starting checkpoints, data mixtures, in-331

struction styles and amount of instruction tuning332

data during pretraining. We show additional ab-333

lations regarding sampling styles, licenses and334

crosslingual transfer from multilingual data in Ap-335

pendix D. Flan-T5 performs best in the studied336

parameter ranges. Baselines for other models are337

in Appendix E Table 5.338

4.1 Starting Checkpoint339

Should you start in-domain instruction tuning from340

a base model or from an instruction tuned model?341

⇒ Starting from an instruction tuned model is342

better across sizes except Small. In Figure 8, we343

compare instruction tuning from a base T5 and a344

Flan-T5 model in four different sizes (Small, Base,345

XL and XXL) (detailed results in Appendix E Ta-346

ble 6). We find that for the larger sizes, the in-347

struction tuned Flan-T5 is a better starting point348

(p < 0.001), leading to higher performance on349

LegalBench. For the Small size the difference is350

not statistically significant (p = 0.058). We use the351

Flan-T5 model as a starting point in all experiments 352

unless specified otherwise. 353

4.2 Data Mixture 354

What data mixtures should you choose for in- 355

domain instruction tuning? ⇒ Mixing in general 356

instruction tuning datasets is necessary. In Fig- 357

ure 9, we compare instruction tuning with three 358

different data mixtures: lawinstruct, flan2 (Chung 359

et al., 2022), and flan2-lawinstruct (where we sam- 360

ple equally from flan2 and lawinstruct) (detailed 361

results in Appendix E Table 7). Interestingly, when 362

only training on lawinstruct, downstream accu- 363

racy drops, possibly due to the instructions in our 364

datasets being formulated differently than the orig- 365

inal Flan instructions. Training on flan2 and flan2- 366

lawinstruct leads to an aggregate increase of 7.7 367

points (48.3 to 56) and 10.8 points (48.3 to 59.1) 368

respectively. We use the flan2-lawinstruct mixture 369

in all experiments unless specified otherwise. 370

4.3 Instruction Style 371

Are models trained with more diverse instructions 372

better on LegalBench? ⇒ Results are mixed, over- 373

all just using one instruction is probably suffi- 374

cient. In Figure 10, we compare the performance of 375
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Figure 7: Difference to the baseline for the XL model across categories on LegalBench and MMLU.
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training with just one manually written instruction376

vs. ten paraphrased instructions with GPT-4 from377

one seed instruction, all else constant (detailed re-378

sults in Appendix E Table 10). For Flan-T5 (see379

Table 10), for Small, one instruction is better than380

ten (p = 0.035); for the other sizes we find no381

difference. For mT5 (see Figure 10b), for Small,382

one instruction is worse than ten both monolingual383

(p = 0.005) and multilingual (p = 0.01) whereas384

for XL, ten English instructions underperform one385

English (p < 0.001) and ten multilingual ones386

(p < 0.001). In aggregate, differences are small387

without a consistent trend.388

4.4 Amount of Instruction Data During 389

Continued Pretraining 390

How much instruction tuning data should be mixed 391

in during continued pretraining? ⇒ Continued 392

pretraining seems to be rather robust w.r.t. the 393

amount of instruction tuning samples mixed in. 394

In Tables 12 to 15, we investigate the benefit of 395

mixing varying amounts of instruction tuning data 396

in during continued pretraining (detailed results 397

in Appendix E Tables 12 to 15). We compare re- 398

sults on LegalBench of instruction tuning runs after 399

10K to 90K steps of continued pretraining. For the 400

Small model, the benefit of continued pretraining 401

over just instruction tuning is significant (34.9 for 402

just instruction tuning vs. 40 after continued pre- 403

training). Conversely, for the XL model, contin- 404

ued pretraining often underperforms compared to 405

just instruction tuning. For the XXL model, more 406

instruction tuning samples during continued pre- 407

training improve performance, unlike for the Small 408

and XL models. Across sizes, continued pretrain- 409

ing’s effectiveness appears robust to the number of 410

instruction tuning samples used.4 411

5 Related Work 412

Domain-specific pretraining, covering areas such 413

as medicine, law, and science, significantly en- 414

hances Language Model performance on related 415

tasks (Beltagy et al., 2019; Gu et al., 2021; 416

Chalkidis et al., 2020). SciBERT (Beltagy et al., 417

2019), for instance, was pretrained on a mix of 418

computer science and biomedical papers, exempli- 419

fying this approach in the scientific domain. Other 420

models like PubMedBERT (Gu et al., 2021) and 421

BioBERT (Lee et al., 2020), specifically pretrained 422

on biomedical datasets, have shown improvements 423

4Mixing instruction tuning data during continued pretrain-
ing without more instruction tuning does not improve results.
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Figure 10: Ablation on the instruction style on English/multilingual flan2-lawinstruct from the Flan-T5/mT5
checkpoint across all sizes.

in medical NLP tasks (Huang et al., 2019).424

5.1 Domain-specific Legal Pretraining425

In the legal domain, models such as LegalBERT,426

pretrained on 12 GB of English legal texts, demon-427

strated notable success in domain-specific chal-428

lenges (Chalkidis et al., 2020). CaseLaw-BERT429

capitalized on the English Harvard Law case cor-430

pus spanning from 1965 to 2021 (Zheng et al.,431

2022), while Niklaus and Giofré (2022) pretrained432

LongFormer models on the Pile-of-Law (Hender-433

son et al., 2022) using the replaced token detection434

task (Clark et al., 2020) for enhanced performance.435

Further advancements were made by Chalkidis et al.436

(2023), who developed new English legal LMs437

yielding superior results on LexFiles, a compilation438

of 11 sub-corpora from six English-speaking legal439

systems encompassing 19B tokens. Additionally,440

Niklaus et al. (2023b) introduced a vast multilin-441

gual legal corpus, training both monolingual and442

multilingual legal models to achieve state-of-the-443

art results on LexGLUE (Chalkidis et al., 2022)444

and LEXTREME (Niklaus et al., 2023a). Models445

have also been developed for specific jurisdictions,446

including the Swiss (Rasiah et al., 2023), Italian447

(Licari and Comandè, 2022), Romanian (Masala448

et al., 2021), and Spanish (Gutiérrez-Fandiño et al.,449

2021) legal systems. Despite the prevalence of450

smaller encoder-based legal-specific LMs, larger451

generative models in this space remain scarce. This452

work seeks to bridge that gap.453

5.2 Instruction Tuning454

Instruction tuning – the process of finetuning455

auto-regressive pretrained language models on cor-456

pora of reciprocal instruction–response pairs – has457

emerged as a critical step for building responsive458

models that are useful for many tasks (Ouyang 459

et al., 2022; Chowdhery et al., 2022; Wei et al., 460

2022b; Sanh et al., 2022). Some go as far as to 461

claim that this training paradigm is the key to im- 462

buing language models with the generalized capa- 463

bility of zero-shot instruction following behavior 464

(Chung et al., 2022). Instruction tuning refers to 465

few-shot or zero-shot adaptation of large language 466

models to new tasks, where the task is described in 467

natural language in the training examples. Follow- 468

ing Wei et al. (2022a), it is common to transform 469

existing datasets into instruction datasets by manu- 470

ally composing templates and filling these with spe- 471

cific examples. It is through these domain-specific 472

training procedures that we build and evaluate legal 473

data adaptation in LLMs. 474

6 Conclusion and Future Work 475

We curated LawInstruct, the first instruction tun- 476

ing dataset for the legal domain by aggregating 477

various high-quality annotated datasets and writ- 478

ing instructions for the different tasks. We used 479

LawInstruct to instruction tune T5 based models, 480

creating FLawN-T5 and a new state-of-the-art on 481

LegalBench in all investigated parameter sizes. We 482

openly release LawInstruct on Hugging Face. 483

In the future, we would like to extend Law- 484

Instruct with more high-quality datasets released 485

after our experiments such as Negation Scope Res- 486

olution (Christen et al., 2023), or Legal Violation 487

Detection (Bernsohn et al., 2024). Additionally, it 488

would be interesting to investigate overlap between 489

the T5 pretraining dataset C4 and the MultiLegal- 490

Pile to get a better understanding of the potential 491

benefits of continued pretraining. 492
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Limitations493

Our use of template-based instruction creation may494

restrict the variety of instructions, potentially af-495

fecting the model’s ability to handle more diverse496

or novel legal queries effectively. While we already497

tried to address this by paraphrasing the instruc-498

tions with GPT-4, the diversity may still be lim-499

ited. To alleviate this problem, we could create500

synthetic data either by generating responses from501

instructions (Wang et al., 2023c) or reversely, by502

generating instructions to responses (Köksal et al.,503

2024). It is important to take care to do detailed504

quality checks since hallucinated content may hurt505

more than improve, especially in the legal domain.506

Another way to alleviate this diversity problem is507

working with legal professionals to identify and508

annotate new tasks for the legal domain. However,509

this route is out of reach for many academic efforts510

due to large salaries of qualified lawyers.511

To our surprise, continued pretraining only bene-512

fited at the Small model size, but not at larger sizes.513

Due to our focus on instruction tuning and limited514

budget, we were not able to study this effect in515

more detail. In future work, we would like to study516

the robustness of our findings across model sizes.517

We hypothesize that methods like mixing in data518

from the original training set, using smaller learn-519

ing rates, and adding loss terms to discourage the520

weights to depart too much from the original model521

could potentially lead to different conclusions.522
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Table 2: Overview of the LawInstruct datasets. The 24 EU langs are bg, cs, da, de, el, en, es, et, fi, fr, ga, hu,
it, lt, lv, mt, nl, pt, ro, sv, sk. Abbreviations: Terms of Service (ToS)

Dataset License Languages Jurisdiction Tasks Subtask Examples

Benchmark for Understanding Indian Legal Documents (BUILD)
(Kalamkar et al., 2022)

Unknown en India Text classification Rhetorical role 28,986

Brazilian Bar Exam (Delfino et al., 2017) Unknown pt Brazil Question answering Bar exam questions 2,130
Brazilian Court Decisions (Lage-Freitas et al., 2022) Unknown pt Brazil Text classification Judgment 3,234
Brazilian Court Decisions (Lage-Freitas et al., 2022) Unknown pt Brazil Text classification Decision Unanimity 1,715
BrCAD5 (Jacob de Menezes-Neto and Clementino, 2022) CC BY-NC-SA 4.0 pt Brazil Multiple choice Judgment 1,225,922
BrCAD5 (Jacob de Menezes-Neto and Clementino, 2022) CC BY-NC-SA 4.0 pt Brazil Text classification Judgment 612,961
BrCAD5 (Jacob de Menezes-Neto and Clementino, 2022) CC BY-NC-SA 4.0 pt Brazil Text classification Area of law 612,961
BrCAD5 (Jacob de Menezes-Neto and Clementino, 2022) CC BY-NC-SA 4.0 pt Brazil Text classification Topic 1,838,883
BVADecisions (Walker et al., 2019) MIT en USA Text classification Rhetorical role 8,818
BVADecisions (Walker et al., 2019) MIT en USA Question answering Relevant rules 2
CAIL 2019 (Xiao et al., 2019) Unknown zh China Question answering Chinese legal case questions 39,333
CAIL 2022 (CAIL 2022) Unknown zh China Text classification Charge/crime 10,448
CAIL 2022 (CAIL 2022) Unknown zh China Argument & counter-argument 5,224
CAIL 2022 (CAIL 2022) Unknown zh China Question answering Response to argument 5,224
Case Briefs (Case briefs) CC BY-NC en USA Question answering Legal analysis of facts 2,619
CaseHOLD (Zheng et al., 2021) CC-BY en USA Multiple choice Legal holding statements 45,000
Change My View (Tan et al., 2016) Unknown en N/A Argument & counter-argument 3,456
COLIEE (Kim et al., 2022) Academic use only en, jp Canada/Japan Question generation Entailed question 1,774
COLIEE (Kim et al., 2022) Academic use only en, jp Canada/Japan Natural language inference Passage entailment 125,954
COLIEE (Kim et al., 2022) Academic use only en, jp Canada/Japan Question answering Relevant legal rule 1,774
ContractNLI (Koreeda and Manning, 2021) CC BY-NC en USA Natural language inference Premise hypothesis entailment 14,010
COVID-19 Emergency Measures (EXCEPTIUS) (Tziafas et al., 2021) Unknown en, fr, hu, it, nb,

nl, pl
EU Text classification Measure type 3,312

European Court of Human Rights (ECtHR) (Chalkidis et al., 2021b) CC BY-NC-SA 4.0 en EU Text classification (multi-label) Violated article 9,000
European Court of Human Rights (ECtHR) (Chalkidis et al., 2021b) CC BY-NC-SA 4.0 en EU Text classification (multi-label) Allegedly violated article 9,000
EOIR (Henderson et al., 2022) CC BY-NC-SA 4.0 en USA Text classification Pseudonymity 8,089
EURLEX (Chalkidis et al., 2019) CC BY-SA 4.0 en EU Text classification EuroVoc core concepts 55,000
EUR-Lex-Sum (Aumiller et al., 2022) CC BY 4.0 24 EU langs EU Summarization EU Legal Acts 22,989
German Argument Mining (Urchs et al., 2021) CC BY 4.0 de Germany Text classification Argumentative function 19,271
German Rental Agreements (Steinberger et al., 2006) Unknown de Germany Text classification Semantic type 3,292
Greek Legal Code (Papaloukas et al., 2021) CC BY 4.0 el Greece Text classification Volume (coarse thematic topic) 28,536
Greek Legal Code (Papaloukas et al., 2021) CC BY 4.0 el Greece Text classification Chapter (intermediate thematic topic) 28,536
Greek Legal Code (Papaloukas et al., 2021) CC BY 4.0 el Greece Text classification Subject (fine-grain thematic topic) 28,536
Greek Legal NER (elNER) (Bartziokas et al., 2020) CC BY-NC-SA 4.0 el Greece Named entity recognition Greek legal entities 17,699
ILDC (Malik et al., 2021) CC BY-NC en India Text classification Judgment 37,387
International Citizenship Law (Vink et al., 2021) CC BY 4.0 en International Question answering Citizenship acquisition 6,460
International Citizenship Law (Vink et al., 2021) CC BY 4.0 en International Question answering Citizenship loss 2,850
JEC-QA (Zhong et al., 2020) CC BY-NC-ND zh China Multiple choice National Judicial Examination of China 21,072
Korean Legal QA (Jeon, 2021) Academic use only ko South Korea Question answering Relevant law 1,830
LawngNLI (Bruno and Roth, 2022) MIT en USA Natural language inference Premise hypothesis entailment 1,142,304
LBOX OPEN (Hwang et al., 2022) CC BY-NC ko South Korea Text classification Judgment 12,142
LBOX OPEN (Hwang et al., 2022) CC BY-NC ko South Korea Text classification Relevant statutes 13,317
LEDGAR (Tuggener et al., 2020) CC BY-NC en USA Text classification Contract provision category 60,000
Legal Case Document Summarization (Shukla et al., 2022; Bhattacharya
et al., 2019)

CC BY-SA en India Summarization Indian Supreme Court 7,080

Legal Case Summarization (Shukla et al., 2022; Bhattacharya et al., 2019) CC BY-SA en UK Summarization UK Supreme Court 693
LegalNERo (Pais et al., 2021) CC0 1.0 ro Romania Named entity recognition Romanian legal entities 7,552
LegalQA (LegalQA) Unknown zh China Question answering Legal advice 21,946
LeNER-Br (Luz de Araujo et al., 2018) Unknown pt Brazil Named entity recognition Brazilian legal entities 7,828
Littleton (Basu et al., 2022) MIT en USA Question answering Relevant future interests 131
Littleton (Basu et al., 2022) MIT en USA Question answering Event graph 143
MAPA (de Gibert Bonet et al., 2022) CC BY-NC 4.0 24 EU langs EU Named entity recognition Coarse-grained 27,823
MAPA (de Gibert Bonet et al., 2022) CC BY-NC 4.0 24 EU langs EU Named entity recognition Fine-grained 27,823
MAUD (Wang et al., 2023a) CC BY en USA Multiple choice Merger agreement questions 10,751
MAUD (Wang et al., 2023a) CC BY en USA Text classification Deal point category 25,827
MAUD (Wang et al., 2023a) CC BY en USA Text classification Question type 25,827
MAUD (Wang et al., 2023a) CC BY en USA Text classification Text type 25,827
Mining Legal Arguments (Habernal et al., 2022) Apache-2.0 en EU Named entity recognition Actors 31,852
Mining Legal Arguments (Habernal et al., 2022) Apache-2.0 en EU Named entity recognition Argument type 31,852
MultiEURLEX (Chalkidis et al., 2021a) CC BY-SA 24 EU langs EU Text classification (multi-label) EuroVoc taxonomy (coarse level) 1,265,000
MultiEURLEX (Chalkidis et al., 2021a) CC BY-SA 24 EU langs EU Text classification (multi-label) EuroVoc taxonomy (intermediate level) 911,798
MultiEURLEX (Chalkidis et al., 2021a) CC BY-SA 24 EU langs EU Text classification (multi-label) EuroVoc taxonomy (fine-grain level) 1,265,000
Multi-LexSum (Shen et al., 2022) ODC-By en USA Summarization Long to short 2,210
Multi-LexSum (Shen et al., 2022) ODC-By en USA Summarization Long to tiny 1,130
Multi-LexSum (Shen et al., 2022) ODC-By en USA Summarization Short to tiny 1,129
Natural Instructions (BillSum) (Kornilova and Eidelman, 2019) CC0 1.0 en USA Summarization U.S Congressional and California state bills 25,200
Natural Instructions (CAIL 2018) (Xiao et al., 2018) Unknown zh China Question answering Judgment 5,988
Natural Instructions (CaseHOLD) (Zheng et al., 2021) CC-BY en USA Multiple choice Correct answer 5,988
Natural Instructions (CaseHOLD) (Zheng et al., 2021) CC-BY en USA Multiple choice Incorrect answer 5,988
Natural Instructions (CUAD) (Hendrycks et al., 2021c) CC BY 4.0 en Question answering Information relevant for contract review 2,442
Natural Instructions (CUAD) (Hendrycks et al., 2021c) CC BY 4.0 en USA Question generation Questions relevant for contract review 2,442
Natural Instructions (EURLEX) (Chalkidis et al., 2019) CC BY-SA 4.0 en EU Text classification Regulation, decisions, or directive 5,850
Natural Instructions (EURLEX) (Aumiller et al., 2022) CC BY-SA 4.0 en EU Summarization EU Legal Acts 3,900
Natural Instructions (OPP-115) (Wilson et al., 2016) CC BY-NC en USA Question answering Type of information used by website 18,480
Natural Instructions (OPP-115) (Wilson et al., 2016) CC BY-NC en USA Question answering Purpose of privacy policy 18,474
Natural Instructions (Overruling) (Zheng et al., 2021) Unknown en USA Text classification Sentence is overruling 14,370
OLC Memos (Henderson et al., 2022) CC BY-NC en USA Question answering Write a legal research memo 1,038
Online ToS (Drawzeski et al., 2021) CC BY-NC 2.5 de, en, it, pt Unknown Text classification Clause topic 19,942
Online ToS (Drawzeski et al., 2021) CC BY-NC 2.5 de, en, it, pt Unknown Text classification Unfair contractual term type 2,074
Plain English Contracts Summarization (Manor and Li, 2019) Unknown en USA Summarization Software licenses, ToS 446
PrivacyQA (Ravichander et al., 2019) MIT en Unknown Question answering Contents of privacy policies 185,200
PrivacySummarization (Keymanesh et al., 2020) MIT en USA Summarization Privacy policies, ToS, and cookie policies 5,751
RedditLegalQA (Henderson et al., 2022) CC BY 4.0 en Unknown Question answering Legal advice from r/legaladvice 192,953
Sara (Holzenberger et al., 2020) Unknown en USA Natural language entailment Fact entailment 176
Sara (Holzenberger et al., 2020) Unknown en USA Question answering Tax liability 160
SaraProlog (Holzenberger et al., 2020) Unknown en USA Question answering Fact pattern to prolog code 376
SaraProlog (Holzenberger et al., 2020) Unknown en USA Question answering Tax statute to prolog code 9
Short Answer Feedback (Filighera et al., 2022) CC BY 4.0 de Germany Question answering Answer question about German law 1,596
Short Answer Feedback (Filighera et al., 2022) CC BY 4.0 de Germany Question answering Feedback rating for answer 1,596
Spanish Labor Law (Calleja et al., 2021) CC BY 4.0 es Spain Extractive question answering Answer question about Spanish labor law 111
StackExchange Questions (Law) (Law Stack Exchange) CC BY-SA en Unknown Question answering Online legal forum 10,158
The Supreme Court Database (Spaeth et al., 2020) CC BY-NC 3.0 en USA Text classification Issue areas 5,000
Swiss Federal Supreme Court (Rasiah et al., 2023) CC BY 4.0 de, fr Text generation Case considerations sections (lower court) 26
Swiss Courts (Rasiah et al., 2023) CC BY 4.0 de, fr, it Switzerland Text generation Case considerations sections (same court) 234,313
Swiss Federal Supreme Court (Rasiah et al., 2023) CC BY 4.0 de, fr, it Switzerland Text classification Case criticality (based on citations) 91,075
Swiss Courts (Rasiah et al., 2023; Niklaus et al., 2021) CC BY 4.0 de, fr, it, en Switzerland Multiple choice Judgment 477,636
Swiss Courts (Rasiah et al., 2023; Niklaus et al., 2021) CC BY 4.0 de, fr, it Switzerland Text classification Judgment 385,719
Swiss Courts (Rasiah et al., 2023; Niklaus et al., 2021) CC BY 4.0 de, fr, it, en Switzerland Text classification Area of law 18,162
Swiss Courts (Rasiah et al., 2023; Niklaus et al., 2021) CC BY 4.0 de, fr, it, en Switzerland Text classification Subarea of law 18,162
Swiss Federal Supreme Court (Leading Decisions) (Rasiah et al., 2023) CC BY 4.0 de, en, fr, it Switzerland Text classification Location (canton, region) 42,342
Swiss Legislation (Rasiah et al., 2023) CC BY 4.0 de, fr, it, rm Switzerland Text classification Abbreviation 11,045
Swiss Legislation (Rasiah et al., 2023) CC BY 4.0 de, en, fr, it, rm Switzerland Text classification Canton 35,698
Swiss Legislation (Rasiah et al., 2023) CC BY 4.0 de, en, fr, it, rm Switzerland Text classification Short description 3,747
Swiss Legislation (Rasiah et al., 2023) CC BY 4.0 de, en, fr, it, rm Switzerland Text classification Title 35,359
Thai Supreme Court Cases (TSCC)(Thanh et al., 2021) Academic use only th Thailand Question answering Relevant legal articles (Thai Criminal Code) 2,883
Turkish Constitutional Court (Mumcuoğlu et al., 2021) CC BY 4.0 tr Turkey Multiple choice Judgment 1,804
Turkish Constitutional Court (Mumcuoğlu et al., 2021) CC BY 4.0 tr Turkey Text classification Judgment 902
Unfair ToS (Lippi et al., 2019) Unknown en USA Text classification (multi-label) Unfair contractual term type 5,532
U.S Class Actions (Semo et al., 2022) GPL-3.0 en USA Text classification Judgment 3,000
Valid Wills (Kwak et al., 2022) Unknown en USA Text classification Statement supported by law/condition 1,512
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Figure 11: Jurisdiction and task type by datasets.

their results. We double checked that the prompts,1163

decoding hyperparameters and general setup are1164

consistent. We conjecture, that the conversion of1165

the Flan-T5 weights as done by Hugging Face on1166

their hub leads to different behavior when running1167

the models with T5X on TPUs (our setup) vs run-1168

ning them with Hugging Face transformers and1169

PyTorch on NVIDIA GPUs (original LegalBench1170

setup)5.1171

The XXL mT5 model did not train stably in the1172

continued pretraining phase despite heavy hyperpa-1173

rameter tuning.1174

C.2 Evaluation1175

We excluded any legal tasks occurring in MMLU1176

from LawInstruct. However, there is some overlap1177

regarding the tasks included in LawInstruct and in1178

LegalBench because high-quality legal tasks are1179

rare. To control for these overlapping tasks, we1180

evaluate on two versions of LegalBench holding1181

out tasks by the datasets or tasks occurring in Law-1182

Instruct respectively.1183

C.2.1 LegalBench Dataset Held Out1184

If the source dataset of the LegalBench task occurs1185

in LawInstruct, we remove it from the evaluation.1186

Below, we list which tasks are overlapping. Overall1187

100 tasks are held out (see Table 3 for the complete1188

list), so 61 tasks are remaining for LegalBench1189

evaluation.1190

C.2.2 LegalBench Task Held Out1191

We additionally catalog instructions which train the1192

LLM for a task captured in LegalBench. It is not1193

5Similar issues are mentioned in this issue: https://
github.com/PiotrNawrot/nanoT5/issues/25

necessary that the instruction-response pair in Law- 1194

Instruct contain data from LegalBench, just that 1195

they are about similar legal tasks (e.g., classifying 1196

choice-of-forum provisions). In Table 4, we list 1197

which tasks are overlapping. Overall 64 tasks are 1198

held out, so 97 tasks are remaining for LegalBench 1199

evaluation. 1200
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Figure 12: Ablation on sampling style and license
on English flan2-lawinstruct from the Flan-T5 check-
point across sizes. Abbreviations: res: licensed for re-
search use (all datasets), comm: commercially friendly
licensed, number: sampling by the number of examples
per dataset, equal: equally sampling from each dataset

Should we sample each dataset equally or rather 1203

by the number of examples? ⇒ Sampling by the 1204

number of examples generally leads to better 1205

performance. In Figure 12, we compare the per- 1206

formance of two sampling styles (equal sampling 1207

of each dataset and sampling by the number of ex- 1208

amples) across both the research and commercial 1209

licensed dataset (detailed results in Appendix E 1210
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Table 3: LegalBench Dataset Held Out

Dataset LawInstruct LegalBench

ContractNLI ContractNLI-contract_nli contract_nli_*

CUAD NaturalInstructionsLegal-cuad_answer_generation, NaturalInstructionsLegal-cuad_question_generation cuad_*

GLOBALCIT
Citizenship Law
Dataset

InternationalCitizenshipLawQuestions-international_citizenship_law_questions_mode_acq,
InternationalCitizenshipLawQuestions-international_citizenship_law_questions_mode_loss

international_citizenship_questions

MAUD MAUD-answer, MAUD-category, MAUD-question, MAUD-text_type maud_*

OPP-115 (Online
Privacy Policies,
set of 115) Corpus

NaturalInstructionsLegal-online_privacy_policy_text_information_type_generation, NaturalInstructionsLegal-
online_privacy_policy_text_purpose_answer_generation

opp_115_*

Overruling NaturalInstructionsLegal-overruling_legal_classification overruling

PrivacyQA PrivacyQA-privacy_qa privacy_policy_qa
Note: The LegalBench privacy_policy_entailment Source field is currently incorrectly linked to this dataset (PrivacyQA), but is derived from a different dataset (APP-350 Corpus).

StAtutory Reason-
ing Assessment
(SARA)

Sara-sara_entailment, Sara-sara_tax_liability, SaraProlog-sara_prolog_facts, SaraProlog-sara_prolog_statute sara_* (built off of
SARA v2)

Unfair Terms of
Service

LexGLUE-unfair_tos, LEXTREME-online_terms_of_service_clause_topics (multilingual version),
LEXTREME-online_terms_of_service_unfairness_levels (multilingual version)

unfair_tos

Table 4: LegalBench Task Held Out

Task LawInstruct LegalBench

Rhetorical Role
Labeling

bva_decisions_label, in-
dian_text_segmentation, ger-
man_argument_mining

function_of_decision_section,
oral_argument_question_purpose

Civil Procedure
Questions

civipro_questions_generate_* diversity_*, personal_jurisdiction

Legal Entailment coliee_task3_passage_entailment, con-
tract_nli, lawng_nli_entailment

contract_nli_*

Contractual
Clause Classifica-
tion

unfair_tos, german_rental_agreements cuad_*, jcrew_blocker, unfair_tos, con-
tract_qa

Table 8). For the XL and XXL sizes, sampling by1211

the number of examples is better than equal weight1212

for datasets for both the research and commercial1213

datasets, although not always statistically signif-1214

icant (XL res p = 0.049, XL comm p = 0.052,1215

XXL res p < 0.001, XXL comm p = 0.31). For1216

the Small size, sampling by the number of exam-1217

ples is better for the research dataset (p < 0.001)1218

but not for the commercial dataset (p = 0.099),1219

while there is no difference for the Base size. By1220

default, we sample by the number of examples in1221

all following experiments unless specified other-1222

wise.1223

D.2 License of Instruction Tuning Datasets1224

Do we need data licensed non-commercially for1225

good performance? ⇒ The commercially li-1226

censed data seems to be enough for the larger1227

models. In Figure 12, we compare the performance1228

of two differently licensed datasets (research and1229

commercial licenses) across both sampling each1230

dataset equally and by the number of examples1231

(detailed results in Appendix E Table 8). There 1232

are fewer datasets available with more permissive 1233

licenses allowing for commercial use than for re- 1234

search use (see Table 2 for details on licenses). Ex- 1235

cept for Small size (p < 0.001), using more diverse 1236

data available only for research shows no signifi- 1237

cant benefit. By default, we use the commercially 1238

licensed dataset in all subsequent experiments un- 1239

less specified. 1240

D.3 Crosslingual Transfer from Multilingual 1241

Data 1242

Is there crosslingual transfer from multilingual 1243

data? ⇒ On the English LegalBench, we do 1244

not see any crosslingual transfer. In Figure 13, 1245

we compare the performance of the complete mul- 1246

tilingual instruction dataset and the English sub- 1247

set across two differently licensed datasets (re- 1248

search and commercial licenses). We see no sta- 1249

tistically significant difference between the multi- 1250

lingual training and the English training. We also 1251

see no difference between the differently licensed 1252
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Figure 13: Ablation on the language and license on
flan2-lawinstruct from the mT5 checkpoint across all
sizes, sampling by the number of examples.

datasets. This means that just training on the com-1253

mercial subset is enough. We show detailed results1254

on individual LegalBench categories in Appendix E1255

Table 9. Per default we use the English dataset in1256

all following experiments unless specified other-1257

wise.1258

E Detailed Results 1259
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Table 5: Baseline results on LegalBench.

LLM Issue Rule Conclusion Interpretation Rhetorical LegalBench

Flan-T5 XXL (ours) 36.1 18.8 25.2 35.1 41.1 31.3
Flan-T5-XXL (Guha et al., 2023) 66.0 36.0 63.3 64.4 70.7 60.1
LLaMA-2-13B (Guha et al., 2023) 50.2 37.7 59.3 50.9 54.9 50.6
OPT-13B (Guha et al., 2023) 52.9 28.4 45.0 45.1 43.2 42.9
Vicuna-13B-16k (Guha et al., 2023) 34.3 29.4 34.9 40.0 30.1 33.7
WizardLM-13B (Guha et al., 2023) 24.1 38.0 62.6 50.9 59.8 47.1

Flan-T5 XL (ours) 53.5 32.1 46.8 58.7 59.6 50.1
Flan-T5-XL (Guha et al., 2023) 56.8 31.7 52.1 51.4 67.4 51.9
BLOOM-3B (Guha et al., 2023) 47.4 20.6 45.0 45.0 36.4 38.9
Incite-3B-Instruct (Guha et al., 2023) 51.1 26.9 47.4 49.6 40.2 43.0
OPT-2.7B (Guha et al., 2023) 53.7 22.2 46.0 44.4 39.8 41.2

Flan-T5 Base (ours) 44.7 18.0 20.9 28.9 37.0 29.9

Flan-T5 Small (ours) 0.3 30.4 39.8 28.2 27.7 25.3

Table 6: The T5 and Flan-T5 models finetuned on flan2-lawinstruct in four sizes.

LLM Issue Rule Conclusion Interpretation Rhetorical LegalBench

Small T5 45.5 ± 13.2 25.0 ± 28.9 25.6 ± 27.4 18.6 ± 23.6 32.9 ± 26.8 29.5 ± 10.3

Small Flan-T5 25.0 ± 22.0 38.1 ± 25.4 33.1 ± 24.4 20.6 ± 26.4 40.7 ± 19.5 31.5 ± 8.5

Base T5 49.8 ± 0.7 38.1 ± 25.4 34.0 ± 23.3 21.3 ± 22.8 38.0 ± 19.4 36.2 ± 10.2

Base Flan-T5 50.3 ± 2.4 38.8 ± 25.9 34.0 ± 22.4 43.0 ± 21.1 54.1 ± 13.0 44.1 ± 8.2

XL T5 47.8 ± 12.5 37.5 ± 25.0 38.2 ± 15.5 28.6 ± 25.1 49.4 ± 8.1 40.3 ± 8.5

XL Flan-T5 65.7 ± 15.2 45.1 ± 30.3 49.0 ± 23.5 56.8 ± 18.8 79.0 ± 11.4 59.1 ± 13.6

XXL T5 52.7 ± 6.8 38.5 ± 25.7 50.0 ± 22.8 44.9 ± 25.2 70.7 ± 20.5 51.4 ± 12.1

XXL Flan-T5 55.2 ± 23.7 46.3 ± 31.6 56.1 ± 29.1 57.7 ± 19.8 84.6 ± 9.6 60.0 ± 14.4

Table 7: The Flan-T5 models finetuned on three different data mixtures.

LLM Issue Rule Conclusion Interpretation Rhetorical LegalBench

Small baseline 0.3 ± 0.7 30.4 ± 20.3 23.8 ± 25.0 16.9 ± 21.1 32.8 ± 21.4 20.8 ± 13.0

Small lawinstruct 0.0 ± 0.1 15.9 ± 23.9 10.7 ± 22.7 10.5 ± 19.8 18.6 ± 25.7 11.1 ± 7.1

Small flan2 28.2 ± 22.4 37.8 ± 25.3 35.1 ± 24.2 22.6 ± 23.3 40.5 ± 19.4 32.8 ± 7.3

Small flan2-lawinstruct 25.0 ± 22.0 38.1 ± 25.4 33.1 ± 24.4 20.6 ± 26.4 40.7 ± 19.5 31.5 ± 8.5

Base baseline 44.7 ± 12.4 18.0 ± 23.6 36.0 ± 23.8 15.6 ± 19.9 42.7 ± 19.8 31.4 ± 13.8

Base lawinstruct 14.6 ± 14.7 22.3 ± 26.3 30.2 ± 22.6 19.7 ± 26.0 17.8 ± 27.4 20.9 ± 5.9

Base flan2 47.2 ± 4.3 37.6 ± 25.0 28.6 ± 23.4 32.5 ± 21.9 54.4 ± 16.3 40.0 ± 10.6

Base flan2-lawinstruct 50.3 ± 2.4 38.8 ± 25.9 34.0 ± 22.4 43.0 ± 21.1 54.1 ± 13.0 44.1 ± 8.2

XL baseline 53.5 ± 6.0 32.1 ± 24.6 38.2 ± 22.4 49.8 ± 22.6 68.1 ± 20.1 48.3 ± 14.0

XL lawinstruct 54.5 ± 7.7 30.2 ± 35.1 42.9 ± 20.8 39.8 ± 30.8 63.7 ± 14.1 46.2 ± 13.1

XL flan2 65.5 ± 14.6 40.6 ± 27.7 52.0 ± 25.6 53.0 ± 21.9 74.0 ± 20.8 57.0 ± 13.0

XL flan2-lawinstruct 65.7 ± 15.2 45.1 ± 30.3 49.0 ± 23.5 56.8 ± 18.8 79.0 ± 11.4 59.1 ± 13.6

XXL baseline 36.1 ± 21.5 18.8 ± 24.6 39.4 ± 32.1 25.7 ± 24.2 47.6 ± 14.0 33.5 ± 11.4

XXL lawinstruct 54.1 ± 7.2 37.7 ± 27.2 53.2 ± 32.6 46.7 ± 25.0 73.7 ± 15.1 53.1 ± 13.3

XXL flan2 64.0 ± 12.6 44.7 ± 31.4 56.4 ± 27.7 55.5 ± 20.2 81.3 ± 9.7 60.4 ± 13.6

XXL flan2-lawinstruct 55.2 ± 23.7 46.3 ± 31.6 56.1 ± 29.1 57.7 ± 19.8 84.6 ± 9.6 60.0 ± 14.4
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Table 8: Flan-T5 models finetuned on four different licence-sampling style configurations.

LLM Issue Rule Conclusion Interpretation Rhetorical LegalBench

Small res-number 50.3 ± 1.3 38.2 ± 25.5 34.9 ± 25.6 21.3 ± 26.6 45.3 ± 22.0 38.0 ± 11.1

Small res-equal 34.9 ± 21.2 37.5 ± 25.0 33.0 ± 25.3 21.1 ± 25.1 43.8 ± 19.2 34.1 ± 8.3

Small comm-number 25.0 ± 22.0 38.1 ± 25.4 33.1 ± 24.4 20.6 ± 26.4 40.7 ± 19.5 31.5 ± 8.5

Small comm-equal 31.6 ± 25.1 37.2 ± 24.8 33.6 ± 22.8 20.2 ± 24.0 42.6 ± 21.3 33.1 ± 8.3

Base res-number 49.8 ± 3.2 38.1 ± 25.4 36.0 ± 23.8 42.8 ± 21.3 49.5 ± 12.1 43.3 ± 6.3

Base res-equal 48.9 ± 3.8 39.4 ± 26.3 38.4 ± 25.6 36.6 ± 19.8 53.4 ± 18.3 43.4 ± 7.4

Base comm-number 50.3 ± 2.4 38.8 ± 25.9 34.0 ± 22.4 43.0 ± 21.1 54.1 ± 13.0 44.1 ± 8.2

Base comm-equal 49.2 ± 2.9 38.5 ± 25.7 36.4 ± 20.3 40.5 ± 19.8 52.6 ± 13.3 43.4 ± 7.1

XL res-number 59.9 ± 10.4 44.2 ± 29.8 53.5 ± 28.0 57.1 ± 20.2 82.4 ± 11.1 59.4 ± 14.2

XL res-equal 58.2 ± 8.4 42.3 ± 28.7 46.6 ± 16.8 55.4 ± 19.3 79.0 ± 11.9 56.3 ± 14.3

XL comm-number 65.7 ± 15.2 45.1 ± 30.3 49.0 ± 23.5 56.8 ± 18.8 79.0 ± 11.4 59.1 ± 13.6

XL comm-equal 59.3 ± 10.4 40.6 ± 27.2 47.7 ± 20.7 54.1 ± 20.0 78.7 ± 11.9 56.1 ± 14.4

XXL res-number 62.9 ± 12.3 46.9 ± 31.7 57.6 ± 30.2 56.7 ± 21.5 82.3 ± 9.3 61.3 ± 13.1

XXL res-equal 54.9 ± 6.3 43.3 ± 30.1 55.5 ± 27.3 55.4 ± 19.2 70.5 ± 11.6 55.9 ± 9.6

XXL comm-number 55.2 ± 23.7 46.3 ± 31.6 56.1 ± 29.1 57.7 ± 19.8 84.6 ± 9.6 60.0 ± 14.4

XXL comm-equal 59.5 ± 13.1 45.7 ± 30.0 54.8 ± 27.6 55.4 ± 19.6 77.2 ± 12.3 58.5 ± 11.6

Table 9: Flan-T5 models finetuned on four different language-license configurations.

LLM Issue Rule Conclusion Interpretation Rhetorical LegalBench

Small all-res 46.8 ± 12.2 38.2 ± 24.2 33.8 ± 22.8 20.1 ± 22.0 36.5 ± 21.1 35.1 ± 9.7

Small en-res 50.7 ± 5.9 37.4 ± 24.9 34.0 ± 23.0 18.5 ± 22.9 37.1 ± 23.0 35.5 ± 11.5

Small all-comm 49.7 ± 2.1 38.0 ± 24.1 34.0 ± 23.0 13.2 ± 19.9 35.8 ± 21.8 34.1 ± 13.2

Small en-comm 49.1 ± 13.3 37.5 ± 25.0 34.4 ± 23.3 19.7 ± 23.2 38.2 ± 24.2 35.8 ± 10.6

Base all-res 51.7 ± 4.4 38.7 ± 26.1 33.6 ± 22.7 22.0 ± 23.6 41.8 ± 18.5 37.6 ± 10.9

Base en-res 51.8 ± 5.5 37.5 ± 25.0 37.1 ± 16.5 20.7 ± 22.7 48.0 ± 18.1 39.0 ± 12.1

Base all-comm 51.8 ± 5.2 38.0 ± 25.4 34.3 ± 22.9 23.7 ± 24.7 45.5 ± 12.6 38.7 ± 10.7

Base en-comm 52.0 ± 3.7 37.5 ± 25.0 33.2 ± 22.7 21.9 ± 21.8 46.5 ± 21.2 38.2 ± 11.7

XL all-res 49.9 ± 0.9 37.5 ± 25.0 36.9 ± 18.1 28.3 ± 22.9 52.2 ± 10.7 41.0 ± 9.9

XL en-res 49.9 ± 0.3 37.5 ± 25.0 36.6 ± 18.4 24.8 ± 25.9 50.5 ± 8.6 39.9 ± 10.7

XL all-comm 51.5 ± 2.3 37.5 ± 25.0 36.9 ± 18.1 26.8 ± 24.2 50.7 ± 9.4 40.7 ± 10.4

XL en-comm 49.9 ± 1.0 37.5 ± 25.0 38.3 ± 16.0 27.2 ± 24.3 50.3 ± 9.8 40.6 ± 9.7

XXL all-res 51.5 ± 2.8 38.2 ± 24.2 40.9 ± 18.5 45.3 ± 19.0 56.4 ± 10.4 46.5 ± 7.5

XXL en-res 53.4 ± 5.4 39.0 ± 24.8 40.1 ± 20.5 45.4 ± 20.6 59.0 ± 9.9 47.4 ± 8.7

XXL all-comm 50.6 ± 1.4 38.3 ± 24.3 45.2 ± 22.4 41.0 ± 20.2 58.9 ± 8.7 46.8 ± 8.2

XXL en-comm 52.5 ± 4.1 33.3 ± 27.0 43.9 ± 24.8 47.2 ± 17.8 59.2 ± 16.2 47.2 ± 9.7
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Table 10: Flan-T5 models finetuned on two different instruction style configurations.

LLM Issue Rule Conclusion Interpretation Rhetorical LegalBench

Small 1-english 28.3 ± 22.1 37.5 ± 25.0 35.3 ± 20.2 21.8 ± 26.5 44.8 ± 17.9 33.6 ± 8.8

Small 10-english 25.0 ± 22.0 38.1 ± 25.4 33.1 ± 24.4 20.6 ± 26.4 40.7 ± 19.5 31.5 ± 8.5

Base 1-english 51.1 ± 6.2 39.0 ± 26.0 36.2 ± 21.6 43.6 ± 21.2 57.6 ± 14.7 45.5 ± 8.8

Base 10-english 50.3 ± 2.4 38.8 ± 25.9 34.0 ± 22.4 43.0 ± 21.1 54.1 ± 13.0 44.1 ± 8.2

XL 1-english 60.6 ± 11.1 42.5 ± 28.8 52.1 ± 24.4 55.0 ± 18.7 81.3 ± 11.1 58.3 ± 14.5

XL 10-english 65.7 ± 15.2 45.1 ± 30.3 49.0 ± 23.5 56.8 ± 18.8 79.0 ± 11.4 59.1 ± 13.6

XXL 1-english 63.0 ± 13.1 43.9 ± 29.7 59.0 ± 30.5 58.1 ± 20.2 80.7 ± 9.9 60.9 ± 13.2

XXL 10-english 55.2 ± 23.7 46.3 ± 31.6 56.1 ± 29.1 57.7 ± 19.8 84.6 ± 9.6 60.0 ± 14.4

Table 11: mT5 models finetuned on three different instruction style configurations.

LLM Issue Rule Conclusion Interpretation Rhetorical LegalBench

Small 1-english 30.2 ± 20.4 39.4 ± 25.1 35.0 ± 24.3 18.3 ± 24.2 37.8 ± 24.4 32.2 ± 8.5

Small 10-english 50.8 ± 3.1 38.4 ± 25.7 33.8 ± 23.6 17.9 ± 23.9 36.0 ± 23.0 35.4 ± 11.8

Small 10-multi 46.5 ± 13.4 39.4 ± 25.1 33.4 ± 23.5 18.2 ± 24.2 36.9 ± 23.5 34.9 ± 10.5

Base 1-english 53.4 ± 5.7 37.5 ± 23.8 34.7 ± 23.7 26.3 ± 23.7 44.3 ± 20.0 39.2 ± 10.2

Base 10-english 52.4 ± 5.1 37.3 ± 23.6 38.0 ± 17.9 21.8 ± 23.0 41.5 ± 20.5 38.2 ± 11.0

Base 10-multi 51.3 ± 3.2 38.0 ± 24.1 34.4 ± 22.7 29.6 ± 21.2 41.7 ± 18.1 39.0 ± 8.2

XL 1-english 51.7 ± 3.4 38.0 ± 24.1 36.9 ± 18.1 36.3 ± 21.7 50.9 ± 8.9 42.7 ± 7.8

XL 10-english 43.6 ± 16.5 38.0 ± 24.1 36.9 ± 18.1 30.9 ± 20.0 45.6 ± 13.8 39.0 ± 5.8

XL 10-multi 51.2 ± 3.3 38.0 ± 24.1 36.9 ± 18.1 31.1 ± 25.4 54.8 ± 12.9 42.4 ± 10.1
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Figure 14: Difference to the baseline for the XL model across categories on LegalBench with dataset and task
overlap held out respectively.
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Table 12: Flan-T5 Small models with different domain adaptation strategies (amount of IFT data during continued
pretraining). 1-IFT-to-X-PRE means that for every X pretraining examples we mix in one instruction example.
ONLY-PRE means we did not mix in any instruction examples.

LLM Issue Rule Conclusion Interpretation Rhetorical LegalBench

Baseline 0.3 ± 0.7 30.4 ± 20.3 39.8 ± 20.8 28.2 ± 21.6 27.7 ± 21.9 25.3 ± 13.2

IFT 25.0 ± 22.0 38.1 ± 25.4 43.0 ± 17.1 36.1 ± 26.5 32.6 ± 24.2 34.9 ± 6.0

1-IFT-to-200-PRE+IFT 10K 50.6 ± 4.2 38.2 ± 25.6 44.3 ± 15.6 33.8 ± 23.3 33.7 ± 23.8 40.1 ± 6.5

1-IFT-to-200-PRE+IFT 20K 50.8 ± 2.2 37.9 ± 25.3 44.4 ± 15.7 35.5 ± 25.1 31.9 ± 24.0 40.1 ± 6.7

1-IFT-to-200-PRE+IFT 30K 42.2 ± 16.2 37.3 ± 24.9 39.8 ± 19.4 34.3 ± 23.7 32.4 ± 23.5 37.2 ± 3.6

1-IFT-to-200-PRE+IFT 40K 45.8 ± 10.8 37.7 ± 25.2 39.7 ± 20.8 35.1 ± 24.4 33.4 ± 24.0 38.3 ± 4.3

1-IFT-to-200-PRE+IFT 50K 47.0 ± 8.8 37.4 ± 24.9 38.9 ± 20.7 35.6 ± 24.6 34.1 ± 21.0 38.6 ± 4.5

1-IFT-to-200-PRE+IFT 60K 50.0 ± 0.4 37.1 ± 24.7 39.3 ± 18.7 34.7 ± 23.3 33.8 ± 21.7 39.0 ± 5.8

1-IFT-to-200-PRE+IFT 70K 41.4 ± 16.9 38.4 ± 25.6 38.8 ± 21.1 34.0 ± 22.7 33.8 ± 22.9 37.3 ± 2.9

1-IFT-to-200-PRE+IFT 80K 51.8 ± 3.8 38.2 ± 25.5 38.5 ± 20.9 36.2 ± 22.6 33.4 ± 21.5 39.6 ± 6.4

1-IFT-to-200-PRE+IFT 90K 42.4 ± 16.7 37.9 ± 25.3 39.7 ± 20.3 35.8 ± 23.5 34.1 ± 22.2 38.0 ± 2.9

1-IFT-to-1000-PRE+IFT 10K 42.3 ± 16.1 38.1 ± 25.4 43.9 ± 15.0 33.6 ± 23.8 32.7 ± 24.5 38.1 ± 4.5

1-IFT-to-1000-PRE+IFT 20K 41.7 ± 20.5 37.0 ± 24.7 42.9 ± 16.6 33.1 ± 23.4 33.0 ± 24.6 37.5 ± 4.2

1-IFT-to-1000-PRE+IFT 30K 49.9 ± 0.4 37.8 ± 25.3 40.3 ± 17.7 34.3 ± 24.2 32.4 ± 23.5 38.9 ± 6.1

1-IFT-to-1000-PRE+IFT 40K 51.4 ± 2.7 37.8 ± 25.2 38.9 ± 20.6 34.7 ± 24.4 33.0 ± 22.5 39.2 ± 6.5

1-IFT-to-1000-PRE+IFT 50K 51.6 ± 2.7 37.7 ± 25.2 39.8 ± 18.4 33.7 ± 23.3 33.8 ± 22.4 39.3 ± 6.6

1-IFT-to-1000-PRE+IFT 60K 50.0 ± 0.6 37.5 ± 25.0 40.5 ± 20.2 34.4 ± 23.5 33.2 ± 22.4 39.1 ± 6.0

1-IFT-to-1000-PRE+IFT 70K 50.3 ± 1.4 37.3 ± 24.9 43.1 ± 17.1 34.6 ± 24.6 33.1 ± 22.4 39.7 ± 6.3

1-IFT-to-1000-PRE+IFT 80K 50.6 ± 1.5 37.7 ± 25.2 43.0 ± 17.4 34.0 ± 23.1 32.9 ± 23.0 39.6 ± 6.5

1-IFT-to-1000-PRE+IFT 90K 51.6 ± 2.6 37.0 ± 24.7 40.2 ± 19.2 34.4 ± 24.8 32.9 ± 21.4 39.2 ± 6.7

1-IFT-to-10000-PRE+IFT 10K 46.0 ± 12.1 38.0 ± 25.4 44.4 ± 15.5 33.5 ± 23.3 33.8 ± 24.3 39.1 ± 5.2

1-IFT-to-10000-PRE+IFT 20K 50.5 ± 1.4 37.9 ± 25.3 44.3 ± 15.4 34.9 ± 25.2 32.1 ± 24.0 39.9 ± 6.7

1-IFT-to-10000-PRE+IFT 30K 51.3 ± 4.0 38.2 ± 25.5 40.5 ± 18.1 33.6 ± 23.3 34.7 ± 26.5 39.7 ± 6.3

1-IFT-to-10000-PRE+IFT 40K 52.3 ± 4.4 38.9 ± 26.1 38.8 ± 19.8 33.2 ± 23.0 33.6 ± 25.3 39.4 ± 6.9

1-IFT-to-10000-PRE+IFT 50K 47.3 ± 12.3 37.6 ± 25.1 41.5 ± 17.2 35.1 ± 24.4 32.8 ± 22.2 38.8 ± 5.1

1-IFT-to-10000-PRE+IFT 60K 49.4 ± 2.7 38.1 ± 25.5 39.0 ± 20.6 35.3 ± 24.3 32.2 ± 23.2 38.8 ± 5.8

1-IFT-to-10000-PRE+IFT 70K 49.2 ± 13.9 37.7 ± 25.2 42.1 ± 16.2 33.2 ± 23.1 33.8 ± 24.3 39.2 ± 5.9

1-IFT-to-10000-PRE+IFT 80K 51.4 ± 7.0 37.5 ± 25.0 42.5 ± 16.0 33.5 ± 22.4 32.7 ± 22.4 39.5 ± 6.9

1-IFT-to-10000-PRE+IFT 90K 44.1 ± 20.2 37.5 ± 25.0 43.0 ± 16.4 33.6 ± 22.3 33.0 ± 21.9 38.2 ± 4.6

ONLY-PRE+IFT 10K 51.1 ± 3.1 37.9 ± 25.3 44.9 ± 16.9 33.8 ± 23.6 34.6 ± 24.7 40.5 ± 6.6

ONLY-PRE+IFT 20K 51.4 ± 4.4 38.1 ± 25.5 43.9 ± 14.0 34.1 ± 25.1 33.2 ± 25.3 40.2 ± 6.8

ONLY-PRE+IFT 30K 43.0 ± 17.8 37.9 ± 25.4 42.2 ± 16.2 35.1 ± 25.6 32.4 ± 23.6 38.1 ± 4.1

ONLY-PRE+IFT 40K 47.1 ± 12.5 38.4 ± 25.6 42.5 ± 16.6 34.9 ± 25.0 32.9 ± 24.5 39.2 ± 5.1

ONLY-PRE+IFT 50K 42.0 ± 19.2 37.8 ± 25.2 42.3 ± 17.4 34.8 ± 25.1 32.4 ± 23.3 37.8 ± 3.9

ONLY-PRE+IFT 60K 50.6 ± 2.1 37.9 ± 25.3 43.0 ± 16.0 35.6 ± 25.0 32.6 ± 22.9 39.9 ± 6.3

ONLY-PRE+IFT 70K 48.6 ± 7.0 38.1 ± 25.4 42.6 ± 17.0 34.8 ± 24.3 32.6 ± 24.0 39.4 ± 5.7

ONLY-PRE+IFT 80K 51.2 ± 3.4 37.5 ± 25.0 43.7 ± 17.2 33.2 ± 23.1 34.0 ± 25.7 39.9 ± 6.7

ONLY-PRE+IFT 90K 51.5 ± 3.7 37.5 ± 25.0 40.7 ± 17.5 34.7 ± 21.8 33.7 ± 24.4 39.6 ± 6.4
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Table 13: Flan-T5 Base models with different domain adaptation strategies (amount of IFT data during continued
pretraining). 1-IFT-to-X-PRE means that for every X pretraining examples we mix in one instruction example.
ONLY-PRE means we did not mix in any instruction examples.

LLM Issue Rule Conclusion Interpretation Rhetorical LegalBench

Baseline 44.7 ± 12.4 18.0 ± 23.6 20.9 ± 24.8 28.9 ± 21.2 37.0 ± 21.3 29.9 ± 9.9

IFT 50.3 ± 2.4 38.8 ± 25.9 40.5 ± 15.7 49.5 ± 19.1 45.2 ± 22.0 44.9 ± 4.6

1-IFT-to-200-PRE+IFT 10K 50.5 ± 3.2 37.3 ± 24.9 40.7 ± 16.6 47.7 ± 17.7 49.7 ± 20.8 45.2 ± 5.2

1-IFT-to-200-PRE+IFT 20K 50.4 ± 2.2 37.8 ± 25.2 40.9 ± 14.2 48.4 ± 15.9 46.2 ± 24.7 44.7 ± 4.7

1-IFT-to-200-PRE+IFT 30K 49.9 ± 2.6 37.7 ± 25.2 41.2 ± 14.1 45.3 ± 16.1 48.4 ± 20.0 44.5 ± 4.5

1-IFT-to-200-PRE+IFT 40K 49.4 ± 4.3 37.8 ± 25.2 40.4 ± 15.5 47.8 ± 17.2 49.0 ± 20.9 44.9 ± 4.8

1-IFT-to-200-PRE+IFT 50K 51.2 ± 3.9 37.7 ± 25.2 41.2 ± 12.7 45.0 ± 16.0 49.1 ± 20.1 44.8 ± 4.9

1-IFT-to-200-PRE+IFT 60K 50.1 ± 0.9 37.6 ± 25.1 45.1 ± 13.0 44.2 ± 16.0 45.2 ± 18.9 44.4 ± 4.0

1-IFT-to-200-PRE+IFT 70K 51.1 ± 2.7 37.6 ± 25.0 43.4 ± 13.6 45.1 ± 15.4 46.5 ± 21.0 44.7 ± 4.4

1-IFT-to-200-PRE+IFT 80K 50.4 ± 2.3 37.7 ± 25.2 42.2 ± 15.9 45.2 ± 15.7 44.8 ± 22.7 44.1 ± 4.1

1-IFT-to-200-PRE+IFT 90K 51.4 ± 3.6 37.7 ± 25.2 41.6 ± 14.5 42.9 ± 19.0 43.2 ± 21.6 43.4 ± 4.5

1-IFT-to-1000-PRE+IFT 10K 46.8 ± 4.8 38.5 ± 25.7 43.9 ± 13.7 47.6 ± 16.6 45.9 ± 18.0 44.5 ± 3.2

1-IFT-to-1000-PRE+IFT 20K 50.1 ± 2.0 37.8 ± 25.2 43.2 ± 15.0 46.7 ± 15.9 48.2 ± 24.9 45.2 ± 4.3

1-IFT-to-1000-PRE+IFT 30K 50.8 ± 3.3 38.9 ± 26.0 42.3 ± 15.9 49.9 ± 17.6 50.4 ± 21.4 46.5 ± 4.9

1-IFT-to-1000-PRE+IFT 40K 50.1 ± 0.7 38.4 ± 25.7 45.1 ± 12.0 46.6 ± 16.2 48.0 ± 21.4 45.7 ± 4.0

1-IFT-to-1000-PRE+IFT 50K 51.1 ± 3.0 37.7 ± 25.1 41.9 ± 13.8 48.0 ± 19.3 50.1 ± 20.5 45.8 ± 5.1

1-IFT-to-1000-PRE+IFT 60K 49.9 ± 2.3 37.7 ± 25.1 44.2 ± 15.7 46.1 ± 18.3 49.7 ± 22.1 45.5 ± 4.5

1-IFT-to-1000-PRE+IFT 70K 50.5 ± 1.5 38.5 ± 25.7 44.9 ± 16.8 47.9 ± 15.9 49.8 ± 19.2 46.3 ± 4.4

1-IFT-to-1000-PRE+IFT 80K 50.6 ± 2.5 37.9 ± 25.2 42.4 ± 16.6 48.8 ± 19.2 48.7 ± 22.8 45.7 ± 4.8

1-IFT-to-1000-PRE+IFT 90K 50.8 ± 4.2 37.8 ± 25.2 43.4 ± 15.7 45.9 ± 16.9 47.8 ± 22.0 45.1 ± 4.4

1-IFT-to-10000-PRE+IFT 10K 48.8 ± 4.1 38.1 ± 25.4 43.6 ± 13.4 47.4 ± 16.4 47.7 ± 19.6 45.1 ± 3.9

1-IFT-to-10000-PRE+IFT 20K 50.0 ± 2.9 37.7 ± 25.1 41.5 ± 13.6 47.2 ± 18.4 52.0 ± 20.8 45.7 ± 5.3

1-IFT-to-10000-PRE+IFT 30K 50.5 ± 4.6 38.4 ± 25.6 44.3 ± 14.6 48.4 ± 17.3 51.5 ± 20.7 46.6 ± 4.8

1-IFT-to-10000-PRE+IFT 40K 50.2 ± 2.9 37.7 ± 25.1 42.4 ± 16.4 45.6 ± 16.8 49.2 ± 20.7 45.0 ± 4.6

1-IFT-to-10000-PRE+IFT 50K 50.3 ± 2.0 37.4 ± 24.9 41.8 ± 16.2 45.8 ± 17.7 49.3 ± 21.7 44.9 ± 4.8

1-IFT-to-10000-PRE+IFT 60K 49.6 ± 4.5 37.6 ± 25.1 43.7 ± 17.3 43.1 ± 19.3 48.4 ± 22.0 44.5 ± 4.3

1-IFT-to-10000-PRE+IFT 70K 49.6 ± 2.9 37.7 ± 25.1 46.4 ± 16.0 46.9 ± 18.7 50.5 ± 22.2 46.2 ± 4.5

1-IFT-to-10000-PRE+IFT 80K 49.7 ± 3.0 37.7 ± 25.2 45.1 ± 12.2 41.1 ± 18.4 47.7 ± 23.7 44.2 ± 4.3

1-IFT-to-10000-PRE+IFT 90K 50.0 ± 1.8 37.2 ± 24.8 40.6 ± 14.5 41.8 ± 20.0 45.3 ± 22.3 43.0 ± 4.4

ONLY-PRE+IFT 10K 50.7 ± 2.7 37.2 ± 24.8 42.0 ± 16.3 48.0 ± 18.6 47.6 ± 20.8 45.1 ± 4.9

ONLY-PRE+IFT 20K 50.1 ± 2.6 38.2 ± 25.5 41.1 ± 13.7 45.0 ± 19.7 46.7 ± 25.7 44.2 ± 4.2

ONLY-PRE+IFT 30K 50.7 ± 3.6 38.0 ± 25.3 43.3 ± 15.3 44.6 ± 19.0 48.3 ± 21.6 45.0 ± 4.4

ONLY-PRE+IFT 40K 50.4 ± 3.8 38.4 ± 25.6 41.9 ± 14.5 47.4 ± 17.4 46.8 ± 21.4 45.0 ± 4.3

ONLY-PRE+IFT 50K 50.6 ± 2.5 37.5 ± 25.0 41.1 ± 12.8 44.5 ± 18.6 48.2 ± 21.6 44.4 ± 4.7

ONLY-PRE+IFT 60K 49.6 ± 3.4 37.6 ± 25.1 40.4 ± 15.5 47.2 ± 16.7 46.3 ± 21.0 44.2 ± 4.5

ONLY-PRE+IFT 70K 50.6 ± 1.9 38.4 ± 25.6 41.7 ± 13.2 46.1 ± 18.7 45.5 ± 21.9 44.4 ± 4.2

ONLY-PRE+IFT 80K 51.0 ± 3.1 39.2 ± 26.3 42.2 ± 15.7 46.8 ± 18.0 45.3 ± 21.9 44.9 ± 4.0

ONLY-PRE+IFT 90K 50.5 ± 3.8 37.4 ± 25.0 44.3 ± 14.7 43.2 ± 18.1 44.4 ± 22.5 44.0 ± 4.1
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Table 14: Flan-T5 XL models with different domain adaptation strategies (amount of IFT data during continued
pretraining). 1-IFT-to-X-PRE means that for every X pretraining examples we mix in one instruction example.
ONLY-PRE means we did not mix in any instruction examples.

LLM Issue Rule Conclusion Interpretation Rhetorical LegalBench

Baseline 53.5 ± 6.0 32.1 ± 24.6 46.8 ± 15.6 58.7 ± 21.3 59.6 ± 25.6 50.1 ± 10.1

IFT 65.7 ± 15.2 45.1 ± 30.3 49.5 ± 14.2 61.7 ± 17.1 68.6 ± 24.1 58.1 ± 9.2

1-IFT-to-200-PRE+IFT 10K 56.7 ± 6.9 41.8 ± 28.1 55.2 ± 16.9 62.1 ± 18.6 66.8 ± 23.7 56.5 ± 8.4

1-IFT-to-200-PRE+IFT 20K 63.4 ± 13.8 44.2 ± 29.8 52.5 ± 17.4 58.7 ± 16.8 67.0 ± 23.2 57.2 ± 8.1

1-IFT-to-200-PRE+IFT 30K 58.7 ± 10.3 43.6 ± 29.3 56.3 ± 18.2 60.2 ± 18.4 67.9 ± 24.5 57.3 ± 7.9

1-IFT-to-200-PRE+IFT 40K 58.4 ± 9.7 42.3 ± 28.2 54.3 ± 15.2 61.2 ± 18.8 67.5 ± 23.6 56.7 ± 8.4

1-IFT-to-200-PRE+IFT 50K 61.4 ± 13.3 42.2 ± 28.3 51.8 ± 16.3 59.4 ± 17.9 67.3 ± 23.6 56.4 ± 8.7

1-IFT-to-200-PRE+IFT 60K 57.5 ± 8.7 43.6 ± 29.2 53.5 ± 15.8 60.3 ± 17.5 68.2 ± 23.5 56.6 ± 8.1

1-IFT-to-200-PRE+IFT 70K 58.3 ± 10.2 43.1 ± 28.8 54.3 ± 17.9 58.8 ± 18.2 67.6 ± 22.6 56.4 ± 8.0

1-IFT-to-200-PRE+IFT 80K 58.9 ± 11.0 44.9 ± 30.0 51.1 ± 13.2 59.8 ± 17.3 68.5 ± 23.3 56.6 ± 8.1

1-IFT-to-200-PRE+IFT 90K 55.2 ± 6.9 44.4 ± 30.1 51.7 ± 15.6 57.9 ± 17.0 67.7 ± 24.3 55.4 ± 7.6

1-IFT-to-1000-PRE+IFT 10K 61.3 ± 11.8 41.8 ± 28.0 53.4 ± 16.1 60.9 ± 18.8 67.0 ± 23.1 56.9 ± 8.7

1-IFT-to-1000-PRE+IFT 20K 63.3 ± 13.7 44.3 ± 29.6 52.2 ± 17.4 60.7 ± 17.5 67.3 ± 24.6 57.6 ± 8.3

1-IFT-to-1000-PRE+IFT 30K 58.3 ± 9.8 43.4 ± 29.2 54.4 ± 17.1 61.3 ± 20.4 70.2 ± 25.4 57.5 ± 8.8

1-IFT-to-1000-PRE+IFT 40K 62.5 ± 13.2 45.6 ± 30.6 51.3 ± 17.5 60.1 ± 18.9 68.0 ± 25.6 57.5 ± 8.0

1-IFT-to-1000-PRE+IFT 50K 56.8 ± 7.5 44.7 ± 30.2 51.5 ± 14.5 58.9 ± 16.9 69.7 ± 24.9 56.3 ± 8.3

1-IFT-to-1000-PRE+IFT 60K 54.4 ± 5.3 42.2 ± 28.2 52.7 ± 16.3 59.9 ± 17.8 67.1 ± 23.5 55.2 ± 8.2

1-IFT-to-1000-PRE+IFT 70K 59.7 ± 10.8 44.1 ± 29.5 54.5 ± 17.3 59.4 ± 17.6 67.4 ± 23.4 57.0 ± 7.7

1-IFT-to-1000-PRE+IFT 80K 59.8 ± 11.2 41.6 ± 27.9 52.8 ± 17.2 63.5 ± 19.8 67.3 ± 24.5 57.0 ± 9.0

1-IFT-to-1000-PRE+IFT 90K 60.3 ± 10.6 44.3 ± 29.7 50.5 ± 15.4 57.3 ± 15.9 67.3 ± 23.1 55.9 ± 8.0

1-IFT-to-10000-PRE+IFT 10K 60.0 ± 10.2 42.3 ± 28.4 52.7 ± 16.0 61.6 ± 18.3 68.0 ± 22.8 56.9 ± 8.8

1-IFT-to-10000-PRE+IFT 20K 59.5 ± 11.0 42.6 ± 28.5 52.5 ± 15.7 61.6 ± 18.0 68.1 ± 25.0 56.9 ± 8.7

1-IFT-to-10000-PRE+IFT 30K 62.2 ± 12.2 42.3 ± 28.5 53.6 ± 16.7 62.5 ± 20.1 69.2 ± 25.2 57.9 ± 9.3

1-IFT-to-10000-PRE+IFT 40K 59.7 ± 10.1 43.6 ± 29.2 53.1 ± 15.9 62.6 ± 18.9 67.6 ± 23.1 57.3 ± 8.3

1-IFT-to-10000-PRE+IFT 50K 58.8 ± 8.9 42.9 ± 29.1 52.5 ± 16.9 61.1 ± 17.9 64.6 ± 25.0 56.0 ± 7.6

1-IFT-to-10000-PRE+IFT 60K 55.3 ± 5.6 42.1 ± 28.3 52.1 ± 16.6 59.1 ± 19.0 66.4 ± 23.1 55.0 ± 8.0

1-IFT-to-10000-PRE+IFT 70K 60.3 ± 10.0 43.6 ± 29.5 51.8 ± 16.8 61.2 ± 18.5 69.0 ± 24.7 57.2 ± 8.7

1-IFT-to-10000-PRE+IFT 80K 64.7 ± 13.9 44.4 ± 29.9 50.8 ± 16.9 58.4 ± 17.1 70.4 ± 25.8 57.8 ± 9.3

1-IFT-to-10000-PRE+IFT 90K 63.3 ± 13.3 44.8 ± 30.2 51.9 ± 16.3 58.7 ± 16.6 68.2 ± 25.1 57.4 ± 8.3

ONLY-PRE+IFT 10K 62.8 ± 13.6 44.3 ± 29.8 52.0 ± 16.7 58.9 ± 16.2 68.2 ± 23.9 57.2 ± 8.3

ONLY-PRE+IFT 20K 64.0 ± 13.9 42.6 ± 28.7 52.8 ± 15.6 62.0 ± 18.0 68.7 ± 25.0 58.0 ± 9.3

ONLY-PRE+IFT 30K 52.9 ± 15.5 42.0 ± 28.3 51.5 ± 16.0 62.0 ± 18.7 67.3 ± 24.9 55.1 ± 8.8

ONLY-PRE+IFT 40K 60.4 ± 12.2 43.1 ± 29.1 52.4 ± 16.9 60.6 ± 17.5 68.9 ± 23.4 57.1 ± 8.7

ONLY-PRE+IFT 50K 57.4 ± 8.5 42.6 ± 28.8 51.6 ± 15.3 61.2 ± 18.1 70.0 ± 23.8 56.5 ± 9.2

ONLY-PRE+IFT 60K 56.7 ± 7.6 42.5 ± 28.4 52.0 ± 16.3 61.2 ± 17.9 68.8 ± 23.8 56.2 ± 8.8

ONLY-PRE+IFT 70K 57.2 ± 8.5 42.1 ± 28.4 51.5 ± 17.0 60.8 ± 18.1 70.2 ± 24.8 56.3 ± 9.4

ONLY-PRE+IFT 80K 60.3 ± 11.1 42.4 ± 28.4 54.6 ± 16.4 65.1 ± 20.9 69.2 ± 24.8 58.3 ± 9.3

ONLY-PRE+IFT 90K 60.3 ± 12.0 44.4 ± 29.8 52.3 ± 17.1 59.8 ± 17.8 67.8 ± 24.4 56.9 ± 7.9
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Table 15: Flan-T5 XXL models with different domain adaptation strategies (amount of IFT data during continued
pretraining). 1-IFT-to-X-PRE means that for every X pretraining examples we mix in one instruction example.
ONLY-PRE means we did not mix in any instruction examples.

LLM Issue Rule Conclusion Interpretation Rhetorical LegalBench

Baseline 36.1 ± 21.5 18.8 ± 24.6 25.2 ± 26.0 35.1 ± 22.2 41.1 ± 18.4 31.3 ± 8.1

IFT 55.2 ± 23.7 46.3 ± 31.6 56.2 ± 18.3 66.3 ± 19.7 73.8 ± 24.4 59.6 ± 9.5

1-IFT-to-200-PRE+IFT 10K 53.4 ± 16.2 47.9 ± 32.1 58.1 ± 19.5 63.8 ± 17.6 74.2 ± 27.1 59.5 ± 9.0

1-IFT-to-200-PRE+IFT 20K 53.6 ± 3.7 48.9 ± 32.9 58.8 ± 18.7 65.3 ± 17.5 72.0 ± 25.5 59.7 ± 8.2

1-IFT-to-200-PRE+IFT 30K 56.5 ± 18.3 48.9 ± 31.5 60.5 ± 19.9 65.2 ± 18.3 69.5 ± 24.2 60.1 ± 7.1

1-IFT-to-200-PRE+IFT 40K 58.3 ± 20.2 47.3 ± 30.8 57.9 ± 19.1 65.6 ± 18.2 71.3 ± 24.1 60.1 ± 8.1

1-IFT-to-200-PRE+IFT 50K 60.3 ± 12.6 48.4 ± 31.4 63.2 ± 20.2 67.9 ± 18.9 71.4 ± 26.1 62.2 ± 7.9

1-IFT-to-200-PRE+IFT 60K 58.6 ± 20.5 48.5 ± 31.5 60.9 ± 20.7 67.5 ± 19.9 71.0 ± 24.7 61.3 ± 7.8

1-IFT-to-200-PRE+IFT 70K 58.6 ± 10.5 48.5 ± 31.4 60.6 ± 20.4 65.3 ± 18.4 69.3 ± 23.4 60.5 ± 7.0

1-IFT-to-200-PRE+IFT 80K 53.7 ± 16.4 47.8 ± 30.8 58.8 ± 18.2 63.7 ± 17.7 71.3 ± 25.7 59.1 ± 8.1

1-IFT-to-200-PRE+IFT 90K 52.0 ± 14.5 48.8 ± 31.7 59.4 ± 19.6 64.4 ± 17.9 72.3 ± 25.1 59.4 ± 8.5

1-IFT-to-1000-PRE+IFT 10K 41.1 ± 24.2 45.9 ± 30.3 58.2 ± 18.4 65.5 ± 20.2 68.8 ± 25.2 55.9 ± 10.8

1-IFT-to-1000-PRE+IFT 20K 47.7 ± 24.8 48.0 ± 31.1 60.3 ± 20.3 67.2 ± 19.7 70.3 ± 23.8 58.7 ± 9.4

1-IFT-to-1000-PRE+IFT 30K 40.3 ± 28.4 45.5 ± 29.6 62.3 ± 21.1 67.8 ± 21.1 69.3 ± 22.6 57.0 ± 11.9

1-IFT-to-1000-PRE+IFT 40K 44.2 ± 27.4 46.7 ± 29.9 61.9 ± 21.9 68.6 ± 20.7 71.2 ± 24.9 58.5 ± 11.1

1-IFT-to-1000-PRE+IFT 50K 49.7 ± 25.2 49.1 ± 33.1 55.5 ± 19.2 68.2 ± 19.8 71.4 ± 24.3 58.8 ± 9.3

1-IFT-to-1000-PRE+IFT 60K 44.9 ± 22.0 47.6 ± 30.7 57.9 ± 19.4 69.7 ± 21.1 72.1 ± 26.0 58.5 ± 11.1

1-IFT-to-1000-PRE+IFT 70K 40.6 ± 25.0 48.1 ± 31.2 60.5 ± 20.0 68.2 ± 20.5 72.5 ± 24.4 58.0 ± 12.0

1-IFT-to-1000-PRE+IFT 80K 53.8 ± 23.7 47.9 ± 32.4 53.5 ± 17.5 67.1 ± 19.3 71.8 ± 25.9 58.8 ± 9.1

1-IFT-to-1000-PRE+IFT 90K 47.6 ± 23.5 47.1 ± 30.5 60.1 ± 18.9 65.1 ± 24.3 70.3 ± 23.5 58.0 ± 9.3

1-IFT-to-10000-PRE+IFT 10K 49.8 ± 13.6 46.6 ± 30.0 59.0 ± 16.6 64.6 ± 19.3 72.6 ± 24.7 58.5 ± 9.5

1-IFT-to-10000-PRE+IFT 20K 45.2 ± 27.4 46.3 ± 31.2 58.8 ± 20.1 68.1 ± 19.0 71.7 ± 24.1 58.0 ± 10.9

1-IFT-to-10000-PRE+IFT 30K 46.8 ± 24.6 46.0 ± 29.6 62.6 ± 18.4 66.1 ± 18.1 72.1 ± 25.3 58.7 ± 10.5

1-IFT-to-10000-PRE+IFT 40K 56.8 ± 24.5 46.9 ± 30.4 59.1 ± 19.3 68.3 ± 21.1 72.2 ± 26.2 60.7 ± 8.9

1-IFT-to-10000-PRE+IFT 50K 54.5 ± 28.7 43.1 ± 28.1 62.2 ± 19.8 64.2 ± 19.1 70.2 ± 24.3 58.8 ± 9.3

1-IFT-to-10000-PRE+IFT 60K 52.0 ± 16.0 42.0 ± 28.7 60.3 ± 17.4 65.7 ± 19.6 71.3 ± 24.7 58.2 ± 10.3

1-IFT-to-10000-PRE+IFT 70K 52.2 ± 14.7 47.4 ± 30.8 59.2 ± 18.3 66.6 ± 18.5 70.0 ± 24.1 59.1 ± 8.5

1-IFT-to-10000-PRE+IFT 80K 56.5 ± 18.5 44.9 ± 28.9 59.7 ± 17.2 65.3 ± 17.7 72.3 ± 25.6 59.7 ± 9.1

1-IFT-to-10000-PRE+IFT 90K 45.0 ± 17.4 41.5 ± 27.3 56.3 ± 16.3 66.3 ± 18.5 72.1 ± 25.7 56.2 ± 11.8

ONLY-PRE+IFT 10K 49.2 ± 24.4 47.1 ± 30.4 62.0 ± 20.3 66.9 ± 20.4 71.7 ± 25.1 59.4 ± 9.7

ONLY-PRE+IFT 20K 35.6 ± 24.0 46.2 ± 30.0 56.3 ± 17.9 62.3 ± 18.4 68.6 ± 24.2 53.8 ± 11.7

ONLY-PRE+IFT 30K 46.3 ± 28.4 45.7 ± 29.3 56.1 ± 18.5 67.7 ± 19.9 72.1 ± 25.6 57.6 ± 10.8

ONLY-PRE+IFT 40K 48.8 ± 30.3 45.7 ± 29.5 56.6 ± 18.0 68.1 ± 20.0 71.6 ± 26.3 58.1 ± 10.2

ONLY-PRE+IFT 50K 47.5 ± 24.9 47.1 ± 30.2 53.5 ± 16.2 67.1 ± 19.5 71.8 ± 25.4 57.4 ± 10.2

ONLY-PRE+IFT 60K 33.2 ± 23.3 47.8 ± 30.7 55.0 ± 17.9 63.1 ± 19.7 69.3 ± 25.0 53.7 ± 12.6

ONLY-PRE+IFT 70K 42.7 ± 25.9 47.2 ± 30.5 55.9 ± 19.4 60.7 ± 17.5 68.0 ± 23.8 54.9 ± 9.1

ONLY-PRE+IFT 80K 43.7 ± 25.8 46.3 ± 29.9 55.8 ± 17.1 64.8 ± 18.7 71.8 ± 25.9 56.5 ± 10.7

ONLY-PRE+IFT 90K 55.3 ± 16.9 45.2 ± 28.9 60.0 ± 17.0 64.9 ± 20.0 69.0 ± 24.3 58.9 ± 8.2
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