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Abstract

Causal reasoning and discovery, two fundamen-
tal tasks of causal analysis, often face challenges
in applications due to the complexity, noisiness,
and high-dimensionality of real-world data. De-
spite recent progress in identifying latent causal
structures using causal representation learning
(CRL), what makes learned representations use-
ful for causal downstream tasks and how to eval-
uate them are still not well understood. In this
paper, we reinterpret CRL using a measurement
model framework, where the learned representa-
tions are viewed as proxy measurements of the
latent causal variables. Our approach clarifies
the conditions under which learned representa-
tions support downstream causal reasoning and
provides a principled basis for quantitatively
assessing the quality of representations using
a new Test-based Measurement EXclusivity (T-
MEX) score. We validate T-MEX across diverse
causal inference scenarios, including numerical
simulations and real-world ecological video anal-
ysis, demonstrating that the proposed framework
and corresponding score effectively assess the
identification of learned representations and their
usefulness for causal downstream tasks.

1. Introduction
Causal analysis rests on two foundational pillars: causal
reasoning and causal discovery. Causal reasoning operates
under the assumption that the causal structure is known or
can be assumed, and leverages data to make quantitative
causal statements, for example, about the average effect
of one variable on another. As causal structures are often
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unknown, causal discovery aims to uncover this structure,
assuming that the causal variables of interest are readily
observed. In many real-world settings, however, the causal
variables may not be directly observable. While originally
formulated mostly to enable causal capabilities in machine
learning models, Causal Representation Learning (CRL,
Schölkopf et al., 2021) has the potential to serve as a third
pillar of causal analysis: enabling applications of causality
involving unstructured data. For this, we reinterpret causal
representation learning using the formalism of “measure-
ment models” (Silva et al., 2006), wherein the learned rep-
resentations serve as proxy measurements for latent causal
variables. This perspective of CRL allows us to better
characterize when a representation supports downstream
causal reasoning, and it also provides a principled basis for
quantitatively evaluating the quality of identification.

Methodologically, CRL tackles a more challenging task
compared to independent component analysis (ICA) and
disentanglement, where the latent variables are assumed
to be independent of each other (Hyvärinen and Pajunen,
1999; Hyvarinen et al., 2019; Higgins et al., 2017; Lo-
catello et al., 2019). Instead, CRL aims to unmix a set
of causally related latent variables. Many recent causal
representation learning works have provided different the-
oretical results for causal variable identification compiling
various problem settings (von Kügelgen et al., 2021; 2024;
Zhang et al., 2024b; Ahuja et al., 2024; 2022; Varici et al.,
2024; Zhang et al., 2024a; Yao et al., 2024b; Kong et al.,
2022; Lippe et al., 2022b; Xie et al., 2024; Dong et al.,
2024; Lachapelle et al., 2022; 2023; Yao et al., 2022; Zhang
et al., 2024a; Squires et al., 2023; Buchholz et al., 2024;
Kong et al., 2023), recently unified by (Yao et al., 2025)
into a single general methodology. Although most of the
results have been theoretical in nature, machine learning
models explicitly empowered with identified causal struc-
ture have been shown to be more robust under distributional
shifts and provide better out-of-distribution generaliza-
tion (Fumero et al., 2024; Ahuja et al., 2021; Bareinboim
and Pearl, 2016; Zhang et al., 2020; Rojas-Carulla et al.,
2018). From an AI for science perspective, CRL has shown
its potential in understanding climate physics from raw
measurement data (Yao et al., 2024a), answering causal
questions in the scope of ecology experiments (Cadei et al.,
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Figure 1: (Left) A measurement model where X is a fully
mixed measurement of the causal variables. X is often
termed the observables in CRL literature, representing the
observed data. (Right) Two measurement models specified
by different CRL identification algorithms: (a) Algorithm
1 guarantees one-to-one correspondence between the
learned representation and causal variables; (b) Algorithm
2 guarantees that ẐA1

corresponds to Z1 while ẐA2

represents a mixing of Z2 and Z3.

2024; 2025; Yao et al., 2025), psychometric studies (Dong
et al., 2024), and countless more applications related to
biomedicine (Zhang et al., 2024a; Sun et al., 2025; Ravuri
et al., 2025; Jain et al., 2024).

Despite recent progress in identifying latent causal struc-
tures within causal representation learning, it remains un-
clear what makes learned representations useful for down-
stream causal tasks and how to best evaluate them. Build-
ing on the proposed measurement model framework, we
introduce a new evaluation metric, the Test-based Mea-
surement EXclusivity (T-MEX) Score, which effectively
quantifies how well the learned representation aligns with
the underlying measurement model. This underlying mea-
surement model can be specified by, for instance, identi-
fiability theory of a CRL algorithm (Fig. 1), assumptions
for a particular causal reasoning task (Figs. 4 and 5), or
ground truth knowledge. In contrast to commonly used
CRL evaluation metrics, which suffer from clear limita-
tions (App. D), we demonstrate that T-MEX reliably as-
sesses both the identifiability (Defn. B.1) and causal valid-
ity (Defn. 2.2) of learned representations, as shown in a
wide range of causal reasoning tasks across numerical sim-
ulations and real-world ecological video analysis (§ 4). We
summarize the main contributions of this paper as follows:

• We reinterpret CRL using a measurement model frame-
work, wherein the learned representations serve as proxy
measurements for latent causal variables (§ 2). This
formalism provides a clearer characterization of both the
identification quality of learned representation and its
usefulness for causal downstream tasks.

• We propose a new evaluation metric (T-MEX) that
quantifies the alignment of the representations and the
underlying measurement model (§ 3), and we demon-
strate its advantages over widely used CRL evaluation

metrics that suffer from notable limitations (App. D).
• Supported by theoretical analysis, our empirical eval-

uations confirm that T-MEX maintains validity and
effectiveness across diverse causal reasoning scenarios,
including treatment effect estimation and covariate
adjustment in both numerical simulations and real-world
ecological experiments (§ 4).

2. CRL from A Measurement Perspective
Notation. Please see App. A for a list of notations.

2.1. The Measurement Model Framework

We formulate causal representation learning using a mea-
surement model framework inspired by the formalism
of (Silva et al., 2006).

Definition 2.1 (Measurement model). Let V = (Z, Ẑ) be a
collection of variables that can be partitioned into two sets:
a set of latent causal variables Z = {Z1, · · · ,ZN} with
Zi taking values in R for all i ∈ [N ], and a set of observed
measurement variables Ẑ = {ẐA1

, · · · , ẐAM
} where for

all j ∈ [M ], ẐAj
takes values in RDj with Dj ∈ N+, and

it holds that Ẑ ∩ Z = ∅.

A measurement modelM = ⟨Z, Ẑ, {hj}Mj=1⟩ specifies that
Ẑ follows a deterministic structural causal model{

ẐAj
:= hj(Zpa(ẐAj

))
}M

j=1
,

where pa(ẐAj
) ⊆ [N ] for all j ∈ [M ], and Zpa(ẐAj

) ⊆ Z

are called the causal parents of ẐAj
. The functions hj for

all j ∈ [M ] are called the measurement functions. If for
some j ∈ [M ], |pa(ẐAj

)| = 1 and the function hj is the
identity map, then the causal variable pa(ẐAj

) is said to be
measured directly. ♣
Definition 2.2 (Causally valid measurement model). The
measurement model (Defn. 2.1) is “causally valid" with re-
spect to a statistical estimand g that identifies a target causal
estimand, if the measurement Ẑ is a drop-in replacement in
g for the true causal variables Z, i.e., g(Z) = g(Ẑ). ♣

Further explanations and discussions on (causally valid)
measurement models are provided in App. C.

3. Evaluating Causal Representations using
Measurement Models

This section explains how the measurement model formal-
ism we introduced in § 2 serves as a natural tool to evaluate
causal representations. A causal representation is defined
as a set of measurement variables output from an encoder
— a parameterized function that maps the observables X to
the measurement variables Ẑ. Each CRL method specifies
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a measurement model, either through its identifiability
guarantees or the particular causal task it addresses. This
measurement model defines which causal variables a rep-
resentation should exclusively measure. Given paired sam-
ples of the true causal variables Z and their corresponding
measurement variables Ẑ from a trained CRL model, eval-
uation boils down to comparing the measurement model
against the observed joint distribution PZ,Ẑ. We introduce
additional statistical tests-related notations in App. B.

Exclusivity of measurements. A measurement model
describes the relationship between the causal and the
measurement variables. Specifically, it tell us for each
measurement variable, which causal variables it should ex-
clusively measure. We formally define this concept below.

Definition 3.1 (Exclusivity of a measurement variable).
Let M = ⟨Z, Ẑ, {hj}j∈[M ]⟩ be a measurement model, if
a measurement variable ẐAj , j ∈ [M ] only has one causal
parent Zi for some i ∈ [N ], then we say ẐAj exclusively
measures Zi. ♣

Given samples of the causal and measurement variables
{(zk, ẑk)}k∈[n], we can check whether the measurement
variables do satisfy the exclusivity property in the data by
testing the following null hypotheses:

H0(i, j) : ẐAj
⊥⊥Zi

∣∣Z[N ]\{i}, (3.1)

for all i ∈ [N ] and j ∈ [M ]. For a numerical summary
of the overall exclusivity, we propose the following Test-
based Measurement EXclusivity (T-MEX) score.

Definition 3.2 (Test-based measurement exclusivity score).
Let V ∈ {0, 1}N×M be the adjacency matrix correspond-
ing to the conditional independencies according to a mea-
surement modelM, such that for all j ∈ [M ] and i ∈ [N ],
Vji = 1 if a causal variable Zi is a causal parent of a
measurement variable ẐAj according to the measurement
model, and Vji = 0 otherwise. Let Ŵ ∈ {0, 1}N×M

be the matrix constructed according to the test results of
the conditional independencies in Equation (3.1) based on
the samples of (Z, Ẑ), such that for all j ∈ [M ] and
i ∈ [N ], Ŵji = 1 if H0(i, j) is rejected, and Ŵji = 0
otherwise. Then the test-based measurement exclusivity (T-
MEX) score is defined as the hamming distance between V

and Ŵ :

T-MEX(V, Ŵ ) :=

M∑
j=1

N∑
i=1

1(Vji ̸= Ŵji),

where 1 denotes the indicator function. ♣

Details for computing T-MEX is given in Alg. 1. As T-
MEX score is based on conditional independence testing,
its value depends on the randomness in the samples, and the
properties of the statistical tests being used. In Prop. 3.1,

we show the upper bound of the expected T-MEX score
when the joint distribution PZ,Ẑ of the causal variables Z

and output measurement variables Ẑ from a CRL model
does align with a measurement model.
Proposition 3.1. Let {φij}i∈[N ],j∈[M ] be a family of tests
for Equation (3.1) where for all i ∈ [N ] and j ∈ [M ],
φij is valid with level α ∈ (0, 1) and has power at least
β ∈ (0, 1). Given an adjacency matrix V ∈ {0, 1}N×M

based on a measurement model, if the joint distribution
PZ,Ẑ of the causal and measurement variables does
align with the measurement model, and each entry in
Ŵ is computed based on an independent set of samples
{(zk, ẑk)}k∈[nij ], nij ∈ N+, then it holds that

E[T-MEX(V, Ŵ )] ≤ α · (MN − ||V ||1) + (1− β) · ||V ||1,
where ||V ||1 =

∑N
i=1

∑M
j=1 Vij is the L1-norm of V .

4. Experiments
This section demonstrates the validity of the proposed
T-MEX score in various causal reasoning settings. We first
focus on covariate adjustment in numerical simulations, us-
ing T-MEX to evaluate both identifiability (Defn. B.1) and
causal validity (Defn. 2.2) of the representations (§ 4.1).
Next, we move on to treatment effect estimation in
high-dimensional ecological video analysis, where we
demonstrate that T-MEX effectively characterizes how
well the learned representation supports answering down-
stream causal questions (§ 4.2). For both experiments,
we estimate T-MEX based on the projected covariance
measure (PCM) test (Lundborg et al., 2024) implemented
in pycomets (Huang and Kook, 2025), which is an
algorithm-agnostic test for conditional independence
(see App. G for more explanations). Further experiment
details and additional results are deferred to App. F.

4.1. Numerical Simulation

Experiment settings. We generate five causal vari-
ables, Zi for i ∈ [5] according to a linear structural
causal model (see App. F.1), where two of the causal
variables, Z4 and Z5, are observed (also termed “di-
rectly measured" in Defn. 2.1). The entangled observations
X := f(Z1,Z2,Z3) are generated by applying a diffeomor-
phism f : R3 → R3, implemented as an invertible MLP, on
the causal variables. Our target causal task is to estimate
the ATE of Z4 on Z5. As the true causal relationship
between Z4 and Z5 is linear, we can construct a consistent
causal estimator where Z1 is adjusted using linear regres-
sion, which is invariant up to bijective transformations
of Z1 (App. H). Although Z1 is latent and cannot be
directly adjusted for, one can measure it through a bijective
transformation ẐA1

:= h(Z1) which is obtained from the
entangled observation X. Note that in this case, ẐA1 exclu-
sively measures (Defn. 3.1) the confounder Z1, as depicted
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Figure 2: T-MEX tracks the absolute bias of the ATE
estimates of Z4 on Z5 where Ẑ1 is conditioned on as the
back door adjustment.

in Fig. 4. We train three different CRL models based on
the identifiable learning algorithm proposed by Yao et al.
(2024b) and obtain samples of the measurement variable
ẐA1

. See Tab. 1 for details about model configurations.
Table 1: T-MEX and R2 scores of the learned representa-
tions (presented as mean±std) of model A (sufficiently
trained, i.e., Ẑ1 exclusively measures Z1), model B (insuf-
ficiently trained model with unclear latent-measurement
correspondence) and model C (manually corrupted repre-
sentation by linearly mixing Z2, Z3 with the representation
of model A) based on 50 simulated datasets, where each
dataset contains 4096 observations.

Model T-MEX (↓) R2

Z1 Z2 Z3

A 0.1200± 0.3283 0.9984± 0.0001 0.7516± 0.0064 0.8001± 0.0006
B 1.1800± 0.3881 0.6665± 0.0078 0.8305± 0.0032 0.8707± 0.0027
C 2.0000± 0.0000 0.9394± 0.0016 0.5421± 0.0096 0.6627± 0.0084

Results. Tab. 1 summarizes the T-MEX scores together
with the coefficient of determination R2 for all three mod-
els A, B and C, presented as mean±sd. For statistical
validity, we compute the results using 50 simulated datasets
from each model, with each dataset containing 4096 obser-
vations. Further details about the test results are provided
in App. F.1. Tab. 1 shows that a sufficiently trained model
(Model A) achieves a low T-MEX score, indicating that the
learned representation ẐA1

exclusively measures the latent
variable Z1. In contrast, the insufficiently trained and
corrupted models (Models B and C) exhibit high T-MEX
scores, demonstrating misalignment between the learned
representation and the hypothesized measurement model
(Fig. 4). Fig. 2 presents the ATE bias estimated from the
learned representations of all three models. We observe a
strong correlation between T-MEX and the absolute bias
of the ATE, validating T-MEX as a reliable indicator of the
causal validity of the learned representation (Defn. 2.2),
whereas R2 fails to show a clear correspondence with the
ATE bias because R2 was relatively high for all three latent
variables as shown in Tab. 1.

4.2. Real-world Ecological Experiment: ISTAnt

Experiment settings. This experiment validates the T-
MEX score on ISTAnt (Cadei et al., 2024), a real-world
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Figure 3: T-MEX reflects model performance in terms of
both classification accuracy and causal validity (Defn. 2.2).
Compared to their counterparts, models with lower T-MEX
achieve consistently high accuracy (Left) and center their
ATE bias near zero with reduced variance (Right).

ecological benchmark designed for treatment effect estima-
tion. ISTAnt consists of video recordings of ant triplets
with occasional grooming behavior. The goal is to extract
a per-frame representation for supervised behavior classifi-
cation (grooming or not) to estimate the ATE of an interven-
tion (exposure to a certain pathogen). Retrieving causally
valid representations in this case is challenging as we have
more non-annotated than annotated data, as described by
(Cadei et al., 2024). Fig. 5 depicts the hypothesized mea-
surement model for this particular causal task, note that
the treatment T and outcome Y are unconfounded because
the data is collected through a randomized controlled trial,
meaning that the binary treatment T is randomly assigned.

Results. We compute the T-MEX score for 2,400 different
models at a significance level of α = 0.05, and compare
both classification accuracy and ATE bias against T-MEX.
A full description of the considered models and training de-
tails is reported in App. F.2. We only focus on the models
that yield an accuracy over 80% for meaningful statements.
We observe that models with T-MEX = 0 achieve higher
mean and lower variance for both accuracy and ATE bias,
demonstrating that T-MEX effectively and reliably evalu-
ates the quality of learned representations in terms of both
classification performance and causal validity (Defn. 2.2).

5. Conclusion and Limitations
This paper reinterprets CRL from a measurement model
perspective, where causal representations are treated as
proxy measurements of latent causal variables (§ 2). This
perspective provides a flexible framework that unites CRL
identification theory with downstream task assumptions via
measurement functions, yielding a principled way to eval-
uate representation quality – the Test-based Measurement
EXclusivity (T-MEX) score (§ 3). We demonstrate in § 4
that our proposed T-MEX score effectively quantifies the
identification and causal validity of the learned representa-
tion (Defn. 2.2). This provides a convenient and practical
evaluation scheme for representation quality in real-world
scenarios, especially when the true treatment effect bias is
unavailable, such as in the absence of randomized studies.
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A. Notation and Terminology
Throughout, we write [N ] as shorthand for the set {1, . . . , N}. Random vectors are denoted by bold uppercase letters (e.g.
Z) and their realizations by bold lowercase (e.g., z), indexed by superscripts. For instance, n samples of Z are written
as {zk}k∈[N ]. A vector Z can be sliced either by a single index i ∈ [dim(Z)] via Zi or a index subset A ⊆ [dim(Z)]
with ZA := {Zi : i ∈ A}. PZ denotes the probability distribution of the random vector Z and pZ(z) denotes the
associated probability density function (We omit the subscription and write p(z) when the context is clear). By default, a
“measurable” function is measurable w.r.t. the Borel sigma algebras and is defined w.r.t. the Lebesgue measure.

We list the symbols as follows.

Z Causal variables

X Observables

Dj Dimension of the representation ẐAj

N Dimension of the causal variables Z

n Number of samples for the statistical tests for T-MEX

P(·) Probability operator

E(·) Expectation operator

1(·) Indicator function

B. Preliminaries
Definition B.1 (Block-identifiability (von Kügelgen et al., 2021)). A set of latent variables Z ∈ Rdz is block-identified by
a representation Ẑ ∈ Rdẑ if there exists a bijection h : Rdz → Rdẑ such that Ẑ = h(Z). ♣
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Additional notation. Let Z1, Z2, and Z3 be three absolutely continuous random variables taking values in RdZ1 ,
RdZ2 , and RdZ3 respectively. We say that Z1 and Z2 are conditionally independent given Z3 if p(Z1,Z2

∣∣Z3) =

p(Z1

∣∣Z3)p(Z2

∣∣Z3), and it is denoted as Z1⊥⊥Z2

∣∣Z3. A statistical test φ is a function that maps data to {0, 1}, e.g.,
φ : Rn×dZ1 × Rn×dZ2 × Rn×dZ3 → {0, 1}, where n denotes the number of samples. The test φ rejects a null hypothesis
H0 if φ(Z1,Z2,Z3) = 1 and does not reject it if φ(Z1,Z2,Z3) = 0. Given a significance level α ∈ (0, 1), a test is said to
be valid if it holds that supP∈H0

P(φ(Z1,Z2,Z3) = 1) ≤ α, and it is said to have power β ∈ (0, 1) against an alternative
distribution P ̸∈ H0 if P(φ(Z1,Z2,Z3) = 1) = β.

C. Further Explanation and Remarks
C.1. Measurement Model (Defn. 2.1)

Remark C.1 (Difference from (Silva et al., 2006)). While we borrow the concept of a measurement model from Silva
et al. (2006), our framework differs in two key aspects. First, Silva et al. (2006) aims to uncover relationships among
latent causal variables by searching for pure measurements, i.e., a tree-structure in which latent nodes have fixed, noisy,
low-dimensional observed children (measurements). In contrast, we interpret a given causal representation produced by a
CRL algorithm as measurement variables and focus on evaluating their usefulness for specific causal tasks, which requires
specification of a causal model. Second, Silva et al. (2006) assumes a linear latent structural causal model, whereas our
framework imposes no parametric structural assumption on the latent causal variables. Rather, we specify the relationship
between the causal variables and their measurements according to certain hypotheses, such as identification guarantees,
prior knowledge, or assumptions for specific causal downstream tasks. As we will see in § 3, this also allows us to properly
evaluate a learned CRL model. ♠
Remark C.2 (Noisy measurements). While we treat the measurement variables Ẑ as noise-free nonlinear mixing of their
causal parents, we can easily extend our framework to noisy measurements by considering the noise variables as additional
latent causal variables. ♠

Example C.1. Assume by the identifiability theory of a specific CRL method that each ẐAj block-identifies (see Defn. B.1
(von Kügelgen et al., 2021, Defn 4.1)) a subset of latent variables ZSi

(Si ⊆ [N ]). Then for the measurement model
M = ⟨Z, Ẑ, {hj}Mj=1⟩ it holds that: ẐAj

:= hj(ZSi
), with hj : R|Si| → RDj a diffeomporphism for all j ∈ [M ].

The measurement model induces a partial directed acyclic graph (DAG), that is, for any latent variable q that is block-
identified (Defn. B.1) by Aj , there is an edge from the latent causal variable Zq to the measurement variable ẐAj

, and
the measurement function hj is a diffeomorphism. Illustrative examples are shown in Fig. 1 for different identifiability
guarantees. ♦

Discussion. Note that a measurement model specified by certain identifiability theory (see Fig. 1) is a necessary but not
sufficient condition for drop-in replacement of a variable with its identified counterpart in a causal inference engine (Pearl
and Mackenzie, 2018) or a downstream causal estimand like average treatment effect (Robins et al., 1994). To this end, we
introduce causally valid measurement model.

C.2. Causally Valid Measurement Model (Defn. 2.2)

Discussion. Causal validity of a measurement model with respect to a specific estimand boils down to the estimand being
invariant with respect to the measurement function. As (von Kügelgen et al., 2024) already pointed out, identification of
a latent causal variable up to a non-linear parameterization (i.e., block-identifiability (Defn. B.1)) does not allow average
treatment effect estimation if either the treatment or outcome is a latent causal variable without additional information.
For that, a direct measurement (see Defn. 2.1) as in (Cadei et al., 2024; 2025) is necessary; alternatively, one can choose
an estimand that is invariant to non-linear invertible parameterizations, e.g., (conditional) mutual information (Janzing
et al., 2013). As another example, a non-linear invertible parameterization is enough to model confounding variables (Yao
et al., 2024a) and instruments, see H for extended discussions and examples. Finally, note that the causal validity of the
measurement models does not always require one-to-one correspondence between the measurement variables and latent
causal variables: When an estimand concerns a coarse-graining of a subset of variables, then a measurement model mixing
the right subset of variables can still be causally valid. For example, the valid adjustment set W in Fig. 11 can contain
two or more variables, which can remain entangled with each other in the learned representation Ŵ := h(W) as long as
the measurement function h is invertible, see App. H for detailed derivations.
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When is a measurement model “true”? Note that any causal model between learned representation can always be
trivially formulated as a measurement model, with each identified representation variable corresponding to a latent causal
variable (i.e., Ẑ1 → Ẑ2 implicitly implies a measurement model Ẑ1 ← Z1 → Z2 → Ẑ2). Sometimes, by means of other
assumptions, the latent causal model may not match one-to-one with the measurements; for example, see Fig. 1 (b). Our
discussion on the measurement model only specifies the dependency between a learned representation and an (implicitly)
assumed latent causal model. Following (Peters et al., 2014), we intend the latent causal model to be true if it agrees with
the results of randomized studies in practice. If the latent causal model is true, then a causally valid measurement model
is trivially also true.

D. Related Work: Flaws of Existing Evaluation Metrics for CRL
In this section, we cover the metrics that have been used by most papers proposing causal representation learning
approaches (von Kügelgen et al., 2021; 2024; Zheng et al., 2022; Ahuja et al., 2024; 2022; Varici et al., 2024; Zhang
et al., 2024a;b; Yao et al., 2024b; Lippe et al., 2022a;b; Lachapelle et al., 2022; 2023; Yao et al., 2022; Zhang et al.,
2024a; Squires et al., 2023; Buchholz et al., 2024; Yao et al., 2025) to name a few. We highlight how these metrics are not
immediately suitable to evaluate identification results in the presence of causal relations, making it difficult to compare
models and requiring great care in the interpretation of the results that is often missed (Gamella et al., 2025).

Standard evaluation for latent variable identification in existing CRL works employs coefficient of determination
R2 (Defn. D.1), and mean correlation coefficient (Defn. D.2). However, when the latent variables are causally related, a
high score of these two metrics does not indicate that the learned representations align with the measurement model we
expect from the identifiability theory. Example D.1 illustrates this limitation of these two metrics under the presence of
causal dependencies.

Example D.1. Assume that the latent causal variables Z in Fig. 1 (b) follow a linear Gaussian additive noise model.
Specifically, the latent variables Z1 and Z2 are generated based on the following structural equation:

Z2 := a · Z1 + e (D.1)

with e ∼ Pe, E[e] = 0 and e⊥⊥Z1. Suppose that the measurement model which induces Fig. 1 (b) specifies that the
measurement function h : R → R is a diffeomorphism such that ẐA1 = h(Z1), that is, ẐA1 identifies Z1, while ẐA1

should not contain any additional information about Z2. ♦

Coefficient of determination. R2 measures the proportion of the variation in the dependent variables explained by the
regression model (Draper and Smith, 1998), formally defined as

Definition D.1 (Population R2 score). Let (Zi, ẐAj
) be a pair of random variables both taking values in R, i ∈ [N ], j ∈

[M ]. The coefficient of determination R2 score for predicting Zi from ẐAj
is defined as

R2(Zi, ẐAj ) :=
V(E[Zi | ẐAj

])

V(Zi)
,

where E and V denote the expectation and variance operators, respectively. ♣

Problem of R2 in Example D.1: Let R2(Z1, ẐA1
) denote the R2 score as defined in Defn. D.1. Following the linear

mechanism in Equation (D.1), R2(Z2, ẐA1) can be expressed as

R2(Z2, ẐA1
) =

V(E[Z2 | ẐA1
])

V(Z2)
=

V(E[aZ1 + e | ẐA1
])

V(aZ1 + e)

=
a2V(E[Z1 | ẐA1

])

a2V(Z1) + V(e)
=

a2V(Z1)

a2V(Z1) + V(e)
R2(Z1, ẐA1).

(D.2)

Depending on the noise level V(e), R2(Z2, ẐA1
) can be either close to R2(Z1, ẐA1

) when V(e)≪ a2V(Z1) or close to 0
when V(e) is significantly higher than a2V(Z1); in either case it does not reflect whether ẐA1

identifies Z2 or not, in the
sense of Defn. B.1. Ultimately, R2 is a metric for predictability, not for identifiability. Using it as an identifiability metric
under causal dependency can lead to misinterpretation (Gamella et al., 2025).
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Remark D.1 (Other problems of R2 score). R2 is designed to measure how well a linear model fits between two ran-
dom variables. When the fitted model is nonlinear, R2 can yield values outside [0, 1], which can be misleading. See
also Cameron and Windmeijer (1997) for more details. ♠

Mean correlation coefficient (MCC). Intuitively, MCC measures the component-wise correspondence between the
learned representation Ẑ and the ground truth latent variables Z. When using MCC, it is required to have the same la-
tent and encoding dimensions. We restate the definition of the MCC as follows.

Definition D.2 (Mean correlation coefficient).

MCC =
1

N
max

π∈perm[N]

N∑
i=1

|Corr(Zi, Ẑπ(i))|,

where Corr(·, ·) refers to the Pearson correlation under linear relationship and Spearman correlation in the nonlinear case.
♣

However, we notice that MCC cannot capture how well the representations are disentangled, misaligning with its original
purpose of measuring component-wise correspondence. Assume in Fig. 1 (b) that ẐA1

= Ẑ1 and ẐA2
= [Ẑ2, Ẑ3]. The

learned representations ẐAj
are linear mappings of their causal parents Zpa(ẐAj

):

Ẑ1 = s · Z1; Ẑ2 = a · Z2 + b · Z3; Ẑ3 = c · Z2 + d · Z3,

where s, a, b, c, d ̸= 0. In this case, the MCC would obtain the highest value 1 although Z2,Z3 are still entangled in the
learned representation Ẑ, demonstrating that MCC is inadequate in evaluating element-wise identification under causal
relations.

Evaluation of causal relations. Causal relations are usually evaluated with the standard metrics Structural Hamming dis-
tance (SHD). We remark that evaluating causal discovery on the learned representations should always be done in conjunc-
tion with latent variable identification, as it is possible to achieve a perfect SHD (i.e, zero) with entangled representations,
using e.g., LiNGAM (Shimizu et al., 2006), as shown numerically in App. F.3.

Evaluation of disentangled representation. Evaluating disentangled representations (where the ground truth latent vari-
ables are assumed to be mutually independent) is comparatively easier. In the disentangled case, the main objective is to
assess how well the learned representation aligns one-to-one with the ground truth latents. Commonly used evaluation
metrics for disentangled representations include the BetaVAE Score (Higgins et al., 2017), FactorVAE Score (Kim and
Mnih, 2018), Mutual Information Gap (MIG Chen et al. (2018)), DCI-disentanglement (Eastwood and Williams, 2018),
Modularity (Ridgeway and Mozer, 2018) and SAP (Kumar et al., 2017). Broadly, evaluating learned representations can
be viewed as a two-stage procedure, first estimating the relationship between latent variables and representations, and then
aggregating this information into a single score (Locatello et al., 2020). In some way, our test can be seen as follow-
ing the same strategy, although evaluating variable-level correspondence is less straightforward given underlying causal
relationships, making it a fundamentally more challenging and under-studied problem.

E. Proofs and Algorithms
This section includes the proof for Prop. 3.1 and the algorithm to compute the T-MEX score.

Proposition 3.1. Let {φij}i∈[N ],j∈[M ] be a family of tests for Equation (3.1) where for all i ∈ [N ] and j ∈ [M ], φij is valid
with level α ∈ (0, 1) and has power at least β ∈ (0, 1). Given an adjacency matrix V ∈ {0, 1}N×M based on a measure-
ment model, if the joint distribution PZ,Ẑ of the causal and measurement variables does align with the measurement model,

and each entry in Ŵ is computed based on an independent set of samples {(zk, ẑk)}k∈[nij ], nij ∈ N+, then it holds that

E[T-MEX(V, Ŵ )] ≤ α · (MN − ||V ||1) + (1− β) · ||V ||1,

where ||V ||1 =
∑N

i=1

∑M
j=1 Vij is the L1-norm of V .

Remark E.1 (Intuition). Proposition 3.1 tells us that if the measurement model does hold for the joint distribution of the
causal variables and the output representations from a trained CRL model, we would expect to see a “low" T-MEX score
given that we employ valid statistical tests that are also powerful enough to reject the null under alternatives. A “low"
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Algorithm 1: Compute T-MEX score from one set of samples

Input: Paired samples of causal variables and measurement variables {z, ẑA1
, . . . , ẑAM

} where z ∈ Rn×N and
ẑAj
∈ Rn×Dj for j ∈ [M ], adjacency matrix of the measurement model V ∈ {0, 1}N×M , a set of statistical

tests for {φij}i∈[N ],j∈[M ] for (3.1), where for all i ∈ [N ], j ∈ [M ],
φij : Rn×1 × Rn×Dj × Rn×(N−1) → {0, 1}

Output: T-MEX score of the given sample
Ŵ ← 0N×M

for i ∈ [N ] do
for j ∈ [M ] do

Ŵij ← φij(zi, ẑAj
, z[N ]\{i})

end
end
return

∑N
i=1

∑M
j=1 1(Vij ̸= Ŵij)

T-MEX score does not in general refer to a 0 score, as it depends on V , the chosen significance level α, and the power of
the test β. For example, let α = 0.05, we consider a valid statistical test that has the highest power, i.e., β = 1, additionally,
assume the number of 0s in V is 2, then the expected value of the T-MEX score is no larger than 0.05× 2 = 0.1. ♠
Remark E.2 (Multiple testing). Prop. 3.1 assumes that each null hypothesis in Equation (3.1) is tested using an independent
set of samples. When there is only one set of samples available for a large number of tests, using the same sample set can
lead to inflation of the false positive rate, and may inflate the T-MEX score. In this case, we recommend doing a multiple
comparison adjustment when constructing Ŵ , for example, the Bonferroni-Holm correction (Holm, 1979), which controls
the family-wise error rate while it does not make assumptions on the dependencies of the multiple p-values. ♠
Remark E.3 (Nonparametric measurement model). In this section, we focus on the exclusivity perspective of a measure-
ment model via an approach similar to the idea of falsification of causal graphs (e.g., Kook, 2025; Faller et al., 2024). This
is a non-parametric approach which is agnostic to the measurement functions. In certain cases, however, a measurement
model may contain not only the conditional independence structure, but also other parametric assumptions through
specifications of the measurement functions {hj}j∈[M ]. Then, one may extend T-MEX to also take these constraints into
account. ♠

Proof. Suppose the joint distribution of (Z, Ẑ) aligns with the conditional independencies indicated by the adjacency
matrix V , that is, for all i ∈ [N ] and j ∈ [M ], if Vij = 0, it holds that ẐAj ⊥⊥Zi

∣∣Z[N ]\{i}; if Vij = 1, it holds that
ẐAj ̸⊥⊥Zi

∣∣Z[N ]\{i}.

Fix a significance level α ∈ (0, 1). Suppose for all i ∈ [N ] and all j ∈ [M ], the statistical test φij is valid at level α and
has powder at least β ∈ [0, 1] against the alternative distribution where ẐAj

̸⊥⊥Zi

∣∣Z[N ]\{i}.

Then given independent sets of samples {zk, ẑk}k∈[nij ] for i ∈ [N ] and j ∈ [M ], and Ŵij = φij(zi, ẑAj , z[N ]\{i}), it
holds that

• if Vij = 0, then P (Ŵij = 1) ≤ α;

• if Vij = 1, then P (Ŵij = 0) ≤ 1− β.

Therefore, the expected value of T-MEX score is given by

E[T -MEX(V, Ŵ )] = α ·
∑
i,j

1(Vij = 0) + (1− β)
∑
i,j

·1(Vij = 1)

≤ α · (MN − ||V ||1) + (1− β) · ||V ||1

where ||V ||1 is the 1-norm of V . The second inequality is implied by the that each test φij is valid with level α and has
power ≥ β.
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Z1 Z2 Z3 Z4 Z5

ẐA1

X

Figure 4: Measurement model containing the latent causal
variables Z1, Z2, and Z3 (white nodes) and observed
(also termed “directly measured" in Defn. 2.1) causal
variables Z4 and Z5 (gray nodes). Entangled observable
X is shown as a dashed oval. ẐA1

denotes the exclusive
measurement (Defn. 3.1) of Z1.

T Y

Ŷ

X

Figure 5: Measurement Model for the causal task in IS-
TAnt. T denotes the treatment (chemical exposure) and
the latent outcome Y represents the ant’s grooming behav-
ior. Observable X (video recordings) is represented us-
ing a dashed oval. The measurement Ŷ exclusively mea-
sures (Defn. 3.1) Y.

F. Experiment Details and Additional Results
This section elaborates on the experiment settings of § 4. We include further information regarding the data-generating pro-
cess for the simulated experiment (§ 4.1) and the ISTAnt dataset (Cadei et al., 2024) used in the ecological case study (§ 4.2),
as well as additional experimental results.

F.1. Numerical Simulation

Experiment setting. We consider five causal variables (Z1, · · · ,Z5) generated based on a linear structural causal
model (Peters et al., 2017)

Z = BZ+ ε,

where Z := (Z1,Z2,Z3,Z4,Z5), Z takes values in R5, ε ∼ N5(0, I), and B =


0 0 0 0 0
1 0 0 0 1
1 1 0 0 0
1 0 0 0 0
1 0 0 1 0

, which induces

the partial DAG depicted in Fig. 4. Two of the causal variables (Z4 and Z5) are observed (i.e., directly measured as
in Defn. 2.1), and the other three (Z1, Z2, and Z3) are latent and we observe only a bijective mixing X of them.

For the purpose of latent variable identification, we consider the multiview scenario in (Yao et al., 2024b) where two views
X1,X2 are generated from different subsets of latent variables. Formally, we have

X1 = f1(Z1,Z2)

X2 = f2(Z1,Z3),
(F.1)

where f1, f2 : R2 → R2 are diffeomorphisms, implemented using invertible MLPs as suggested by Yao et al. (2024b).

Implementation details. We employ the latent variable identification algorithm proposed by Yao et al. (2024b), which
guarantees that the shared latent variables among different views can be identified up to a diffeomorphism in the sense
of Defn. B.1. Thus, by utilizing X1,X2, we can obtain a nonlinear bijective transformation of their shared latent variable
Z1. This allows us to construct a measurement modelM = ⟨Z, ẐA1 , {h1}⟩ (see Fig. 4), where Z = {Z1, · · · ,Z5} and
ẐA1

= h(Z1) for some (unknown) smooth invertible map h : R→ R.

We train three CRL models following the implementation settings in (Yao et al., 2024b, Tab. 4).

• Model A: a sufficiently trained model (trained for 50001 steps) from which we expect the learned representation ẐA
A1

(where by a slight abuse of notation, the superscript represents the model indicator) to exclusively measure Z1;

• Model B: an insufficiently trained model (trained for 51 steps) with unclear latent-measurement correspondence;
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• Model C: a corrupted version of Model A where the representation ẐC
A1

:= ẐA
A1

+0.2Z2−0.1Z3, i.e., a linear mixing
of the representation ẐA

A1
from Model A, and Z2,Z3.

For each of the three trained models, we generate 50 independent datasets, each containing 4096 paired samples of Z, ẐA1
.

We compute the respective T-MEX scores based on these generated datasets for all three models, using the the projected
covariance measure (PCM, Lundborg et al., 2024) implemented in pycomets (Huang and Kook, 2025) using linear
regression models to estimate the conditional means (see App. G).

Z1 Z2 Z3
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0.6

0.8

p-
va

lu
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Figure 6: Violin plots of p-values from testing the conditional independencies ẐA1 ⊥⊥Zi

∣∣Z[5]\i for i ∈ [3] based on the
PCM tests (Lundborg et al., 2024). The black dashed line is at the significance level α = 0.05. A p-value < α for Zi

means there is an edge from Zi to the measurement ẐA1
.

Additional results. Since T-MEX relies on statistical testing, we further assess its statistical validity by examining the
underlying p-values that lead to the test results and the T-MEX score. Fig. 6 shows the p-values resulted from testing each
of the three null hypotheses:

H0(i) : ẐA1 ⊥⊥Zi

∣∣Z[5]\i for i ∈ [3].

We omit Z4 and Z5 since they are not involved in generating the two views X1 and X2.

Fig. 6 shows that Model A aligns with the measurement model in Fig. 4, evidenced by (i) small p-values for H0(1) and
(ii) approximately uniformly distributed p-values for both H0(2) and H0(3), given a valid test (see App. G for further
explanations). In contrast, for Models B and C, nearly all p-values are smaller than α, leading to rejections of the null
hypotheses, which indicates that the learned representation ẐA1

is a mixture of all three causal variables Z1,Z2,Z3, and
thus fails to exclusively measure Z1.

Computational resources. We train the CRL models (model A, B, C) using a single node GPU (NVIDIA GeForce
RTX1080Ti) with 10GB of RAM, 4 CPU cores for less than one GPU hour. ATE estimation and T-MEX computation
take less than one minute on a standard CPU.

F.2. Real-World Ecological Experiment: ISTAnt

Experiment Setting. ISTAnt is a real-world ecological benchmark designed to evaluate learned representations on down-
stream causal inference tasks from high-dimensional observational data. It comprises 44 ant-triplet video recordings col-
lected through a randomized controlled trial. This benchmark adopts the problem formulation introduced by Cadei et al.
(2024), aiming to estimate the causal effect of specific treatments (e.g., chemical exposure) on ants social behavior, particu-
larly grooming events. The experimental design and recording setup are shown in Fig. 7; for further details, refer to (Cadei
et al., 2024, App. C).
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Table 2: Hyperparameters for the real-world ecological experiment (§ 4.2 and App. F.2), giving rise to 2,400 model
configurations in total. All other settings follow (Cadei et al., 2024, App. C).

Hyperparameter Value(s)

Input Preprocessing YES / NO
Number of Hidden Layers 1, 2
Batch Size 64, 128, 256
Adam: learning rate 5e-2, 1e-2, 5e-3, 1e-3, 5e-4

Training objective Empirical Risk, Invariant Risk (Arjovsky et al., 2020),
vREx (Krueger et al., 2021), Deconfounded Risk (Cadei et al., 2025)

# Seeds 0,1, ..., 9

In ISTAnt, each observation (video recording) i is associated with a treatment assignment Ti and a set of experimental
covariates Wi (including experiment day, time of the day, batch, position within the batch, and annotator). However,
only a subset of videos is annotated with the outcome of interest Yi (i.e., grooming events), which hinders reliable causal
inference at a population level, such as treatment effect estimation. To address this challenge, Cadei et al. (2024) proposes
to train a classifier on top of a pre-trained feature extractor (e.g., DINOv2 (Oquab et al., 2023)) using this limited set of
annotated samples, to impute missing labels while still enabling valid causal inference at the population level; specifically,
for estimating the Average Treatment Effect (ATE).

Implementation details. Following (Cadei et al., 2024), we train 2,400 classification heads on top of DINOv2 (Oquab
et al., 2023), varying the architecture and training settings, and estimate the causal effect using all video samples together
with the predicted labels Ŷs by AIPW estimator (Robins et al., 1994). The hyperparameter configurations are summarized
in Tab. 2, with all other implementation details following (Cadei et al., 2024, App. C).

By contrasting with the measurement model depicted in Fig. 5, we compute the T-MEX scores for all 2,400 models. Since
we focus on models with more than 80% prediction accuracy (§ 4.2), the null hypothesis Ŷ⊥⊥Y

∣∣T is rejected in all cases,
consistently indicating Y → Ŷ. Thus, we only focus on the following null hypothesis:

H0 : Ŷ⊥⊥T
∣∣Y,

where Ŷ denotes the predicted label and Y the ground truth one. A misalignment with the measurement model in Fig. 5
leads to rejectingH0, resulting T-MEX=1, whereas as a causally valid representation Ŷ that exclusively measures Y gives
rise to T-MEX=0. We summarize all results in Fig. 3 and provide extended discussions in § 4.2.

Statistical validation. To further assess the statistical significance between the T-MEX = 0 and T-MEX = 1 groups, we
conduct a Mann-Whitney U test (Mann and Whitney, 1947) with the null hypothesis H0 : E

[
|ATE Bias|

∣∣ T-MEX =

1
]
≤ E

[
|ATE Bias|

∣∣ T-MEX = 0
]
. The resulting p-value of 0.0047 leads us to rejecting H0, providing strong evidence

that the average absolute bias of the ATE for models with T-MEX = 1 is significantly higher than for those with T-MEX
= 0. Overall, T-MEX shows a strong correlation with absolute bias of the ATE, validating its reliability as an evaluation
metric for the causal validity of learned representations (Defn. 2.2).

Real-world implications of T-MEX. We emphasize that the proposed T-MEX score can be computed using only
observational data, possibly with selection bias, as long as this selection bias does not change the conditional independence
between measurements and causal variables. Instead, calculating the ATE bias as in (Cadei et al., 2024) requires a
validation set that closely approximates the underlying population of the randomized controlled trial, a significantly
stronger assumption that is often difficult to satisfy in real-world settings. Overall, T-MEX offers a convenient and
accessible evaluation metric that reliably quantifies the usefulness of the learned representation for a causal downstream
task, without the need for additional identifying assumptions.

Computational resources. We run all the analyses in § 4.2 using 48GB of RAM, 20 CPU cores, and a single node GPU
(NVIDIA GeForce RTX2080Ti) for 24 GPU hours. Data preprocessing and feature extraction using DINOv2 account
for the majority of the computational time, whereas classifier training, AIPW estimation, and the T-MEX test contribute
negligibly by comparison.
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(a) Filming box (b) Batch example

Figure 7: Visualization of ISTAnt recording set-up (Cadei et al., 2024).

F.3. Caveats of Using SHD to Evaluate Causal Representations

Experiment Setting. This experiment explores the potential pitfalls when directly using SHD to evaluate causal represen-
tations without properly evaluating the element-wise latent variable identification. Specifically, we consider a set of causal
variables generated through the following structural equations:

Z1 = ϵ1

Z2 = α12 · Z1 + β2 · ϵ2
Z3 = α13 · Z1 + α23 · Z2 + β3 · ϵ3,

(F.2)

Assume the learned representation corresponds to the ground truth causal variable as follows:

ẐA1
= γ1 · Z1 + γ21 · Z2

ẐA2
= γ2 · Z2

ẐA3
= γ3 · Z3

(F.3)

where ẐA1
remains a mixing of Z1 and Z2. The corresponding measurement model is shown in Fig. 8.

Implementation details. We generate 100 different structure and measurement models following Equations (F.2)
and (F.3), with all coefficients αs and γs sampled from Unif[1, 10] and the βs sampled from Unif[0.005, 0.02]. We run
LiNGAM (Shimizu et al., 2006) from causal-learn (Zheng et al., 2024) to discover the causal relationships between the
measurements ẐA1 , ẐA2 , ẐA3 .

Z1 Z2 Z3

ẐA1 ẐA2 ẐA3

Figure 8: Example measurement model, where
ẐA1

block-identifies Z1,Z2, ẐA2
and ẐA3

iden-
tifies Z2,Z3 respectively.

Results. Fig. 9 shows the structural hamming distance of between
the discovered graph on Ẑ and the ground truth one. Despite being
entangled between Z1,Z2, Ẑ still yield the correct causal graph in
most of the cases (77%), as shown by the first bar in the plot. Hence,
causal relations between the measurement variables should always be
evaluated in conjunction with the variable identification. Otherwise,
it can lead to misinterpretations as showcased by Fig. 9.

Computational resources. Data generating and causal discovery
for App. F.3 in total takes less than 10 minutes on a standard CPU.

G. Background on Conditional Independence Testing
Testing conditional independence of two random variables X and Y given a third random variable Z is known to be a
difficult problem if Z is a continuous variable (Shah and Peters, 2020). The goal of conditional independence test is to test
the null hypothesis

H0 : X⊥⊥Y
∣∣Z.
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Figure 9: Structural Hamming Distance Values (SHD) of 100 structure and measurement models following Equations (F.2)
and (F.3), where the measurement ẐA1

is a mixing of the ground truth latent Z1,Z2. SHDs are computed between the
discovered graph on Ẑ and the ground truth one.

Shah and Peters (2020) have shown that there is no valid test (i.e., a test that guarantees a Type I error rate to be no larger
than the given significance level α) that has power against all alternatives.

Consider univariate variables X,Y,Z, the generalized covariance measure (GCM) test proposed in Shah and Peters (2020)
aims to test an implication of conditional independence which can be written as the following null hypothesis:

HGCM
0 : E[(Y − E[Y

∣∣Z])(X− E[X
∣∣Z])] = 0.

The validity of the GCM test thus relies on that the conditional means E[Y
∣∣Z] and E[X

∣∣Z] can be learned at suffi-
ciently fast rates. It turns out that GCM does not have power against any alternative for which E[Cov(X,Y

∣∣Z)] = 0 but
X ̸⊥⊥Y

∣∣Z (Lundborg et al., 2024).

The projected covariance measure (PCM) proposed by Lundborg et al. (2024) improves the power issue of GCM by testing
a different implication of conditional independence:

HPCM
0 : E[Y

∣∣X,Z] = E[Y
∣∣Z].

Similar to GCM, to ensure its validity, PCM also requires that the conditional means can be learned sufficiently fast, which
is satisfied in our experiments (§ 4).

There are other conditional independence tests such as mutual information based methods (Ai et al., 2024; Runge, 2018)
and kernel-based methods (Fernández and Rivera, 2024; Strobl et al., 2019; Zhang et al., 2012). We opted for PCM in
our experiments for its computational advantage and theoretical guarantees on its validity under a flexible, model-agnostic
framework. More discussions on the usage of PCM and GCM can be found in Kook and Lundborg (2024). Notably,
T-MEX is a general evaluation metric for causal representations that does not specify any particular type of tests, allowing
practitioners to choose other testing methods that are more suitable for their problem settings.

H. Extended Discussion
This section elaborates on the implications of learned representations for downstream causal tasks. As briefly discussed in
the main paper (following Defn. 2.2), a representation is causally valid (Defn. 2.2) with respect to a statistical estimand
if and only if the statistical estimand remains unchanged when plugging in the measurement variables correspond to the
causal variables. More concretely, we illustrate the implications of nonlinear invertible reparameterizations of causal
variables in two commonly encountered scenarios: when representations serve as proxies of (i) the treatment or outcome
variables, and (ii) the confounders or instrumental variables.

H.1. Representations of Treatment and Outcome
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Z1 Z2 Z3

ẐA1 ẐA2

Figure 10: ẐAi
measures Zi through a nonlinear

bijection for both i = 1, 2.

Assume in Fig. 10 that ẐA1
, ẐA2

are element-wise nonlin-
ear invertible reparametrization of Z1,Z2 respectively; i.e.,
∀i ∈ {1, 2}, ẐAi = hi(Zi) for some diffeomorphism hi : R → R.
We aim to estimate the treatment effect of Z1 → Z2 using the
learned representations ẐA1

and ẐA2
.

Assume the Z2 is generated following Equation (D.1), i.e.,

Z2 := a · Z1 + e

with e ∼ Pe, E[e] = 0 and e⊥⊥Z1. Given there is no unobserved
confounding, the ground truth average treatment effect is written as

ATE(Z1 → Z2) =
∂E[Z2 | do(Z1 = z1)]

∂z1
=

∂E[Z2 | Z1 = z1]

∂z1
=

∂E[az1 + e]

∂z1
= a. (H.1)

We assume measurement function hi for all i ∈ {1, 2} to be linear, i.e.,

ẐA1
= α1 · Z1, ẐA2

= α2 · Z2, and α1, α2 ̸= 0. (H.2)

The ATE estimand from the learned representations yields:

ATE(ẐA1
→ ẐA2

) =
∂E[ẐA2

| ẐA1
= ẑA1

]

∂ẑA1

=
∂E[α2Z2 | α1Z1 = α1z1]

∂α1z1

=
α2∂E[Z2 | Z1 = z1]

α1∂z1
=

α2

α1
a.

(H.3)

As shown by Equation (H.3), the ATE estimand using the learned representation ẐA1
and ẐA2

can be arbitrarily scaled
by the factor of α2/α1. Thus, measurements that bijectively transform the causal latent variables cannot naively support
estimating the treatment effect, violating causal validity (Defn. 2.2); it requires direct supervision or observation on both
treatment and outcome variables, as also pointed out by (von Kügelgen et al., 2024, Sec. 4).

On the other hand, information-theoretic measures for quantifying causal influence remain invariant under bijective trans-
formation, such as the mutual information Iint(Z1;Z2) = Iint(ẐA1 ; ẐA2), as shown by Janzing et al. (2013).

H.2. Representations of Confounders or Instruments

Measuring confounding. We first show an example where an observed treatment T and an observed outcome Y is
confounded by a third variable W which is measured by Ŵ = h(W) through a deterministic invertible function h.

Formally, the measurement model is defined as Mconf = ⟨Z, Ẑ, {h}⟩ with Z = {T,Y,W} and Ẑ = {Ŵ}, where
T,Y are directly measured (Defn. 2.1). The corresponding DAG is given in Fig. 11. We show in the following that this
measurement model is indeed causally valid (Defn. 2.2) with respect to the statistical estimand for the Average Treatment
Effect (ATE) of T on Y.

Under the standard assumptions for backdoor adjustment, it follows that

E(Y|do(T = t)) = Ew [E(Y |W,T = t)]

=

∫
E(Y |W,T = t)P (W)dw

=

∫
E(Y | h−1(Ŵ),T = t)P (h−1(Ŵ))

dh−1(ŵ)

dŵ
dŵ

=

∫
E(Y | Ŵ,T = t)P (Ŵ)dŵ

= Eŵ

[
E(Y | Ŵ,T = t)

]
,

(H.4)
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W

Ŵ

T Y

Figure 11: ATE remains invariant under bijective transfor-
mation of confounders. The treatment T and outcome Y
are directly measured (i.e., observed) whereas confounder
W is measured by Ŵ through a nonlinear bijection.

I

U

Î

T Y

Figure 12: ATE remains invariant under bijective transfor-
mation of instruments. Î measures the instrument variable
I through a nonlinear bijection. The treatment T and out-
come Y are directly measured (i.e., observed), and U de-
notes unobserved confounding.

where we used the change of variable formula and the fact that E(Y | Ŵ,T = t) = E(Y|h−1(Ŵ),T = t). This is
because h−1(Ŵ) is a sufficient statistic for W (Casella and Berger, 2024, Ch. 6.2) following h is invertible.

Under the same assumptions, the ATE for binary treatment can then be identified by the following statistical estimand

ATE(T→ Y) = E[Y|do(T = 1)]− E[Y | do(T = 0)]

= Ew [E(Y |W,T = 1)− E(Y |W,T = 0)] .
(H.5)

Following Equation (H.4), we have

ATE(T→ Y) = Eŵ

[
E(Y | Ŵ,T = 1)− E(Y | Ŵ,T = 0)

]
,

indicating that the identified statistical estimand ATE(T→ Y) remains invariant for the measurement Ŵ. Similarly, ATE
also remains invariant when the treatment is continuous:

ATE(T→ Y) =
∂E[Y | do(T = t)]

dt
=

∂EwE[Y |W,T = t]

dt
=

∂EŵE[Y | Ŵ,T = t]

dt
, (H.6)

where the last equality holds because of Equation (H.4). Therefore, we have shown that invertible reparameterizations of
the confounders can be a drop-in replacement of the true confounding variables in the statistical estimand for ATE, for both
discrete and continuous treatments, and thus this measurement modelMconf is indeed causally valid for ATE.

Measuring instrumental variables. We now give a second example of ATE estimation under an instrumental variable
setup. We assume that the instrument I is measured by Î = h(I) through a bijective transformation h. We show that under
certain assumptions, the statistical estimand does not change when using Î as a drop-in replacement of the true instrument
I. We focus on the case where the instrument I, the treatment T, and the response Y are all univariate continuous
variables; further discussion on multivariate and discrete valued variables is beyond the scope of this paper. Formally, the
measurement model is defined as MIV = ⟨Z, Ẑ, {h}⟩ with causal variables Z = {I,T,Y} and measurement variables
Ẑ = {Î}. The treatment T and outcome Y are directly measured (Defn. 2.1) and confounded by unknown hidden
confounders U. Fig. 12 shows the DAG of this measurement model.

We show in the following that the instrument I remains a valid instrumental variable under a bijective transformation, i.e.,
the measurement variable Î = h(I) also satisfies the standard IV assumptions, which are listed as follows:

• Relevancy: I ̸⊥⊥T
∣∣U

• Unconfoundedness: I⊥⊥U

• Exclusion restriction criteria: I⊥⊥Y
∣∣T,U
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Following standard probability theory (see e.g., Billingsley, 2008), if h is a bijective function, all three conditions still hold
when replacing I by h(I). This means that if the ATE is identified by a statistical estimand when using I as an instrument,
it is also identified when using Î as an instrument. In other words, the measurement model MIV is causally valid with
respect to an identified statistical estimand because Î can serve as a drop-in replacement for I (Defn. 2.2).

As a specific example, consider the case where the causal mechanism of Y is partially linear (a commonly studied setup
in the semi-parametric inference literature, see e.g., Chernozhukov et al. (2018)), i.e., Y = Tβ + g(U, ε), for some
measurable function g where E[g(U, ϵ)] = 0 and where ε ∼ Pε is an independent noise variable, the ATE

ATE(T→ Y) =
∂E[Y | do(T = t)]

∂t
=

∂E[tβ + g(U, ε)]

∂t
= β

can be identified by the statistical estimand

ATE(T→ Y) =
Cov(Y, I)

Cov(T, I)
. (H.7)

We show in the following that the statistical estimand ATE(T → Y) in Equation (H.7) remains invariant when using Î as
a drop-in replacement for I. Plugging in Î in the numerator

Cov(Y, Î) = E[YÎ]− E[Y]E[̂I] = β
(
E[TÎ]− E[T]E[̂I]

)
= βCov(T, Î),

we have
Cov(Y, Î)

Cov(T, Î)
= β =

Cov(Y, I)

Cov(T, I)
. Therefore, we have shown another example where the measurement Î can serve

as a drop-in replacement for the latent instrumental variable I for downstream causal inference tasks.
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