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ABSTRACT

The use of relative representations for latent embeddings has shown potential
in enabling latent space communication and zero-shot model stitching across a
wide range of applications. Nevertheless, relative representations rely on a certain
amount of parallel anchors to be given as input, which can be impractical to obtain
in certain scenarios. To overcome this limitation, we propose an optimization-
based method to discover new parallel anchors from a limited known set (seed).
Our approach can be used to find semantic correspondence between different do-
mains, align their relative spaces, and achieve competitive results in several tasks.

1 INTRODUCTION

Over the past few years, several studies have acknowledged how successful neural networks
typically learn comparable representations regardless of their architecture, task, or domain (Li et al.,
2016; Kornblith et al., 2019; Vulić et al., 2020). In line with this trend, Moschella et al. (2023) intro-
duced the concept of relative representation, aiming to generate comparable latent spaces and enable
zero-shot stitching to handle new, unseen tasks without requiring additional training. The approach
consists in representing each data sample through latent similarities with respect to a set of training
samples, denoted as anchors. This procedure transforms the absolute reference frame to a relative
coordinate system defined by the anchors. To enable tasks like multimodal learning, this approach
requires a semantic connection between the anchors of two data domains, denoted as parallel
anchors. This correspondence, which must be provided as input, allows domain comparison and
links their respective latent spaces (Norelli et al., 2022). However, obtaining a sufficient number
of parallel anchors in specific applications can be challenging or impossible, hindering the use of
relative representations. We focus on the scenario where there are only a very limited number of
parallel anchors available, called seed, and we aim to expand this initial set through an Anchor Opti-
mization (AO) process. Our method achieves competitive performance in NLP and Vision domains
while significantly reducing the number of required parallel anchors by one order of magnitude.

GT Seed AO

W
2
V

F
T

Src Tgt Jaccard ↑ MRR ↑ Cosine ↑

G
T FT W2V 0.34± 0.01 0.94± 0.00 0.86± 0.00

W2V FT 0.39± 0.00 0.98± 0.00 0.86± 0.00

Se
ed FT W2V 0.06± 0.01 0.11± 0.01 0.85± 0.01

W2V FT 0.06± 0.01 0.15± 0.02 0.85± 0.01

A
O FT W2V 0.52± 0.00 0.99± 0.00 0.94± 0.00

W2V FT 0.50± 0.01 0.99± 0.00 0.94± 0.00

Table 1: Qualitative (left) and quantitative (right) evaluation of the AO method in the retrieval task.

2 METHOD

Let us be given two domains X and Y and corresponding learned embedding functions
EX : X → Rn and EY : Y → Rm, where possibly n ̸= m. Given two sets of anchors AX ⊂ X and
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AY ⊂ Y , we define parallel anchors a subset of pairs Ap ⊆ AX ×AY in semantic correspondence,
e.g., images and captions as in Norelli et al. (2022). The relative representations for a sample x ∈ X
(same for Y) is computed as follows: rr(x,AX ) = EX (x)AT

X , where AX =
⊕

a∈AX
EX (a),

and
⊕

denotes the row-wise concatenation operator. We assume all embeddings are rescaled to
unit norm, i.e., ∀x ||E(x)|| = 1. This corresponds to the choice of cosine similarity as a similarity
function, according to the setting of Moschella et al. (2023).

In this work, we introduce an optimization procedure that reduces the required number of parallel
anchors by one order of magnitude. Our method does not require complete knowledge of Ap but
only of few initial seed anchors, denoted as L = LX × LY ⊆ Ap, where |L| ≪ |Ap|. With no
prior knowledge of AY , we initialize the optimization process by approximating AY ≈ ÃY with the
known seed ALY =

⊕
a∈LY

EY(a) concatenated with |Ap| − |L| random embeddings, i.e. ÃY =

ALY ⊕N, with N ∼ N (0, I) . We define the following objective function optimizing over ÃY :

argmin
ÃY s.t. ||a||2=1 ∀a∈ÃY

∑
y∈Y

MSE(rr(Π(y),AX ), EY(y)Ã
T
Y) (1)

where Π : Y → X is a correspondence estimated at each optimization step by the Sinkhorn
(Cuturi, 2013) algorithm exploiting the initial seed and the current approximation of the remaining
anchors: Π = sinkhorn(x,y)∈X×Y(rr(x,AX ), EY(y)Ã

T
Y). After convergence, ÃY is discretized

into ÃY ⊆ Y considering the nearest embeddings in EY(Y). Further details in Appendix A.2.

3 EXPERIMENTS

This section assesses the effectiveness of our AO method. We utilize 15 anchor to approximate 300
parallel anchors that serve as ground truth in all downstream tasks. Specifically, we compare the
performance of our method against two different baselines: (1) GT, the Ground Truth employs all the
anchors that our method aims to semantically approximate, (2) Seed, exploits only the seed anchors.
For more information on the implementation please refer to the Appendix A.2 and the code1.

Our method effectively discovers parallel anchors in the NLP and Vision domains, as demonstrated
in Tables 1, 4, 5 and 7. Specifically, we explore different word embeddings and pre-trained
foundational visual encoders, and assess the quality of the discovered anchors through a retrieval
task. Results demonstrate that, when given the same number of starting anchors, our method
outperforms the approach that relies solely on those without optimizing. Moreover, our results are
comparable or superior to those obtained with all the ground truth parallel anchors. Furthermore,
Table 6 demonstrates that our method can discover parallel anchors across different domains: the
method finds aligned Amazon reviews in different languages with unavailable ground truth. Using
only 15 OOD (Moschella et al., 2023) parallel anchors, our method enables zero-shot stitching,
allowing to train a classifier on one language and perform predictions on another one.

Table 2: Cross-lingual zero-shot stitching performance evaluation.

GT Seed AO

Dec. Enc. Fscore MAE Fscore MAE Fscore MAE

en es 0.51 ± 0.01 0.67 ± 0.02 0.44 ± 0.01 0.80 ± 0.01 0.48 ± 0.01 0.70 ± 0.02
es en 0.50 ± 0.02 0.72 ± 0.04 0.41 ± 0.01 0.92 ± 0.02 0.46 ± 0.01 0.76 ± 0.02

4 CONCLUSIONS, FUTURE WORKS, AND LIMITATIONS

In this paper, we presented a novel method to compute robust relative representations even in
scenarios where only a reduced number of parallel anchors is available. The method expands
semantic correspondence between data domains without prior knowledge and achieves comparable
results with one order of magnitude fewer parallel anchors. This approach has notable impli-
cations for latent space communication across domains with limited knowledge about semantic
correspondence. Future research is needed to remove the need for an initial parallel seed.

1Fully reproducible codebase at: https://github.com/icannistraci/bootstrapping-ao
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5732–5741, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
a7a3d70c6d17a73140918996d03c014f-Abstract.html.

Luca Moschella, Valentino Maiorca, Marco Fumero, Antonio Norelli, Francesco Locatello, and
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A APPENDIX

A.1 RELATED WORKS

In recent years, numerous studies (Lenc & Vedaldi, 2015; Mikolov et al., 2013b; Li et al., 2016;
Lample et al., 2018; Morcos et al., 2018; Tsitsulin et al., 2020; Kornblith et al., 2019; Vulić et al.,
2020; Antonello et al., 2021; Bonheme & Grzes, 2022; Barannikov et al., 2022; Norelli et al., 2022)
have recognized that neural networks tend to learn comparable representations regardless of their
architecture, task, or domain when trained on semantically similar data. This observation can be ex-
ploited to enable various applications, such as model stitching (Lenc & Vedaldi, 2015; Bansal et al.,
2021; Csiszárik et al., 2021; Gygli et al., 2021; Biondi et al., 2021; Bianchi et al., 2020), latent model
comparison or supervision and more. In particular, Moschella et al. (2023) introduced the framework
of relative representation, which aims to unify the representations learned from semantically simi-
lar data. Relative representations have demonstrated potential in facilitating communication within
latent embeddings and enabling zero-shot stitching across various applications, relying on parallel
anchors to link different domains. Our work aims to minimize the explicit supervision required for
latent communication by reducing the reliance on parallel anchors to the minimum necessary and
automatically expand the provided semantic correspondence between domains.

A.2 IMPLEMENTATION DETAILS

This section provides further details about the optimization procedure and the experiments.

Optimization Method Algorithm 1 outlines the pseudocode for the optimization procedure de-
scribed in Section 2, while Table 3 details the hyperparameters. The method initializes ÃY and
optimizes it iteratively. At each step, the Sinkhorn algorithm computes a rough estimate of the
permutation between the two relative spaces. The loss function minimized in our optimization pro-
cedure is the MSE, with particular emphasis placed on ensuring that the optimized parameters ÃY
adhere to unit norm using Casado (2019). This not only ensures the effectiveness of the optimization
but also reduces the search space.

Algorithm 1 Anchor Optimization

1: Initialize ÃY = ALY ⊕N, with N ∈ N (0, I) and |N| = |Ap| − |L|
2: Compute the relative representations of samples in X as RX =

⊕
x∈X rr(x,AX )

3: for K steps do
4: Compute the relative representations of samples in Y as RY =

⊕
y∈Y EY(y)Ã

T
Y

5: Estimate the permutation between RY and RX with Π = sinkhorn(RX ,RY)
6: Permute RY according to Π
7: Compute the error MSE(RX ,RY)

8: Optimize ÃY to minimize the error, while abiding to the constraint ||a||2 = 1 ∀a ∈ ÃY
9: end for

10: return the nearest neighbours of ÃY in EY(Y)

Retrieval Task We choose two English word embeddings trained on different data but with a
partially shared vocabulary from which we extract ≈ 20K words: FastText (Bojanowski et al.,
2017) and Word2Vec (Mikolov et al., 2013a). For testing the AO method, we select 15 seed
anchors and shuffle the two embedding spaces to break their correspondence. Then, we choose 285
additional random anchors for one of the spaces while we use our optimization method to discover
the associated 285 parallel anchors in the other one. Next, the absolute embeddings of each space are
converted to their relative representations using the 300 optimized parallel anchors. For each word
w, we consider its corresponding encodings x and y in the source and target space and validate their
quality through a retrieval task. To facilitate a comparison with the relative representation baseline
(Moschella et al., 2023), we employ the same evaluation metrics: (i) Jaccard: the discrete Jaccard
similarity between the set of word neighbors of x in source and target; (ii) Mean Reciprocal Rank
(MRR): measures the (reciprocal) ranking of w among the top-k neighbors of x in the target space;
(iii) Cosine: measures the cosine similarity between x and y. Results for the GT and seed methods

6



Published as a Tiny Paper at ICLR 2023

Table 3: Hyperparameter for the AO method in retrieval and zero-shot stitching tasks.

Hyperparameter Retrieval Zero-shot stitching

Random seed 0, 1, 2, 3, 4 0, 1, 2, 3, 4
Number of anchors to approximate 300 300
Number of seed anchors 15 15
Number of optimization steps 250 125
Learning Rate 0.02 0.05
Optimizer Adam Adam
Loss MSE MSE
Sinkhorn eps 1e-4 1e-4
Sinkhorn stop error 1e-5 1e-5
Number of Sinkhorn steps 1 1

are obtained by using all the given 300 anchors that our method aims to semantically approximate
and only the 15 seed anchors, respectively.

FastText Word2Vec

G
T

Se
ed

A
O

Source Target Jaccard ↑ MRR ↑ Cosine ↑

G
T

FT
FT 1.00± 0.00 1.00± 0.00 1.00± 0.00
W2V 0.34± 0.01 0.94± 0.00 0.86± 0.00

W2V
FT 0.39± 0.00 0.98± 0.00 0.86± 0.00
W2V 1.00± 0.00 1.00± 0.00 1.00± 0.00

Se
ed

FT
FT 1.00± 0.00 1.00± 0.00 1.00± 0.00
W2V 0.06± 0.01 0.11± 0.01 0.85± 0.01

W2V
FT 0.06± 0.01 0.15± 0.02 0.85± 0.01
W2V 1.00± 0.00 1.00± 0.00 1.00± 0.00

A
O

FT
FT 1.00± 0.00 1.00± 0.00 1.00± 0.00
W2V 0.52± 0.00 0.99± 0.00 0.94± 0.00

W2V
FT 0.50± 0.01 0.99± 0.00 0.94± 0.00
W2V 1.00± 0.00 1.00± 0.00 1.00± 0.00

Table 4: Complete results for the selected experiments are reported in Table 1. Qualitative (left) and
quantitative (right) comparisons of the three methods when optimizing the Word2Vec space. All
metrics are calculated with K = 10 averaged over 20k words across five random seeds.

Zero-shot stitching task We investigate the Cross-lingual text classification task on the multi-
lingual Amazon Reviews dataset (Keung et al., 2020) to demonstrate a practical application of
our method. We use the fine-grained formulation of the task, where the goal is to predict the star
rating given a review (i.e., five classes to predict) and measure performance using FScore and Mean
Absolute Error (MAE) metrics. To evaluate the effectiveness of our method, we utilize two differ-
ent pre-trained language-specific RoBERTa transformers (Liu et al., 2019) and test their zero-shot
stitching performance on languages that were not seen during training. Specifically, we evaluate
our method using English and Spanish languages with PlanTL-GOB-ES/roberta-base-bne
and roberta-base, respectively. Similar to the implementation details in word embeddings dis-
cussed in Section A.2, we begin by choosing 15 random parallel anchors as seed and then select an
additional 285 random anchors for the Spanish space. We then apply our optimization method to
discover the remaining 285 parallel anchors for the English space. Next, the absolute embeddings
of each space are converted to relative representations using the 300 optimized parallel anchors.
Table 6 presents the Cross-lingual zero-shot stitching performance of our approach, demonstrating
its efficacy in learning to solve a downstream task on a specific language or transformer and making
accurate predictions while relying on the discovered anchors.

Tools & Technologies We use the following tools in all the experiments presented in this work:

• PyTorch Lightning, to ensure reproducible results while also getting a clean and modular
codebase;
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FastText Word2Vec

G
T

Se
ed

A
O

Source Target Jaccard ↑ MRR ↑ Cosine ↑

G
T

FT
FT 1.00± 0.00 1.00± 0.00 1.00± 0.00
W2V 0.34± 0.01 0.94± 0.00 0.86± 0.00

W2V
FT 0.39± 0.00 0.98± 0.00 0.86± 0.00
W2V 1.00± 0.00 1.00± 0.00 1.00± 0.00

Se
ed

FT
FT 1.00± 0.00 1.00± 0.00 1.00± 0.00
W2V 0.06± 0.01 0.11± 0.01 0.85± 0.01

W2V
FT 0.06± 0.01 0.15± 0.02 0.85± 0.01
W2V 1.00± 0.00 1.00± 0.00 1.00± 0.00

A
O

FT
FT 1.00± 0.00 1.00± 0.00 1.00± 0.00
W2V 0.49± 0.00 0.98± 0.00 0.93± 0.00

W2V
FT 0.50± 0.00 0.99± 0.00 0.93± 0.00
W2V 1.00± 0.00 1.00± 0.00 1.00± 0.00

Table 5: Corresponding results to those reported in Table 4, illustrating the performance of the
model when optimizing the anchors in the other latent space. Qualitative (left) and quantitative
(right) comparisons of the three methods when optimizing the FastText space. All metrics are
calculated with K = 10 averaged over 20k words across five random seeds.

Table 6: Complete results for the selected experiments are reported in Table 2. Cross-lingual zero-
shot stitching performance evaluation. The table reports the mean weighted F1 and MAE on Amazon
Reviews fine-grained dataset across five random seeds.

GT Seed AO

Decoder Encoder Fscore MAE Fscore MAE Fscore MAE

en en 0.64 ± 0.01 0.43 ± 0.01 0.50 ± 0.01 0.69 ± 0.01 0.62 ± 0.01 0.44 ± 0.01
es 0.51 ± 0.01 0.67 ± 0.02 0.44 ± 0.01 0.80 ± 0.01 0.48 ± 0.01 0.70 ± 0.02

es en 0.50 ± 0.02 0.72 ± 0.04 0.41 ± 0.01 0.92 ± 0.02 0.46 ± 0.01 0.76 ± 0.02
es 0.60 ± 0.01 0.45 ± 0.01 0.48 ± 0.01 0.70 ± 0.01 0.61 ± 0.01 0.44 ± 0.01

• GeoTorch Casado (2019), to constrain optimized anchor vectors to have unit norm;
• Fast, Memory-Efficient Approximate Wasserstein Distances, to optimize anchor vectors;
• Transformers by HuggingFace, to get ready-to-use transformers for both text and images;
• Datasets by HuggingFace, to access most of the NLP datasets and CIFAR10 (Krizhevsky

et al., 2009) for CV;
• DVC (Kuprieiev et al., 2022), for data versioning;

A.3 ADDITIONAL EXPERIMENTS

Building upon the methodology presented in the word embeddings experiment introduced in Sec-
tion 3 and detailed in Appendix A.2, we generalize the retrieval results from the NLP to the Vi-
sion domain. To achieve this, we first extract ≈ 20K images from CIFAR-10. We then encode
these images using two variants of the VIT transformer model: the VIT base patch16 model,
which is pre-trained on JFT-300M (Sun et al., 2017) and ImageNet (Deng et al., 2009), and
the VIT small patch16 model, which is pre-trained solely on ImageNet. The two models
have respective encoding dimensions of 768 and 384. We follow the same experimental setting,
comparing our model against two different baselines (GT and Seed methods), and we evaluate the
performance with Jaccard, MRR and Cosine metrics. Results are reported in Table 7.
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Table 7: Generalization of the results described in Section 3, from word embeddings to images using
the CIFAR-10 dataset. The table reports the mean results for each metric and its standard deviation
across five different random seeds.

Mode Type Source Target Jaccard ↑ MRR ↑ Cosine ↑

G
T A

bs
ol

ut
e ViT-base

ViT-base 1.00± 0.00 1.00± 0.00 1.00± 0.00
ViT-small - - -

ViT-small
ViT-base - - -
ViT-small 1.00± 0.00 1.00± 0.00 1.00± 0.00

R
el

at
iv

e ViT-base
ViT-base 1.00± 0.00 1.00± 0.00 1.00± 0.00
ViT-small 0.11± 0.00 0.27± 0.01 0.97± 0.00

ViT-small
ViT-base 0.10± 0.00 0.28± 0.01 0.97± 0.00
ViT-small 1.00± 0.00 1.00± 0.00 1.00± 0.00

Se
ed A

bs
ol

ut
e ViT-base

ViT-base 1.00± 0.00 1.00± 0.00 1.00± 0.00
ViT-small - - -

ViT-small
ViT-base - - -
ViT-small 1.00± 0.00 1.00± 0.00 1.00± 0.00

R
el

at
iv

e ViT-base
ViT-base 1.00± 0.00 1.00± 0.00 1.00± 0.00
ViT-small 0.03± 0.00 0.03± 0.01 0.97± 0.00

ViT-small
ViT-base 0.03± 0.00 0.04± 0.01 0.96± 0.00
ViT-small 1.00± 0.00 1.00± 0.00 1.00± 0.00

A
O A

bs
ol

ut
e ViT-base

ViT-base 1.00± 0.00 1.00± 0.00 1.00± 0.00
ViT-small - - -

ViT-small
ViT-base - - -
ViT-small 1.00± 0.00 1.00± 0.00 1.00± 0.00

R
el

at
iv

e ViT-base
ViT-base 1.00± 0.00 1.00± 0.00 1.00± 0.00
ViT-small 0.10± 0.01 0.23± 0.03 0.97± 0.00

ViT-small
ViT-base 0.10± 0.00 0.28± 0.01 0.97± 0.00
ViT-small 1.00± 0.00 1.00± 0.00 1.00± 0.00
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