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Abstract

We find that the cross-entropy loss curves of neural language models empirically
adhere to a scaling law with learning rate (LR) annealing over training steps:
L(s) = L0+A ·S−α

1 −C ·S2, where L(s) is the validation loss at step s, S1 is the
area under the LR curve, S2 is the LR annealing area, and L0, A, C, α are constant
parameters. This formulation accounts for two main effects: (1) power-law scaling
over data size, and (2) the additional loss reduction during LR annealing. Unlike
previous studies that only fit losses at final steps, our formulation captures the
entire training curve, allowing for parameter fitting using losses from any training
step. Applying the scaling law with LR annealing and fitting only one or two
training curves, we can accurately predict the loss at any given step under any
learning rate scheduler (LRS). This approach significantly reduces computational
cost in formulating scaling laws while providing more accuracy and expressiveness.
Extensive experiments demonstrate that our findings hold across a range of hyper-
parameters and model architectures and can extend to scaling effect of model
sizes. Moreover, our formulation provides accurate insights into empirical results
observed in numerous previous studies, particularly those focusing on LR schedule
and annealing. This work is promising to enhance the understanding of LLM
training dynamics while democratizing scaling laws, and it is helpful to guide
researchers in refining training strategies for further LLMs.

1 Introduction

In recent years, large language models (LLMs) have garnered significant academic and industrial
attention (Brown et al., 2020; Touvron et al., 2023). The scaling law suggests that the validation loss of
language models follows a power-law pattern as the size of the model and the data increase (Hestness
et al., 2017; Kaplan et al., 2020; Henighan et al., 2020). This law provides a powerful framework for
forecasting LLM performances before large-scale training by fitting losses at smaller scales (OpenAI,
2023; DeepSeek-AI, 2024; Dubey et al., 2024). Numerous studies have explored the formulation to
model the scaling effect of LLMs in various different settings (Bahri et al., 2021; Hernandez et al.,
2021; Caballero et al., 2022; Michaud et al., 2023; Muennighoff et al., 2023).

However, typical scaling law formulations focus only on the final loss at the end of training (Hoffmann
et al., 2022). Specifically, previous approaches generally rely on a set of training runs and fit the
scaling law curve solely on the final loss from each run, while ignoring middle losses during training
which do not follow traditional scaling laws. This approach underutilizes the training compute and
fails to capture the training dynamics within each run. Further, the application of scaling laws in
LLM developments is limited since the loss curve through the whole training process is not modeled.
An expressive formulation that models full loss curves enables prediction of future training dynamics
and also offers insights on the learning process of LLMs.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Step

2

1

0

Le
ar

ni
ng

 R
at

e 
×1

0
4

S1 (Forward Area)

S2 (Annealing Area)

16

15

14

13

12

11

10

9

8

7

6

5

4
3
2

...

...

Figure 1: Visualization of S1 and S2 at the 20-th step of a cosine LR scheduler. S1 is the forward
area, i.e., sum of red grid areas; S2 is the decayed annealing area, i.e., weighted sum of blue grid
areas, where lighter shades indicate smaller weights. Both S1 and S2 contribute to loss reduction,
and balancing their values is crucial for achieving the lowest possible final loss.

In this study, we discover a scaling law that models the full loss curve within a complete LLM training
run. Specifically, we dive deeper into the training dynamics during LR annealing, and incorporate a
LR annealing factor into the traditional scaling law formula to formulate the process. This design is
motivated by the observed correlation between LRS and loss curves, where loss gradually decreases
as we consume more training steps (proportional with data amount or number of tokens) and then
sharply declines when the LR undergoes significant annealing (Loshchilov & Hutter, 2016; Smith
et al., 2018; Ibrahim et al., 2024; Hu et al., 2024). We discover that the validation loss L(s) at step s
is determined by two main factors: the forward area S1 under the LR curve and the degree of LR
annealing S2:

L(s) = L0 +A · S−α
1 − C · S2,

S1 =

s∑
i=1

ηi, S2 =

s∑
i=1

i∑
k=1

(ηk−1 − ηk) · λi−k,
(1)

where ηi is the learning rate at step i, and λ is a hyper-parameter representing the decay factor for LR
annealing momentum (see Sec. 3 in detail), which typically ranges from 0.99 to 0.999. L0, A, C, α
are undetermined positive constants. S1 is also known as the summed LR (Kaplan et al., 2020), and
S2 represents the LR annealing area. A visualization of S1 and S2 is provided as Fig. 1.

Eq. 1 describes how loss changes for each step in a full loss curve during training. In Eq. 1, the
term L0 +A · S−α

1 represents a rectified scaling law that captures the expected loss decreases as a
power-law function of the number of training steps. The new term −C · S2 accounts for the further
loss drop due to learning rate annealing. Remarkably, this simple formulation accurately describes
the validation loss at any training step across various LRS and even allows us to predict the loss curve
for unseen LRS. For example, we can fit Eq. 1 to the full loss curve of constant and cosine LRS with
20K total steps (Fig. 2), and then predict the full loss curve for various unseen LRS with longer total
steps (e.g. 60K) (Fig. 3).

We validate our proposed equation through extensive experiments and find that: (1) Our formulation
performs consistently well across various hyper-parameters and model architectures; (2) Eq. 1 can
be extended to incorporate other scaling factors, such as model sizes; (3) Our proposed equation
accurately fits the loss curves of open-sourced models; (4) Our formulation can be used to verify and
explain numerous previous findings on LR annealing and scheduling.

In Sec. 3, we derive the scaling law formulation with LR annealing and elucidate the potential theory
underpinning our formulation. Extensive experiments are conducted to validate the formulation. In
Sec. 4, we apply our formulation to verify and explain the empirical results from various previous
studies. Our approach offers theoretical insights into the crux of loss drop, LR schedule, and LR
annealing, enabling LLM participants to better understand training dynamics of LLM and select
optimal training recipes in advance. In Sec. 5, we compare our approach to typical scaling law
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(a) LR curves.
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(b) Loss curves.
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(c) Zoomed-in view.

Figure 2: Using Eq. 1 to fit full loss curves yield by constant and cosine LRS. Total steps = 20K,
ηmax = 2× 10−4, ηmin = 0. The fitted equation is L(s) = 2.628 + 0.429 · S−0.550

1 − 0.411 · S2.
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(a) Full loss curve prediction of the cosine LRS (60K steps, ηmin = 0.1 · ηmax).
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(b) Full loss curve prediction of the multi-step cosine LRS (80% + 10% + 10%) (DeepSeek-AI, 2024).
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(c) Full Loss curve prediction of the WSD LRS (20% cosine annealing to ηmin = 0) (Hu et al., 2024).
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(d) Full Loss curve prediction of the Cyclic LRS (Smith, 2017).

Figure 3: Using the fitted equation from Fig. 2 to predict full loss curves for unseen LRS with 60K
total steps. The left, middle, and right columns present the LR curve, the loss curve, and a zoomed-in
view of loss curve, respectively. The red rectangle means the zoomed-in zone. Warmup steps (500)
are not shown in this figure. The fitted equation accurately predicts each loss curve, particularly for
capturing the trend of loss changes as the LR varies. Notable, all LRS and loss curves shown here
were unseen during the fitting in Fig. 2. The mean prediction errors across different LRS is as
low as ∼ 0.2%.
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formula, such as the Chinchilla scaling law (Hoffmann et al., 2022). We show that our formulation is
more general and requires significantly less compute to fit, which democratizes the development of
LLMs and scaling laws.

2 Preliminary

Scaling Laws. Cross-entropy loss of language models on the validation set is a reliable indicator
of LLMs’ performance on downstream tasks (Caballero et al., 2022; Du et al., 2024). Kaplan et al.
(2020) empirically discovered a power-law relationship between validation loss L and three factors:
model size N , dataset size D, and training compute. As an application of scaling law, Hoffmann et al.
(2022) developed Chinchilla, a compute-optimal LLM, by balancing model size and dataset size.
They used a simplified and intuitive scaling law equation: L(D,N) = L0 + A ·D−α + B ·N−β ,
where L0, A, B, α, β are positive constants. Traditional scaling law formulations fit only the loss at
the final training step, while ignoring losses from other steps. Collecting a new loss value of data size
requires launching a another training run with the same LRS, which is resource-intensive.

Learning Rate Annealing. Learning rate annealing is a widely-used technique in training neural
networks, where the learning rate is progressively reduced from a maximum to a minimum value
following a pre-defined LRS. Various LRS schemes have been proposed to improve the performance
and stability of model training (Loshchilov & Hutter, 2016). For example, the popular cosine LRS
reduces the LR in a cosine-like pattern over full training steps. WSD LRS (Hu et al., 2024) keeps a
constant LR for the majority of training, and applies annealing only in the final (e.g. 10% ∼ 20%)
steps. In LLM training, it has been widely observed that a more pronounced decrease in LR often
results in a more precipitous drop in the validation loss.

3 Empirical Observations and Experiments

In this section, we elaborate the origin, the intuition, and the experimental basis behind Eq. 1. We
then validate our formula through extensive experiments.

3.1 Similarity between LR, Gradient Norm, and Loss
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Figure 4: The shapes of LR (top), gradient norm
(middle), and validation loss (bottom) curves ex-
hibit high similarity across various LRS (labeled
as different colors).

The first key observation is that the shapes of
LR curve, gradient norm curve, and validation
loss curve are quite similar across various LRS
when training LLMs (Fig. 4). This suggests an
implicit connection between learning rate and
loss, where gradient norm could be the bridge.

Scaling Laws for Constant LRS. A constant
LRS is a special LRS, where every training
step can be viewed as an endpoint of the LRS.
Notably, the Chinchilla scaling law (Hoffmann
et al., 2022) exactly fits losses of last steps, i.e.,
LRS endpoints. Therefore, it is expected that the
loss of all steps under a constant LRS adheres
to the Chinchilla scaling law, i.e., a power-law
over training step s.

Extra Loss Changes in LR Annealing. Un-
like a constant LRS, LR annealing or re-warmup
brings significant local changes in the loss (see Fig. 4), causing the full loss curve to deviate from the
power-law formulation that considers only the training steps s. We hypothesis that such loss changes
can be captured by an additional LR (η) related term, i.e.,

L(s) = L0 +A · s−α−f(η), (2)
where the first two terms follow traditional scaling laws, while the last term denotes the extra loss
change brought by LR annealing. Recall the similarity between LR and loss curves, we can form an
initial guess for f(η) as f(η) = C · η, where C is a positive constant.
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Figure 5: The delay phenomenon between the LR and validation loss curves, suggesting that LR
annealing (re-warmup) has momentum.

Training Discount in Annealing. The form of Eq. 2 is still imperfect. Note that the gradient
norm ∥g∥ decreases almost proportionally with LR during the annealing process (shown in Fig. 4).
Thus, the amount of parameter movement (approximately η · ∥g∥ per step) in the LR annealing stage
declines at an almost quadratic rate compared to stages before annealing. As the parameter movement
become smaller, the change in loss also slows down accordingly. Therefore, the loss drop brought by
the power law term (i.e., the first two terms in Eq. 2) should also diminish during LR annealing. This
consideration leads to an improved form:

L(s) = L0 +A · S−α
1 −f(η), S1 =

s∑
i=1

ηi, (3)

where S1 is the forward area, i.e., the area under the LR curve (as visualized in Fig. 1), which could
be approximately interpreted as the total amount of parameter updates.

3.2 LR Annealing Momentum

Another key observation is that LR annealing has momentum. To refine the formulation of f(η),
we design a special LRS where the LR decreases linearly from ηmax to ηmin and then increases.
The increasing stage always has a fixed slope, reaching the maximum value in 5K steps, while the
slope of the decreasing stage is varied, with durations of 0.1K, 0.5K, 1K, and 2K. Symmetrically, we
design another LRS where the LR increases linearly from ηmin to ηmax and then decreases. Fig. 5
shows the corresponding LR and loss curves. We observe a delay phenomenon between the LR
and the validation loss. Firstly, the turning point of the validation loss curve consistently lags behind
the turning point of the LR curve, indicating that the validation loss continues along its previous
trajectory for some steps even after the LR changes direction. Secondly, the steeper the slope of the
LR annealing (or re-warmup), the more pronounced the delay phenomenon becomes. Thirdly, given
the same LR slope, the left figure (where LR decreases then increases) consistently shows a longer
delay compared to the right figure (where LR increases then decreases).

Interestingly, this phenomenon closely resembles the physical experiment of a small ball rolling down
a slope. The steeper the slope, the faster the ball accelerates. When the ball lands, the accumulated
momentum causes the ball to slide further. Inspired by this delay phenomenon, we hypothesize that
f(η), the loss reduction induced by LR annealing, has cumulative historical formation so that the
past change of LR will affect the following loss curve for a few steps. In summary, learning rate
annealing exhibits momentum. To capture this, we define f(η) = C · S2, where S2 is

mi = λ ·mi−1 + (ηi−1 − ηi), S2 =

s∑
i=1

mi · ηϵi , (4)

where mi is the LR annealing momentum at step i (m1 = 0), and ∆η = ηi−1 − ηi denotes the LR
annealing amount at step i. λ is the decay factor that signifies how much historical information is
retained. We find that λ values between 0.99 and 0.999 generally works well. In contrast, λ = 0
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implies no momentum effect, reducing f(η) to C · ηs, which degenerate to the initial form mentioned
above. Note that S2 applies not only to LR annealing (S2 > 0), but also to LR re-warmup (S2 < 0).
This means that our equation is applicable to scenarios like continual pre-training, where LR re-
warmup plays an important role in improving outcomes. In practical scenarios, we find that it is often
not necessary to carry the stride term ηϵi in S2 because ϵ can be very small in most cases. Therefore,

we can simplify to S2 =
s∑

i=1

mi =
s∑

i=1

i∑
k=1

(ηk−1 − ηk) · λi−k. See Appendix I.3 and I.4 for more

explanations. The simplified form also presents an interesting definition based on visualization. As
shown in Fig. 1, S2 could be converted from S1 by LR annealing.

3.3 Final Formulation

We formally present our formulation in this section.

Scaling Law with LR Annealing. Given the same training and validation dataset, the same
model size, the same training hyper-parameters such as warmup steps, max learning rate ηmax

and batch size, the language modeling loss at training step s empirically follows the equation
L(s) = L0 + A · S−α

1 − C · S2, where S1 and S2 are defined in Eq. 1. L0, A, C, α are positive
constants. Note that the equation does not require the given max learning rate to be optimal.

Our formulation describes the loss of each training step across different LRS. It allows fitting based
on a simpler LRS with shorter training steps and enables the prediction of validation losses for more
complex LRS with longer training steps. Notably, loss curves with different max learning rates have
different values of L0, A, C, α, and our scaling law does not fit divergent and collapsed loss curves
(e.g., overly large LR). We also discuss some possible corner cases (i.e., η = 0) in Appendix I.3.

Loss Surface as a Slide. To better understand our formulation, we view the loss surface of language
models as a slide in Fig. 6. The optimization process can be seen as sliding down the slide according
to the power-law scaling (orange line), while oscillating on the inner wall (blue dashed line). When
the LR anneals (red line), the amplitude of the oscillation decreases, resulting in a reduction in loss.
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Annealing LR

Figure 6: Loss surface of language models
as a slide after simplification. Optimization
direction could be decomposed into two direc-
tions: power-law scaling direction (S1, slid-
ing down) and annealing direction (S2, inner
height of the slide).

Balance between S1 and S2. Note that in Eq. 1,
∂L
∂S1

< 0 and ∂L
∂S2

< 0 always hold, indicating that
increases in both S1 and S2 help to reduce the loss.
However, as shown intuitively in Fig. 1, there exists
delicate balance between S1 and S2. When LR begins
to anneal and S2 starts to increase, the forward area
S1 of subsequent steps starts to diminish instead. Our
equation aptly describes this delicate balance. In
Sec. 4, we elaborate this topic in detail.

3.4 Experiments

LR Warmup. LR warmup is important for training
LLMs. During the warmup stage, neural networks
are prone to random optimization, resulting in un-
predictable outcomes (Hestness et al., 2017). Var-
ious studies, along with our own pilot experiments
(Appendix B), show that LR warmup significantly
accelerates model convergence. High gradient norms
are usually observed during the LR warmup stage,
especially in the initial steps of training (see Fig. 4).
This indicates that model parameters undergo sub-
stantial updates during this stage. Therefore, in all
our experiments, we linearly warmup LR to reach ηmax and compute S1 and S2 assuming a constant
LR value ηmax in the warmup stage.

Experimental Setups and Fitting Details. We use standard experimental setups for LLM pre-
training. To verify the robustness of our formulation across different experimental settings, we have
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Figure 7: The loss drop brought by LR annealing (left) and the N -extended full loss curve fitting and
prediction (right).

five distinct experimental setups (see Appendix D). We adopt λ = 0.999 in all our experiments.
We follow the fitting approach of Hoffmann et al. (2022) to obtain parameters in our equation (see
Appendix C).

Fitting and Prediction Results. We fit Eq. 1 on the loss curves under constant and cosine LRS
with 20K total steps (see Fig. 2), and then predict the full loss curves under several unseen LRS
with 60K total steps (see Fig. 3). The results show an almost perfect fit, achieving a coefficient of
determination (R2) greater than 0.999. This underscores the robust capability of our equation to
accurately fit loss curves across diverse LRS using a single parameter tuple.

The prediction results in Fig. 3 indicate that our formulation is broadly applicable and generalizes
robustly across four unseen LRS, with a mean prediction error as low as 0.2%. Moreover, our
equation can accurately predict losses even for complex LRS that include multiple LR re-warmup
stages (Fig. 3d), despite that the loss curves used for fitting do not contain any LR re-warmup stages.

Extensive Experiments on Different Setups. To demonstrate the broad applicability of our
proposed equation, we conduct additional fitting and prediction experiments using various setups.
(1) We use an alternative set of training hyper-parameters (Appendix E.1); (2) We test our equation
on the Mixture of Experts (MoE) architecture (Appendix E.2); (3) We apply our equation to predict
loss curves for a much longer training run involving a 1.7B parameter model trained on 1.4T tokens
(Appendix E.3). (4) We fit the loss curves of open-sourced models, including BLOOM-176B trained
on 300B tokens (BigScience, 2022) and OLMo-1B trained on 2T tokens (Groeneveld et al., 2024)
(Appendix E.4). All experiments produce excellent results, indicating that our equation is effective
across diverse experimental setups, including different training hyper-parameters, architecture, model
sizes, and dataset scales. We also present the ablation studies on S1 and S2 in Appendix E.5, which
shows each component in our formulation is important and indispensable.

3.5 Extension to Model Size Scaling

Loss Drop During Annealing Scales with Model Size N . We explore the effect of model size N
on the loss drop during the annealing stage. Specifically, we compare the final losses obtained with a
constant LRS and a WSD LRS (10% cosine annealing to ηmin = 0) to estimate the loss drop due to
LR annealing. We conduct this experiment on different total steps and different model sizes. The
experimental results are shown in Fig. 7a. It suggest that the loss drop from LR annealing scales with
both annealing steps and model sizes. This implies that the annealing area S2 in our equation should
also increase as the model size N increases. We suppose there is a simple relationship of S2 ∝ Nγ

where γ is a positive constant.
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Model Size Scaling. Building on the experiments and analysis above, we extend our proposed
Eq. 1 to incorporate model size scaling, based on traditional scaling laws:

L(s,N) = L0 +A · S−α
1 +B ·N−β − C · S2 ·Nγ , (5)

where N is the number of non-embedding model parameters, and B, β, γ are constants related to N .
We realize S2 ∝ Nγ via a multiplier Nγ to the original annealing term −C · S2.

Fitting and Prediction with Model Size. We validate Eq. 5 by fitting the full loss curves of models
with varying sizes. We then apply the obtained equation to predict full loss curve on the unseen
largest model size. Results in Fig. 7b show an almost perfect fit (R2 > 0.998) and prediction for
entire training dynamics of larger-scale models. This indicates the effectiveness and robustness of
our proposed N -extended equation. Additional N -extended experiments with other setups further
confirm the robustness of our formulation (see detail in Appendix E.6).

4 Application

We apply our proposed formulation to validate and provide an accurate explanation for existing
experimental findings on the training dynamics of LLMs. These key insights also help select critical
LRS before starting model training. An interesting summary is that

The art of learning rate schedule lies in the delicate balancing act between forward
area and annealing area.

Determining Parameters in Cosine LRS Many papers have found that in LLM pre-training using
cosine LRS, setting the cosine cycle length T as the total steps S, and setting min LR as nearly
0 (rather than 10% max LR) can lead to the optimal loss (Hoffmann et al., 2022; Hu et al., 2024;
Hägele et al., 2024; Parmar et al., 2024). It becomes quite easy to determine parameters via our
proposed scaling law. For example, in our experimental settings, the predicted loss curve with T = S
and a minimum LR of 0 indeed achieves the optimal loss in the final step, shown in Fig. 20 in
Appendix H. Moreover, our equation gives a quite intuitive explanation: setting T > S leads to
incomplete annealing, while T < S leads to a small forward area S1 due to early annealing. Thus,
the optimal configuration is to set T equal to S. Also, setting the minimum LR to 0 maximizes the
annealing amount, thereby increasing the annealing area S2, which facilitates lower final loss.
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Figure 8: Illustration of the predicted loss in rela-
tion to the ratio of annealing steps in WSD LRS
(cosine annealing), presenting parabola-like curves,
with a distinct optimal loss.

Why Is WSD LRS Better than Cosine
LRS? Recent studies have shown that WSD
LRS (Hu et al., 2024) and multi-step cosine
LRS (DeepSeek-AI, 2024) result in lower loss
compared to the traditional cosine LRS. Our
experiments also support this finding (refer to
the ground-truth loss in Fig. 3a, 3b, 3c). We
validate and elucidate this finding using our pro-
posed equation. Fig. 22 in Appendix H shows
the learning rate curve (left) and the predicted
loss drop (right) for different LRS. The results
suggest that for WSD and multi-step cosine LRS,
the negative S2-item (−C · S2) is slightly larger
than that of the cosine LRS, whereas the S1-
item (A · S−α

1 ) is significantly lower. Specif-
ically, both the WSD LRS and multi-step co-
sine LRS unintentionally employ strategies that
marginally reduce S2 but substantially increase
S1, leading to an overall decrease in validation
loss.

Optimal Annealing Ratio of WSD LRS In
the case of WSD LRS, it is crucial to ascertain the optimal annealing ratio for training steps. Hägele
et al. (2024) found that there is an optimal annealing ratio for WSD LRS. This phenomenon can
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be further elucidated through our proposed equation. Fig. 8 (and Fig. 21) depicts the final loss
predicted by our equation for various annealing ratios and total training steps. The predictions form
parabola-like curves, and align well with the actual experimental results reported in previous studies.
This suggests that a moderate annealing ratio, typically around 10% to 20%, is optimal, as it well
balances S1 and S2, thus minimizing the overall validation loss. Moreover, our equation can directly
predict the optimal annealing ratio for different total steps without large-scale experiments, which
saves a lot of resources.

Many Other Takeaways Moreover, we use our equation to verify and explain more phenomena
as follows: (1) Appendix H.1: An empirical reason of loss dropping more sharply when LR an-
neals (Loshchilov & Hutter, 2016; Ibrahim et al., 2024; DeepSeek-AI, 2024). (2) Appendix H.2: the
comparison between constant and cosine LRS, aligned with previous works (Hu et al., 2024). (3)
Appendix H.3: how to choose the optimal annealing function in WSD LRS, aligned with previous
works (Hägele et al., 2024). (4) Appendix H.4 and H.5: how to re-warmup (including re-warmup
peak LR and steps) in continual pre-training, aligned with previous works (Gupta et al., 2023). Given
the instances above, we believe that our equation can help analyze and select more training recipes in
specific scenarios.

5 Comparison with Chinchilla Scaling Law

5.1 Reduction to Chinchilla Scaling Law

Our scaling law can predict the full loss curve across various LRS. In this section, we show that
our equation is not in contradiction with traditional scaling laws and is a generalized form of the
Chinchilla scaling law (Hoffmann et al., 2022). Specifically, all the final loss values for different total
training steps following our equation should also follow a power-law relationship. We prove this by
dividing two conditions: (1) constant LRS, and (2) other LRS.

Constant LRS. In the case of a constant LRS, the annealing area S2 is always zero and the forward
area S1 = ηmax · s, where s is the step, and ηmax is the constant maximal LR. Thus, the whole
train loss curve becomes: L(s) = L0 + (A · η−α

max) · s−α = L0 + A′ · s−α, which aligns with the
Chinchilla scaling law equation.

Table 1: Mean and std of R2 for parameter fits.

LRS mean(R2) ↑ std(R2) ↓ Huber Loss ↓
Cosine 0.972 0.056 0.00017
WSD 0.979 0.053 0.00013

Other LRS. For non-constant LRS, we use a sta-
tistical approach to show that our equation can be
reduced to the Chinchilla scaling law. Specifically,
we verify whether the Chinchilla scaling law ade-
quately fits the endpoints of loss curves predicted
by our equation. The parameter tuple of our equa-
tion is (L0, A,C, α). We randomly sample differ-
ent parameter tuples (detailed in Appendix F.1).

Each parameter tuple represents a synthetic fitting result corresponding to a distinct set of experimental
setups (e.g., dataset, model size, etc.). For each sampled parameter tuple, we apply our equation
to predict the final loss for different total training steps with both cosine and WSD LRS, and then
employ the predicted losses to fit the Chinchilla scaling law. We calculate the mean and standard
deviation of R2 values, and huber loss for each fit. The results in Table 1 demonstrate that Chinchilla
scaling law fits well on the data predicted by our scaling law equation. Thus, our equation can be
considered a generalization that can be reduced to the Chinchilla scaling law.

5.2 Scaling Laws Democratization

Our scaling law equation allows us to utilize all loss values from a full loss curve during training, while
traditional scaling laws can only collect a single data point from the full loss curve. This feature allows
us to fit scaling laws with much less cost. For a direct comparison, we compare the computational
efficiency of our approach and the Chinchilla scaling law (Hoffmann et al., 2022). Specifically, we
assume to collect 100 data points for parameter fitting, and estimate the computational costs needed
to fit the respective scaling law equations under different LRS configurations (see Table 2). More
details can be found in Appendix F.2. The results indicate that our proposed equation uses less than
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Table 2: The comparison of computational cost for fitting different scaling law equations.
Formulation LRS Computational Cost Applicable to Other LRS?

Chinchilla Cosine 100% No
Chinchilla WSD (20%) 21.6% No
Chinchilla WSD (10%) 11.8% No

Ours Any <1.0% Yes

1% of the computational cost required by the Chinchilla scaling law. Further, our scaling law with
LR annealing, can be universally applied to predict loss curves for unseen LRS, thus conserving
even more computational resources. This approach significantly democratizes the study of scaling
laws in LLM pre-training, paving the way for a more environmentally friendly and carbon-efficient
methodology.

6 Discussion

Firstly, we analyze the impact of the decay factor λ of our equation in Appendix I.1, and it suggests
that selecting a proper decay factor is important for determining the balance point between S1 and S2;
Secondly, we analyze the root reasons of the delay phenomenon mentioned in Sec. 3 in Appendix I.2.
It suggests that neither the Adam optimizer (Kingma & Ba, 2015) nor S1 are the root reasons and this
can be an important future work; Thirdly, we discuss potential variations of our proposed equation
(e.g. η = 0 case and L ∝ Sζ

2 variant), and investigate other possible scaling law formats with LR
annealing in Appendix I.3 and I.4. The results validate the superiority of our proposed formula.

As for theoretical justification, we acknowledge that our scaling law is derived primarily from
empirical observations rather than rigorous mathematical proofs. While theoretical analysis would
strengthen our claims, we note that such analysis faces significant challenges in real-world LLM
training scenarios. The complexity of modern optimization dynamics—involving adaptive learning
rates, momentum, batch normalization, and high-dimensional non-convex landscapes—makes closed-
form theoretical analysis extremely difficult.

It is worth noting that nearly all influential scaling laws in the field, including the seminal OpenAI
scaling law Kaplan et al. (2020) and Chinchilla scaling law Hoffmann et al. (2022), are fundamentally
empirical in nature. Despite the absence of formal proofs, our proposed scaling law demonstrates
remarkable consistency across: (1) Multiple model architectures (125M to 1.2B parameters, dense
and MoE models); (2) Various learning rate schedules (constant, cosine, WSD, etc.); (3) Different
training configurations (batch sizes, datasets, training horizons, sequence length, etc.); (4) Validation
on open-source models (BLOOM and OLMO). Our prediction errors are consistently below 0.35%.
This extensive empirical validation, combined with the interpretability of our formulation (where
S1 captures power-law scaling and S2 models annealing momentum), provides strong evidence for
the reliability of our approach. We believe that developing rigorous theoretical foundations for such
scaling laws represents an important direction for future research.

7 Conclusion

In conclusion, we discover that the loss curves of neural language models empirically adhere to a
scaling law with LR annealing over training steps s: L(s) = L0+A ·S−α

1 −C ·S2. This equation can
accurately predict full loss curves across unseen LR schedules. We present the underlying intuition
and theory for deriving our equation and demonstrate that our approach can be extended to capture
the scaling effect of model sizes. Extensive experiments demonstrate that our proposed scaling law
has good accuracy, scalability, and holds under various experimental setups. It also offers accurate
insights to the training dynamics of LLMs, and explains numerous phenomena observed in previous
studies. We believe that the scaling law with LR annealing is promising to reshape the understanding
of researchers for LLM training and scaling laws.
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butions and scope.

Guidelines:
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the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to
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used reliably to provide closed captions for online lectures because it fails to handle
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will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Section 3.4.
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of the paper (regardless of whether the code and data are provided or not)?
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For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our experiments are conducted under the standard and popular framework,
Megatron, which is a fully open-sourced and reproduciable pre-training library. The primary
training dataset, Fineweb, is also open-sourced and reproduciable.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We present the experimental settings and details in Table 3 of Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report all the R2 of our fitting results and the prediction errors of our
prediction results. Please see the scaling law fitting/prediction figures of this paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We present the experiments compute resources in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the social impact in the Appendix A.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not involve such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The methods in this paper do not rely on LLMs; instead, we focus on training
language models from scratch and investigating scaling laws.

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

A Limitation and Social Impact

One main limitation of our work is that our scaling law is primarily based on empirical analyses and
experimental verifications. We acknowledge that there is a lack of rigorous theoretical analysis and
proof because it is difficult to build theoretical deduction in a non-toy environment with thousands
of LLM training factors. However, based on our extensive experimental verification, our scaling
law can reasonably reflect the learning dynamics of the pre-training process, and extrapolate to
unseen learning rate schedules and longer training steps with much fewer computational cost. Other
limitations lie in that we only conduct experiments on text modality and we do not confirm there
would be similar laws for other modalities like vision, audio, etc.

This study presents technical contributions to the field of large language models and scaling laws.
While acknowledging that most research may have broader societal impacts, this work does not
involve specific social impact that warrant particular discussion in this context.

B Impact of Warmup Steps

We conduct experiments on the impact of learning rate warmup steps. As shown in Fig. 9, we find
that 500 warmup steps can speed up convergence, and get the lowest validation loss compared to 100
or no LR warmup. The finding is aligned with previous works Liu et al. (2020); Kosson et al. (2024).
The experimental results also guide us to choose 500 warmup steps in the main experiments of this
work 1.

C Fitting Details

Given a learning rate scheduler, we can easily compute out S1 and S2 of each step in advance.
To estimate (L0, A,C, α), we adopt a similar fitting method as Chinchilla scaling law (Hoffmann
et al., 2022). Specifically, we minimize the Huber loss (Huber, 1964) between the predicted and the
observed log loss using the L-BFGS algorithm (Nocedal, 1980):

min
L0,A,C,α

∑
Step i

Huberδ

(
log L̂(i)− logL(i)

)
(6)

We implement this by the utilization of minimize in scipy library. Huber loss is to enhance to
robustness of the fitting results and we set δ of Huber loss as 1.0× 10−3. We mitigate the potential
issue of local minima of fitting by choosing the optimal fit from a range of initial conditions. Note that
in practice, we can also fit the full loss curves using multiple LRS with a single tuple of (L0, A,C, α).
In this situation, we sum the Huber losses in Eq. 6 of all fitted LRS.

1Note LR warmup in training from scratch is different from LR re-warmup in continual training, where we
do not regard re-warmup steps as a hyper-parameter and will show how to apply our equation to find optimal
re-warmup recipes in Appenidx. H.4 and H.5.
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Figure 9: The comparison of the true loss curve of different warmup steps. We experiment on cosine
LRS with 20K total steps.

D Experimental Setups

In this work, we use multiple sets of experimental setups, in order to validate that our equation can
work across different experimental setups. For clarification, we present the experimental setup list as
shown in Table 3. In our most experiments, we use the main setting A. Other than the five settings,
we also successfully fit our equation on BLOOM’s and OLMo’s loss curves, and their experimental
settings are totally different. Refer to their papers for the experimental settings (BigScience, 2022;
Groeneveld et al., 2024).

We use the standard and popular pre-training library, Megatron,(https://github.com/NVIDIA/
Megatron-LM) as our training framework. For compute resource, we use a GPU cluster of A100.
The experiments are primarily conducted using 16× 8 GPU cards.

E Our Scaling Law on Extensive Experiments Setups

E.1 Another Set of Training Hyper-parameters

Fig. 2 and Fig. 3 show that our equation can work very well under our main experimental setup.
For proving that our scaling law with LR annealing can apply to different (but given) experimental
settings, we change the setting from A to B (refer to Table 3) and observe whether our equation
can still work or not. The fitting results are shown in Fig. 10. The prediction results are shown in
Fig. 11. The results suggest that our scaling law with LR annealing can still work well across different
experimental setups.

E.2 Experiments on Another Architecture: MoE

Fig. 2 and Fig. 3 show that our equation can work very well on the dense Llama-like architec-
ture (Vaswani et al., 2017; Touvron et al., 2023). We prove that our scaling law can also apply to
different model architectures and we replace Dense model with Mixture of Experts (MoE) architec-
ture. We add widely-used auxiliary loss to do load balancing among experts (Fedus et al., 2021). The
experimental setting is shown as Setting D in Table 3. Moreover, we change the LRS and total steps
to 60K WSD with 10K annealing steps in fitting, testing whether our scaling law is effective under
various circumstances. The fitting results are shown in Fig. 12 while the prediction results are shown
in Fig. 13. The results suggest that our scaling law can with LR annealing can still work well on MoE
architecture.
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Table 3: Experimental settings adopted in this work. Model size denotes the number of non-
embedding paramters. Our datasets include Fineweb (Penedo et al., 2024) and RedPajama-CC (Com-
puter, 2023). * denotes pre-training multilingual dataset including mixture of sources such as common
crawls, books, arxiv, code, etc. We use AdamW Optimizer (Kingma & Ba, 2015; Loshchilov &
Hutter, 2017), denoted as AO. Most experiments adopt Llama-3’s tokenizer (Dubey et al., 2024). Ext
Llama-2’s is extended from Llama-2’s tokenizer (Touvron et al., 2023) by adding vocabulary.

Setups Setting A (mainly) Setting B Setting C
Model Size 594M 293M multiple
Train Dataset Fineweb Finweb Mixture-train*
Val Dataset RedPajama-CC RedPajama-CC Mixture-valid*
Total Steps 60K 120K 143K
Maximal LR 2× 10−4 2× 10−4 1.381× 10−3

Warmup Steps 500 100 500
Batch Size (tokens) 4M 2M 4M
Sequence Length 4096 4096 4096
Tokenizer Llama-3’s Llama-3’s Ext Llama-2’s
β1,β2 in AO 0.9, 0.95 0.9, 0.95 0.9, 0.95
Weight Decay 0.1 0.1 0.1
Gradient Clip 1.0 1.0 1.0

Setups Setting D (MoE) Setting E (1.4T tokens)
Model Size 8× 106M 1704M
Train Dataset Fineweb Mixture-train*
Val Dataset RedPajama-CC Mixture-valid*
Total Steps 60K 350K
Maximal LR 2× 10−4 6× 10−4

Warmup Steps 500 1000
Batch Size (tokens) 4M 4M
Sequence Length 4096 8192
Tokenizer Llama-3’s Llama-3’s
β1,β2 in AO 0.9, 0.95 0.9, 0.95
Top-k Experts 2 -
Auxiliary Loss 0.01 -
Weight Decay 0.1 0.1
Gradient Clip 1.0 1.0
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(a) Learning rate.
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(b) Zoomed-out loss fitting.

20000 22000 24000 26000 28000 30000
Step

2.95

2.96

2.97

2.98

2.99

3.00

3.01

3.02

3.03

3.04

Lo
ss

Constant LRS Ground Truth Loss
Prediction Curve
Cosine LRS Ground Truth Loss
Prediction Curve

(c) Zoomed-in loss fitting.

Figure 10: Full loss curve fitting on cosine (30K steps to ηmin = 0) and constant LRS. The
figures omit the warmup in the first 100 steps. After fitting, we get a universal loss equation
L = 2.761 + 0.517 · S−0.491

1 − 0.458 · S2. Refer to setting B in Table 3 for setups.
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(a) Full curve prediction of constant LRS.
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(b) Full curve prediction of WSD LRS (90K total steps; 10 % cosine annealing to ηmin = 0).
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(c) Full curve prediction of WSD LRS (110K total steps; 10 % cosine annealing to ηmin = 0).

Figure 11: Full loss curve prediction (120K steps) by the universal loss curve equation across various
LRS, fitted in Fig. 10. The left, the medium, and the right figures in each row are learning rate
curve, zoomed-out loss prediction, and zoomed-in loss prediction, respectively. The red rectangle
means the zoomed-in zone. The figures omit the warmup in the first 100 steps. Please note that these
are predictive results, which means that none of the points in this figure (except constant LRS) are
involved in the fitting process. The mean prediction errors across various LRS are low to ∼ 0.2%.
Refer to setting B in Table 3 for experimental setups.
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(a) Learning rate.
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(b) Zoomed-out loss fitting.
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(c) Zoomed-in loss fitting.

Figure 12: Full loss curve fitting on MoE model. After fitting, we get a universal loss equation
L = 2.801 + 0.424 · S−0.619

1 − 0.347 · S2. Refer to setting D in Table 3 for experimental setups.
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(a) Full curve prediction of multi-step cosine LRS (80% + 10% + 10%) (DeepSeek-AI, 2024)
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(b) Full curve prediction of WSD LRS (17% exponential annealing to ηmin = 0) (Hu et al., 2024).
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(c) Full curve prediction of Cyclic LRS (Smith, 2017).

Figure 13: Full loss curve prediction on MoE model by the universal loss curve equation across
various unseen LRS fitted in Fig. 12. The left, the medium, and the right figures in each row are
learning rate curve, zoomed-out loss prediction, zoomed-in loss prediction, respectively. The red
rectangle means the zoomed-in zone. The LR curve figures omit 500 warmup steps. Note that these
are all predictive results, and none of the points in the figures are involved in the fitting process. The
mean prediction errors across various LRS are low to ∼ 0.2%. Refer to setting D in Table 3 for
experimental setups.

E.3 Scaling Up: Prediction for Much Longer Steps

Our equation has proven its utility in predicting the validation loss over a significantly large number
of total steps. This scalability feature is particularly useful in handling large-scale training scenarios.

To illustrate its effectiveness, we apply our equation to predict the loss curve during the annealing
stage of the training process. The model we train is a sizable 1.7 billion parameter model, and the
training involved a tremendous number of 1,400 billion total training tokens. This is a considerable
scale that tests the practicality and effectiveness of our equation. The specific experimental setup is
Setting E, which can be found in Table 3.

The fitting and prediction results are shown in Figure 14 and Figure 15 respectively. It shows that
we successfully get to know the loss curve in the critical annealing stages after 10x longer steps in
advance, which is crucial to handle the relationship between training dynamics and training recipes.
For example, Llama-3 adopts annealing to do pre-training data selection (Dubey et al., 2024).

E.4 Open-sourced Full Loss Curves

For further verification for our proposed scaling law, we apply our equation on open-sourced language
models and the corresponding full loss curves, including BLOOM-176B (BigScience, 2022) and
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Table 4: Ablation studies on S1 and S2 in our scaling law formualtion. The prediction errors on
different LRS for each form are reported.

Scaling Law Forms Cosine Multi-step Cosine WSD Cyclic

L(s) = L0 +A · S−α
1 − C · S2 0.159% 0.176% 0.235% 0.322%

w/o S1: L(s) = L0 +A · s−α − C · S2 0.465% 0.458% 1.162% 1.139%
w/o S2: L(s) = L0 +A · S−α

1 1.261% 1.265% 1.519% 1.203%

OLMo-1B (Groeneveld et al., 2024). As shown in Fig. 16, our equation also fits very well on the
open-sourced model training curves, even when the model size scales up to 176B (e.g. BLOOM) and
token number scales up to 2000B over 740K steps (e.g. OLMo).

E.5 Ablation Studies on S1 and S2

In Sec. 3, we present the strong capability of our proposed scaling law. The formulation of our
scaling, L(s) = L0 +A · S−α

1 − C · S2, contains two key components including S1 and S2. In this
section, we conduct ablation studies on S1 and S2. Specifically, we compare the forms without S1

or S2 using setting A. For each format, we re-fit the full loss curves under 20K cosine + constant
and re-predict the full curves on longer steps under different LRS. The prediction error results are
shown as Table 4. The results indicate that the prediction error increases significantly in the absence
of either S1 or S2 and suggest that each component in our scaling law is important and indispensable.

E.6 Our N -extended Scaling Law on Another Experiments Setups

Fig. 7b show that our N -extended equation can work very well on our main experimental setup.
Similarly, for proving that our N -extended scaling law can apply to different (but given) experimental
settings, we change the setting from A to C (refer to Table 3) and observe whether our equation can
still work or not. The fitting results are shown in Fig. 17. The results suggest that our N -extended
scaling law with LR annealing can still work well across different experimental setups.

F Comparison with Chinchilla Scaling Law

F.1 Reduction to Chinchilla Scaling Law

We have proved that our scaling law can be reduced to chinchilla scaling law for constant LRS in
Sec. 5. For other learning rate schedulers, we adopt a method based on statistics to show that our
scaling law function can be reduced to the chinchilla scaling law. Specifically, we check whether
chinchilla scaling law fits well the endpoints of loss curves predicted by our scaling law. The parameter
tuple of our equation is (L0, A,C, α). We then randomly sample 1000 sets of parameter tuples in
some uniform distributions: L0 ∼ U(1, 3), A ∼ U(0.3, 0.5), C ∼ U(0.2, 0.6), α ∼ U(−0.6,−0.4).
Each parameter tuple could be seen as the fitting result of a distinct set of experimental setups 2 (e.g.
dataset, batch size, model size, etc.). For each generated parameter tuple, we apply our equation to
predict the final loss of different total training steps on two LRS including cosine and WSD (10%
annealing ratio). range from 5K steps to 60K steps. We conduct the prediction on two LRS including
cosine and WSD (10% annealing ratio). The predicted final loss points are used to fit the chinchilla
equation through minimizing the Huber loss. The fitting examples are shown in Fig. 18.

F.2 Scaling Law Computational Cost Comparison

We suppose a scenario where it requires 100 fitting points to get the parameters of scaling laws. We
assume the distance between each point as K steps. We compute the required training steps using
different approaches as follows:

2It’s worth noting that some of these sampled parameter tuples might not be reasonable or likely to happen in
real-world scenarios, but we choose to keep them nonetheless.
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(b) Zoomed-out loss fitting.
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(c) Zoomed-in loss fitting.

Figure 14: Full loss curve fitting on 30K Steps. After fitting, we get a universal loss equation
L = 2.788 + 0.906 · S−0.416

1 − 0.254 · S2. Refer to setting E in Table 3 for experimental setups.
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(b) Zoomed-out loss prediction.
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(c) Zoomed-in loss prediction.

Figure 15: Full loss curve prediction (350K steps) by the universal loss curve equation under WSD
LRS (10% cosine annealing ratio to ηmin = 0). We adopt our equation and accurately predict the
loss curve in the annealing stage after the 10x longer steps. This is meaningful to the development
for large-scale LLM pre-training. Refer to setting E in Table 3 for experimental setups.
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(a) Full loss curve fitting on BLOOM-176B.
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(b) Full loss curve fitting on OLMo-1B (2T tokens).

Figure 16: Open-sourced full loss curve fitting using our proposed equation, which shows that our
equation has strong scalability on model size and token number. We extract the curve of BLOOM
from https://huggingface.co/bigscience/bloom/tensorboard, and we choose the column
lm-loss-validation/valid/lm loss validation as validation loss. We extract the curve
of OLMo from https://wandb.ai/ai2-llm/OLMo-1B?nw=nwuserdirkgr, and we choose the
column eval/pile/CrossEntropyLoss as validation loss. Both models adopt cosine LRS.
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Figure 17: Curve fitting on cosine LRS (143K steps to ηmin = 0) of many model sizes using our
scaling law extended to model size N . Refer to setting C in Table 3 for experimental setups.
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(a) The predicted loss of different total steps with
cosine LRS and the fitted chinchilla curve.
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(b) The predicted loss of different total steps with
WSD LRS and the fitted chinchilla curve.

Figure 18: Chinchilla scaling law fits well the validation loss endpoints predicted by our formulation,
taking cosine LRS (on the left) and WSD LRS (on the right) as examples.
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(a) LR curve of WSD (20% 1-sqrt/cosine annealing).
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(b) LR curve of WSD (50% 1-sqrt/cosine annealing).

Figure 19: The learning rate curves of 20% (left) and 50% (right) annealing ratio in WSD LRS, with
cosine and 1-sqrt annealing method.

• Adopting Chinchilla scaling law, typical cosine LRS requires total steps of at least 1K +
2K + 3K + · · ·+ 100K = 5050K;

• Adopting Chinchilla scaling law, WSD LRS (notating annealing ratio as r) requires total
steps of at least (1K + 2K + 3K + · · ·+ 100K)r + 100K(1− r) = (100 + 4950r)K.

• Adopting our scaling law, all we need is only one training curve with moderate total steps
(and the number of fitting points is far more than 100), such as one curve with 50K steps 3

G WSD Scheduler and Annealing Functions

Hu et al. (2024) proposes a warmup-stable-decay (WSD) LRS including three learning rate stages,
which could help get a lower validation loss compared to the typical cosine LRS. The format is like

WSD(s) =


s

Twarmup
ηmax, s ≤ Twarmup

ηmax, Twarmup < s ≤ Tstable

ηmin + f(s) · (ηmax − ηmin), Tstable < s ≤ Ttotal

(7)

Where 0 ≤ f(s) ≤ 1 is typically a decreasing function about step s, and ηmax is the maximal
learning rate. Hägele et al. (2024) consolidates the effectiveness of WSD scheduler by many empirical
experiments. Moreover, Hägele et al. (2024) also finds that using 1-sqrt annealing and a moderate
annealing ratio (e.g. 20%) can further decrease the final loss. The 1-sqrt annealing is defined as:

f(s) = 1−
√

s− Tstable

Ttotal − Tstable
(8)

Also, Hägele et al. (2024) mentions 1-square annealing method as a baseline, which is defined as:

f(s) = 1−
(

s− Tstable

Ttotal − Tstable

)2

(9)

We draw the learning rate curve of WSD (20% and 50% 1-sqrt annealing) in Fig. 19, compared with
cosine annealing. Other than 1-sqrt annealing,

H Takeaways: Experimental Findings Verification and Explanation

H.1 It verifies and explains why loss drops more sharply when LR anneals.

We adopt our equation to help researchers understand why loss drops more sharply when LR anneals,
which has been widely observed in many previous studies. We substitute the fitted parameters (see

3The empirical rule that more fitting points always achieve better fitting results always holds true. Our
equation can also use more points and LRS for fitting, such as 30K constant + 70K cosine. Nevertheless, we
can collect far more fitting points than the typical scaling law with significantly fewer training steps.
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Figure 20: Predicted loss curves of different cycle length T and min LR in cosine LRS. The results
well align with previous studies.
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Figure 21: The relationship between predicted final loss and the forward area S1 of different total
steps. Different points denote different annealing ratios.
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(a) Learning rate curves of three types of LRS.
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(b) S1-item and negative S2-item of different LRS.

Figure 22: The comparison between S1-item and negative S2-item in different LRS.

Fig. 2) to our equation as an instance. We draw how the S1-item (A · S−α
1 ) and the negative S2-item

(−C ·S2) impacts the loss along with a WSD scheduler. Fig. 23 suggests that starting from annealing
stage, negative S2-item has a much more significant impact on the overall loss than S1-item, which
makes loss drop more sharply compared with the stable LR stage. In conclusion, LR annealing brings
out quick increase of the annealing area, resulting in a drastic decrease in validation loss.
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Figure 23: How S1-item and negative S2-item changes in a WSD scheduler. Gray area means the
amount of loss drop brought by S1 and S2 in annealing stage.

H.2 It verifies and explains the phenomenon, where constant LRS gets a lower loss than
cosine LRS if setting small total steps, and vice versa.

In the experiments, we find that if we set small total steps, the final loss of constant LRS could be
even lower than cosine LRS, and vice versa. Refer to the ground-truth loss in Fig. 2 (20K steps). To
validate this phenomenon, we use our equation to draw the prediction loss curve of 10K total steps
and 100K total steps in Fig. 24. It shows that our proposed equation can verify well that the better
LRS changes over the total steps. Moreover, Fig. 24c shows the predicted final loss of different total
steps using constant and cosine LRS. It further convincingly suggests that constant LRS indeed gets a
lower loss if setting small total steps, but the scaling slope is smaller than cosine LRS’s, resulting in
higher loss in more steps.
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(a) The predicted loss curve of 10K steps.
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(b) The predicted loss curve of 100K steps
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(c) The predicted final loss of different total steps.

Figure 24: Comparison of constant and cosine LRS in different steps.

From a more essential and comprehensive perspective, | ∂L
∂S1

| is a power-law decreasing function
while | ∂L

∂S2
| is stable over training steps. In the early stages, | ∂L

∂S1
| is large when S1 is small, thus

increasing S1 by maintaining large LR (e.g. constant LRS) in the early stages can greatly help reduce
the loss. That is, S1 plays a dominant role over S2. In the later stages, | ∂L

∂S1
| is much smaller when

S1 becomes large, thus increasing S1 in the later stages does not significantly help reduce the loss.
That is, S2 plays a dominant role over S1. At this stage, It is time to start LR annealing to increase
S2. Interestingly, this perspective aligns directly with the idea of WSD LRS (Hu et al., 2024): In the
early stages, the neural network is exploring globally and it is a suitable time to use a larger LR; In
the later stages, the neural network is exploring locally and it is a suitable time to use a smaller LR.

H.3 It verifies and explains that the optimal annealing function in WSD LRS depends on the
annealing ratio.

In the context of the WSD LRS, the selection of the annealing method in the annealing stage is also
pivotal to optimize the training process. Hägele et al. (2024) conclude that the 1-sqrt annealing (refer
to Appendix G for 1-sqrt function and curve) yields a lower final loss compared to the other annealing
methods (e.g. cosine). They claim that the conclusion holds true across different annealing ratios.

However, as we predict using our equation (Fig. 25a), the 1-sqrt annealing approach does get a lower
loss than the cosine annealing approach when using small annealing ratios (e.g. 10%), but it performs
much worse than the cosine annealing approach when using 50% annealing ratio.

To verify whether the predictions from our equation are accurate, we conduct experiments by training
models using different annealing methods and ratios within a fixed 50K total steps. As illustrated in
Fig. 25b, at a 10% annealing ratio, the 1-sqrt method outperforms the cosine method, whereas at a
50% annealing ratio, the latter method exhibits a lower final loss. The true experimental results align
quite well with our prediction, which also overturns some of the conclusions made by previous works.
We conclude that the optimal annealing function in WSD LRS depends on the annealing ratio.
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(a) The predicted loss curve of cosine and 1-sqrt an-
nealing method of different annealing ratio.
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Figure 25: The predicted (left) and true loss (right) of cosine and 1-sqrt annealing method at different
annealing ratios. Experimental results (right), aligned with our prediction (left), refute the previous
finding “the order and results of different annealing hold across settings” (Hägele et al., 2024).
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Figure 26: The predicted validation loss with different re-warmup max learning rate and re-warmup
steps in the continual pre-training process. The LRS of continual pre-training is cosine (T=100K)
and the min learning rate is 0.

Our scaling law function provides an explanatory framework for these observations. We draw the LR
curves of 1-sqrt and cosine annealing in Appendix G. At 10% annealing ratio, although the forward
area S1 of the cosine method is slightly larger than that of the 1-sqrt method, the larger annealing
area S2 of the 1-sqrt method plays a more critical role in reducing the overall final loss. However,
as the annealing ratio increases, the difference of S1 between two LRS gradually becomes larger
and larger, till breaking the delicate balance between S1 and S2 at 50% annealing ratio, resulting in
a lower final loss for the cosine method. This relationship underscores the importance of carefully
selecting the annealing strategy to optimize model training outcomes within the WSD scheduler. Still,
our equation can help predict a better annealing method without experiments, which saves a lot of
resources.

H.4 It verifies and explains that in continual pre-training, the higher max learning rate to
re-warmup, the higher the initial peak loss will be, and then the more sharply it will
decrease.

In continual pre-training (CPT), the learning rate scheduler is usually set as re-warmup to a new
max LR at the beginning. By many experiments, Gupta et al. (2023) concludes that the higher max
learning rate to re-warmup, the higher the initial peak loss will be, and then the more sharply it will
decrease.
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According to our scaling law function 4, in the re-warmup process, the annealing area S2 will reduce
to a negative value (S2 < 0) and thus the validation loss increases. The higher max LR in re-warmup,
the annealing area S2 becomes more negative and thus there would be a higher peak loss. But still,
higher max LR could make the forward area S1 grow faster and the loss decreases more sharply after
re-warmup. We use the fitted equation to predict the continual pre-training process with different
max LR as shown in Fig. 26a. The predicted loss curves reproduce a quite similar phenomenon with
previous works (Gupta et al., 2023).

There is a more profound strategy using our equation in CPT. As shown in Fig. 26a, after ensuring
total steps during CPT, we can apply our equation to predict a better max LR and scheduler to get the
lowest final loss without experiments, which saves a lot of resources.

H.5 It verifies and explains that in continual pre-training, the steps of re-warmup have little
impact on the final loss.

Meanwhile, how many steps to re-warmup is another important issue in the continual pre-training.
Gupta et al. (2023) find that the longer re-warmup steps could smooth the transition of loss curve but
the number of re-warmup steps does not significantly influence the final validation loss. We use the
fitted equation to predicted the continual pre-training dynamics with different re-warmup steps. The
results, shown in Fig. 26b, present a good alignment with previous works (Gupta et al., 2023).

Based on our theory, given the fixed max LR, when the re-warmup steps are longer, the annealing
area decreases more slowly and the loss curve rises more smoothly, but both final S1 and S2 are quite
stable across different re-warmup steps. First, the annealing area S2 of different re-warmup steps
are very close due to the same max LR and the same min LR. Besides, though different re-warmup
steps bring in temporary distinct losses, re-warmup only cover a small percentage compared with all
training steps. Thus, the forward area S1 is also close across different re-warmup steps, resulting in
the close overall loss across different steps of re-warmup.

I Discussion

I.1 The impact of Decay Factor λ
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(b) The loss curve of λ = 0.99.
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(c) The loss curve of λ = 0.999.

Figure 27: The comparison of fitting effect of different decay factor λ.

The decay factor λ in our equation plays a crucial role to indicate the information retaining degree
in LR annealing. We set λ as 0.999 in our all experiments. We explore the difference from another
decay factor λ = 0.99. We fit and get different equations for different λ. We compare them (1) on
the predicted loss curves for 1-square and 1-sqrt annealing methods, and (2) on the predicted loss
curves in different annealing ratios of WSD LRS (cosine annealing).

The results, illustrated in Fig. 27 and 28, reveal several key insights into the impact of decay factor:

Delay Steps. A larger decay factor results in longer delay steps. Comparing Fig. 27b and Fig. 27c,
λ = 0.999 introduces a more obvious delay phenomenon, which is consistent across both the 1-square

4Strictly speaking, continual pre-training process often include LR re-warmup as well as data distribution
shift. Here we primarily research on the condition where there is no distribution shift between two training stages.
The conclusions transfer across most cases because the loss change brought by LR re-warmup is significantly
larger than the loss change brought by data distribution shift (Gupta et al., 2023; Ibrahim et al., 2024).
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Figure 28: The predicted loss in different annealing ratios of WSD LRS for λ = 0.99 and λ = 0.999.

and 1-sqrt annealing methods. The root reason is simple: larger λ can retain more LR historical
momentum, causing longer delay steps after LR finish annealing.

Optimal Annealing Ratio. a larger decay factor tends to favor a higher annealing ratio. As shown
in Fig. 28, The optimal annealing ratio of λ = 0.999 is larger than that of λ = 0.99. Meanwhile,
due to the similar reason, λ = 0.999 favors 1-sqrt annealing method while λ = 0.99 favors 1-square
annealing method, as shown in Fig. 27.

Balance Point between S1 and S2. More essentially, the selection of λ decides the balance point
of S1 and S2. For example, λ = 0.999 means that, LR annealing only retain the information of
previous approximately 1

1−λ = 1000 steps, which can be seen as the window size of LR annealing
momentum. The window size could be very close to the optimal annealing steps. After reaching
window size, S2 increases very slowly, with the cost of large decrease of S1.

The analyses above highlights the importance of selecting a decay factor that aligns closely with
empirical data to ensure the accuracy of predictions. We recommend that the future developers try
different λ for their own setups 5.

I.2 Possible Root Reasons of Delay Phenomenon in Learning Rate Annealing

In Sec. 3, we discover the delay phenomenon, which proves that LR annealing has momentum. We
discuss possible root reasons of the phenomenon in this section.

Adam Optimizer? No. We notice that Adam optimizer (Kingma & Ba, 2015) also has the first-
order momentum decay factor β1 and the second-order momentum decay factor β2, which presents
the possible connection to the the delay phenomenon.

We keep β1 = 0.9, and conduct delay experiments on different β2 ∈ {0.95, 0.99, 0.999} (default:
0.95) of AdamW optimizer (Loshchilov & Hutter, 2017) to observe whether larger β2 causes a more
longer delay steps. The learning rate and ground-true loss curve are shown in Fig. 29a. It suggests that
the ground-truth loss curves of different β2 almost coincide with each other, and their delay steps are
also the same. Therefore, we believe that Adam optimizer has little to do with the delay phenomenon,
despite its momentum form seeming very related to our experiments. Speaking of which, we even
once tried to mimic the form of Adam Optimizer to describe LR annealing momentum, attempting to
discover a connection between them, but the fitting results were a mess.

5Actually, λ can be fitted as a parameter, instead of a hyper-parameter requiring manual tuning. We regard λ
as a hyper-parameter because λ = 0.999 performs well in our all experiments. Besides, fitting with λ could
bring in additional time complexity due to the recomputation of S2.
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warmup steps (and thus different S1).

Figure 29: The possible root reason analysis (left: Adam optimizer, right: S1) of delay phenomenon.

Forward Area S1? Not Really. No matter how LR changes, S1 is always increasing over steps,
resulting in consistently reducing the validation loss brought from S1. Therefore, the forward area,
S1 would lengthen delay steps in LR annealing then re-warmup, but would shorten delay steps in LR
re-warmup then annealing. The delay phenomenon is indeed related to S1.

But still, S1 is not all the reasons of delay phenomenon. We prove this by Fig. 5b, which suggests
that even though in LR re-warmup then annealing, the delay phenomenon, while not that pronounced,
still exists. Moreover, we conduct delay experiments by adjusting the slope of LR after tuning point
of LR. As shown in Fig. 29b, We find that more smooth slope of LR re-warmup, with smaller S1, but
still causes longer delay steps. Therefore, we conclude that S1 indeed influences the specific delay
length, but is not the root reason.

Other Possible Reasons? The delay phenomenon could be intuitive in some cases. For example,
suppose that learning rate decreases directly from 2e-4 to 2e-5 in one step, and maintains 2e-5. In
this case, although the loss would decrease to a lower value but the parameter changes in one step
is too small in neural networks. Given a sudden low LR, neural networks still require some steps
to gradually optimize to a local minimum, incurring delay phenomenon. But still, analysis above
still ends with a rough description, and we have not figured out the root reasons and look forward to
completing this part in future work.

I.3 Other Possible Scaling Law Formats with LR annealing

Adding a LR-weighted Coefficient to S2 (Original Version)? Imagine that when LR anneals to
nearly 0, the neural network’s parameters almost do not change and the validation loss should not
change, either. Therefore, the original version mentioned in Sec. 3, should perform better than the
simplified version. Specifically, in Eq. 1, S2 still has historical momentum even if LR is nearly 0,
making the loss continue to decrease and misalign with observed training dynamics.

The original version can cover this corner case by add a LR-weighted coefficient to S2. Specifically, S2

approaches 0 when η is close to 0, counteracting the original formulation’s tendency to overestimate
loss reduction when η ≈ 0.

The original equation for the annealing area S2 in our scaling law function is as follows:

mi = λ ·mi−1 + (ηk−1 − ηk)

=

i∑
k=1

(ηk−1 − ηk) · λi−k

S2 =

s∑
i=1

mi · ηϵi

(10)

Where the red part is the added LR-weighted coefficient and ϵ is a undetermined positive constant. ϵ
could be very small in practice.
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(c) The fitting curve of L ∝ Sζ
2 .

Figure 30: The comparison of fitting effect between L ∝ Sζ
2 with L ∝ S2.

We have tried this formulation to fit data. We find that the fitting results are quite similar and ϵ
is very close to 0, showing little use in practical effect. Hence, we adopt the original format in
our experiments. However, we still recommend future developers to try this format if using some
uncommon LRS such as random LRS and zero-padded LRS.

L ∝ Sζ
2 rather than L ∝ S2? Actually, all we know is that L and S2 have a positive correlation.

Thus L ∝ Sζ
2 rather than L ∝ S2 might be a more reasonable assumption. That is, our equation

would be changed to L(s) = L0 + A · S−α
1 − C · Sζ

2 . Theoretically, the introduction of ζ as an
additional fitting parameter is expected to provide a more nuanced control over how changes in the
learning rate annealing affect validation loss, potentially leading to improve the accuracy of our
equation.

However, the empirical results, as depicted in Fig. 30, demonstrate that the fitting improvement with
the inclusion of ζ is quite marginal when compared to the version without this parameter. This slight
enhancement does not justify the additional complexity introduced by managing negative values
of S2. Furthermore, the empirical observation that ζ tends to converge close to 1 (e.g. 1.125 in
Fig. 30c) reinforces the notion that the original formulation of the function, without the power term ζ ,
is adequately robust. This finding suggests that the direct influence of the learning rate annealing area,
as initially modeled, sufficiently captures the essential dynamics without the need for this additional
complexity. Another additional complexity lies in that Sζ

2 becomes incalculable when S2 < 0 in LR
re-warmup.

Studies of scaling laws are mostly empirically driven. Over-parameterizing the scaling law equation
essentially leads to more accurate fitting results. However, it will also complicate the final format
and hinders us to focus on major factors for the training dynamics. We choose our main format not
due to absolute prediction accuracy but to pursue the simplification (i.e., fewest extra parameters)
to model the essential training dynamics of LLMs. Notably, in our main format in Eq. 1, we only
introduce one extra parameter compared to Chinchilla scaling law, i.e., the coefficient C of the S2

term. As suggested in Sec. 3, our main scaling law format still has a strong and robust capacity across
many practical scenarios. We believe and expect that there should be a more powerful specific format
(maybe with more parameters) after this work.

I.4 Optimizing Learning Rate Schedule

A natural next step of this work would be optimizing LR schedule based on our proposed scaling
law. From a practical engineering aspect, it is feasible and efficient to select better LRS from many
candidates based on the prediction of the scaling law. Specifically, WSD (rather than cosine) LRS
should be used to confirm the larger values for both S1 and S2, as stated in Sec. 4 and Appendix H.2;
WSD LRS annealing ratio can be determined by the method stated in Sec. 4; Annealing function can
be selected by the method stated in Appendix H.3. It is quite easy to get the (nearly) optimal LR
schedule based on the composition of the methods above.

From another perspective, one might adopt our scaling law to directly solve optimal LR schedule
mathematically. It could be found that our Eq. 1 leads to a collapsed LRS: some zero learning rates
at last. This problem is related to the issue (η ≈ 0 case) that we discussed above in Appendix I.3.
Mathematical optimization strongly depends on an absolute accuracy, while our scaling law in such
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scenario does not achieve perfectly 100% accuracy (shown in Fig. 3). In comparison, our mentioned
variant forms (e.g., Eq. 10) with extra parameters should be more preferably used to solve the optimal
LRS, because they cover more corner cases and have higher accuracy. We believe that in the future,
there will be stronger and more parameterized specific forms, which are more suitable for directly
mathematically solving the optimal LR schedule. At this stage, we believe that the approach based
on the practical engineering mentioned above is sufficient to obtain a (nearly) optimal LR schedule.
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