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Abstract
Fine-tuning large language models (LLMs) for001
recommendation in a generative manner has002
delivered promising results, but encounters sig-003
nificant inference overhead due to autoregres-004
sive decoding in the language space. This work005
explores bypassing language-space decoding006
by directly matching candidate items with the007
LLM’s internal thought representations in the008
latent space, eliminating the time-consuming009
autoregressive process to reduce computational010
costs. Towards this, we introduce Light Latent-011
space Decoding (L2D), an effective and effi-012
cient latent-space decoding method. L2D rep-013
resents user-preferred items by using the hidden014
states of test sequences reflecting the LLM’s015
internal thought, and obtains candidate item016
representations from the hidden states of train-017
ing sequences labeled with the corresponding018
candidate items. It then matches the two types019
of representations to decode items, achieving020
latent-space decoding. In this way, it enables021
efficient decoding without altering the LLM’s022
generative tuning paradigm, thereby preserv-023
ing performance. Extensive empirical results024
demonstrate that L2D is more than 10x faster025
than language-space decoding while maintain-026
ing or enhancing performance.027

1 Introduction028

Large language models (LLMs) have been widely029

fine-tuned on recommendation data in textual for-030

mat to directly generate the next item of user inter-031

est based on historical interactions. This training032

paradigm aligns well with the generative nature033

of LLMs, enabling them to develop sophisticated034

user understanding and interest-mining capabili-035

ties. When deploying these fine-tuned LLMs for036

personalized recommendations (LLM4Rec), a key037

research challenge is how to effectively decode the038

items that LLM truly "thinks" or prefers internally.039

Current LLM4Rec methods primarily rely on040

the LLM’s internal decoding ability (i.e., language-041

space decoding), which typically operates the LLM042

User 
input

User 
interest

How to decode LLM after supervised 
fine-tuning

Rec list

…

Language Space 
Decoding

Latent Space 
Decoding LLM

…

Map

To latent

Latent space

Very slow ！

Fast & better ！

Training-free ！

LLM

Training
Data

Figure 1: Illustration of language-space vs. latent-space
decoding: Latent-space decoding bypasses the slow
language-space decoding and instead achieve decoding
via directly matching candidate item with the LLM in-
ternal ’thought’ items in the latent space. It preserves
the generative tuning paradigm to keep performance
while enabling efficient decoding.

in an autoregressive token-by-token manner to 043

output the item representations in the language 044

space (e.g., title). In the autoregressive decod- 045

ing, one token generation would wait for all pre- 046

ceding tokens’ generations, incurring substantial 047

time costs. Worse yet, each recommendation re- 048

quest from users typically requires generating a 049

list of items (Lin et al., 2024a), linearly scaling 050

the cost regarding the list size. While grounding 051

techniques (Bao et al., 2023) can reduce these costs 052

by mapping each generated item to multiple actual 053

items, they may lead to performance degradation. 054

For example, in our findings, mapping only one 055

generated item for top-10 recommendations would 056

result in a performance drop of fifty percent com- 057

pared to generating 10 items (c.f., Figure 3). 058

This work considers bypassing this language- 059

space decoding to enhance decoding efficiency. 060

Training a recommendation head to decode the 061

next item by directly predicting its ID provides 062

a straightforward way to avoid language-space 063

decoding, improving decoding efficiency. How- 064

ever, this training objective deviates from the lan- 065

guage model’s original goal of next-token predic- 066

tion, which may hinder effective utilization of its 067
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pretrained knowledge. This raises a new question:068

can we bypass language-space decoding while still069

preserving the powerful generative training charac-070

teristics of the LLM’s recommendation tuning?071

By re-examining LLM decoding, we can inter-072

pret the tuned LLM as having already thought a rec-073

ommendation target within its internal latent space074

in response to a user query, with autoregressive075

decoding merely serving to activate it. If we can076

find the appropriate representation for the item in077

this latent space—and represent all candidate items078

similarly—then efficient decoding can be achieved079

through representation matching within the same080

space. Meanwhile, since this approach only ex-081

tracts the LLM’s internal “thoughts” learned dur-082

ing LLM’s generative training phase, it preserves083

the original generative training objective during084

recommendation tuning.085

To obtain representations of the items internally086

considered by the LLM, we propose using the last087

hidden states from the final LLM layers correspond-088

ing to a given test sample, as the state primarily089

drives item generation. For candidate items, since090

the training set already provides matching pairs of091

hidden states and the item serving as ground-truth092

items, we can aggregate all the hidden states asso-093

ciated with the item to form an effective representa-094

tion in the latent space, without incurring additional095

training cost. This approach is based on the idea096

that each paired hidden state captures a distinct fea-097

ture aspect of the corresponding ground-truth item,098

allowing us to combine them into a meaningful and099

comprehensive target representation.100

To this end, we propose Light Latent-space De-101

coding (L2D), a simple yet efficient method for102

latent-space decoding. After finishing generative103

training, we store the training samples’ hidden104

states and their labels (i.e., ground-truth items) in a105

memory module and create each item’s represen-106

tation by aggregating its associated hidden states107

in the memory. Then we decode items to recom-108

mend by finding the item whose representation is109

most similar to the test sample’s hidden state using110

L2 distance. Regarding the aggregation to form111

item representation, L2D offers two strategies: 1)112

global aggregation, which averages all associated113

hidden states for an item, and 2) local aggregation,114

which uses only the top-M most similar samples115

from the memory based on the test sample’s hidden116

state. The global strategy provides a comprehen-117

sive representation, while the local strategy focuses118

on aspects most relevant to the test sample.119

The main contributions of this work are summa- 120

rized as follows: 121

• We propose bypassing language-space decoding 122

for efficient recommendation inference while pre- 123

serving the powerful generative training charac- 124

teristics of LLM for recommendation. 125

• We introduce L2D, a simple yet effective method 126

that performs latent-space decoding by lever- 127

aging the hidden states of test and training se- 128

quences, to capture the LLM’s internal thought. 129

• Extensive experiments demonstrate that applying 130

L2D to existing LLM-based recommendation 131

methods reduces inference latency by at least 132

10 times compared to language-space decoding 133

while maintaining or enhancing performance. 134

2 LLM-based Generative Recommender 135

Let D represent the user-item interaction data. The 136

j-th sample in D is denoted as (sj , vj), where sj 137

represents a user’s interaction history, and vj is the 138

interacted item for the sample. Notably, both sj 139

and vj are in textual form. To train an LLM-based 140

generative recommender, we convert each sample 141

(sj , vj) into instruction data, using a fixed prompt 142

template such as "A user has interacted with the fol- 143

lowing items: <sj>; which item would the user like 144

next?", with vj as the ground-truth model output. 145

Then, the instruction data {(prompt(sj), vj)}D 146

can be utilized to fine-tune the LLM. 147

During inference, given a user’s interaction his- 148

tory s to generate the next item, the LLM first 149

encodes the prompt into hidden states, formally: 150

h = LLMlast(prompt(s)), (1) 151

where h denotes the last hidden state of the input 152

prompt(s) at the final layer, and LLMlast(·) rep- 153

resents the function that extracts the hidden state 154

from the last layer of the LLM. In the language- 155

space decoding method, h is further mapped to 156

the LLM’s output layer to generate the first item 157

token, which is then added to the input, and the 158

process repeats to generate a full item. In contrast, 159

we explore decoding items from the hidden state h. 160

3 Latent-Space Decoding 161

In this section, we introduce our Light Latent-space 162

Decoding (L2D) framework, starting with present- 163

ing the overview and followed by a detailed de- 164

scription of its key components. 165
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Figure 2: The overview framework of our proposed L2D. The left part illustrates the memory set that stores (hidden
state, ground-truth item) pairs. The middle part illustrates how L2D generates candidate item representations via
global aggregation (averaging all associated hidden states) or local aggregation (using the top-M relevant samples
to the test sample). The right part depicts the item decoding phase by measuring the similarity between the test
sample’s hidden state and candidate item representations.

3.1 Overview166

The main idea of this work is to bypass time-167

intensive language-space decoding while still pre-168

serving the powerful generative training character-169

istics of the LLM’s recommendation tuning. To170

achieve this, we propose L2D, a light latent-space171

decoding framework, which directly utilizes the172

hidden states from the LLM to construct latent173

space for decoding, where the LLM is trained with174

recommendation data in a generative manner. Fig-175

ure 2 illustrates the overall L2D process, which176

consists of three steps:177

1) Memory Construction: Stores (hidden state,178

ground-truth item) pairs from training samples in179

a memory module, preparing for candidate item180

representation generation.181

2) Candidate Item Representation Generation:182

Produces representations for each item by ag-183

gregating its associated hidden states stored in184

memory.185

3) Item Decoding: Matches the hidden state of a186

test sample with the candidate item representa-187

tions to determine the output.188

The first step can be pre-computed, ensuring no189

impact on inference latency, while the last two steps190

operate independently of LLM, minimizing latency.191

We provide detailed explanations below.192

3.2 Memory Construction193

L2D begins by constructing a memory set that194

stores the (hidden state, ground-truth item) pairs195

from the training samples. Specifically, for the 196

j-th training sample (sj , vj), we compute its last 197

hidden state at the final layer using Equation (1) 198

as hj = LLMlast(prompt(sj)) and store the pair 199

(hj , vj) in a memory set M. Repeating this process 200

for all samples in the training set, L2D constructs 201

the final memory M, formally, 202

M = {(hj , vj) | j = 1, . . . , N}, (2) 203

where N denotes the total number of training sam- 204

ples. The hidden state in each pair reflects a specific 205

feature aspect of the corresponding item, meaning 206

the process effectively captures one facet of the 207

LLM’s original understanding of the item in the 208

same latent space. The memory set is then used to 209

generate representations of candidate items in this 210

latent space. 211

3.3 Candidate Item Representation 212

Generation 213

After constructing the memory, L2D leverages the 214

stored (hidden state, ground-truth item) pairs to 215

generate representations of candidate items in the 216

latent space. For each candidate item, it aggregates 217

the associated hidden states—those paired with the 218

item as the ground-truth item—to create the item’s 219

representation. In particular, L2D offers two ag- 220

gregating strategies: 1) global aggregation, which 221

averages all associated hidden states for each can- 222

didate item, and 2) local aggregation, which uses 223

only the top-M most similar samples in the mem- 224

ory based on the test sample’s hidden state. The 225
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global strategy provides comprehensive represen-226

tation of candidate items, while the local strategy227

makes the representation more relevant to the test228

samples. We will first elaborate on the two strate-229

gies, followed by a comparison.230

• Global Aggregation. To aggregate the hidden231

states stored in the memory M for creating rep-232

resentation of candidate items, a straightforward233

approach is to directly average all hidden states234

associated with the same item. The global aggre-235

gation follows this strategy. Specifically, we first236

group hidden states in memory by items and then237

average the hidden states within each group to form238

the corresponding item’s representation. Formally,239

for an item v, its representation h̄v is computed as240

follows:241

h̄v =
1

|M(v)|
∑

hj∈M(v)

hj , (3)242

where M(v) denotes the set of all hidden states243

associated with item v, defined as244

M(v) = {hj | (hj , vj) ∈ M, vj = v}.245

The size of M(v) is denoted by |M(v)|.246

•Local Aggregation. The LLM’s understanding of247

a candidate item may encompass multiple feature248

aspects, and the global aggregation method com-249

bines all aspects to form a comprehensive item rep-250

resentation. However, during the inference stage,251

not all feature aspects are relevant for each test252

sample; only the aspects related to the test sample253

are important. This suggests that mixing all fea-254

ture aspects in one representation may introduce255

interference. With this in mind, we propose lo-256

cal aggregation, which leverages only the top-M257

samples from memory that are most relevant to the258

test sample’s hidden state for item representation259

generation.260

Specifically, for a test sample with st, we first261

filter a subset of the memory based on the hidden262

state ht of test sample, denoted as Mt. Formally,263

Mt = {(hj , vj) | (hj , vj) ∈ M,

S(ht, hj) is in the top-M largest} ,
(4)264

where S(ht, hj) =
1

∥ht−hj∥2 measures the similar-265

ity between the stored hidden state hj and the test266

sample’s hidden state ht. Then, a process similar to267

global aggregation is applied to Mt to obtain the268

candidate item representation. Given a candidate269

item v, the representation is formulated as follows: 270

h̄tv =
1

|Mt(v)|
∑

hj∈Mt(v)

hj , (5) 271

where |Mt(v)| denotes the size of Mt(v), and 272

Mt(v) is the subset of Mt containing items with 273

v as the ground-truth, defined as 274

Mt(v) = {hj | (hj , vj) ∈ Mt, vj = v}. 275

Global vs. Local Aggregation: Compared to 276

global aggregation, local aggregation can better fo- 277

cus on test sample-specific aspects, potentially im- 278

proving subsequent matching performance. How- 279

ever, it may struggle more with sparse items due to 280

an increased lack of associated hidden states. Addi- 281

tionally, unlike the representation obtained through 282

global aggregation, which is uniform for all test 283

samples, the representation derived from local ag- 284

gregation is tailored to each test sample. For quanti- 285

tative comparative experiments and further analysis 286

of their suitable scenarios for the global and local 287

aggregation, please refer to Section 4.3.1. Mean- 288

while, the computational cost of both aggregation 289

methods remains negligible, as our approach funda- 290

mentally bypasses the time-consuming autoregres- 291

sive decoding of the LLM. The method requires 292

only a single forward pass during LLM inference, 293

with all subsequent operations being performed 294

through efficient vector-level computations. 295

3.4 Item Decoding 296

After generating the candidate item representations, 297

L2D could efficiently decode items in the latent 298

space during inference by measuring the similar- 299

ity between the test sample’s hidden state and the 300

representations of the candidate items. Specifically, 301

for a given test sample with hidden state ht and a 302

candidate item v, we denote the candidate item’s 303

representation as hv, which is defined as: 304

hv =

{
h̄v in Eq. (3) if global aggregation,
h̄tv in Eq. (5) if local aggregation.

(6) 305

Then, we compute the similarity score between 306

ht and hv using the L2 distance as: S(ht, hv) = 307
1

∥ht−hv∥2 . Once the similarity scores for all can- 308

didate items are computed, the top-K items with 309

the highest similarity scores to the test sample are 310

selected to form the final recommendation list. We 311

refer to L2D with global aggregation as L2D-G, 312

and L2D with local aggregation as L2D-L. 313
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Figure 3: The Recall@50 performance and the inference overhead of LLM-based recommenders on two datasets.

Table 1: Overall performance comparison. Results with beam size 1 are reported for methods using beam search
for fair comparison, with results for other beam sizes in Figure 3. The best results are in bold.

CDs Games

Model R@20 R@50 R@100 N@20 N@50 N@100 R@20 R@50 R@100 N@20 N@50 N@100

Traditional
SASRec 0.1015 0.1271 0.1522 0.0602 0.0653 0.0693 0.0684 0.1117 0.1564 0.0332 0.0417 0.0490

GRU4Rec 0.0707 0.1027 0.1347 0.0376 0.0439 0.0491 0.0664 0.1099 0.1601 0.0302 0.0387 0.0468

LLM embedding AlphaRec 0.0651 0.0976 0.1353 0.0300 0.0364 0.0425 0.0619 0.1005 0.1392 0.0295 0.0371 0.0434

LLM Generative
(beam = 1)

GPT4Rec 0.0513 0.0562 0.0652 0.0433 0.0443 0.0458 0.0508 0.0782 0.1064 0.0293 0.0347 0.0392

BIGRec 0.0506 0.0565 0.0621 0.0435 0.0446 0.0456 0.0476 0.0702 0.1007 0.0284 0.0328 0.0378

D3 0.0507 0.0560 0.0623 0.0436 0.0447 0.0457 0.0478 0.0711 0.1004 0.0284 0.0330 0.0376

Ours
L2D-G 0.1144 0.1562 0.1996 0.0710 0.0792 0.0862 0.0646 0.1167 0.1794 0.0295 0.0397 0.0499

L2D-L 0.1158 0.1569 0.1992 0.0667 0.0745 0.0813 0.0879 0.1465 0.2072 0.0399 0.0511 0.0596

4 Experiments314

In this section, we conduct experiments on two315

widely-used real-world datasets to demonstrate the316

effectiveness of our L2D framework in balanc-317

ing performance and inference overhead. We will318

showcase it by following research questions: RQ1:319

How does the performance and inference overhead320

of our L2D compare to LLM-based baselines?321

RQ2: In which scenarios are global and local ag-322

gregation most suitable, respectively? RQ3: How323

does the hyperparameter M affect L2D-L? RQ4:324

How does the performance of L2D compare to325

the ID-based classifier? RQ5: What is the spatial326

efficiency of L2D?327

4.1 Experimental Settings328

Datasets. We evaluated our approach using two329

representative Amazon Product Review datasets 1:330

Amazon CDs (CDs) and Amazon Games (Games).331

These datasets consist of user review data collected332

from Amazon between 1996 and 2018. Each re-333

view was treated as a user-item interaction. Fol-334

lowing (Bao et al., 2024), we truncated datasets by335

timestamp to ensure manageable scale, filtered out336

users/items with fewer than five interactions, and337

1https://jmcauley.ucsd.edu/data/amazon/

limited user interaction sequences to a maximum 338

length of 10. All interactions was chronologically 339

ordered and splited into training/validation/test sets 340

(8:1:1 ratio). Dataset statistics are detailed in Ap- 341

pendix A.4. 342

Compared Methods. In this work, to demonstrate 343

the superiority of our proposed method from the 344

perspective of balancing performance and infer- 345

ence overhead in LLM-based recommendation, we 346

primarily selected some of the most commonly 347

used LLM-based models in the current literature. 348

For LLM-based embedding, we included Al- 349

phaRec (Sheng et al., 2025) as a baseline. For 350

LLM-based generative recommendation, we in- 351

cluded the following methods: BIGRec (Bao et al., 352

2023), GPT4Rec (Zhang et al., 2024a), D3 (Bao 353

et al., 2024). Additionally, we included non-LLM 354

baselines (SASRec (Kang and McAuley, 2018) 355

and GRU4Rec (Hidasi et al., 2016)) for compre- 356

hensive comparison. For a comprehensive descrip- 357

tion of these baselines, please refer to the Ap- 358

pendix A.6. 359

For all generative-based methods, we used beam 360

search to generate multiple items and then map 361

them to real items in the dataset. The implemen- 362

tation details of beam search for recommendation 363

list generation can be found in Appendix A.2. 364
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Evaluation metrics. To evaluate the top-K recom-365

mendation performance, we employed two widely366

adopted metrics: Recall@K and NDCG@K (Bao367

et al., 2024; Zheng et al., 2024). All evaluations fol-368

low a full-ranking evaluation protocol (Bao et al.,369

2023), with K ∈ {20, 50, 100}. In the following, if370

space is limited, we will abbreviate Recall@K and371

NDCG@K as R@K and N@K, respectively.372

Other detailed settings are in the appendix A.3373

4.2 Main Results (RQ1)374

To verify the effectiveness of our L2D, we present375

the performance and inference cost of our method376

compared to the baseline in Figure 3. Furthermore,377

we illustrate the performance of our method at dif-378

ferent K values in Table 1. From the figure and the379

table, we can find:380

• When evaluating the trade-off between perfor-381

mance and inference cost for all methods, we ob-382

serve from Figure 3 that points closer to the top-383

left corner indicate better performance at lower384

costs. Our proposed L2D method is the closest385

to the top-left corner on both datasets, indicating386

that L2D achieves excellent performance while387

maintaining low inference cost, showcasing the388

effectiveness of direct decoding of items in latent389

space. Even when compared to the previously390

most efficient LLM-based method, AlphaRec,391

which uses LLM as embeddings, L2D reduces392

the cost by at least a factor of five and gets a393

better performance, further demonstrating the re-394

markable potential of L2D in deployment.395

• When comparing the performance of baseline396

methods under different beam sizes, we ob-397

serve that the performance of generative-based398

methods improves approximately linearly as the399

beam size and inference cost increase. Among400

these, D3 shows greater scalability (with a larger401

growth rate). It would not be surprising if these402

methods could surpass L2D in performance by403

investing more in inference (e.g., increasing the404

beam size to 50), but this could lead to nearly a405

hundredfold increase in cost, which is not feasi-406

ble in most real-world scenarios. Furthermore,407

our experiments utilize Llama 3.2-1B as the back-408

bone, which is a relatively small-scale language409

model. The deployment costs would be even410

higher with larger language models.411

• Furthermore, Table 1 shows the comprehensive412

performance evaluation. To rigorously assess the413
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Figure 4: The performance of BIGRec, L2D-G, and
L2D-L on sparse and dense scenarios.

real-world performance of LLM-based models 414

during deployment, inference time costs must be 415

carefully accounted for. Consequently, we adopt 416

the results with the smallest beam size (beam = 417

1) as the fair comparison baselines for our L2D 418

method, despite the fact that its inference time 419

cost remains substantial (cf. Figure 3). Addi- 420

tionally, we included traditional (i.e. non-LLM) 421

baselines for comprehensive comparison. L2D 422

outperforms all baselines across all metrics. We 423

attribute this improvement to the method’s ability 424

to effectively preserve the powerful generative 425

training characteristics of the LLM’s recommen- 426

dation tuning, thus leveraging the LLM’s capa- 427

bilities acquired during the SFT phase. 428

4.3 Analysis 429

In this section, we present a comprehensive anal- 430

ysis of L2D. We first discuss its application sce- 431

narios in both sparse and dense recommendation 432

settings. Next, we conduct ablation studies to eval- 433

uate: 1)The impact of the key hyperparameter M in 434

L2D-L, 2)The performance comparison between 435

L2D and ID-based classifiers. Finally, we analyze 436

the space efficiency of the L2D framework. 437

4.3.1 Sparse and Dense Scenario (RQ2) 438

The discrepancy between L2D-G and L2D-L re- 439

sults in distinct application scenarios for these two 440

approaches. To analyze this, we divided the test 441

set into sparse and dense categories based on item 442

frequency in the training set. Figure 4 shows the 443

overall performance of the two strategies in these 444

scenarios. We observed the following: (1) Dense 445

scenarios: L2D-L achieves the best performance 446

due to the availability of numerous hidden states 447

for each item, allowing it to create a more person- 448

alized candidate item representation and eliminate 449
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Table 2: L2D vs. ID-based classfier: The overall performance (a) and performance on sparse scenarios (b).

(a)

CDs R@20 R@50 R@100 N@20 N@50 N@100

Classfier 0.1087 0.1490 0.1886 0.0634 0.0714 0.0778
L2D 0.1158 0.1569 0.1996 0.0710 0.0792 0.0862

Games R@20 R@50 R@100 N@20 N@50 N@100

Classfier 0.0896 0.1557 0.2205 0.0374 0.0505 0.0610
L2D 0.0879 0.1465 0.2072 0.0399 0.0511 0.0596

(b)

CDs (Sparse) R@20 R@50 R@100 N@20 N@50 N@100

Classfier 0.0491 0.0671 0.0835 0.0271 0.0307 0.0333
L2D 0.0682 0.0889 0.1125 0.0432 0.0473 0.0511

Games (Sparse) R@20 R@50 R@100 N@20 N@50 N@100

Classfier 0.0242 0.0446 0.0706 0.0095 0.0135 0.0177
L2D 0.0508 0.0874 0.1305 0.0230 0.0303 0.0372
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Figure 5: The impact of M on the Recall metric for
L2D-L, where M denotes the hyperparameter that de-
termines the number of hidden states in local aggrega-
tion. Note that L2D-L becomes equivalent to L2D-G
when M reaches its maximum value.

irrelevant information. (2) Sparse scenarios: the450

interactions are limited, which means that even the451

top similar hidden states in Memory module may452

not accurately represent user preferences, poten-453

tially leading to biased results and performance454

drops. In contrast, L2D-G, which aggregates pref-455

erences globally, offers a more balanced outcome.456

4.3.2 Hyper-parameter M on L2D-L (RQ3)457

We illustrate the impact of M in Figure 5, where458

only the results for Recall are reported. The results459

for NDCG can be found in Appendix A.5.460

Specifically, on the CDs dataset, the Global Ag-461

gregation method in L2D-G outperforms the Local462

Aggregation method in L2D-L. In contrast, on the463

Games dataset, we observe that performance peaks464

as M increases, but further increasing M leads to465

a decline in performance. We attribute this phe-466

nomenon to the varying demands for focusing on467

the test sample’s feature aspects in different rec-468

ommendation scenarios. The Games dataset may469

require a stronger emphasis on detailed feature as-470

pects compared to the CDs dataset.471

4.3.3 L2D vs. ID-based classfier (RQ4)472

Training a recommendation head to decode the473

next item by directly predicting its ID provides a474

straightforward way to avoid language-space de-475

coding, improving decoding efficiency. However,476

Table 3: The performance of L2D when storing only
30% of the training samples. The best results are in
bold.

CDs R@20 R@50 R@100 N@20 N@50 N@100

SASRec 0.1015 0.1271 0.1522 0.0602 0.0653 0.0693
GRU4Rec 0.0707 0.1027 0.1347 0.0376 0.0439 0.0491
AlphaRec 0.0651 0.0976 0.1353 0.0300 0.0364 0.0425
GPT4Rec (beam=1) 0.0513 0.0562 0.0652 0.0433 0.0443 0.0458
BIGRec (beam=1) 0.0506 0.0565 0.0621 0.0435 0.0446 0.0456
D3 (beam=1) 0.0507 0.0560 0.0623 0.0436 0.0447 0.0457

L2D-G (30%) 0.1012 0.1391 0.1807 0.0621 0.0696 0.0763
L2D-L (30%) 0.0991 0.1344 0.1678 0.0579 0.0649 0.0703

Games R@20 R@50 R@100 N@20 N@50 N@100

SASRec 0.0684 0.1117 0.1564 0.0332 0.0417 0.0490
GRU4Rec 0.0664 0.1099 0.1601 0.0302 0.0387 0.0468
AlphaRec 0.0619 0.1005 0.1392 0.0295 0.0371 0.0434
GPT4Rec (beam=1) 0.0508 0.0782 0.1064 0.0293 0.0347 0.0392
BIGRec (beam=1) 0.0476 0.0702 0.1007 0.0284 0.0328 0.0378
D3 (beam=1) 0.0478 0.0711 0.1004 0.0284 0.033 0.0376

L2D-G (30%) 0.0759 0.1314 0.1973 0.0341 0.0450 0.0556
L2D-L (30%) 0.0682 0.1214 0.1795 0.0305 0.0407 0.0500

this training objective deviates from the LLM’s 477

original goal of next-token prediction, which may 478

hinder effective utilization of its pretrained knowl- 479

edge. Moreover, this approach incurs additional 480

training overhead and may perform poorly on 481

sparse items, as it requires learning in the LLM’s 482

high-dimensional representation space. In contrast, 483

our method can bypass language-space decoding 484

while still preserving the powerful generative train- 485

ing characteristics of the LLM’s recommendation 486

tuning, performing well on sparse items recommen- 487

dation scenarios. 488

To verify this, we trained a classifier head us- 489

ing the LLM’s hidden states with careful hyperpa- 490

rameter tuning. The results, summarized in Ta- 491

ble 2, report both (a) overall performance and 492

(b) performance on sparse recommendation sce- 493

nario. For overall performance (a), on the CDs 494

dataset, our method consistently outperforms the 495

baseline, achieving an average relative improve- 496

ment of 11.2%. On the Games dataset, our method 497

performs better for smaller K in NDCG and re- 498

mains comparable for larger K in both metrics. Re- 499

garding performance on sparse recommendation 500
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scenario (b), our method consistently achieves sig-501

nificantly better results.502

4.3.4 Spatial complexity (RQ5)503

In this subsection, we analyze the spatial complex-504

ity of the proposed L2D framework. Although505

the pre-stored hidden states of training samples506

in L2D introduce additional space requirements,507

these costs remain manageable since this scale of508

storage is feasible even for personal devices. For509

instance, if each sample corresponds to a 1024-510

dimensional hidden state (float16), storing hidden511

states for 109 training samples requires approxi-512

mately 1024×2 bytes × 109 ≈ 2 TB.513

Storage costs can be further optimized by se-514

lectively retaining only a subset of training sam-515

ples, such as through reservoir sampling tech-516

nique (Valkanas et al., 2024), where new data is517

added over time while older data is removed. Our518

experiments show that even when storing only 30%519

of the orignal training data, our method still outper-520

forms baselines (where only the Recall@20 metric521

on the CDs dataset is competitive with SASRec).522

The results are shown in Table 3.523

5 Related Work524

• LLM-based recommendation. We discuss525

three paradigms of LLM-based recommenders (Wu526

et al., 2024). (1) LLM-Embedding-Based Rec-527

ommenders use embeddings from LLMs in tradi-528

tional systems to capture user preferences (Yuan529

et al., 2023; Xi et al., 2024a). While effective in lan-530

guage tasks, these embeddings require fine-tuning531

for optimal performance. (2) LLM-Based Dis-532

criminative Recommenders directly predict user-533

item interactions by optimizing the recommenda-534

tion task with the LLM’s loss function (Zhang et al.,535

2023; Li et al., 2023b; Zhang et al., 2024b). Al-536

though it dispenses with intermediate embeddings,537

it requires evaluating each item individually, re-538

ducing efficiency compared to traditional models.539

(3) LLM-Based Generative Recommenders gen-540

erate natural language recommendations without541

predefined items, offering innovative potential (Bao542

et al., 2023, 2024; Zheng et al., 2024). However,543

autoregressive decoding introduces significant in-544

ference overhead. Inspired by these paradigms,545

we propose a novel LLM-based recommender that546

balances performance and overhead, addressing ex-547

isting challenges to enhance quality and efficiency.548

Notably, some existing (large) language model549

(LM)-based approaches (Sheng et al., 2025), such550

as RecFormer (Li et al., 2023a), can be viewed as 551

representing candidate items in latent spaces and 552

then matching them with the user input sequence 553

encoded by the LM. However, they indeed modify 554

the output layer of the LMs, with the effectiveness 555

of their matching process tied to the training pro- 556

cess. As a result, they fail to achieve plug-and-play 557

integration into existing advanced LLM-based rec- 558

ommenders. In contrast, our method is decoupled 559

from the training process, making it plug-and-play. 560

Additionally, these methods’ training objectives 561

deviate from the large language model’s original 562

goal of next-token prediction, which may hinder 563

effective utilization of its pretrained knowledge. A 564

detailed discussion is provided in Appendix A.1. 565

• Inference Acceleration for LLM-based Rec- 566

ommendation. With the widespread application 567

of LLMs, an increasing number of studies have fo- 568

cused on accelerating LLM inference. In particular, 569

in the field of LLM-based recommender systems, 570

models need to recommend products to a large 571

number of users within a short time frame, which 572

highlights the necessity of considering methods to 573

accelerate LLM inference in this domain. Spec- 574

ulative Decoding (SD) (Leviathan et al., 2023), a 575

significant acceleration technique in the NLP field, 576

has been applied to recommender systems, such as 577

DARE (Xi et al., 2024b) and AtSpeed (Lin et al., 578

2024b). However, these methods still rely on ac- 579

celeration decoding within the language space. In 580

contrast, our method takes a step further by ex- 581

ploring how to implement efficient decoding for 582

recommendation in the latent space of LLMs, while 583

maintaining a simple and easy-to-implement over- 584

all framework that avoids complex designs. 585

6 Conclusion 586

In this study, we emphasized that fine-tuning LLMs 587

for recommendations in a generative manner is 588

highly promising but encounters significant infer- 589

ence overhead due to the original autoregressive de- 590

coding strategy. To address this challenge, we pro- 591

posed the L2D, which bypasses time-consuming 592

autoregressive decoding in the language space and 593

directly decodes items in LLM’s latent space. The 594

L2D preserves the generative tuning paradigm to 595

keep performance while enabling efficient decod- 596

ing. Our results highlighted the potential of latent 597

space decoding as a fundamental advancement in 598

LLM-based recommender systems, and extensive 599

results demonstrated the superiority of L2D. 600
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Limitations601

This paper has the following limitations: 1) Al-602

though the L2D framework we introduced sig-603

nificantly reduces inference latency, the memory,604

which is pre-constructed, still incurs additional605

time overhead during its pre-construction process.606

This motivates us to explore more efficient memory607

construction methods in future work. 2) Our ap-608

proach, while capable of processing items with609

at least one interaction without requiring addi-610

tional training (unlike traditional methods such as611

SASRec/GRU4Rec and some LLM-based methods612

such as D3/ID-based classfier that need retraining),613

still shares the same fundamental limitation as con-614

ventional methods: it cannot handle fully cold-start615

items with zero interaction history. In the future,616

we plan to address this issue by using the interpo-617

lation technique or incorporating auxiliary models.618

3) We have not considered the problem of mem-619

ory updating. As user interaction data gradually620

accumulates over time, how to effectively use this621

new data to update the memory in L2D to achieve622

higher decoding performance presents a promising623

direction. We intend to explore this issue in future624

research.625

Ethical Considerations626

In this paper, we present L2D, designed to balance627

the performance and inference overhead for gener-628

ative LLMRec. Our method decode item in latent629

space of LLM which doesn’t raise ethical concerns.630

Moreover, the data we use are publicly available631

and don’t include sensitive details. However, rec-632

ommendations involve user behavioral data, which633

might raise privacy concerns, which can be ad-634

dressed through introducing the mechanism of user635

consent. Additionally, using LLMs may have po-636

tential negative societal biases. We argue for a637

thorough risk assessment and alert users to the po-638

tential risks associated with model deployment.639

For the large language model use, we utilize640

ChatGPT to help polish the writing at the sentence641

level.642
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A Appendix742

A.1 Contribution Positioning743

Some existing (large) language model (LM)-based744

approaches (Sheng et al., 2025), such as Rec-745

Former (Li et al., 2023a), can be seen as represent-746

ing candidate items in latent spaces and matching747

them with the user input sequence encoded by the748

LM. This makes them somewhat similar to our ap-749

proach. However, there are inherent differences750

between these methods and ours. First, our method751

does not alter the generative training process (next-752

token prediction); it only modifies the decoding753

process without requiring additional tuning. In con-754

trast, in these existing approaches, the matching755

process is entangled with the training phase. As a756

result, they fail to achieve plug-and-play integration757

into existing advanced LLM-based recommenders.758

Also, the training objective of these methods de-759

viates from the language model’s original goal of760

next-token prediction, which may hinder effective761

utilization of its pretrained knowledge.762

Secondly, even when focusing solely on the763

matching process, there are differences in how the764

sequence representations and candidate item repre-765

sentations are constructed, as well as in the learning766

processes involved. Our approach introduces the767

following innovations:768

• History Representation: Our representation is769

derived from the hidden state embedding at the770

next-token prediction position, which serves as a771

"generative state" inherently encoding informa-772

tion for generating subsequent tokens. In con-773

trast, the existing methods do not leverage such774

a generative state of LLMs.775

• Item Representation: We construct item repre-776

sentations by aggregating the "generative states"777

of training samples where the item appears as778

the target. This fundamentally differs from exist-779

ing works, which require an item-based forward780

encoding approach.781

• Learning: Our history and item representations782

exist in the same space and do not require ad-783

ditional tuning. In contrast, existing methods784

necessitate a separate training process to align785

these representations for matching.786

A.2 Beam-search for Recommendation787

For all generative-based methods, we use beam788

search to generate multiple items and then match789

them to real items. Specifically, we first ob-790

tain the semantic representation of each generated791

Table 4: The statistics of datasets.

Dataset #User #Item #Train #Valid #Test

CDs 21,347 14,239 148,685 18,586 18,587
Games 34,089 11,037 201,613 25,202 25,203
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Figure 6: The impact of M on NDCG metric in the
L2D-L. M is a hyperparameter that determines the
number of hidden states in local aggregation. Note that
L2D-L equals L2D-G when M reaches its maximum
length.

item and compute their matching scores based on 792

their semantic similarity with all candidate items. 793

This results in a ranking matrix with dimensions 794

beam_number × candidate_item_number, where 795

each row represents the ranking list of a beam- 796

generated item. Finally, we flatten the matrix col- 797

umn by column into a single vector and retain the 798

top K unique items as the recommendation results. 799

A.3 Implementation details 800

Our LLM-based recommendation models were 801

built on Llama3.2-1B (Dubey et al., 2024) as the 802

backbone architecture. During the instruction tun- 803

ing phase, we adopted the AdamW optimizer along 804

with a cosine learning rate scheduler, using a batch 805

size of 64 and exploring learning rates in {1e-3, 1e- 806

4, 5e-5}. Other hyperparameters align with the de- 807

fault configurations from the D3 paper (Bao et al., 808

2024). All experiments are conducted on NVIDIA 809

A100 GPUs. 810

A.4 Dataset Statistics 811

In this subsection, we supplement the statistical 812

information of the datasets used in our experiments. 813

Please refer to Table 4 814

A.5 Impact of M on NDCG for L2D-L 815

In this subsection, we demonstrate the impact of 816

parameter M on the NDCG metric in the L2D-L 817

method. As shown in Figure 6, the phenomenon 818

observed in the NDCG metric is consistent with the 819

Recall metric in the paper, further strengthening 820

our argument. 821
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A.6 Compared Methods822

In this work, to demonstrate the superiority of our823

proposed method from the perspective of balancing824

performance and inference overhead in LLM-based825

recommendation, we primarily selected some of826

the most commonly used LLM-based models in827

the current literature. For LLM-based embed-828

ding, we included AlphaRec (Sheng et al., 2025)829

as a baseline. This method uses LLM embed-830

dings for recommendations by applying a collab-831

orative filtering model to utilize language repre-832

sentations. For LLM-based generative recom-833

mendation, we included the following methods:834

(1)BIGRec (Bao et al., 2023): A generative LLM-835

based recommender that predicts the next item via836

historical interactions, mapping generated items to837

the dataset by L2 distance matching on semantic838

embeddings. (2) GPT4Rec (Zhang et al., 2024a):839

Similar to BIGRec but employs BM25 for item840

mapping. (3) D3 (Bao et al., 2024): An improved841

variant of BIGRec that mitigates decoding bias842

by eliminating length normalization. Additionally,843

we included non-LLM baselines (SASRec (Kang844

and McAuley, 2018) and GRU4Rec (Hidasi et al.,845

2016)) for comprehensive comparison.846
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