Decoding in Latent Spaces for Efficient Inference in LLM-based
Recommendation

Anonymous ACL submission

Abstract

Fine-tuning large language models (LLMs) for
recommendation in a generative manner has
delivered promising results, but encounters sig-
nificant inference overhead due to autoregres-
sive decoding in the language space. This work
explores bypassing language-space decoding
by directly matching candidate items with the
LLM’s internal thought representations in the
latent space, eliminating the time-consuming
autoregressive process to reduce computational
costs. Towards this, we introduce Light Latent-
space Decoding (L2D), an effective and effi-
cient latent-space decoding method. L2D rep-
resents user-preferred items by using the hidden
states of test sequences reflecting the LLM’s
internal thought, and obtains candidate item
representations from the hidden states of train-
ing sequences labeled with the corresponding
candidate items. It then matches the two types
of representations to decode items, achieving
latent-space decoding. In this way, it enables
efficient decoding without altering the LLM’s
generative tuning paradigm, thereby preserv-
ing performance. Extensive empirical results
demonstrate that L2D is more than 10x faster
than language-space decoding while maintain-
ing or enhancing performance.

1 Introduction

Large language models (LLMs) have been widely
fine-tuned on recommendation data in textual for-
mat to directly generate the next item of user inter-
est based on historical interactions. This training
paradigm aligns well with the generative nature
of LLMs, enabling them to develop sophisticated
user understanding and interest-mining capabili-
ties. When deploying these fine-tuned LLMs for
personalized recommendations (LLM4Rec), a key
research challenge is how to effectively decode the
items that LLM truly "thinks" or prefers internally.

Current LLM4Rec methods primarily rely on
the LLM’s internal decoding ability (i.e., language-
space decoding), which typically operates the LLM

0. O O 0g /6o

Language Space

1 Very slow |
Decoding Q 5 :] v
i
O O O —
How to decode LLM after supervised

User
input

fine-tuning

O)
o C(Q
&)
e) (@)

User
interest
LLM

To latent
Data

Figure 1: Illustration of language-space vs. latent-space
decoding: Latent-space decoding bypasses the slow
language-space decoding and instead achieve decoding
via directly matching candidate item with the LLM in-
ternal "thought’ items in the latent space. It preserves
the generative tuning paradigm to keep performance
while enabling efficient decoding.

Map

Fast & better |
Latent Space

Decoding Training-free |

Latent space

in an autoregressive token-by-token manner to
output the item representations in the language
space (e.g., title). In the autoregressive decod-
ing, one token generation would wait for all pre-
ceding tokens’ generations, incurring substantial
time costs. Worse yet, each recommendation re-
quest from users typically requires generating a
list of items (Lin et al., 2024a), linearly scaling
the cost regarding the list size. While grounding
techniques (Bao et al., 2023) can reduce these costs
by mapping each generated item to multiple actual
items, they may lead to performance degradation.
For example, in our findings, mapping only one
generated item for top-10 recommendations would
result in a performance drop of fifty percent com-
pared to generating 10 items (c.f,, Figure 3).

This work considers bypassing this language-
space decoding to enhance decoding efficiency.
Training a recommendation head to decode the
next item by directly predicting its ID provides
a straightforward way to avoid language-space
decoding, improving decoding efficiency. How-
ever, this training objective deviates from the lan-
guage model’s original goal of next-token predic-
tion, which may hinder effective utilization of its

pretrained knowledge. This raises a new question:
can we bypass language-space decoding while still
preserving the powerful generative training charac-
teristics of the LLM’s recommendation tuning?

By re-examining L.LLM decoding, we can inter-
pret the tuned LLM as having already thought a rec-
ommendation target within its internal latent space
in response to a user query, with autoregressive
decoding merely serving to activate it. If we can
find the appropriate representation for the item in
this latent space—and represent all candidate items
similarly—then efficient decoding can be achieved
through representation matching within the same
space. Meanwhile, since this approach only ex-
tracts the LLM’s internal “thoughts” learned dur-
ing LLM’s generative training phase, it preserves
the original generative training objective during
recommendation tuning.

To obtain representations of the items internally
considered by the LLM, we propose using the last
hidden states from the final LLM layers correspond-
ing to a given test sample, as the state primarily
drives item generation. For candidate items, since
the training set already provides matching pairs of
hidden states and the item serving as ground-truth
items, we can aggregate all the hidden states asso-
ciated with the item to form an effective representa-
tion in the latent space, without incurring additional
training cost. This approach is based on the idea
that each paired hidden state captures a distinct fea-
ture aspect of the corresponding ground-truth item,
allowing us to combine them into a meaningful and
comprehensive target representation.

To this end, we propose Light Latent-space De-
coding (L2D), a simple yet efficient method for
latent-space decoding. After finishing generative
training, we store the training samples’ hidden
states and their labels (i.e., ground-truth items) in a
memory module and create each item’s represen-
tation by aggregating its associated hidden states
in the memory. Then we decode items to recom-
mend by finding the item whose representation is
most similar to the test sample’s hidden state using
L2 distance. Regarding the aggregation to form
item representation, L2 D offers two strategies: 1)
global aggregation, which averages all associated
hidden states for an item, and 2) local aggregation,
which uses only the top-M most similar samples
from the memory based on the test sample’s hidden
state. The global strategy provides a comprehen-
sive representation, while the local strategy focuses
on aspects most relevant to the test sample.

The main contributions of this work are summa-
rized as follows:

* We propose bypassing language-space decoding
for efficient recommendation inference while pre-
serving the powerful generative training charac-
teristics of LLM for recommendation.

* We introduce L2D, a simple yet effective method
that performs latent-space decoding by lever-
aging the hidden states of test and training se-
quences, to capture the LLM’s internal thought.

» Extensive experiments demonstrate that applying
L2D to existing LLM-based recommendation
methods reduces inference latency by at least
10 times compared to language-space decoding
while maintaining or enhancing performance.

2 LLM-based Generative Recommender

Let D represent the user-item interaction data. The
j-th sample in D is denoted as (s;,v;), where s;
represents a user’s interaction history, and v; is the
interacted item for the sample. Notably, both s;
and v; are in textual form. To train an LLM-based
generative recommender, we convert each sample
(s4,v;) into instruction data, using a fixed prompt
template such as "A user has interacted with the fol-
lowing items: <s;>; which item would the user like
next?", with v; as the ground-truth model output.
Then, the instruction data {(prompt(s;),v;)}p
can be utilized to fine-tune the LLM.

During inference, given a user’s interaction his-
tory s to generate the next item, the LLM first
encodes the prompt into hidden states, formally:

h = LLMiqst(prompt(s)), (1)

where h denotes the last hidden state of the input
prompt(s) at the final layer, and LLM;,s(-) rep-
resents the function that extracts the hidden state
from the last layer of the LLM. In the language-
space decoding method, h is further mapped to
the LLM’s output layer to generate the first item
token, which is then added to the input, and the
process repeats to generate a full item. In contrast,
we explore decoding items from the hidden state h.

3 Latent-Space Decoding

In this section, we introduce our Light Latent-space
Decoding (L2D) framework, starting with present-
ing the overview and followed by a detailed de-
scription of its key components.

O Item

Hidden State

'Candidate Item Representation Generation |

Item Decoding

:’ Memory Global Aggregation Recommend Items
O O Item list: [vy, v3, ...]
aggregate %1
. O o : @) ,) Vs v
: O O O 2] L
; -O -O -O Similarity score
ilTop-M Memory Local Aggregation Measure Similarity
: O X Candidate items Test sample
Retri E aggregate
Retrieve O i SRl @ @ o
| o o o— 3
Test Sample i -O -
1 |

Figure 2: The overview framework of our proposed L2D. The left part illustrates the memory set that stores (hidden
state, ground-truth item) pairs. The middle part illustrates how L2D generates candidate item representations via
global aggregation (averaging all associated hidden states) or local aggregation (using the top-M relevant samples
to the test sample). The right part depicts the item decoding phase by measuring the similarity between the test

sample’s hidden state and candidate item representations.

3.1 Overview

The main idea of this work is to bypass time-
intensive language-space decoding while still pre-
serving the powerful generative training character-
istics of the LLM’s recommendation tuning. To
achieve this, we propose L2D, a light latent-space
decoding framework, which directly utilizes the
hidden states from the LLM to construct latent
space for decoding, where the LLM is trained with
recommendation data in a generative manner. Fig-
ure 2 illustrates the overall L2D process, which
consists of three steps:

1) Memory Construction: Stores (hidden state,
ground-truth item) pairs from training samples in
a memory module, preparing for candidate item
representation generation.

2) Candidate Item Representation Generation:
Produces representations for each item by ag-
gregating its associated hidden states stored in
memory.

3) Item Decoding: Matches the hidden state of a
test sample with the candidate item representa-
tions to determine the output.

The first step can be pre-computed, ensuring no
impact on inference latency, while the last two steps
operate independently of LLM, minimizing latency.
We provide detailed explanations below.

3.2 Memory Construction

L2D begins by constructing a memory set that
stores the (hidden state, ground-truth item) pairs

from the training samples. Specifically, for the
j-th training sample (s;,v;), we compute its last
hidden state at the final layer using Equation (1)
as hj = LLMj,s(prompt(s;)) and store the pair
(hj,v;) in amemory set M. Repeating this process
for all samples in the training set, L2D constructs
the final memory M, formally,

M:{(hjavj)|j:17---vN}v (2)

where N denotes the total number of training sam-
ples. The hidden state in each pair reflects a specific
feature aspect of the corresponding item, meaning
the process effectively captures one facet of the
LLM’s original understanding of the item in the
same latent space. The memory set is then used to
generate representations of candidate items in this
latent space.

3.3 Candidate Item Representation
Generation

After constructing the memory, L2D leverages the
stored (hidden state, ground-truth item) pairs to
generate representations of candidate items in the
latent space. For each candidate item, it aggregates
the associated hidden states—those paired with the
item as the ground-truth item—to create the item’s
representation. In particular, L2D offers two ag-
gregating strategies: 1) global aggregation, which
averages all associated hidden states for each can-
didate item, and 2) local aggregation, which uses
only the top-M most similar samples in the mem-
ory based on the test sample’s hidden state. The

global strategy provides comprehensive represen-
tation of candidate items, while the local strategy
makes the representation more relevant to the test
samples. We will first elaborate on the two strate-
gies, followed by a comparison.

¢ Global Aggregation. To aggregate the hidden
states stored in the memory M for creating rep-
resentation of candidate items, a straightforward
approach is to directly average all hidden states
associated with the same item. The global aggre-
gation follows this strategy. Specifically, we first
group hidden states in memory by items and then
average the hidden states within each group to form
the corresponding item’s representation. Formally,
for an item v, its representation A, is computed as
follows:

_ 1
hy = hi, 3
M), 2 N ®)

h; eM(v)

where M (v) denotes the set of all hidden states
associated with item v, defined as

M(v) = {h; | (hj,vj) € M,vj =v}.

The size of M (v) is denoted by | M (v)].
eLocal Aggregation. The LLM’s understanding of
a candidate item may encompass multiple feature
aspects, and the global aggregation method com-
bines all aspects to form a comprehensive item rep-
resentation. However, during the inference stage,
not all feature aspects are relevant for each test
sample; only the aspects related to the test sample
are important. This suggests that mixing all fea-
ture aspects in one representation may introduce
interference. With this in mind, we propose lo-
cal aggregation, which leverages only the top-M
samples from memory that are most relevant to the
test sample’s hidden state for item representation
generation.

Specifically, for a test sample with s;, we first
filter a subset of the memory based on the hidden
state h; of test sample, denoted as M. Formally,

M ={(hj,v;) | (hj,vj) € M,

S(ht, hj) is in the top-M largest} ,
where S(h¢, hj) = m measures the similar-
ity between the stored hidden state h; and the test
sample’s hidden state h;. Then, a process similar to
global aggregation is applied to M, to obtain the
candidate item representation. Given a candidate

item v, the representation is formulated as follows:
> by, (5)

where |M;(v)| denotes the size of M;(v), and
M, (v) is the subset of M, containing items with
v as the ground-truth, defined as

A
(M (0)]

./\/lt(v) = {hj | (hj,vj) € My, v = U}.

Global vs. Local Aggregation: Compared to
global aggregation, local aggregation can better fo-
cus on test sample-specific aspects, potentially im-
proving subsequent matching performance. How-
ever, it may struggle more with sparse items due to
an increased lack of associated hidden states. Addi-
tionally, unlike the representation obtained through
global aggregation, which is uniform for all test
samples, the representation derived from local ag-
gregation is tailored to each test sample. For quanti-
tative comparative experiments and further analysis
of their suitable scenarios for the global and local
aggregation, please refer to Section 4.3.1. Mean-
while, the computational cost of both aggregation
methods remains negligible, as our approach funda-
mentally bypasses the time-consuming autoregres-
sive decoding of the LLM. The method requires
only a single forward pass during LLM inference,
with all subsequent operations being performed
through efficient vector-level computations.

3.4 Item Decoding

After generating the candidate item representations,
L2D could efficiently decode items in the latent
space during inference by measuring the similar-
ity between the test sample’s hidden state and the
representations of the candidate items. Specifically,
for a given test sample with hidden state h; and a
candidate item v, we denote the candidate item’s
representation as h,,, which is defined as:
if local aggregation.

%={$
v

(6)
Then, we compute the similarity score between
hi and h,, using the L2 distance as: S(hy, h,) =
m. Once the similarity scores for all can-
didate items are computed, the top-K items with
the highest similarity scores to the test sample are
selected to form the final recommendation list. We

refer to 12D with global aggregation as L2D-G,
and L2D with local aggregation as L2D-L.

in Eq. (3)
in Eq. (5)

if global aggregation,

CDs Games © L6
0.16 . Q@ © oL
0.14 :E:I AlphaRec
0.14 O BIGRec (beam=1)
%0.12 D 0.12 o D O BIGRec (beam=5)
= () BIGRec (beam=10)
© O X
g 0.10 ::]: Dﬂ a 0.10 {:’ @ D D? (beam=1)
-4
0.08 D D3 (beam=5)
0.08 6 [o (beam=10)
0.06 FA /\ GPT4Rec (beam=1)
0.06 GPT4Rec (beam=5)
0 500 1000 1500 2000 2500 0 1000 2000 3000 A oc eam
Time (s) Time (s) A GPT4Rec (beam=10)

Figure 3: The Recall @50 performance and the inference overhead of LLM-based recommenders on two datasets.

Table 1: Overall performance comparison. Results with beam size 1 are reported for methods using beam search
for fair comparison, with results for other beam sizes in Figure 3. The best results are in bold.

CDs Games

Model R@20 R@50 R@100 | N@20 N@350 N@I00 | R@20 R@50 R@100 | N@20 N@350 N@100

Traditiona] SASRec | 0.1015 0.1271 0.1522 | 0.0602 0.0653 0.0693 | 0.0684 0.1117 0.1564 | 0.0332 0.0417 0.0490
GRU4Rec | 0.0707 0.1027 0.1347 | 0.0376 0.0439 0.0491 | 0.0664 0.1099 0.1601 | 0.0302 0.0387 0.0468

LLM embedding | AlphaRec | 0.0651 0.0976 0.1353 | 0.0300 0.0364 0.0425 | 0.0619 0.1005 0.1392 | 0.0295 0.0371 0.0434
| GPT4Rec | 00513 00562 00652 | 0.0433 00443 00458 | 0.0508 00782 0.1064 | 0.0293 0.0347 0.0392
LL?&S;“S?;W BIGRec | 0.0506 0.0565 0.0621 | 0.0435 0.0446 0.0456 | 0.0476 0.0702 0.1007 | 0.0284 0.0328 0.0378
D3 0.0507 0.0560 0.0623 | 0.0436 0.0447 0.0457 | 0.0478 00711 0.1004 | 0.0284 0.0330 0.0376

ours 12D-G | 0.1144 0.1562 0.1996 | 0.0710 0.0792 0.0862 | 0.0646 0.1167 0.1794 | 0.0295 0.0397 0.0499
L2DL | 0.1158 01569 0.1992 | 0.0667 0.0745 0.0813 | 0.0879 0.1465 02072 | 0.0399 0.0511 0.0596

4 Experiments

In this section, we conduct experiments on two
widely-used real-world datasets to demonstrate the
effectiveness of our L2D framework in balanc-
ing performance and inference overhead. We will
showcase it by following research questions: RQ1:
How does the performance and inference overhead
of our L2D compare to LLM-based baselines?
RQ2: In which scenarios are global and local ag-
gregation most suitable, respectively? RQ3: How
does the hyperparameter M affect L2D-L? RQ4:
How does the performance of L2D compare to
the ID-based classifier? RQS: What is the spatial
efficiency of L2D?

4.1 Experimental Settings

Datasets. We evaluated our approach using two
representative Amazon Product Review datasets ':
Amazon CDs (CDs) and Amazon Games (Games).
These datasets consist of user review data collected
from Amazon between 1996 and 2018. Each re-
view was treated as a user-item interaction. Fol-
lowing (Bao et al., 2024), we truncated datasets by
timestamp to ensure manageable scale, filtered out
users/items with fewer than five interactions, and

"https://jmcauley.ucsd.edu/data/amazon/

limited user interaction sequences to a maximum
length of 10. All interactions was chronologically
ordered and splited into training/validation/test sets
(8:1:1 ratio). Dataset statistics are detailed in Ap-
pendix A.4.

Compared Methods. In this work, to demonstrate
the superiority of our proposed method from the
perspective of balancing performance and infer-
ence overhead in LLM-based recommendation, we
primarily selected some of the most commonly
used LLM-based models in the current literature.
For LLM-based embedding, we included Al-
phaRec (Sheng et al., 2025) as a baseline. For
LLM-based generative recommendation, we in-
cluded the following methods: BIGRec (Bao et al.,
2023), GPT4Rec (Zhang et al., 2024a), D3 (Bao
et al., 2024). Additionally, we included non-LLM
baselines (SASRec (Kang and McAuley, 2018)
and GRU4Rec (Hidasi et al., 2016)) for compre-
hensive comparison. For a comprehensive descrip-
tion of these baselines, please refer to the Ap-
pendix A.6.

For all generative-based methods, we used beam
search to generate multiple items and then map
them to real items in the dataset. The implemen-
tation details of beam search for recommendation
list generation can be found in Appendix A.2.

https://jmcauley.ucsd.edu/data/amazon/

Evaluation metrics. To evaluate the top-K recom-
mendation performance, we employed two widely
adopted metrics: Recall@K and NDCG@K (Bao
etal., 2024; Zheng et al., 2024). All evaluations fol-
low a full-ranking evaluation protocol (Bao et al.,
2023), with K € {20, 50, 100}. In the following, if
space is limited, we will abbreviate Recall@K and
NDCG@K as R@K and N@K, respectively.
Other detailed settings are in the appendix A.3

4.2 Main Results (RQ1)

To verify the effectiveness of our L2D, we present
the performance and inference cost of our method
compared to the baseline in Figure 3. Furthermore,
we illustrate the performance of our method at dif-
ferent K values in Table 1. From the figure and the
table, we can find:

* When evaluating the trade-off between perfor-
mance and inference cost for all methods, we ob-
serve from Figure 3 that points closer to the top-
left corner indicate better performance at lower
costs. Our proposed L2D method is the closest
to the top-left corner on both datasets, indicating
that L2D achieves excellent performance while
maintaining low inference cost, showcasing the
effectiveness of direct decoding of items in latent
space. Even when compared to the previously
most efficient LLM-based method, AlphaRec,
which uses LLM as embeddings, L2D reduces
the cost by at least a factor of five and gets a
better performance, further demonstrating the re-
markable potential of L2D in deployment.

* When comparing the performance of baseline
methods under different beam sizes, we ob-
serve that the performance of generative-based
methods improves approximately linearly as the
beam size and inference cost increase. Among
these, D? shows greater scalability (with a larger
growth rate). It would not be surprising if these
methods could surpass L2D in performance by
investing more in inference (e.g., increasing the
beam size to 50), but this could lead to nearly a
hundredfold increase in cost, which is not feasi-
ble in most real-world scenarios. Furthermore,
our experiments utilize Llama 3.2-1B as the back-
bone, which is a relatively small-scale language
model. The deployment costs would be even
higher with larger language models.

* Furthermore, Table 1 shows the comprehensive
performance evaluation. To rigorously assess the

0.3 0.3
mmm BIGRec mmm BIGRec
L2D-G L2D-G
0'2 L2D-L 0'2 L2D-L
0.1 0.1
0.0 o
Recall@50 NDCG@50 Recall@50 NDCG@50
(a) CDs Dense (b) Games Dense
BIGR¢ BIGRt
0'08 LZD-EC 0.08 LZD-:C
0.06 == 120.. | 0.06 = 12D-L
0.04 0.04
0.02 0.02
0.00 Recall@50 NDCG@50 0.00 Recall@50 NDCG@50
(c) CDs Sparse (d) Games Sparse

Figure 4: The performance of BIGRec, L2D-G, and

L2D-L on sparse and dense scenarios.
real-world performance of LLM-based models
during deployment, inference time costs must be
carefully accounted for. Consequently, we adopt
the results with the smallest beam size (beam =
1) as the fair comparison baselines for our L2D
method, despite the fact that its inference time
cost remains substantial (cf. Figure 3). Addi-
tionally, we included traditional (i.e. non-LLM)
baselines for comprehensive comparison. L2D
outperforms all baselines across all metrics. We
attribute this improvement to the method’s ability
to effectively preserve the powerful generative
training characteristics of the LLM’s recommen-
dation tuning, thus leveraging the LLM’s capa-
bilities acquired during the SFT phase.

4.3 Analysis

In this section, we present a comprehensive anal-
ysis of L2D. We first discuss its application sce-
narios in both sparse and dense recommendation
settings. Next, we conduct ablation studies to eval-
uate: 1)The impact of the key hyperparameter M in
L2D-L, 2)The performance comparison between
L2D and ID-based classifiers. Finally, we analyze
the space efficiency of the L2D framework.

4.3.1 Sparse and Dense Scenario (RQ2)

The discrepancy between L2D-G and L2D-L re-
sults in distinct application scenarios for these two
approaches. To analyze this, we divided the test
set into sparse and dense categories based on item
frequency in the training set. Figure 4 shows the
overall performance of the two strategies in these
scenarios. We observed the following: (1) Dense
scenarios: L2D-L achieves the best performance
due to the availability of numerous hidden states
for each item, allowing it to create a more person-
alized candidate item representation and eliminate

Table 2: L2D vs. ID-based classfier: The overall performance (a) and performance on sparse scenarios (b).

(a)

(b)

CDs R@20 R@50 R@I00 | N@20 N@50 N@100 CDs (Sparse) ~R@20 R@50 R@100 | N@20 N@350 N@100
Classfier 0.1087 0.1490 0.1886 | 0.0634 0.0714 0.0778 Classfier 0.0491 0.0671 0.0835 | 0.0271 0.0307 0.0333
12D 01158 01569 0.1996 | 0.0710 0.0792 0.0862 L2D 0.0682 0.0889 0.1125 | 0.0432 0.0473 0.0511
Games R@20 R@50 R@I100 | N@20 N@50 N@100 Games (Sparse) R@20 R@50 R@100 | N@20 N@50 N@100
Classfier 0.0896 0.1557 0.2205 | 0.0374 0.0505 0.0610 Classfier 00242 0.0446 0.0706 | 0.0095 0.0135 0.0177
L2D 00879 0.1465 0.2072 | 0.0399 0.0511 0.0596 L2D 0.0508 0.0874 0.1305 | 0.0230 0.0303 0.0372

Table 3: The performance of L2D when storing only

—+— R@20 R@50 — l}@lﬂq —+— R@20 R@50 —e— R@100

0.20
0.18
0.16 0.15

0.12
T T A/‘/.“\‘\"‘—n\‘

0.10
100 200 500 1000200030004000L2D-G 100 200 500 10002000 3000 4000L2D-G
M (top-M)

M (top-M)
(a) Recall on CDs (b) Recall on Games

Figure 5: The impact of M on the Recall metric for
L2D-L, where M denotes the hyperparameter that de-
termines the number of hidden states in local aggrega-
tion. Note that L2D-L becomes equivalent to L2D-G
when M reaches its maximum value.

irrelevant information. (2) Sparse scenarios: the
interactions are limited, which means that even the
top similar hidden states in Memory module may
not accurately represent user preferences, poten-
tially leading to biased results and performance
drops. In contrast, L2D-G, which aggregates pref-
erences globally, offers a more balanced outcome.

4.3.2 Hyper-parameter M on L2D-L (RQ3)

We illustrate the impact of M in Figure 5, where
only the results for Recall are reported. The results
for NDCG can be found in Appendix A.5.

Specifically, on the CDs dataset, the Global Ag-
gregation method in L2 D-G outperforms the Local
Aggregation method in L2D-L. In contrast, on the
Games dataset, we observe that performance peaks
as M increases, but further increasing M leads to
a decline in performance. We attribute this phe-
nomenon to the varying demands for focusing on
the test sample’s feature aspects in different rec-
ommendation scenarios. The Games dataset may
require a stronger emphasis on detailed feature as-
pects compared to the CDs dataset.

4.3.3 L2D vs. ID-based classfier (RQ4)

Training a recommendation head to decode the
next item by directly predicting its ID provides a
straightforward way to avoid language-space de-
coding, improving decoding efficiency. However,

30% of the training samples. The best results are in
bold.

CDs R@20 R@50 R@100 | N@20 N@50 N@I100
SASRec 0.1015 0.1271 0.1522 | 0.0602 0.0653 0.0693
GRU4Rec 0.0707 0.1027 0.1347 | 0.0376 0.0439 0.0491
AlphaRec 0.0651 0.0976 0.1353 | 0.0300 0.0364 0.0425
GPT4Rec (beam=1) 0.0513 0.0562 0.0652 | 0.0433 0.0443 0.0458
BIGRec (beam=1) 0.0506 0.0565 0.0621 | 0.0435 0.0446 0.0456
D? (beam=1) 0.0507 0.0560 0.0623 | 0.0436 0.0447 0.0457
L2D-G (30%) 0.1012 0.1391 0.1807 | 0.0621 0.0696 0.0763
L2D-L (30%) 0.0991 0.1344 0.1678 | 0.0579 0.0649 0.0703
Games R@20 R@50 R@100 | N@20 N@50 N@I100
SASRec 0.0684 0.1117 0.1564 | 0.0332 0.0417 0.0490
GRU4Rec 0.0664 0.1099 0.1601 | 0.0302 0.0387 0.0468
AlphaRec 0.0619 0.1005 0.1392 | 0.0295 0.0371 0.0434
GPT4Rec (beam=1) 0.0508 0.0782 0.1064 | 0.0293 0.0347 0.0392
BIGRec (beam=1) 0.0476 0.0702 0.1007 | 0.0284 0.0328 0.0378
D3 (beam=1) 0.0478 0.0711 0.1004 | 0.0284 0.033 0.0376
L2D-G (30%) 0.0759 0.1314 0.1973 | 0.0341 0.0450 0.0556
L2D-L (30%) 0.0682 0.1214 0.1795 | 0.0305 0.0407 0.0500

this training objective deviates from the LLM’s
original goal of next-token prediction, which may
hinder effective utilization of its pretrained knowl-
edge. Moreover, this approach incurs additional
training overhead and may perform poorly on
sparse items, as it requires learning in the LLM’s
high-dimensional representation space. In contrast,
our method can bypass language-space decoding
while still preserving the powerful generative train-
ing characteristics of the LLM’s recommendation
tuning, performing well on sparse items recommen-
dation scenarios.

To verify this, we trained a classifier head us-
ing the LLM’s hidden states with careful hyperpa-
rameter tuning. The results, summarized in Ta-
ble 2, report both (a) overall performance and
(b) performance on sparse recommendation sce-
nario. For overall performance (a), on the CDs
dataset, our method consistently outperforms the
baseline, achieving an average relative improve-
ment of 11.2%. On the Games dataset, our method
performs better for smaller K in NDCG and re-
mains comparable for larger K in both metrics. Re-
garding performance on sparse recommendation

scenario (b), our method consistently achieves sig-
nificantly better results.

4.3.4 Spatial complexity (RQ5)

In this subsection, we analyze the spatial complex-
ity of the proposed L2D framework. Although
the pre-stored hidden states of training samples
in L2D introduce additional space requirements,
these costs remain manageable since this scale of
storage is feasible even for personal devices. For
instance, if each sample corresponds to a 1024-
dimensional hidden state (float16), storing hidden
states for 107 training samples requires approxi-
mately 1024x2 bytes x 10° ~ 2 TB.

Storage costs can be further optimized by se-
lectively retaining only a subset of training sam-
ples, such as through reservoir sampling tech-
nique (Valkanas et al., 2024), where new data is
added over time while older data is removed. Our
experiments show that even when storing only 30%
of the orignal training data, our method still outper-
forms baselines (where only the Recall @20 metric
on the CDs dataset is competitive with SASRec).
The results are shown in Table 3.

5 Related Work

e LLM-based recommendation. We discuss
three paradigms of LLM-based recommenders (Wu
et al., 2024). (1) LLM-Embedding-Based Rec-
ommenders use embeddings from LLMs in tradi-
tional systems to capture user preferences (Yuan
etal., 2023; Xi et al., 2024a). While effective in lan-
guage tasks, these embeddings require fine-tuning
for optimal performance. (2) LLM-Based Dis-
criminative Recommenders directly predict user-
item interactions by optimizing the recommenda-
tion task with the LLM’s loss function (Zhang et al.,
2023; Li et al., 2023b; Zhang et al., 2024b). Al-
though it dispenses with intermediate embeddings,
it requires evaluating each item individually, re-
ducing efficiency compared to traditional models.
(3) LLM-Based Generative Recommenders gen-
erate natural language recommendations without
predefined items, offering innovative potential (Bao
et al., 2023, 2024; Zheng et al., 2024). However,
autoregressive decoding introduces significant in-
ference overhead. Inspired by these paradigms,
we propose a novel LLM-based recommender that
balances performance and overhead, addressing ex-
isting challenges to enhance quality and efficiency.

Notably, some existing (large) language model
(LM)-based approaches (Sheng et al., 2025), such

as RecFormer (Li et al., 2023a), can be viewed as
representing candidate items in latent spaces and
then matching them with the user input sequence
encoded by the LM. However, they indeed modify
the output layer of the LMs, with the effectiveness
of their matching process tied to the training pro-
cess. As a result, they fail to achieve plug-and-play
integration into existing advanced LLM-based rec-
ommenders. In contrast, our method is decoupled
from the training process, making it plug-and-play.
Additionally, these methods’ training objectives
deviate from the large language model’s original
goal of next-token prediction, which may hinder
effective utilization of its pretrained knowledge. A
detailed discussion is provided in Appendix A.1.

o Inference Acceleration for LLM-based Rec-
ommendation. With the widespread application
of LLMs, an increasing number of studies have fo-
cused on accelerating LLM inference. In particular,
in the field of LLM-based recommender systems,
models need to recommend products to a large
number of users within a short time frame, which
highlights the necessity of considering methods to
accelerate LLM inference in this domain. Spec-
ulative Decoding (SD) (Leviathan et al., 2023), a
significant acceleration technique in the NLP field,
has been applied to recommender systems, such as
DARE (Xi et al., 2024b) and AtSpeed (Lin et al.,
2024b). However, these methods still rely on ac-
celeration decoding within the language space. In
contrast, our method takes a step further by ex-
ploring how to implement efficient decoding for
recommendation in the latent space of LLMs, while
maintaining a simple and easy-to-implement over-
all framework that avoids complex designs.

6 Conclusion

In this study, we emphasized that fine-tuning LLMs
for recommendations in a generative manner is
highly promising but encounters significant infer-
ence overhead due to the original autoregressive de-
coding strategy. To address this challenge, we pro-
posed the L2D, which bypasses time-consuming
autoregressive decoding in the language space and
directly decodes items in LLM’s latent space. The
L2D preserves the generative tuning paradigm to
keep performance while enabling efficient decod-
ing. Our results highlighted the potential of latent
space decoding as a fundamental advancement in
LLM-based recommender systems, and extensive
results demonstrated the superiority of L2D.

Limitations

This paper has the following limitations: 1) Al-
though the L2D framework we introduced sig-
nificantly reduces inference latency, the memory,
which is pre-constructed, still incurs additional
time overhead during its pre-construction process.
This motivates us to explore more efficient memory
construction methods in future work. 2) Our ap-
proach, while capable of processing items with
at least one interaction without requiring addi-
tional training (unlike traditional methods such as
SASRec/GRU4Rec and some LLM-based methods
such as D3/ID-based classfier that need retraining),
still shares the same fundamental limitation as con-
ventional methods: it cannot handle fully cold-start
items with zero interaction history. In the future,
we plan to address this issue by using the interpo-
lation technique or incorporating auxiliary models.

3) We have not considered the problem of mem-
ory updating. As user interaction data gradually
accumulates over time, how to effectively use this
new data to update the memory in L2D to achieve
higher decoding performance presents a promising
direction. We intend to explore this issue in future
research.

Ethical Considerations

In this paper, we present L2D), designed to balance
the performance and inference overhead for gener-
ative LLMRec. Our method decode item in latent
space of LLM which doesn’t raise ethical concerns.
Moreover, the data we use are publicly available
and don’t include sensitive details. However, rec-
ommendations involve user behavioral data, which
might raise privacy concerns, which can be ad-
dressed through introducing the mechanism of user
consent. Additionally, using LL.Ms may have po-
tential negative societal biases. We argue for a
thorough risk assessment and alert users to the po-
tential risks associated with model deployment.

For the large language model use, we utilize
ChatGPT to help polish the writing at the sentence
level.

References

Keqin Bao, Jizhi Zhang, Wenjie Wang, Yang Zhang,
Zhengyi Yang, Yancheng Luo, Chong Chen, Fuli
Feng, and Qi Tian. 2023. A bi-step grounding
paradigm for large language models in recommenda-
tion systems. arXiv preprint arXiv:2308.08434.

Keqin Bao, Jizhi Zhang, Yang Zhang, Xinyue Huo,
Chong Chen, and Fuli Feng. 2024. Decoding mat-
ters: Addressing amplification bias and homogeneity
issue in recommendations for large language models.
In Proceedings of the 2024 Conference on Empiri-
cal Methods in Natural Language Processing, pages
10540-10552.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Baldzs Hidasi, Alexandros Karatzoglou, Linas Bal-
trunas, and Domonkos Tikk. 2016. Session-based
recommendations with recurrent neural networks. In
ICLR (Poster).

Wang-Cheng Kang and Julian J. McAuley. 2018. Self-
attentive sequential recommendation. In ICDM,
pages 197-206. IEEE Computer Society.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via specula-
tive decoding. In ICML, volume 202 of Proceedings
of Machine Learning Research, pages 19274-19286.
PMLR.

Jiacheng Li, Ming Wang, Jin Li, Jinmiao Fu, Xin Shen,
Jingbo Shang, and Julian J. McAuley. 2023a. Text is
all you need: Learning language representations for
sequential recommendation. In KDD, pages 1258-
1267. ACM.

Xinhang Li, Chong Chen, Xiangyu Zhao, Yong Zhang,
and Chunxiao Xing. 2023b. Ed4srec: An elegant
effective efficient extensible solution of large lan-
guage models for sequential recommendation. CoRR,
abs/2312.02443.

Xinyu Lin, Chaoqun Yang, Wenjie Wang, Yonggqi Li,
Cunxiao Du, Fuli Feng, See-Kiong Ng, and Tat-
Seng Chua. 2024a. Efficient inference for large
language model-based generative recommendation.
arXiv preprint arXiv:2410.05165.

Xinyu Lin, Chaoqun Yang, Wenjie Wang, Yongqi Li,
Cunxiao Du, Fuli Feng, See-Kiong Ng, and Tat-Seng
Chua. 2024b. Efficient inference for large language
model-based generative recommendation. CoRR,
abs/2410.05165.

Leheng Sheng, An Zhang, Yi Zhang, Yuxin Chen, Xiang
Wang, and Tat-Seng Chua. 2025. Language represen-
tations can be what recommenders need: Findings
and potentials. In ICLR. OpenReview.net.

Antonios Valkanas, Yuening Wang, Yingxue Zhang, and
Mark Coates. 2024. Personalized negative reservoir
for incremental learning in recommender systems.
CoRR, abs/2403.03993.

Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang,
Hongchao Gu, Tingjia Shen, Chuan Qin, Chen Zhu,
Hengshu Zhu, Qi Liu, et al. 2024. A survey on large

https://aclanthology.org/2024.emnlp-main.589
https://aclanthology.org/2024.emnlp-main.589
https://aclanthology.org/2024.emnlp-main.589
https://aclanthology.org/2024.emnlp-main.589
https://aclanthology.org/2024.emnlp-main.589

language models for recommendation. World Wide
Web, 27(5):60.

Yunjia Xi, Weiwen Liu, Jianghao Lin, Xiaoling Cai,
Hong Zhu, Jieming Zhu, Bo Chen, Ruiming Tang,
Weinan Zhang, and Yong Yu. 2024a. Towards open-
world recommendation with knowledge augmenta-
tion from large language models. In RecSys, pages
12-22. ACM.

Yunjia Xi, Hangyu Wang, Bo Chen, Jianghao Lin,
Menghui Zhu, Weiwen Liu, Ruiming Tang, Weinan
Zhang, and Yong Yu. 2024b. A decoding accelera-
tion framework for industrial deployable 1lm-based
recommender systems. CoRR, abs/2408.05676.

Zheng Yuan, Fajie Yuan, Yu Song, Youhua Li, Junchen
Fu, Fei Yang, Yunzhu Pan, and Yongxin Ni. 2023.
Where to go next for recommender systems? ID- vs.
modality-based recommender models revisited. In
SIGIR, pages 2639-2649. ACM.

Peiyan Zhang, Yuchen Yan, Xi Zhang, Liying Kang,
Chaozhuo Li, Feiran Huang, Senzhang Wang, and
Sunghun Kim. 2024a. Gptdrec: Graph prompt tun-
ing for streaming recommendation. In SIGIR, pages
1774-1784. ACM.

Yang Zhang, Keqin Bao, Ming Yan, Wenjie Wang, Fuli
Feng, and Xiangnan He. 2024b. Text-like encoding
of collaborative information in large language models
for recommendation. In ACL (1), pages 9181-9191.
Association for Computational Linguistics.

Yang Zhang, Fuli Feng, Jizhi Zhang, Keqin Bao, Qifan
Wang, and Xiangnan He. 2023. Collm: Integrating
collaborative embeddings into large language models
for recommendation. CoRR, abs/2310.19488.

Bowen Zheng, Yupeng Hou, Hongyu Lu, Yu Chen,
Wayne Xin Zhao, Ming Chen, and Ji-Rong Wen.
2024. Adapting large language models by integrat-
ing collaborative semantics for recommendation. In
2024 IEEE 40th International Conference on Data
Engineering (ICDE), pages 1435-1448. IEEE.

10

A Appendix

A.1 Contribution Positioning

Some existing (large) language model (LM)-based
approaches (Sheng et al., 2025), such as Rec-
Former (Li et al., 2023a), can be seen as represent-
ing candidate items in latent spaces and matching
them with the user input sequence encoded by the
LM. This makes them somewhat similar to our ap-
proach. However, there are inherent differences
between these methods and ours. First, our method
does not alter the generative training process (next-
token prediction); it only modifies the decoding
process without requiring additional tuning. In con-
trast, in these existing approaches, the matching
process is entangled with the training phase. As a
result, they fail to achieve plug-and-play integration
into existing advanced LLM-based recommenders.
Also, the training objective of these methods de-
viates from the language model’s original goal of
next-token prediction, which may hinder effective
utilization of its pretrained knowledge.

Secondly, even when focusing solely on the
matching process, there are differences in how the
sequence representations and candidate item repre-
sentations are constructed, as well as in the learning
processes involved. Our approach introduces the
following innovations:

* History Representation: Our representation is
derived from the hidden state embedding at the
next-token prediction position, which serves as a
"generative state" inherently encoding informa-
tion for generating subsequent tokens. In con-
trast, the existing methods do not leverage such
a generative state of LLMs.

 Item Representation: We construct item repre-
sentations by aggregating the "generative states"
of training samples where the item appears as
the target. This fundamentally differs from exist-
ing works, which require an item-based forward
encoding approach.

e Learning: Our history and item representations
exist in the same space and do not require ad-
ditional tuning. In contrast, existing methods
necessitate a separate training process to align
these representations for matching.

A.2 Beam-search for Recommendation

For all generative-based methods, we use beam
search to generate multiple items and then match
them to real items. Specifically, we first ob-
tain the semantic representation of each generated

11

Table 4: The statistics of datasets.

Dataset #User #Item #Train #Valid #Test
CDs 21,347 14,239 148,685 18,586 18,587
Games 34,089 11,037 201,613 25,202 25,203

—+— N@20 N@50 —+— N@100 —+— N@20 N@50 —+— N@100

T
/’\\\

100 200 500 10002000 30004000L2D-G
M (top-M)

(b) Games NDCG

0.085

0.080

0.075

0.070

—

100 200 500 1000 2000 3000 4000L2D-G
M (top-M)

(a) CDs NDCG

0.065

Figure 6: The impact of M on NDCG metric in the
L2D-L. M is a hyperparameter that determines the
number of hidden states in local aggregation. Note that
L2D-L equals L2D-G when M reaches its maximum
length.

item and compute their matching scores based on
their semantic similarity with all candidate items.
This results in a ranking matrix with dimensions
beam_number x candidate_item_number, where
each row represents the ranking list of a beam-
generated item. Finally, we flatten the matrix col-
umn by column into a single vector and retain the
top K unique items as the recommendation results.

A.3 Implementation details

Our LLM-based recommendation models were
built on Llama3.2-1B (Dubey et al., 2024) as the
backbone architecture. During the instruction tun-
ing phase, we adopted the AdamW optimizer along
with a cosine learning rate scheduler, using a batch
size of 64 and exploring learning rates in {1le-3, le-
4, 5e-5}. Other hyperparameters align with the de-
fault configurations from the D3 paper (Bao et al.,
2024). All experiments are conducted on NVIDIA
A100 GPUs.

A.4 Dataset Statistics

In this subsection, we supplement the statistical
information of the datasets used in our experiments.
Please refer to Table 4

A.5 TImpact of M on NDCG for L2D-L

In this subsection, we demonstrate the impact of
parameter M on the NDCG metric in the L2D-L
method. As shown in Figure 6, the phenomenon
observed in the NDCG metric is consistent with the
Recall metric in the paper, further strengthening
our argument.

A.6 Compared Methods

In this work, to demonstrate the superiority of our
proposed method from the perspective of balancing
performance and inference overhead in LLM-based
recommendation, we primarily selected some of
the most commonly used LLM-based models in
the current literature. For LLM-based embed-
ding, we included AlphaRec (Sheng et al., 2025)
as a baseline. This method uses LLM embed-
dings for recommendations by applying a collab-
orative filtering model to utilize language repre-
sentations. For LLM-based generative recom-
mendation, we included the following methods:
(1)BIGRec (Bao et al., 2023): A generative LLM-
based recommender that predicts the next item via
historical interactions, mapping generated items to
the dataset by L2 distance matching on semantic
embeddings. (2) GPT4Rec (Zhang et al., 2024a):
Similar to BIGRec but employs BM25 for item
mapping. (3) D3 (Bao et al., 2024): An improved
variant of BIGRec that mitigates decoding bias
by eliminating length normalization. Additionally,
we included non-LLM baselines (SASRec (Kang
and McAuley, 2018) and GRU4Rec (Hidasi et al.,
2016)) for comprehensive comparison.

12

	Introduction
	LLM-based Generative Recommender
	Latent-Space Decoding
	Overview
	Memory Construction
	Candidate Item Representation Generation
	Item Decoding

	Experiments
	Experimental Settings
	Main Results (RQ1)
	Analysis
	Sparse and Dense Scenario (RQ2)
	Hyper-parameter M on L2D-L (RQ3)
	L2D vs. ID-based classfier (RQ4)
	Spatial complexity (RQ5)

	Related Work
	Conclusion
	Appendix
	Contribution Positioning
	Beam-search for Recommendation
	Implementation details
	Dataset Statistics
	Impact of M on NDCG for L2D-L
	Compared Methods

