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Abstract

In this work, we propose a conditional generative adversarial network (cGAN)
to sample from the posterior of physics-based Bayesian inference problems. We
utilize a U-Net architecture for the generator and inject the latent variable using
conditional instance normalization. We solve the inverse heat conduction problem
and demonstrate how the proposed strategy effectively quantifies the uncertainty
in the inferred field. We also show that the structure of the generator promotes
generalizability due to the local-nature of the learned inverse map.

1 Introduction

Inverse problems are ubiquitous in science and engineering in areas such as computerized tomography
[1], seismology [2, 3], climate-modeling [4, 5], and astronomy [6]. Unlike the forward/direct problem,
the inverse problem can be challenging to solve, and might lack well-possedness [7]. Bayesian
inference provides a meaningful strategy to overcome these challenges by posing the problem in a
stochastic framework. It combines prior knowledge and data likelihood to formulate an expression
for the posterior distribution. Knowing the posterior is useful in evaluating statistical estimates and
quantifying the reliability of the inferred field for a given measurement.

Over the last few years, several deep learning-based strategies have been developed to solve inverse
problems. Popular among these are generative adversarial networks (GANs), which are useful
in approximating the underlying distribution characterized by data [8, 9, 10, 11, 12]. In [13], a
conditional generative adversarial network (cGAN) was developed to solve large-scale medical
imaging inverse problems in the Bayesian framework. In particular, a U-Net architecture with
convolution-residual blocks was used to construct the GAN generator. Such cGAN models have
been recently extended to solve nearshore bathymetry problems in [14]. Additionally, a GAN-based
approach was proposed in [15] to approximate many-to-many image mappings arising in computer
vision. A U-Net architecture was used for the generator and the latent information was injected at
various levels of the U-Net using conditional instance normalization [16].

In our work, we combine the two distinct but related themes from [13] and [15]. We design cGANs
to learn the posterior in physics-based Bayesian problems, where the generator uses the U-Net
architecture and conditional instance normalization. We consider the inverse heat conduction, and
use the cGAN to infer the thermal conductivity for the steady-state problem, and the initial condition

NeurIPS 2021 Workshop on Deep Learning and Inverse Problems, virtual.



for the unsteady problem. Additionally, we demonstrate how the architecture of the generator plays a
crucial role in promoting generalizability for the proposed approach.

2 Problem formulation

Consider the forward/direct problem given by y = f(x), where x ∈ ΩX is the input while y ∈ ΩY is
the response. A typical example is determining the temperature field, given the heat source, boundary
conditions and thermal conductivity. In this case, f is the solution map for the underlying PDE. The
associated inverse problem is to infer the heat source or the thermal conductivity field, given the
noisy temperature field; that is, inferring x given y. We solve the inverse problem in a Bayesian
setting, by assuming that the inferred field is sampled according to the distribution x ∼ px. Then
the measurements are sampled using the distribution y ∼ py induced by the forward map f . We are
interested in generating samples from the posterior px|y for a given the measurement y. Following
the strategy proposed in [13], we train a conditional Wassesrtein GAN to achieve this goal.

We assume access toM realizations {x(i)}Mi=1 from px, and construct the dataset of pairwise samples
S = {(x(i),y(i))}Mi=1 by solving the forward model, exactly or approximately. Note that the samples
in S represent realizations from the joint distribution pxy. Let z ∈ ΩZ ⊂ RNZ , be the latent
variable of the GAN distributed according to a distribution pz which is easy to sample from. We
define the GAN generator as g : ΩZ × ΩY 7→ ΩX , which generates samples from the induced
distribution pg

x. Further, for a given y, we denote the induced posterior distribution as pg
x|y. The

critic d : ΩX × ΩY 7→ R, is constructed to distinguish between true samples (x,y) ∼ pxy and fake
samples (xg,y), where xg ∼ pg

x|y . The loss function of the WGAN is given by

L(d, g) ≡ E
(x,y)∼pxy

z∼pz

[d(x,y)− d(g(z,y),y)] = E
x∼px|y
y∼py

[d(x,y)]− E
xg∼pg

x|y
y∼py

[d(xg,y)] . (1)

In the equation above, we begin with the definition of the loss term (also how it is constructed in
practise), and derive the equality using the definition of the joint distribution and that of pg

x. This
relation is used to derive the weak equivalence between px|y and pg

x|y below. The WGAN is trained
by solving the following min-max problem

(d∗, g∗) = arg min
g

arg max
d

L(d, g), (2)

which is equivalent to minimizing the Wasserstein-1 distance between px|y and pg
x|y under the

assumption that d is 1-Lipschitz [13]. The Lipschitz constraint on the critic can be weakly imposed
using a gradient penalty term [17] while training d. Further, convergence in the Wasserstein-1 metric
is equivalent to the weak convergence of the two measures, i.e.,

E
x∼px|y

[l(x)] = E
xg∼pg

x|y

[l(xg)] = E
z∼pz

[l(g∗(z,y))] , ∀ l ∈ Cb(ΩX). (3)

This implies that for a given measurement y, any statistic of the posterior distribution can be evaluated
by sampling z from pz and pushing it through the trained generator g∗(·,y).

The proposed algorithm is: (a) Generate or collect {x(i)}Mi=1 sampled from px. (b) For each x(i)

solve the forward model to determine y(i). (c) Train the WGAN using the set of pairwise samples
S = {(x(i),y(i))}Mi=1. (d) For a given measurement y, compute the desired statistics of the posterior
by sampling z from pz and pushing it through the trained generator g∗(·,y).

3 Numerical results

We consider the two-dimensional heat conduction problem. Given a noisy measurement of the
temperature field, we infer the thermal conductivity field for the steady-state problem, and the initial
condition for the unsteady problem (see Appendix B). The cGANs comprise of generators with a
U-Net architecture. The latent variable z is injected at various levels of the U-Net using conditional
instance normalization, instead of concatenating it with the input y. This approach gives us the
flexibility of choosing the latent dimension NZ independent of the dimension of y. Details of the
cGAN architectures and the corresponding hyper-parameters can be found in Appendix A. The mean
and standard deviation of the inferred field (for a given y) are computed using 200 samples from the
the latent space.
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3.1 Inferring the thermal conductivity

We solve the non-linear coefficient inversion problem for steady-state heat conduction, where we
infer the conductivity field κ given a noisy measurement of the temperature field ũ (see Appendix
B.1). The cGAN is trained on a dataset of 8000 samples of discrete conductivity x and measurement
y pairs evaluated on a 64 × 64 Cartesian grid. The conductivity field is taken as random circular
inclusion with a uniform background value of unity. We test the performance of the trained generator
on three different datasets. The first dataset consists of circular inclusions (like the training set),
the second and third sets are out-of-distribution (OOD) and consist of elliptical inclusions and two
circular inlcusions, respectively. In Figure 1(a)-(f), we show the predictions of our trained generator
for examples from each of these test sets. In general, we notice that the trained network is able
to reliably predict the position as well as orientation of the inclusions in all the three scenarios,
including the OOD examples. For samples with a single circular inclusion, the mean is very close
to the target. The uncertainty in prediction increases near the corners of the square domain, as one
would expect, in the SD plots of Figures 1(b) and (d). Interestingly, in Figure 1(d), it appears as if the
generator is attempting to combine two circles together to approximate the elongated shape of the
ellipse. In the case of two circles seen in Figures 1(e) and (f), the size of the predominant circles are
predicted accurately, while the smaller circles exhibit higher standard deviation. This indicates that
the generator is less certain about the placement of an additional inclusion. Overall, we observe that
the generator generalizes reasonably well to the OOD datasets.

3.2 Inferring the initial condition

We consider the time-dependent heat conduction equation without a source term and a constant
conductivity field (see Appendix B.2). Given a noisy temperature field at time t = 1, we wish to
infer the initial condition. This is a severely ill-posed problem as significant information is lost
via the diffusion process when moving forward in time. We denote the discretized initial and final
temperature field as x and y, respectively, evaluated on a 28 × 28 Cartesian grid. The training
dataset is generated using linearly scaled MNIST [18] handwritten digits as the initial condition,
with the training set consisting of 8000 samples. In Figure 1(g)-(i), we present the results with the
trained generator for measurements corresponding to test MNIST digits. As can be observed, the
mean correctly captures the target initial condition of the samples. The SD is the highest at the
boundaries of the digits, indicating a higher uncertainty in predicting the sharp transition region of
initial temperature field. In Figure 1(j)-(l), we show the results when the the target initial condition is
chosen from the notMNIST dataset (OOD dataset). We observe that the generator struggles to capture
high-temperature regions closer to the boundary and the broader zones in the interior. Note that
MNIST digits in the training set are more spatially centered and have narrower features. Nonetheless,
the generator is able to visibly capture the underlying notMINST characters, once again indicating
that it has the capacity to generalize beyond the training distribution. Further, we note that the
standard deviation peaks not only at the characters’ boundaries, but also in the interior regions where
the generator failed to predict the higher-values of initial condition field.

3.3 Generalizability

The numerical results presented above indicate that the trained cGANs have the ability to perform
well on measurements sampled from a test distribution that is out-of-distribution. To understand
this, we first examine the locality of the inverse map learned by the generator. We consider the GAN
generator trained in Section 3.2, and compute the gradient of the k-th pixel of the prediction x with
respect to the network input y. We evaluate the magnitude of gradient and average over 10 distinct
samples of y and 10 realizations of z, i.e.,

gradk =
1

100

10∑
i=1

10∑
j=1

∣∣∣∣∂g∂y (z(j),y(i))

∣∣∣∣ , y(i) ∼ py, z(j) ∼ pz, 1 ≤ k ≤ 282.

The averaged gradients for a few pixels k are shown in Figure 2. Note that the gradient for each pixel
is concentrated in the neighbourhood of the corresponding pixel in y. In other words, the domain of
influence of k-th pixel of x is a neighbourhood of the k-th pixel of y, but not all of y. The locality of
the generator is not unexpected, since most of the operations in the U-Net architecture (convolutions,
transpose-convolutions, up-/down-sampling, etc) are local in nature. Although we do also implement
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Figure 1: Inferred conductivity ((a)-(f)) and initial condition ((g)-(l)) for the heat conduction problem.
(c)-(f) and (j)-(l) are results for out-of-distribution (OOD) test samples.

a conditional instance normalization in the intermediate layers, it does not seem to substantially alter
the local influence y on the prediction.

Recognizing that (a) the inverse operator learned by the generator is spatially local, and (b) the GAN
is trained with data (circular inclusions and MNIST digits) that contains instances of x with sharp
binary contrast, we anticipate that it will generalize well to instances where the distribution of the
recovered parameter consists of samples with sharp binary contrast. This would be independent of the
global form of the spatial distribution of x. This is what is observed in Figure 1, where GAN trained
on instances of single circular inclusions generalizes to multiple circular inclusions and elliptical
inclusion, and a GAN trained on MNIST digits generalizes to notMNIST characters.

Figure 2: Average pixel-wise gradient network output (trained on MNIST) data. The red marker in
each tile denotes the pixel (of x) under consideration.

4 Conclusion

In this work, we have proposed training cGANs to solve physics-based Bayesian inference problems.
The efficacy of this strategy has been shown by solving the inverse head conduction model in two-
dimensions. The generator of the GAN has a special architecture which i) injects latent information
using conditional instance normalization, giving us the flexibility to choose an arbitrary latent
dimension, and ii) uses a U-Net architecture which promotes the learning of a local inverse mapping.
The local-nature of the learned map promotes the generalizability of the cGAN, which is demonstrated
through numerical experiments. Future work will consider additional physics-based problems and
explore a mathematical explanation connecting the network’s architecture and the locality of the
“true” inverse map to the expected generalizability.
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A WGAN architecture

The cGANs in this work were trained using the following loss function

L(d, g) = E
(x,y)∼pxy

z∼pz

[
d(x,y)− d(g(z,y),y) + λ E

ε∼U(0,1)

[
(‖∂1d(h(x,y, z, ε),y)‖2 − 1)2

]]
,

(4)
which has been augmented with a gradient penalty term. Here, U(0, 1) denotes the uniform distribu-
tion on [0, 1], ∂1d(., .) denotes the derivative with resespect to the first argument, and

h(x,y, z, ε) = εx + (1− ε)g(z,y).

For all experiments, we set the gradient penalty parameter as λ = 10.

All networks are trained on TensorFlow. Each network took less than 20 hours to train on a single
NVIDIA Tesla K40 GPU.

To describe the architecture of the generator and discriminator, we first introduce the following
notations:

• norm denotes the type of normalization used. This can take the value cin for condition
instance normalization using the latent variable or ln for layer normalization. Note that cin
implicitly implies that the latent variable is also an input to the particular layer using the
normalization.

• Conv(k,n) denotes a 2D convolution with k filters of size n and stride 1. If n > 1, reflective
padding of width 1 is applied in the spatial dimensions of the input before applying the
convolution.

• LReLU denotes the leaky ReLU activation with parameter 0.1.

• Res(norm) denotes a residual block whose action on an input X with k channels is given
by:
X →norm →Conv(k,1) →X1
X →norm →LReLU →Conv(k,3) →norm →LReLU →Conv(k,3) →X2
X1 + X2 →Block_Output
If the norm argument is absent, then no normalization is applied in the residual block.

• Down(k) denotes a down-sampling block which applies Conv(k,3) and LReLU operations
to the input, and then reduces the spatial resolution by a factor of 2.

• CC(X_old) denote the the concatenation of X_old to the input along the channel direction.
This helps implement skip connections.

• Up(k,X_old) denotes an up-sampling block which first applies CC( X_old), Conv(k,3)
and LReLU operations to the input, and then increases the spatial resolution by a factor
of 2 using nearest neighbour interpolation. If the argument X_old is absent, then no
concatenation is applied.

• Dense(k) denotes a fully connected layer of width k.

Based on the above notations, we now describe the U-Net generator architecture with a sigmoid
output function, and the corresponding critic. The training is performed using the Adam optimizer
with β1 = 0.5, β2 = 0.9 and learning-rates 10−3.The remaining hyper-parameters are listed in Table
1.

Architecture of cGAN for inferring conductivity
Generator architecture:
X →Conv(32,3) →LReLU →Res →X1 →Down(64) →Res(cin) →X2 →Down(128)
→Res(cin) →X3 →Down(256) →Res(cin) →X4 →Res(cin) →X5 →Up(256) →Res
→X6 →Up(128,X3) →Res(cin) →X7 →Up(64,X2) →Res(cin) →X8 →CC(X1)
→Conv(32,3) →LReLU →Res(cin) →Conv(1,3) →LReLU →Sigmoid →Output

Critic architecture:
[X;Y] →Down(32) →Res →Down(64) →Res(ln) →Down(128) →Res(ln)
→Down(256) →Res(ln) →Flatten →Dense(128) →LReLU →ln →Dense(1)
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Table 1: WGAN hyper-parameters
Inferred field Conductivity Initial temperature

Training samples 8000 8000
Latent dimension 50 100
Epochs 1000 1000
Batch size 64 50
ncritic/ngen 5 4

→Output

Architecture of cGAN for inferring initial temperature field
Generator architecture:
X →Conv(32,3) →LReLU →Res →X1 →Down(64) →Res(cin) →X2 →Down(128)
→Res(cin) →X3 →Res(cin) →X4 →Up(128) →Res →X5 →Up(64,X2) →Res(cin)
→X6 →CC(X1) →Conv(32,3) →LReLU →Res(cin) →Conv(1,3) →LReLU →Sigmoid
→Output

Critic architecture:
[X;Y] →Down(32) →Res →Down(64) →Res(ln) →Down(128) →Res(ln) →Flatten
→Dense(128) →LReLU →ln →Dense(1) →Output

B Heat conduction model and dataset generation

Consider the two-dimensional time-dependent heat conduction problem on a bounded domain Ω ⊂ R2

with Dirichlet boundary conditions
∂u(s, t)

∂t
−∇ · (κ(s)∇u(s, t)) = b(s), ∀ (s, t) ∈ Ω× (0, T ) (5)

u(s, 0) = m(s), ∀ s ∈ Ω (6)
u(s, t) = 0, ∀ (s, t) ∈ ∂Ω× (0, T ). (7)

Here u denotes the temperature field, κ denotes the spatially-varying conductivity field, b denotes
the heat source and m denotes the initial temperature field. The steady-state problem corresponds to
dropping the temporal dependence and the initial condition (6).

B.1 Datasets for inferring κ

We solve the non-linear coefficient inversion problem for the steady-state heat conduction problem
posed on Ω = (0, 1)2 for a constant heat source b ≡ 10. We assume that the measured temperature
field is corrupted by noise, i.e., ũ = u+ η, where η is modelled as an uncorrelated Gaussian noise
with zero mean and a covariance matrix given by σ2I. Here σ is taken to be 2.5% of the maximum
value of u on the entire dataset.

To generate the training data for the GAN, the forward steady-state problem is solved using the
Bubnov-Galerkin method with triangular first-order Lagrangian shape functions. The conductivity
field is constructed as having a circular inclusion on a constant background of value unity. The
position of the circle (sc1, s

c
2), the radius r and the conductivity value κc inside the circle were chosen

from uniform distributions

sc1 ∼ U(0, 1), sc2 ∼ U(0, 1), r ∼ U(0.05, 0.3), κc ∼ U(2, 10).

The vectors x and y of each training sample denote the values of the discretized κ and noisy
temperature fields ũ, respectively, interpolated on a 64× 64 Cartesian grid.

We additionally construct two OOD test datasets; one with an ellipse and the other having two circles.
The ellipses are parameterized by their center coordinates (se1, s

e
2), aspect ratio re, angle of tilt θ, and

conductivity κe

se1 ∼ U(0, 1), se2 ∼ U(0, 1), re ∼ U(0.3, 1), θ ∼ U(0, π), κe ∼ U(2, 10).
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For the double circles, we have their centers ((sa1 , s
a
2) and (sb1, s

b
2)), radii (ra and rb), and conductivity

values (κa and κb) sampled from

sa1 ∼ U(0, 1), sa2 ∼ U(0, 1), ra ∼ U(0.05, 0.25), κa ∼ U(2, 5),

sb1 ∼ U(0, 1), sb2 ∼ U(0, 1), rb ∼ U(0.05, 0.25), κb ∼ U(2, 5).

B.2 Datasets for inferring the initial condition

We consider the time-dependent heat equation on the domain Ω = (0, 2π)2 with b ≡ 0 and κ ≡ 0.2.
We assume that the measured temperature field at t = T = 1 is corrupted by an uncorrelated Gaussian
noise with zero mean and identity covariance matrix. Given such a measurement, we wish to infer
the initial temperature field m.

To construct training dataset, we consider the MNIST handwritten digits [18] and linearly scale
the image intensity to lie between 0 and 4 units. This forms the discrete initial temperature field
represented on a 28× 28 Cartesian grid. The corresponding final temperature field on the same grid
is obtained by solving (5)-(7) using a central-space-backward-time finite difference scheme. The
vectors x and y of each training sample denote the discretized initial and (noisy) final temperature
fields, respectively.

We create an additional OOD test dataset, where the initial condition is represented using the
notMNIST1 dataset with the same linear scaling of the image intensity.

1Available at: http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html

8


	Introduction
	Problem formulation
	Numerical results
	Inferring the thermal conductivity
	Inferring the initial condition
	Generalizability

	Conclusion
	WGAN architecture
	Heat conduction model and dataset generation
	Datasets for inferring 
	Datasets for inferring the initial condition


