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ABSTRACT

Constructing disentangled representations is known to be a difficult task, espe-
cially in the unsupervised scenario. The dominating paradigm of unsupervised
disentanglement is currently to train a generative model that separates different
factors of variation in its latent space. This separation is typically enforced by
training with specific regularization terms in the model’s objective function. These
terms, however, introduce additional hyperparameters responsible for the trade-off
between disentanglement and generation quality. While tuning these hyperparam-
eters is crucial for proper disentanglement, it is often unclear how to tune them
without external supervision.
This paper investigates an alternative route to disentangled representations.
Namely, we propose to extract such representations from the state-of-the-art
GANs trained without disentangling terms in their objectives. This paradigm of
post hoc disentanglement employs little or no hyperparameters when learning rep-
resentations, while achieving results on par with existing state-of-the-art, as shown
by comparison in terms of established disentanglement metrics, fairness, and the
abstract reasoning task. All our code and models are publicly available1.

1 INTRODUCTION

Unsupervised learning of disentangled representations is currently one of the most important chal-
lenges in machine learning. Identifying and separating the factors of variation for the data at hand
provides a deeper understanding of its internal structure and can bring new insights into the data gen-
eration process. Furthermore, disentangled representations are shown to benefit certain downstream
tasks, e.g., fairness (Locatello et al., 2019a) and abstract reasoning (van Steenkiste et al., 2019).
Since the seminal papers on disentanglement learning, such as InfoGAN (Chen et al., 2016) and
β-VAE (Higgins et al., 2017), a large number of models were proposed, and this problem continues
to attract much research attention (Alemi et al., 2016; Chen et al., 2018; Burgess et al., 2017; Kim &
Mnih, 2018; Kumar et al., 2018; Rubenstein et al., 2018; Esmaeili et al., 2019; Mathieu et al., 2019;
Rolinek et al., 2019; Nie et al., 2020; Lin et al., 2020).
The existing models achieve disentanglement in their latent spaces via specific regularization terms
in their training objectives. Typically, these terms determine the trade-off between disentanglement
and generation quality. For example, for β-VAE (Higgins et al., 2017), one introduces the KL-
divergence regularization term that constrains the VAE bottleneck’s capacity. This term is weighted
by the β multiplier that enforces better disentanglement for β > 1 while resulting in worse recon-
struction quality. Similarly, InfoGAN utilized a regularization term approximating the mutual infor-
mation between the generated image and factor codes. As has been shown in the large scale study
Locatello et al. (2019b), hyperparameter values can critically affect the obtained disentanglement.
In the unsupervised setting, the values of ground truth latent factors utilized by disentanglement
metrics are unknown, and thus selection of correct hyperparameters becomes a nontrivial task.
In this paper, we investigate if disentangled representations can be extracted from the pretrained non-
disentangled GAN models, which currently provide the state-of-the-art generation quality (Karras
et al., 2020). These GANs are trained without disentanglement terms in their objectives; therefore,
we do not need to tune the hyperparameters mentioned above. Our study is partially inspired by a
very recent line of works on controllable generation (Voynov & Babenko, 2020; Shen & Zhou, 2020;

1https://bit.ly/3ipb6dW
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Härkönen et al., 2020; Peebles et al., 2020), which explore the latent spaces of pretrained GANs and
identify the latent directions useful for image editing. The mentioned methods operate without ex-
ternal supervision, therefore, are valid to use in the unsupervised disentanglement. As shown by
the comparison on the common benchmarks, the proposed post hoc disentanglement is competitive
to the current state-of-the-art in terms of existing metrics, becoming an important alternative to the
established “end-to-end” disentanglement.
Overall, our contributions are the following:

• We investigate an alternative paradigm to construct disentangled representations by ex-
tracting them from non-disentangled models. In this setting, one does not need to tune
hyperparameters for disentanglement regularizers.

• We bridge the fields of unsupervised controllable generation and disentanglement learning
by using the developments of the former to benefit the latter. As a separate technical contri-
bution, we propose a new simple technique, which outperforms the existing prior methods
of controllable generation.

• We extensively evaluate all the methods on several popular benchmarks employing com-
monly used metrics. In most of the operating points, the proposed post hoc disentanglement
successfully reaches competitive performance.

2 RELATED WORK

2.1 DISENTANGLED REPRESENTATIONS

Learning disentangled representation is a long-standing goal in representation learning (Bengio
et al., 2013) useful for a variety of downstream tasks (LeCun et al., 2004; Higgins et al., 2018;
Tschannen et al., 2018; Locatello et al., 2019a; van Steenkiste et al., 2019). While there is no strict
definition of disentangled representation, we follow the one considered in (Bengio et al., 2013):
disentangled representation is a representation where a change in one dimension corresponds to the
change only in one factor of variation while leaving other factors invariant. Natural data is assumed
to be generated from independent factors of variations, and well-learned disentangled representa-
tions should separate these explanatory sources.
The most popular approaches so far were based on variational autoencoders (VAEs). Usually, to
make representations “more disentangled”, VAEs objectives are enriched with specific regularizers
(Alemi et al., 2016; Higgins et al., 2017; Chen et al., 2018; Burgess et al., 2017; Kim & Mnih, 2018;
Kumar et al., 2018; Rubenstein et al., 2018; Esmaeili et al., 2019; Mathieu et al., 2019; Rolinek
et al., 2019). The general idea behind these approaches is to enforce an aggregated posterior to be
factorized, thus providing disentanglement.
Another line of research on disentangled representations is based on the InfoGAN model (Chen
et al., 2016). InfoGAN is an unsupervised model, which adds an extra regularizer to GAN loss to
maximize the mutual information between the small subset of latent variables (factor codes) and
observations. In practice, the mutual information loss is approximated using an encoder network
via Variational Information Maximization. InfoGAN-CR(Lin et al., 2020) is a modification of In-
foGAN that employs the so-called contrastive regularizer (CR), which forces the elements of the
latent code set to be visually perceptible and distinguishable between each other. A very recently
proposed InfoStyleGAN model (Nie et al., 2020) incorporates similar ideas into the state-of-the-art
StyleGAN architecture, allowing for producing both disentangled representations and achieving ex-
cellent visual quality of samples.
In contrast to these approaches, we use no regularizers or additional loss functions and simply
study state-of-the-art GANs trained in a conventional manner.

2.2 CONTROLLABLE GENERATION

Based on rich empirical evidence, it is believed that the latent space of GANs can encode meaning-
ful semantic transformations, such as orientation, appearance, or presence of objects in scenes, of
generated images via vector arithmetic (Radford et al., 2016; Zhu et al., 2016; Bau et al., 2019; Chen
et al., 2016). This means that for an image produced by some latent code, such a transformation can
be obtained by simply shifting this latent code in a certain carefully constructed direction, indepen-
dent from the chosen latent code. E.g., in the case of human faces, we may have separate directions
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for such factors as hair color, age, gender. The main applications of this property have been in the
field of controllable generation, i.e., building software to allow a user to manipulate an image to
achieve a certain goal while keeping the result photorealistic. Powerful generative models are an
appealing tool for this task since the generated images lie on the image manifold by construction.
To manipulate a real image, the standard approach is to invert the generator, i.e., to compute a latent
code that approximately corresponds to the desired image, and then apply previously discovered
directions (Shen et al., 2020).
The discovery of directions that allow for interesting image manipulations is a nontrivial task, which,
however, can be performed in an unsupervised manner surprisingly efficiently (Voynov & Babenko,
2020; Shen & Zhou, 2020; Härkönen et al., 2020; Peebles et al., 2020). In the heart of these methods
lies the idea that the deformations produced by these directions should be as distinguishable as much
as possible, which is achieved via maximizing a certain generator–based loss function or by training
a separate regressor network attempting to differentiate between them. We thoroughly discuss these
approaches further in the text. An important common feature of these methods is that they do not
depend on sensitive hyperparameters or even do not have them at all, which makes them appealing
for usage in unsupervised settings.
Contrary to previous applications of such interpretable directions, we attempt to show they allow
us to solve a more fundamental task of building disentangled representations, useful in a variety of
downstream tasks.

3 TWO-STAGE DISENTANGLEMENT USING PRETRAINED GANS

In this section, we discuss how disentangled representations of data can be learned with a two-step
procedure. Briefly, it can be described as follows. First, we search for a set of k orthogonal inter-
pretable directions in the latent space of the pretrained GAN in an unsupervised manner. This step is
performed via one of the methods of controllable generation described below. These directions can
be considered as the first k vectors of a new basis in the latent space. By (virtually) completing it to a
full orthogonal set of vectors, we can obtain (presumably, disentangled) representations of synthetic
points by a simple change of bases and truncating all but the first k coordinates; this can be com-
puted by single matrix multiplication. To obtain such representations for real data, we can now train
an encoder on a synthetic dataset where targets are constructed using the procedure above. We stick
to orthogonal directions for several reasons. Experimentally, it has been shown that this constraint
does not significantly affect the quality of discovered directions and is imposed by construction in
several further discussed methods. Additionally, it makes the formulas less cumbersome.

Reminder on style–based architectures. Traditionally, the generator network in GANs trans-
forms a latent code z ∈ N (0, 1) to an image x ∈ RC×H×W . Contrary to this, style–based genera-
tors introduce a so-called style network, usually realized as a trainable MLP, which “preprocesses”
random latent codes to the so-called “style vectors” (elements of the style space). The obtained style
vectors are, in turn, fed into the convolutional layers of the generator. It has been shown (Karras
et al., 2019) that direct manipulations over the style vectors, rather than latent codes themselves,
leads to visually plausible image interpolations and image mixing results. Intuitively, the style net-
work performs a “rectification” of the latent space so that the new latent codes are more interpretable
and disentangled. In this paper, we work with the style–based generators and perform image edit-
ing in the style space, denoted byW; its elements are denoted as w. Let us now discuss the steps
mentioned above in more detail. Recall, that we are interested in finding directions n such that
G(w′) with w′ = w + αn performs a certain interpretable deformation of the image G(w). We
now thoroughly describe the existing approaches to obtaining them in an unsupervised manner as
well as various hyperparameters one needs to specify for each method.

3.1 DISCOVERING INTERPRETABLE DIRECTIONS

We consider several recently proposed methods: ClosedForm (Shen & Zhou, 2020), GANspace
(Härkönen et al., 2020), LatentDiscovery (Voynov & Babenko, 2020). Inspired by these meth-
ods, we also propose another family of methods termed DeepSpectral.

ClosedForm (CF). The authors of the ClosedForm method propose to move along the singular
vectors of the first layer of generator. More specifically, for the transformation in the first layer given
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by the matrix A (e.g., this may be the weight in a fully-connected or a transposed convolutional
layer), the direction n is found as

n∗ = argmax
{n∈RD:nTn=1}

‖An‖22. (1)

All local maximas of Equation (1) form the set of singular vectors of the matrix A, and the authors
propose to choose k singular vectors, associated with the corresponding k highest singular values.
For the style–based GANs, the matrix A is obtained by concatenating the style mapping layers of
each convolutional block.
Hyperparameters: this method is hyperparameter–free and requires only a pretrained GAN model.

GANspace (GS). This method searches for important, meaningful directions by performing PCA
in the style space of StyleGAN. Specifically, these directions are found in the following manner:
first, randomly sampled noise vectors z1:N ∈ N (0, 1) are converted into style vectors w1:N . The
interpretable directions then correspond to principal axes of the set w1:N ; in practice, we consider
top k directions according to the corresponding singular values.
Hyperparameters: for this approach, we only need to provide the number of sampled points which
can be taken fixed and large, as well as a random seed for sampling.

LatentDiscovery (LD). LatentDiscovery is an unsupervised model-agnostic procedure for
identifying interpretable directions in the GAN latent space. Informally speaking, this method
searches for a set of directions that can be easily distinguished from one another. The resulting
directions are meant to represent independent factors of generated images and include human-
interpretable representations.
The trainable components are the following: a matrix N ∈ RD×k and a reconstructor network R,
which evaluates the pair (G(w), G(w+N(εek)). The reconstructor model aims to recover the shift
in the latent space corresponding to the given image transformation. These two components are
optimized jointly by minimizing the following objective function:

N∗, R∗ = argmin
N ,R

Ew,k,εL(N , R) = argmin
N ,R

Ew,k,ε

[
Lcl(k, k̂) + λLr(ε, ε̂)

]
. (2)

Here, Lcl(·, ·) is a reconstructor classification loss (cross-entropy function), Lr(·, ·) – regression
term (mean absolute error), which forces shifts along found directions to be more continuous. This
method utilizes a number of hyperparameters; however, as was shown in Voynov & Babenko (2020),
it is quite stable, and the default values provide good quality across various models and datasets.
Hyperparameters: the hyperparameters include the number of latent directions k and the multiplier
of the reconstructor term λ; additionally, we can select different architectures for the regressor, as
well as different training hyperparameters and random seed for initialization.

DeepSpectral (DS). We propose a novel approach to finding interpretable directions in the GAN
latent space. Our motivation is as follows. While CF and GS both produce decent results, they
effectively ignore all the layers in the generator but the first few ones. We hypothesize that by study-
ing outputs of deeper intermediate layers of the generator, one can obtain a richer set of directions
unavailable for these methods. Concretely, we propose the following simple approach. Let G(i)(w)
denote the output of the i-th hidden layer of the generator. In order to obtain k directions in the latent
space, we compute k singular vectors of JG(i)(w) with the highest singular values (at some fixed
point w). Here, JG(i) denotes the Jacobian matrix of a mapping. In a way, our approach generalizes
CF since a linear map and its Jacobian coincide (when bias is zero). By using automatic differenti-
ation and an iterative approach to computing Singular Value Decomposition (thus, we do not form
the full Jacobian matrix), such directions can be found basically instantly (Khrulkov & Oseledets,
2018). The only hyperparameters in this approach are the choice of the layer and the choice of the
base point w to compute the Jacobian. We experimentally verify the benefits of DS by considering
various intermediate layers in Section 4.
Hyperparameters: we need to specify the layer and the base point w.

Another recently proposed method (Peebles et al., 2020) searches for interpretable directions by
utilizing the so-called Hessian penallty, penalizing the norm of the off-diagonal elements of the
Hessian matrix of a network. However, in our implementation, we were not able to obtain convincing
results; we plan to analyze in the future with the authors’ implementation when released.
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3.2 LEARNING DISENTANGLED REPRESENTATIONS

Figure 1: A visualization of our algorithm in the
case of two interpretable directions n1 and n2.

We now discuss our approach to learning disen-
tangled representations of a real dataset X . We
start by training a GAN on X , and finding a set
of k interpretable orthogonal directions of unit
length. We stack them vertically into a matrix
N ∈ RD×k. In several methods (DS, CF, GS)
the obtained directions are already orthogonal;
other methods can be augmented with this con-
straint by performing the QR projection (Pee-
bles et al., 2020) or parametrizing N via the
matrix exponential (Voynov & Babenko, 2020).
The obtained directions span a “disentangled
subspace” of W , with the basis formed by the
columns of N . By projecting a latent code w
onto this space and finding its components in
this basis, we obtain a new representation of the
latent code, where ideally each coordinate rep-
resents an individual factor of variation. The resulting k-dimensional representation can be easily
computed as wN , where we utilized orthogonality of N . Note that this procedure is equivalent to
first completing N to an arbitrary orthogonal basis in the entire space RD, and after the change of
coordinates omitting all but the first k informative components, in the spirit of the PCA projection.

To obtain such representations for real data, we perform the following step.
We start by constructing a large synthetic dataset Xgen = {wi, G(wi)}Ni=1, with wi being style
vectors. The k-dimensional disentangled codes representing the images G(wi) are then computed
as wiN . We now train an encoder networkE(x; θ) : RC×H×W → Rk by minimizing the following
loss function:

L(θ) = EXgen‖E(G(wi); θ)−wiN‖2. (3)

This approach is similar in spirit to generator inversion (Abdal et al., 2019; Zhu et al., 2020; Creswell
& Bharath, 2018; Zhu et al., 2016), which is known to be a challenging problem and typically re-
quires sophisticated algorithms. In our experiments, however, we were able to train encoders rea-
sonably well without any particular tweaks, probably due to the fact that the modified latent codes
wN represent informative image attributes that are easier to be inferred.
Hyperparameters: to train the encoder, we need to fix the network architecture and training pa-
rameters; it is also affected by the random seed for initialization. We also need to choose the value
of N and sample N training points.

Summary. Let us briefly summarize the proposed procedure to obtain disentangled representa-
tions of a dataset.

1. Train a non-disentangled GAN generator G on the dataset.

2. Obtain a set of k interpretable orthogonal directions of unit length in the latent space with
one of the previously described methods; assume that they are arranged in a matrix N ∈
RD×k.

3. Train an encoder E on synthetic data to predict the mapping G(w)→ wN .

4 EXPERIMENTS

In this section, we extensively evaluate the proposed paradigm in order to assess its quality and
stability with respect to various method hyperparameters and stochasticity sources. To achieve this,
we perform an extensive sweep of random seeds and controllable generation methods and evaluate
the obtained encoders with respect to multiple metrics. All our code and models are available at
https://bit.ly/3ipb6dW.
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4.1 EXPERIMENTAL SETUP

Datasets. We consider the following standard datasets: 3D Shapes consisting of 480, 000 im-
ages with 6 factors of variations (Burgess & Kim, 2018), MPI3D consisting of 1, 036, 800 images
with 7 factors (Gondal et al., 2019) (more specifically, we use the toy part of the dataset), Cars3D
– 17, 568 images with 3 factors (Fidler et al., 2012; Reed et al., 2015); we resize all images to
64 × 64 resolution. We also study the recently proposed Isaac3D dataset (Nie et al., 2020) con-
taining 737, 280 images with 9 factors of variations; images are resized to 128× 128 resolution.

Model. We use the recently proposed StyleGAN 2 model (Karras et al., 2020) and its open-source
implementation in Pytorch from github2. Importantly, we fix the architecture and only vary the
random seed when training models. For all datasets, we use the same architecture with 512 filters
in each convolutional layer and the style network with 3 FC layers. The latter value was chosen
based on experiments in Nie et al. (2020). For Isaac3D, we perform a more of a proof-of-concept
experiment by training a single GAN model and varying only random seeds and hyperparameters
when training encoders. We employ truncation with a scale of 0.7 for Isaac3D and 0.8 for other
datasets; we did not tune these values and selected them initially based on the idea that more realistic
looking samples are beneficial for training the encoder, and the fact that Isaac3D is a more chal-
lenging dataset. In Appendices A and B we provide specific values of remaining hyperparameters,
architecture and optimization details.

Disentaglement methods. We consider the four previously discussed methods, namely, CF, GS,
LD and DS. For a fair comparison with VAEs in Locatello et al. (2019b;a); van Steenkiste et al.
(2019), we use k = 10 for each method, i.e., we learn 10–dimensional representations of data. We
use the following hyperparameters for each method.

• GS: We fix N = 20, 000 and sweep across random seeds for sampling.

• LD: We use the authors’ implementation available at github3 with default hyperparameters
and backbone; we train it for 5, 000 iterations and sweep across random seeds.

• DS: We consider the outputs of first convolutional layers at resolutions 32 and 64, and the
output of the generator; we average the results obtained for each of these layers. For the
base point, we decided to simply fix it to the style vector w0 corresponding to 0 ∈ Z .

Recall that CF does not require any hyperparameters.
As a separate minor experiment, we provide examples of interesting directions found with our DS
method in latent spaces of various high–resolution StyleGAN 2 models in Appendix E.

Encoders. For each set of directions discovered by each method, we train the encoder model as
described in Section 3. For the first set of datasets, we use the same four–block CNN considered in
Locatello et al. (2019b); specific details are provided in Appendix A. For Isaac3D, we consider
the ResNet18 backbone (He et al., 2016), followed by the same FC net as in the previous case. We
use 500, 000 generated points as the train set and sweep across random seeds.

Disentanglement metrics. We compute the following metrics commonly used for evaluating the
disentanglement representations learned by VAEs: Modularity (Ridgeway & Mozer, 2018) and Mu-
tual information gap (MIG) (Chen et al., 2018). We adapt the implementation of the aforementioned
metrics made by the authors of Locatello et al. (2019b) and released at github4. We use 10, 000
points for computing the Mutual Information matrix.
Modularity measures whether each code of a learned representation depends only on one factor of
variation by computing their mutual information. MIG computes the average normalized difference
between the top two entries of the pairwise mutual information matrix for each factor of variation.

Abstract reasoning. Motivated by large-scale experiments conducted in van Steenkiste et al.
(2019), we also evaluate our method on the task of abstract reasoning.

2https://github.com/rosinality/stylegan2-pytorch
3https://github.com/anvoynov/GANLatentDiscovery
4https://github.com/google-research/disentanglement lib
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In an abstract reasoning task, a learner is expected to distinguish abstract relations to subsequently
re-apply it to another setting. More specifically, this task consists of completing a 3×3 context panel
by choosing its last element from 3 × 2 answer panel including one right and five wrong answers
forming Raven’s Progressive Matrices (RPMs) (Raven, 1941).
We conduct these experiments on the 3D Shapes dataset and use the same procedure as in van
Steenkiste et al. (2019) to generate difficult task panels. An example of such a task panel is depicted
in Figure 4. For this experiment we utilize the the open-source5 implementation of Wild Relation
Network (WReN) (Santoro et al., 2018) with default hyperparameters. The encoder is frozen and
produces 10-dimensional representations, which in turn are fed into WReN.

Fairness. Another downstream task, which could benefit from disentangled representation, is
learning fair predictions (Locatello et al., 2019a). Machine learning models inherit specifics of
data, which could be collected in such a way that it can be biased towards sensitive groups caus-
ing discrimination of any type (Dwork et al., 2012; Zliobaite, 2015; Hardt et al., 2016; Zafar et al.,
2017; Kusner et al., 2017; Kilbertus et al., 2017). Similarly to Locatello et al. (2019a), we evaluate
unfairness score of learned representations, which is the average total variation of predictions made
on data with the perturbed so-called sensitive factor value.

Random seeds. For each of the first three datasets, we train eight GANs by only varying the
initial random seed; for Isaac3D we train a single model. For each generator, we then evaluate
each method for five initial random seeds.

4.2 KEY EXPERIMENTAL RESULTS

Our key results are summarized in Figures 2 and 3 and Table 1. For each dataset and each method,
we report the Modularity and MIG scores obtained using our approach. We compare our results
with the results in the large scale study of disentanglement in VAEs (Locatello et al., 2019b, Fig-
ure 13). Note that Locatello et al. (2019b) evaluate various models by fixing all the architecture and
optimization details and only varying a regularization strength for each method, as well as random
seeds. Thus, the setup is close to ours. Results are provided there in the form of violing plots;
the actual numerical values are available only for Cars3D. Detailed comparison on this dataset is
provided at Figure 3. We observe that all the methods are able to achieve disentanglement scores

Figure 2: Modularity and MIG scores (higher is better) obtained for various encoders and datasets
trained via the two-stage procedure as described in Section 3 for StyleGAN 2. We observe that a)
average results are on par or outperform most of the VAE-based models (Locatello et al., 2019b) b),
on the other hand, for many methods, our approach provides smaller variance; the variance is due to
random seeds in generators and encoders, see Section 3.

competitive with the scores reported for VAE-based approaches, see Locatello et al. (2019b, Fig-
ure 13). E.g., on Cars3D, the average score of CF in terms of MIG exceeds the highest average

5https://github.com/Fen9/WReN
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Figure 3: Comparison of our MIG scores on Cars3D with various VAE based approaches; numbers
are provided by the authors of Locatello et al. (2019b). Total denotes the entire distribution of VAE
scores with respect to the hyperparameter/seed space; For Best mean for each VAE–based method,
we select a single best hyperparameter according to the mean (over random seeds) MIG value and
plot the distribution only with respect to seeds. For (c), we plot the distributions of MIG over all
configurations (method, seed, hyperparameters).

Method Dataset
Cars3D 3D Shapes MPI3D Isaac3D

GS 0.143 ±0.029 0.188 ±0.070 0.160 ±0.022 0.190 ±0.01
CF 0.137 ±0.017 0.216 ±0.073 0.198 ±0.030 0.448 ±0.005
DS 0.098 ±0.058 0.398 ±0.086 0.155 ±0.053 0.352 ±0.07
LD 0.107 ±0.050 0.160 ±0.061 0.073 ±0.039 0.140 ±0.043
InfoStyleGAN - - - 0.328 ±0.057
InfoStyleGAN* - - - 0.404 ±0.085

Table 1: We provide mean and standard devations of MIG for each method and for each dataset.
InfoStyleGAN and InfoStyleGAN* correspond to models of various capacity (large and small) as
specified in (Nie et al., 2020). For the first three datasets randomness is due to random seed both in
generators and encoders; for Isaac3D the generator is fixed and we only vary the random seed and
hyperparameters when training encoders.

score for all the competitors. Notice that the variance due to randomness tends to be smaller than for
VAEs, and we are able to consistently obtain competitive disentanglement quality. CF and GS tend
to be more stable on average, while DS is capable of achieving higher scores but is less stable. In
many cases, VAEs underperform for a large portion of the hyperparameter/seed space. Figure 3 (c)
also provides the distributions of MIG values aggregated over random seeds, hyperparameter val-
ues and methods, demonstrating that scores achieved by the post-hoc disentanglement are generally
higher.
While the MPI3D was not studied in Locatello et al. (2019b), we note that our MIG values are
comparable with carefully tuned VAE models achieving the best results in “‘NeurIPS 2019 disen-
tanglement challenge”’6. We also note that our DS method performs reasonably well by achieving
the highest possible results on all the datasets and the best average result on 3D Shapes. It appears
that LD struggled to reliably uncover factors of variations. One possible reason is that we searched
only for 10 directions, while unlike other methods, it does not have an appealing property allowing
us to select top k directions with respect to some value, e.g., as in the PCA case. A possible solution
to that might be discovering a new approach of the unsupervised selection of the best directions from
a large set of candidates.
In Table 1 we also provide our results for Isaac3D. Interestingly, with the CF method, we are able
to achieve MIG competitive with InfoStyleGAN* and outperform InfoStyleGAN. This suggests that
auxiliary regularizers may not be necessary, and the latent space of StyleGANs is already disentan-
gled to a high degree.
For the methods achieving the best results in terms of MIG, we provide the corresponding Mutual
Information matrix in Appendix D and visualize latent traversals in Appendix C.

6https://www.aicrowd.com/challenges/neurips-2019-disentanglement-challenge
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4.2.1 ABSTRACT REASONING AND FAIRNESS

We now verify whether the learned representations can be utilized for abstract reasoning tasks. We
also verify the fairness of these representations, as previously discussed. See Figures 4 and 5 for the
results. Note that our method allows for training abstract reasoning models with consistently high
accuracy (e.g., mostly exceeding 95% in the case of CF). These results are competitive with VAE-
based models van Steenkiste et al. (2019, Figure 11); however, the difference is hard to estimate
quantitatively as the numerical results are not provided there. Similarly, we find that in terms of
unfairness, our method finds the representations with the distribution of scores comparable to those
produced by VAEs, see Locatello et al. (2019a, Figure 2); however, the variance for our methods
is smaller in all the cases. On average, the VAE methods are slightly better on 3D Shapes and
slightly worse on Cars3D.

Figure 4: (Left) An example of the abstract reasoning task. The goal of the learner is to correctly
choose the correct answer (marked with green in this example) from the answer panel, given the
context panel. (Right) Accuracy obtained by training WReN with the (frozen) encoders obtained
using one of the discussed methods. In most of the cases, we reliably obtain a sufficiently high
accuracy value.

Figure 5: Distribution of unfairness scores (the lower, the better); we can observe that the scores are
relatively low despite different hyperparameters and random seed setups.

Experiments on non-style-based GANs. The main bulk of our experiments was conducted using
StyleGANs. As a proof of concept, we verify whether our method works for other non-style-based
GANs, specifically, we consider ProGAN (Karras et al., 2018); all the details and experimental
results are covered in Appendix F. We compare our DeepSpectral method to ClosedForm
and LatentDiscovery since these methods are the easiest to extend to non style-based GANs.
The obtained results are slightly inferior to StyleGAN 2, and we attribute this behavior to the larger
gap between real data and ProGAN samples compared to StyleGAN 2 samples. Since the encoder
in our scheme is trained on the synthetic data, the quality of samples is crucial.

5 CONCLUSION

In this work, we proposed a new unsupervised approach to building disentangled representations of
data. In a large scale experimental study, we analyzed many recently proposed controlled generation
techniques and showed that: (i) Our approach allows for achieving disentanglement competitive
with other state-of-the-art methods. (ii) We essentially get rid of critical hyperparameters, which
may obstruct obtaining high quality disentangled representations in practice. A number of open
questions, however, still remains. Firstly, the existence of directions in the GAN latent space almost
perfectly correlated with exactly one of the factors of variations is quite surprising and requires
further theoretical understanding. Additionally, there has been some evidence that linear shifts may
perform subpar compared to more intricate non-linear deformations in a modified latent space. We
leave this analysis for future work.
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A ARCHITECTURES

Here, we provide the model hyperparameters used in our study.

Mapping Network
(FC × n mlp) latent dim × latent dim

Synthesis Network
(4×4 Conv) 3×3× width × width
(4×4 Conv) 3×3× width × width
(8×8 Conv) 3×3× width × width
(8×8 Conv) 3×3× width × width
(16×16 Conv) 3×3× width × width
(16×16 Conv) 3×3× width × width
(32×32 Conv) 3×3× width × width
(32×32 Conv) 3×3× width × width
(64×64 Conv) 3×3 × width × width
(64×64 Conv) 3×3× width × width

(a) Generator

(64×64 Conv) 3×3× width × width
(64×64 Conv) 3×3× width × width
(32×32 Conv) 3×3×width×width
(32×32 Conv) 3×3×width×width
(16×16 Conv) 3×3×width×width
(16×16 Conv) 3×3×width×width
(8×8 Conv) 3×3×width×width
(8×8 Conv) 3×3×width×width
(4×4 Conv) 3×3 × width × width
(4×4 Conv) 3×3 × (width+ 1) × width
(4×4 FC) (16 ·width) × width
(4×4 FC) width×1

(b) Discriminator

Table 2: Generator and discriminator architectures for the StyleGAN 2 models for generating the
image of resolution 128×128. “FC×n mlp” denotes n mlp dense layers; “2k×2k Conv” denotes
the convolutional layers in the 2k resolution block. For resolution 64 × 64, the first block in the
discriminator and the last block in the generator are omitted.

Conv 4 × 4 × 3 × 32, stride=2
ReLU
Conv 4 × 4 × 32 × 32, stride=2
ReLU
Conv 4 × 4 × 32 × 64, stride=2
ReLU
Conv 4 × 4 × 64 × 64, stride=2
ReLU
FC 1024 × f size
ReLU
FC f size × 10

Table 3: Encoder architecture used in our experiments. f size is 256 for 3D Shapes and
MPI3D, and 512 for Cars3D and Isaac3D. For Isaac3D the convolutional block is replaced
with ResNet18 without the last classification layer.
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B HYPERPARAMETERS

Here, we provide the training hyperparameters for StyleGAN 2, encoders and WReN.

Parameter Value
iter 200000 for Isaac3D and 300000 for other datasets
batch 32
n sample 64
size 128 for Isaac3D and 64 for other datasets
r1 10
path regularize 2
path batch shrink 2
d reg every 16
g reg every 4
mixing 0.9
lr 0.002
augment False
augment p 0
ada target 0.6
ada length 500000
latent dim 512
n mlp 3
width 512

truncation 0.7 for Isaac3D and 0.8 for other datasets
mean latent 4096
input is latent True
randomize noize False (for evaluation)

Table 4: Training hyperparameters of the StyleGAN 2 model. Our implementation is based on
https://github.com/rosinality/stylegan2-pytorch; we modified it to pass the
number of filters (width) for convolutional layers and the latent dimension as hyperparameters.

Table 5: Training hyperparameters for encoders.

Parameter Value
Batch size 128
Optimizer Adam
Adam: beta1 0.9
Adam: beta2 0.999
Adam: epsilon 1e− 8
Adam: learning rate 0.001
Training epochs 20
Learning rate decay: step size 10
Learning rate decay: gamma 0.5
Latent space dim: 10

Table 6: Training hyperparameters for WReN
when solving the abstract reasoning tasks.

Parameter Value
Batch size 32
Optimizer Adam
Adam: beta1 0.9
Adam: beta2 0.999
Adam: epsilon 1e− 8
Adam: learning rate 0.0001
Training steps 100000
Learning rate decay: step size 10
Learning rate decay: gamma 0.5
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C LATENT TRAVERSALS

In this section, we visualize traversals of the latent space for the best model (in terms of MIG) on
each dataset. Best viewed in color and zoomed.

Figure 6: Latent space traversal for 3D Shapes. We observe that all directions are almost perfectly
disentangled, except for shape (6th row) and scale (5th row).

Figure 7: Latent space traversal for Cars3D. In principle, all the factors of variation (two rotations
and car model) were captured, however, we can observe some entaglement.
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Figure 8: Latent space traversal for MPI3D. We observe that samples are of excellent visual quality,
and found directions are reasonably disentangled, except for shape and scale (5th row), and camera
height and shape (1st row).

Figure 9: Latent space traversals for Isaac3D (selected directions). It appears that texture varia-
tions, e.g., lighting, color, shape are easier to be inferred than ‘physical’ directions, such as the robot
handle rotations.
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D WHICH FACTORS MODELS LEARN?

Let us now briefly analyze what factors of variations seem to be the easiest for our models to infer.
For this we plot the Mutual Information matrices obtained for the best of our models. It seems
that the texture-based factors are easier to learn, while the discovery of physical features is more
challenging.

Figure 10: Mutual information matrices for various methods and datasets obtained for the model
with highest overal MIG score; a higher value indicates stronger mutual information.

Figure 11: Mutual information matrix for the best method on the Isaac3D dataset.
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E LATENT TRAVERSALS FOR LARGE SCALE MODELS

In this section, we visually inspect the interesting directions found by our method on the
high–resolution GAN models. We use checkpoints available at https://github.com/
justinpinkney/awesome-pretrained-stylegan2; from top to bottom the datasets are:
LSUN Church, FFHQ, Anime portraits.
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F EXPERIMENTS ON PROGAN

In this section we briefly describe our experiments with the non-style based GAN model, namely,
we study ProGAN. We conduct our experiments on the 3D Shapes dataset. We used the code
available at https://github.com/akanimax/pro_gan_pytorch. We trained the default
model for 2 epochs at resolutions 8, 16, 32 and for 4 epochs at resolution 64 (this was sufficient for
model to converge since the dataset is extremely large); we used batch size 128. We consider three
methods, most easily adapted to the non-style generators: CF, DS and LD. For CF we used the
first ConvTranspose2d layer, and for DS we considered the outputs of convolutional blocks at
resolutions 16, 32 and 64. LD works with this setup out of the box. Results are provided in Table 7.
We see that the best obtained MIG score for this model roughly matches the average result of the
CF, GS and LD methods for StyleGAN 2 models, however, is outperformed by the DS in many
cases.

Method Metrics
MIG Modularity

DS 0.138 ±0.009 0.900 ±0.018
CF 0.110 ±0.009 0.927 ±0.017
LD 0.106 ±0.026 0.940 ±0.032

Table 7: The experimental results for 3D Shapes dataset with the ProGAN model.
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