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Abstract

This paper presents a reproducibility study of Ortu et al. (2024), investigating the compe-
tition of the factual recall and counterfactual in-context adaptation mechanisms in GPT-2.
We extend experiments developed by the original authors with softmax-normalized logits
as another metric for gauging the evolution of the scoring of tokens in the model. Our
reproduced and extended experiments validate the original paper’s main claims regarding
the location of the competition of mechanisms in GPT-2, i.e. that the competition emerges
predominantly in later layers, and is driven by the attention blocks corresponding to a sub-
set of specialized attention heads. Additionally, we explore intervention strategies based on
attention modification to increase factual accuracy. We find that boosting multiple atten-
tion heads involved in factual recall simultaneously can have a synergistic effect on factual
accuracy, which is further enhanced by the suppression of copy heads. Finally, we rework
how the competition of mechanisms is conceptualized and find that the specialized factual
recall heads identified by Ortu et al. (2024) act as copy regulators, penalizing counterfactual
in-context adaptation and rewarding the copying of factual information.

1 Introduction

In recent years, transformer-based language models have shown impressive performance on a variety of
NLP tasks (Min et al., 2023). While great advances in the performance of these models have been made,
understanding how they operate internally remains a challenge. Mechanistic interpretability(Bereska and
Gavves 2024), a field of study which aims to explain the mechanisms in models by reverse engineering
algorithms, provides some clues about the existence and nature of these mechanisms. One way in which this
can be done is by identifying specific architectural components, also called mechanisms, within the model,
such as attention heads or MLP layers, that play crucial roles in generating particular types of predictions
(Elhage et al., 2021).

Within the framework of mechanistic interpretability, previous work has laid out the foundation for con-
sidering transformer-based language models as a collection of mechanisms that jointly and systematically
act on inputs (Olah et al. 2020, Olsson et al. 2022, inter alia). Other work has focused on identifying the
exact mechanisms found in LLMs as well as their provenance and robustness across different models (Wang
et al. 2022, Conmy et al. 2023, inter alia). This has enabled the discovery and characterization of single
mechanisms such as the copy mechanism (Elhage et al., 2021) and the factual recall mechanism (Yu et al.,
2023), which are both explored in this paper.

In this work, we focus on a selection of claims made in Ortu et al. (2024) that are related to the competition
of mechanisms in GPT-2. The competition of mechanisms refers to the interaction between the factual
knowledge recall mechanism and the in-context adaptation or copy mechanism. The factual recall mechanism
allows models to access and utilize knowledge stored in their parameters during training, enabling them to
make predictions based on previously learned facts. Meanwhile, the in-context adaptation or copy mechanism
facilitates dynamic updating of model behavior based on immediate context. Essentially, the copy mechanism
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allows the model to directly use new information introduced by prompting by "copying", even if the new
information contradicts the model’s stored knowledge. These mechanisms naturally compete when presented
with contradictory information, creating a knowledge conflict (Xu et al. 2024) in which the model must
determine whether to rely on its stored knowledge or adapt to new contextual information.

We attempt to reproduce the results presented by Ortu et al. (2024) and consider the original paper’s
claims with an alternative metric, softmax-normalized logits. Furthermore, we examine additional strategies
for increasing a model’s factual accuracy, including separate and simultaneous boosting and suppression
of mechanisms involved in factual recall and in-context adaptation. In doing this, we seek to shed some
light on two main questions: can we use probabilities instead of logits to understand how the competition
of mechanisms evolves in the model and how can we best characterize the attention heads involved in the
factual recall and copy mechanisms.

In this paper, we successfully reproduce the main experiments in Ortu et al. (2024). The scope of our
reproduction is outlined in Section 2. We explain the methods adopted in the original paper and in this
paper in Section 3, and present our results for the reproduced experiments and further investigation in
Section 4. Finally, we discuss our results, reproduction experience, and conclude in Section 5. Our final
codebase for our experiments has been made public. 1

2 Scope of reproducibility

We measure the competition between the two mechanisms based on the activations from each of the model’s
components. We say that a component is highly activated if the magnitude of the difference between the
activations of the component on a factual token and a counterfactual token is large.

The claims we discuss in this investigation are:

Claim 1: Both the individual mechanisms and competition take place in late, but not early layers.

Claim 2: The attention blocks play a larger role in the competition of mechanisms than the MLP blocks.

Claim 3: A few specialized attention heads contribute the most to the competition.

Claim 4: All the highly activated heads attend to the same position: the attribute token.

Claim 5: The factual information flows by penalizing the counterfactual attribute rather than promoting
the factual subject.

Claim 6: Modifying a few selected values in the attention map greatly increases the factual recall, jumping
from 4% to 50% for GPT-2.

3 Methodology

3.1 Problem setup

Following the setup in Ortu et al. (2024), we look into the next token completions of GPT-2 to compare
the outcomes of the factual recall and in-context adaptation mechanisms. The competition of mechanisms
is elicited by the prompt given to the model. The model contains encoded knowledge in its parametric
memory, which can be retrieved by its factual recall mechanism when prompted. The model will also repeat
information provided to its context, even if it is not factual. We call this its counterfactual mechanism. By
first stating a counterfactual statement, followed by an incomplete repetition of the statement (as is described
in Section 3.4), both mechanisms are triggered. The model is then made to decide between two tokens, the
token completing the statement factually, tfact, and the token repeating the counterfactual information, tcofa,
beginning the competition between the two mechanisms.

We can see which mechanism is preferred by comparing the model’s scoring of tfact vs tcofa in various
locations inside the model. To compare how and where this preference is decided, we analyze how the scores

1Code: https://anonymous.4open.science/r/repro_compmech/README.md
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of the target tokens evolve throughout the model’s layers and components, utilizing multiple methods for
explainability.

3.2 Explainability methods

Figure 1: The internals of
a transformer block, with
markers indicating where
the attribution Logit Lens
interventions take place.

In their paper, Ortu et al. use two methods, logit inspection and attention mod-
ification, to track the two competing mechanisms over the model’s processing
of the input. When reproducing their results, we also utilize these methods.

3.2.1 Logit inspection

To trace the competing mechanisms over various positions of the model, the
original paper tracks the logit values of the factual and counterfactual tokens,
denoted tfact and tcofa respectively, using Logit Lens (Nostalgebraist, 2020).

Logit Lens is a method that can give insight into how the model’s scoring of
tokens changes throughout its layers. Logit Lens works by projecting a model’s
intermediate representations from the embedding space into the vocabulary
space, allowing a view into intermediate logits of vocabulary tokens.

The model’s architecture consists of an initial "embedded" representation of
the text, followed by an update added by each transformer block. In a trans-
former model, the final transformer block is followed by two layers: a layer-
normalization layer and a linear layer, with the latter represented by the "un-
embedding matrix". This matrix transforms the hidden size internal embedding
into vocabulary-sized logits, representing the model’s score for each token in its
vocabulary.

Logit Lens applies these two output layers to intermediate activations posi-
tioned in between transformer blocks to calculate intermediate logits.

Logit inspection can be applied at other locations in the model too. The traditional application of Logit
Lens is to apply it only after a full transformer block, and this leads to a full set of intermediate logit scores.
However, we can also use this to track the changes to the token scores in specific components. We do this
by applying the Logit Lens to contribution activations, which are the activations before they are combined
with the residual stream, resulting in so-called attribution logits. Figure 1 illustrates the locations where
we take the activations to compute attribution logits. Applying Logit Lens after the attention (ATT) and
multi-layer perception (MLP) blocks, represented in Figure 1 with orange and purple respectively, we can
follow the influence of these blocks on the token scores. When applied directly after an attention head,
indicated with yellow in Figure 1, this shows the specific attention head’s attribution to the token scores,
allowing to identify precise influences.

A common implementation of Logit Lens is provided by the TransformerLens library (Nanda and Bloom,
2022), which was used in Ortu et al. (2024) and also in our reproductions and further experiments.

3.2.2 Attention modification

Attention modification is a type of model intervention, executed by modifying the values of attention weights.
In particular, when applied to select components, this can be used as a way to understand how information
flows through the model by influencing a model’s output.

We follow the method outlined by Ortu et al. (2024). That is, we intervene on the attention matrix Ahl of
the h-th head at the l-th attention layer. When modifying the attention values, we focus on specific entries
in the matrix. For example, the positions (i, j) where j < i, which is the attention value of the i-th input
token attending to the earlier j-th input token. The modification is given by Equation 1.

Ahl
ij ← αAhl

ij (1)
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3.3 Model descriptions

Ortu et al. (2024) test their main claims on GPT-2 (Radford et al., 2019). GPT-2 is a decoder-only trans-
former model with 124 million parameters. It was pre-trained on a large corpus of English data, largely
comprised of web pages. GPT-2 is a popular model for mechanistic interpretability as it is smaller in size,
accessible, and was one of the earlier transformer-based language models available to the research commu-
nity. In addition, the mechanisms of GPT-2 are more widely understood as a significant portion of the early
work done in mechanistic interpretability was conducted on GPT-2. Ortu et al. (2024) provide supplemental
results using Pythia-6.9B (Biderman et al., 2023) to test the generalizability of their claims.

We use the GPT-2 for the reproduction of the results of Ortu et al. (2024) and further experiments. Due to
resource constraints, the ability to directly compare our results to Ortu et al. (2024), and the more widely
available literature on the inner workings of GPT-2, we focus exclusively on this model.

3.4 Datasets

We use two datasets based on CounterFact (Meng et al., 2022). The original CounterFact dataset
contains 219,180 tuples of factual relations. These consist of a subject, s, and a relation, r. For each factual
statement (s, r, _), there are two possible attributes: a correct attribute and an incorrect attribute. Ortu
et al. introduce a variant of this dataset, which we call CF-Juxtaposed for notational ease. This dataset
was filtered to include only statements where the correct attribute consisted of only a single token, and was
predicted as the most likely next token by GPT-2. We denote the correct, factual attribute token as tfact
and the incorrect, counterfactual attribute token by tcofa. A subset of 10,000 randomly chosen samples was
produced containing entries where the model would predict the factual token for completion 2.

To prompt the model into activating both its factual and counterfactual mechanism, the full prompt contains
the statement with the incorrect attribute (s, r, tcofa), followed by a repetition of the unfinished statement
(s, r, _). The two statements are then connected by prepending "Redefine:" to the prompt. The full prompt
template is given in Equation 2.

(’Redefine:’, s, r, tcofa, s, r, _) (2)

An example given in Ortu et al. (2024) uses the statement "iPhone was developed by _", consisting of the
subject s "iPhone", with relation r "was developed by" with correct attribute tfact "Apple" and incorrect
attribute tcofa "Google". Resulting in the final prompt: "Redefine: iPhone was developed by Google. iPhone
was developed by _". We conduct experiments using CF-Juxtaposed for the reproduction and our further
experiments from Section 4.6 to Section 4.8.

The second dataset we use is the CounterFact-Tracing (CF-Tracing) dataset developed by Neel Nanda
CounterFact 3. This version of the dataset contains statements in the form (s, r, _) with a truthful
completion and an incorrect completion obtained from the original CounterFact dataset. The counterpart
to the statement above in the style of CF-Tracing is "iPhone was developed by". We highlight that prompts in
this dataset do not contain a repetition the statement with the incorrect attribute, and that the competition
of mechanisms is driven by incorrect prediction within the model instead, not necessarily adapting to any
particular erroneous token. We use CF-Tracing in Section 4.9.

3.5 The argument for normalizing logits

Many of the claims in this paper rely on comparing the magnitudes of logits. Specifically, the magnitudes
of logits are compared across layers for Claim 2, across different layer blocks (ATT and MLP) for Claim
3, and across different attention heads for Claim 4.

Using intermediate and attribution logits to understand the contributions of the components is a well-founded
practice. When a normalization layer is correctly applied, activations are transformed into a zero-mean and

2CF-Juxtaposed Dataset: https://huggingface.co/datasets/francescortu/comp-mech
3CF-Tracing Dataset: https://huggingface.co/datasets/NeelNanda/counterfact-tracing
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unit variance Gaussian distribution for all inputs, meaning the scale and center of the inputs are controlled.
Assuming the normalized activations are projected using a frozen projection layer (unembedding matrix), this
forms a systematic, linear transformation with consistent scale on all inputs. As a result, any differences in
the logits are solely due to differences in the input data, not fluctuations in the learned model parameters or
input scaling. This method is also attractive because linear transformations are easy and cheap to implement
(Nanda, 2022).

Nevertheless, investigations of salience methods in neural models have shown that results using logits and
probabilities can vary in their faithfulness, lending credence to the possibility that empirical results using
probabilities and logits may diverge. The model uses a softmax function to map logits to output probabilities,
which are then used in predicting the next token. The model is trained based on these probabilities, not on
logits, so any intermediate representation of a token’s position in the model is most naturally expressed in
probabilities and not as logits.

Magnitudes can significantly change after applying the softmax normalization, depending on the logits of
the whole vocabulary. For example, two tokens with similar logits can be squashed even closer together by
normalization, or alternatively they can be spread out further. The same is true for tokens with diverging
logits, they can be separated further or pulled closer together. The effect of normalization depends on how
the logits of the target tokens compare to those of the other tokens. In conclusion, unlike logits, probabilities
more closely reflect the relative token importance (Bastings et al., 2022), which is what we are trying to
measure. For this reason, using both metrics is required for a comprehensive analysis into any claims, as
well as it can provide insights into how good each metric is.

4 Results & analysis

We begin by reproducing results from Ortu et al. (2024) and analyzing the results. We build on top of
the existing experiments with two new lines of exploration. First, we evaluate whether a similar analysis
of the competition of mechanisms can be made when activations are normalized with the softmax function.
The second investigative line consists of experiments aimed at better understanding how to characterize the
behaviors of attention heads involved in the competition of mechanisms. We use a similar setup as in the
original paper for attention modification, but instead we examine how suppressing copy heads alters factual
recall. We then analyze the interactions between the copy heads and factual recall heads and determine
whether certain properties are intrinsic to factual recall heads. Finally, we look at how models with attention
modification behave in more general knowledge recall and model performance tasks.

Reproduced experiments

To reproduce the results from Ortu et al. (2024), we use the supplementary code4 provided, alongside the
paper. After carefully examining the code, we find that the code strongly corresponds to the methods
described in the paper. With some tweaks to get the code running, reproducing the original experiments
consistently yielded the same results and plots. We follow the same reasoning as the original paper for our
analysis of the results, and present our replicated plots in an appendix.

4.1 Intermediate logits per layer

To study in which layers of the model the competition of mechanisms takes place, the original paper uses
logit inspection to see how the scores for the tcofa and tfact change throughout the layers. Specifically, we are
looking at the activations of the model as it predicts the last token position. To do this, intermediate logits
are calculated as described in Section 3.2.1 by applying Logit Lens on the activations after every layer (i.e.
transformer block). We then take the average logit score over all inputs in the dataset.

Figure 4a in Appendix A shows an upward trend in the average logit scores across layers, as reported in
the original paper (Figure 2b of Ortu et al. (2024)). This demonstrates that the relevance of these tokens

4Code: https://github.com/francescortu/comp-mech/tree/refactor
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gets enhanced in later but not early layers. We conclude this holds for the individual mechanisms and the
competition between, sufficiently supporting Claim 1.

4.2 Attribution logits per block

To further analyze which model components are involved in the competition of mechanisms, the original
paper investigates the attribution logits of each layer’s ATT and MLP blocks. We apply Logit Lens after
each block, as described in Section 3.2.1. Again we average the logits over all inputs and focus on the model
as it makes predictions for the last token position. We now analyze our results using the difference of the
attribution logits of tfactand tcofa, ∆cofa =Logit(tcofa)−Logit(tfact), where the logits are computed per block.

Blocks with larger |∆cofa| are assumed to affect the model’s token scores more, implying more involvement in
the competition of mechanisms. Just as in Ortu et al. (2024), Figure 4b in Appendix A (Figures 3a and 3b
of Ortu et al. (2024)) shows the difference ∆cofa is near zero in early layers for both blocks, then increases in
favor of tcofa, supporting Claim 1. Also, the difference is larger in the ATT blocks, suggesting these blocks
have more impact on the competition of mechanisms. We conclude these results also support Claim 2.

4.3 Attribution logits per attention head

In this experiment, we explore whether particular attention heads are more influential on the competition
between tcofa and tfact. For each layer and every attention head, we inspect the attribution logits using
Logit Lens as described in Section 3.2.1, averaging over inputs and focusing on the last token position. We
measure the importance of an attention head using ∆cofa, now taken as the difference of logit attributions
within each attention head.

Figure 4c in Appendix A, as in the original paper (Figure 4a of Ortu et al. (2024)), show only a few
specialized heads with higher magnitudes of ∆cofa, some positive and fewer negative. A large magnitude of
∆cofa corresponds to greater involvement in the competition of mechanisms, and since this only occurs on a
few specific heads, we conclude these results support Claim 3. As these heads are all located in the later
layers, this also supports Claim 1.

4.4 Attention head inspection

The original paper now more closely examines the attention heads that seem to be of consequence based on
the previous experiment. Specifically we focus on L9H6, L9H9, L10H0 and L10H10 which favor tcofa, and
L10H7 and L11H10 which favor tfact. We investigate the attention scores between the last token position
and the other token positions in the prompts.

Figure 4d in Appendix A shows that the attention scores are concentrated at the attribute position in all
the aforementioned heads, in agreement with the original paper (Figure 4b of Ortu et al. (2024)). This
supports Claim 4. Considering the heads favoring tfact mostly attend to the attribute position and scarcely
to the subject positions, we conclude the factual information penalizes the counterfactual attribute rather
than raising the factual subject, confirming Claim 5.

4.5 Attention modification

We replicated the grid search for α over {2, 5, 10, 100} for the two most important factual heads L10H7 and
L11H10, as seen in Table 3 in Appendix A, and confirmed α = 5 to be the lowest coefficient with a significant
impact on factual recall. Beyond α = 5, the increase in factual recall is marginal. This supports the results
of original paper, specifically Claim 6.

Further experiments

We now introduce new experiments and findings. The primary goals of pursuing these experiments is to
investigate whether probabilities provide a similar level of prediction for analyzing the components most
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heavily involved in the competition of mechanisms, and how we can best describe the behaviors of these
components, primarily attention heads, by intervening on the attention values of the models.

4.6 Logit normalization with softmax

Methods

Using logits may not be optimal and normalizing them could relieve this, see Section 3.5. For this experiment,
we extend the experiments in Sections 4.1, 4.2 and 4.3 of this paper by applying softmax normalization
(over the whole vocabulary). Mirroring the original paper, we define ∆̃cofa = Softmax

(
Logit(tcofa)

)
−

Softmax
(
Logit(tfact)

)
, the difference between the probabilities of tfact and tcofa.

(a) Intermediate probabilities per
layer for tfact and tcofa in the last
position (log scale).

(b) Difference in attribution proba-
bilities ∆̃cofa for different blocks in
the last position.

(c) Difference in attribution proba-
bilities ∆̃cofa for different attention
heads in the last positions.

Figure 2: Results of same exper-
iments with logit normalization
using softmax.

Results

We find that using the softmax does not change the main trends displayed
in logits. The results of each experiment are shown in Figure 2. Figure 2a
shows identical trends to Figure 2b in Ortu et al. (2024), as the probabil-
ities grow in the later layers and tcofa dominates tfact. Note that the data
in this figure is shown on a log scale, meaning the divergence between the
two curves is much more pronounced. Additionally, the probability of tcofa
get to about 0.71, meaning its probability is significant and dominates all
other tokens. This suggests both mechanisms take place in the late, but
not in the early layers, supporting Claim 1.

Figure 2b shows the same trends as in Figures 3a and 3b seen in Ortu et al.
(2024), as only the later layers seem to contribute and ATT more so than
MLP. The magnitude difference between layers is even more significant, as
is the magnitude difference between the two block types, ATT and MLP.
Thus, this strongly supports Claim 2. Curiously, for layers 9 and 10 (very
active layers), the difference of ∆̃cofa between the attention blocks and
MLP block is much more prominent than that observed with ∆cofa. This
could be because ATT block is more relevant than MLP in the competition
of mechanisms and using softmax shows this more prominently. Or it
could be that the attention block attribution logits have higher variance,
which in combination with properties of the softmax function results in
bigger ∆̃cofa.

Figure 2c is very similar to what Ortu et al. (2024) presented in Figure
4a. The main difference is not the identity of the heads involved in each
mechanism, but rather the strength of their contribution. We can see the
heads where ∆̃cofa is positive mostly have larger magnitude compared to
the heads where ∆̃cofa is negative. The positive head L10H0 is especially
divergent from the original plot, as it is very dominant in this plot. In
heads where ∆̃cofa is negative, L11H3 is most dominant in this plot whilst
it was least so in the original plot. These differences indicate that the
reported relative involvement of each head in the original paper could
be limited. However, Claim 3 is strongly supported by these results,
as we see the same set of highly active, specialized heads. Altogether,
the experiments using softmax-normalized logits demonstrate that we can
draw the same conclusions about the involvement of a model component
in the competition of mechanisms using probabilities as those we do with
logits.

We continue without using softmax-normalization.
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4.7 Suppression of the copy mechanism via attention modification %fr
4.13

↓ 5.85
↓ 4.19
↓ 6.13
↓ 12.74

↓ ↓ 6.21
↓ ↓ 10.48
↓ ↓ 16.58
↓ ↓ 6.28
↓ ↓ 18.17
↓ ↓ 18.68

↓ ↓ ↓ 11.06
↓ ↓ ↓ 25.08
↓ ↓ ↓ 28.19
↓ ↓ ↓ 26.08

↓ ↓ ↓ ↓ 38.78

Table 1: Factual recall
scores for combinations
of suppressed heads:
L7H10 , L9H6 , L9H9 ,
L10H0 . (Horizontal

lines separate number of
heads selected. ↓ denotes
suppression).

Methods

We extend the line of reasoning introduced in Section 4.5 and attempt to in-
crease factual recall through the suppression of the copy mechanism by modi-
fying the attention heads contributing most to this mechanism. In doing so, we
hope to learn more about the importance of these attention heads in the com-
petition of mechanisms. We do this in a similar fashion as in Section 4.5, this
time selecting the heads responsible for the counterfactual adaptation mecha-
nism. We perform a grid search over the values α ∈ {1, 0.5, 0.2, 0.1, 0} on the
four-combination of relevant heads (L7H10 , L9H6 , L9H9 and L10H0) to de-
termine the best α for further use. Based on heuristic understanding and the
results of an exploratory grid search (see Table 5 in Appendix C), we choose a
value of α = 0 to suppress the relevant attention heads by total ablation, as it
should produce the most pronounced suppression effect of any α ∈ R≥0.

We investigate the impact of modifying individual attention heads relevant to
factual recall, as well as all subsets of these heads. We separately boost atten-
tion heads contributing to the factual recall mechanism and suppress attention
heads relevant to in-context adaptation.

Results

While the individual boosting of the heads L10H7 and L11H10 each yielded
a significant improvement (23.92% and 18.64% respectively), boosting them
together yielded even better results at 50.14%, suggesting a powerful synergistic
effect when these specific attention heads are modified together.

%fr
4.13

↓ ↓ ↓ 28.19
↓ ↓ ↓ 26.08

↓ ↓ ↓ ↓ 38.78
↑ 18.64
↑ 23.92

↑ ↑ 50.14
↓ ↓ ↓ ↑ ↑ 77.63
↓ ↓ ↓ ↑ ↑ 74.74

↓ ↓ ↓ ↓ ↑ ↑ 78.81

Table 2: Factual recall scores
for simultaneously boosting
and suppressing attention
heads: L7H10 , L9H6 , L9H9 ,
L10H0 , L11H10 , L10H7 .

(↓ and ↑ respectively denote
suppression and boosting).

We identify that the heads that contribute most to counterfactual adap-
tation are L7H10, L9H9, L9H6 and L10H0, in agreement with the original
paper. We investigate the impact of ablation (modification with α = 0)
of different subsets of these heads on overall factual recall. The results in
terms of factual recall % for different subsets can be seen in Table 1. The
ablation results reveal an intriguing pattern of head interactions. While
individual heads show modest improvements when ablated alone (with
L10H0 being the exception at 12.74%), their combined effect is again far
greater than the sum of their parts. This is particularly evident with
L9H6, and to a much lesser extent with L9H9, which barely improves
over baseline when ablated individually (4.19%) or in pairs or triplets,
yet contributes significantly to the four-head configuration that achieves
38.78% factual recall. This suggests these heads operate synergistically
rather than independently, with their full potential only realized when
working in concert. This is especially notable in the performance jump
from the best three-head combination (28.19%) to all four heads (38.78%).

4.8 Simultaneous factual boosting and copy suppression

Methods

We now turn to characterizing attention heads involved in the competition of mechanisms by observing the
interaction between them. By doing this, we can further understand how the competition of mechanisms
works and how the factual recall mechanism can be boosted. We select the best subsets involved in each
mechanism based on the results of Sections 4.5 and 4.7 and evaluate the factuality of responses when boosting
and suppressing simultaneously.

8
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Results

Through simultaneous modification of multiple attention heads, we discovered that boosting L10H7 and
L11H10 while suppressing L7H10, L9H9, L9H6, and L10H0 yields a factual recall rate of 78.81%, as seen
in Table 2. This, however, is only 1.2% higher than the 77.63% that we get when suppressing only L7H10,
L9H9 and L10H0 while boosting the same heads. Once more, this shows the interplay between attention
heads and reinforces our earlier observation about L9H6’s unique behavior. While L9H6 plays a crucial role
in the complete suppression ensemble, its contribution becomes less significant when combined with boosting
interventions, suggesting that the boosted heads may be compensating for its function through alternative
pathways by which information is propagated within the model. This observation provides further evidence
of the complex interdependencies between attention heads and their ability to adapt and compensate for
modifications in the network.

4.9 How many mechanisms?

Methods

In the CF-Juxtaposed dataset, we frequently have the case where the factual token occurs as a substring of
the subject, that is, sometimes both the factual and counterfactual tokens are present in the prompt given to
the model. An example from the dataset is the prompt "Redefine: NBC Nightly News premieres on MTV.
NBC Nightly News premieres on", where the factual the factual token, "NBC", appears in the prompt as
part of the subject and the counterfactual token, "MTV", appears as the attribute. In fact, over 60% of the
prompts in the data from Ortu et al. (2024) are constructed like this. This casts some doubt as to whether
the results in Ortu et al. (2024) are the consequence of what they suggest is a factual recall mechanism or
the action of the copy mechanism.

We aim to shed more light on which mechanism is responsible for the increased correctness in prediction by
examining whether the properties of attention heads we identified as relevant to the factual recall mechanism
generalize beyond the structure of CF-Juxtaposed. We perform a similar experiment to Section 4.8 on the
CF-Tracing dataset. Recall that CF-Tracing does not have counterfactual statements prepended to its
prompts, as described in Section 3.4. We use the attention head combinations that yielded the highest
factual recall rates in Section 4.8, that is, we boost L10H7 and L11H10 and suppress L7H10, L9H9, L9H6
and L10H0. Essentially, we ask whether we can still observe the effects of a factual recall mechanism when
using a different dataset.

In addition, to control for the repetition of factual token in the subject string, we split the CF-Tracing
dataset into two disjoint subsets based on whether the subject contains the factual token. We end up with a
subset of of 2006 prompts in which the factual token appears in the subject, and a subset of 19913 samples
free of the factual token. We call the aforementioned subsets the copyable and filtered sets, respectively.
If an independent factual recall mechanism exists, we expect to see that the number of correct predictions
increases on both subsets of CF-Tracing when intervening on the attention heads listed above.

un
mod

ifie
d

sup
pre

sse
d

bo
ost

ed

sup
pre

sse
d 

 & bo
ost

ed

0

5

10

15

20

25

30

%
 fa

ct
ua

l r
ec

al
l

copyable
filtered

Figure 3: Percentage of factual re-
call on the CF-Tracing dataset.

Results

In the copyable set, where the factual token is already present in the
prompt as part of the subject, we find that boosting the attention heads
involved in factual recall increases the accuracy of the model in pre-
dicting the correct token from 21.1% to 24.4%. We don’t observe any
meaningful change in accuracy in the filtered set when boosting factual
heads.

Suppression of attention heads involved in the copy mechanism yielded
more insightful results. Even in the presence of the correct token, the
suppression of copy heads causes a reduction of the model’s accuracy
from 21.1% to 12.1%, and to 15.4% when the suppression is combined
with factual boosting, as seen in Figure 3. In the filtered set, suppression
also reduces factual recall from 4.1% to 3.4%. Simultaneously boosting
doesn’t correct this behavior and we observe a reduction to 3.5%.
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Based on the results of this experiment, we believe that the characterization of the attention heads by Ortu
et al. (2024) is flawed and occluded by the structure and inherent repetition of the factual token. Instead,
we observe that the attention heads Ortu et al. identify as factual recall heads come into action only when
copying takes place, as seen for the copyable set in Figure 3. In addition, the effects of intervening on
these attention heads has a much smaller effect than in the setting using CF-Juxtaposed. We reason that
these attention heads may act as copy regulators, penalizing the copying of counterfactual information, as
developed through Claim 5 by Ortu et al. (2024) and our experiments. Likewise, these attention heads
encourage the copying of facts, as demonstrated by the counteracting of copy suppression in Figure 3.

Nevertheless, seeing as these attention heads do not universally correspond to factual correctness, we cast
doubt as to whether Ortu et al. (2024) demonstrates that a competition of mechanisms exists in practice.
In particular, we argue that the copy mechanism in GPT-2 explains the behaviors observed in Ortu et al.
(2024) and in our experiments using CF-Juxtaposed.

4.10 Surprisal under attention modification

Methods

A natural question that emerges when modifying the attention patterns of a model is whether the behavior
of the model on other tasks changes as well. To compare the performance of the model after attention
modification, we measure the perplexity of the baseline and attention-modified models on the test split of
WikiText-2 with a batch size of 32 and stride of 512. We make the same attention modifications as in
Section 4.9.

Results

We determine that the performance of the model does not degrade when modifying the attention heads. We
obtain a perplexity value of 29.9 over the WikiText-2 test set for both the unmodified and modified models.
We reason this result is the way it is because very few entries in the attention head matrices are modified
and also due to the specialization of the attention heads in each of the mechanisms. Nevertheless, more
work, potentially of a more qualitative nature, is required to better understand how the performance of the
model changes when intervening on its attention values.

5 Discussion

5.1 Further experiments

Softmax normalization

Applying the softmax normalization in Section 4.6, the experiments of Figures 2a and 2b resulted in near
identical trends. This suggests comparing the logits directly is a valid approach for drawing conclusions as
was done by Ortu et al. (2024). In Figure 2c, however, there is a difference in which heads are most active,
as discussed in Section 4.6.

Figure 4a of Ortu et al. (2024) suggests that L11H10 is the attention head most involved in the factual recall
mechanism, whereas the softmax-normalized plot (Figure 2c) indicates that L11H3 contributes somewhat
more the competition. In our informal experimentation, L11H10 had a bigger impact on the factuality than
L11H3 when boosting the heads involved in factual recall. This indicates that the softmax-normalized logits
might not have the same predictive power as logits in determining the degree to which attention heads are
involved in the competition mechanism. Nevertheless, this softmax-normalized logits predicted the strength
of L10H0 in the adaptation mechanism more accurately than plain logits. More work is needed to better
understand the practical advantages and disadvantages of each metric.

There are some interesting comparisons to be made between our results and prior literature regarding the
heads of the model. For example, L11H10 and L10H7 have been identified as "negative mover heads", related
to copy suppression (Wang et al. 2022, McDougall et al. 2023), which is in agreement with our conclusions.
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L11H3, however, has been linked to semantic understanding (Lee et al., 2024), which we did not explicitly
confirm or reject.

Attention modification

The compounding effect on factual recall from applying suppression to both L10H7 and L11H10 simultane-
ously, as mentioned in Section 4.7, hints at synergistic effects. We hypothesize that this is related to the
fact that the heads are positioned in different layers, meaning as the activations propagate, the processing of
the first head impacts the inputs of the second head. Thus the processing of the second head is affected by
the first head, resulting in behavior separate from the behavior of the heads individually. It is possible that
during training, these combined heads are largely responsible for promoting the counterfactual mechanism
over the factual one.

5.2 Reproducibility experience

Some issues that we faced when reproducing the results from Ortu et al. (2024) were understanding parts of
the code. We had to first debug a significant amount of the code in order to run their original experiments.
In particular, we found the code for experiments using the Logit Lens to be lacking in documentation and
challenging to navigate.

In addition, when adapting the logit attribution experiments for using softmax-normalized attributions we
ran into issues of scaling up. Instead of calculating the scores for just the target tokens, we now had to
calculate the scores for the entire vocabulary to compute the normalized logits, increasing computation and
memory demands. We resolved this issue by running the experiment on a computer cluster and by reducing
the batch size to 5.

5.3 Conclusion

Outcomes

This study successfully reproduces the experiments of Ortu et al. (2024) and extends the analysis with
additional experiments. Our results confirm and strengthen some key claims from the original work, but
reveal a more nuanced picture when exploring on new data.

Within the framework introduced by Ortu et al. (2024), we are able to show that the competition of mech-
anisms can also be analyzed using softmax normalized logits and that the results mostly agree with the
analysis done using logits. On the task formulated in this framework, boosting multiple factual heads pro-
duces a greater effect on the factual recall suggesting synergistic interactions between factual recall heads.
In addition, combining factual boosting and counterfactual suppression significantly increases factual recall,
achieving a factual recall of up 78.78%.

Beyond the framework, we find that boosting factual recall heads doesn’t improve factual recall in prompts
from the CounterFact dataset unless the factual token is present somewhere in the prompt. When the
factual token is found in the prompt, factual recall heads align the copying behavior with the model’s stored
knowledge. These findings characterize the factual recall heads not as promoters of factuality, but more
specifically as regulators of factual information within the scope of copying. At the same time, suppressing
copy heads significantly reduces factual recall, even in the presence of a factual token. The reduction in
factual recall occurs even when the factual recall heads are boosted, indicating that the copy mechanism
is considerably stronger than the copy regulation performed by the factual recall heads. We also find that
attention modification doesn’t cause the model’s performance, as measured by perplexity on WikiText-2, to
degrade.

Limitations

One of the main limitations is the generalizability of our results. Our findings are restricted to one model,
GPT-2, and following a similar methodology with another model may yield different results. Another
limitation is the dataset we use in Sections 4.7 to 4.8. Over 60% of entries contain the factual token as a
part of the prompt, as described in Section 4.9. This makes some of our observations about the competition
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of mechanisms less precise, as the copy mechanism may serve both counterfactual in-context adaptation and
the copying of factual information that aligns with knowledge stored in the model.

Additionally, this work heavily relies on two mechanistic interpretability techniques, namely Logit Lens and
attention modification. This can be problematic as these methods may not fully capture model behavior
and do not provide a causal interpretation of the model’s prediction. This investigation’s ability to analyze
how components interact and how is somewhat narrow, and could have been strengthened by accompanying
it with newer methods or different types of explainability techniques. Furthermore, the dataset limits the
investigation to predictions comprised of one token on a rather artificial prompting structure.

Future work

A potential future investigation could adopt more recent mechanistic interpretability techniques like circuit
analysis (Olah et al. 2020, Elhage et al. 2021). In light of Section 4.9 in particular, it would also be interesting
to see if the competition of mechanisms could be reimagined in terms of circuits and whether the roles of
the factual recall and copy heads we identify make it so that these heads are a part of a single circuit or
multiple competing circuits.

Other mechanistic interpretability methods can be applied to investigate the competition of mechanisms.
For example, the Logit Lens technique is being further developed and newer, more advanced tools exist, like
Tuned Lens (Belrose et al., 2023) and Logit Prism (Nguyen, 2024).

Our experiments are based on the task of single token prediction as a clearcut way of examining the compe-
tition of mechanisms, however, this competition is a feature of other types of tasks as well. Further work to
investigate how our analysis of the competition of mechanisms generalizes to other tasks such as multi-token
prediction or text summarization could be an interesting extension, depending on the capabilities of the
model considered.

Additional future work follows from what was proposed in the original paper. The competition of mechanisms
could be examined on larger models. The original paper performed additional tests on Pythia-6.9B, but we
were not able to reproduce these due to resource constraints. Another possible route of future work could
consider the design of the prompt beyond its current structure. Finally, more investigation is needed to
understand how the synergistic interaction works, where it originates, what its exact purpose and behavior
is, and if more such interactions exist in the model.
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A Reproduced figures and tables

(a) Recreation of Figure 2b.
(b) Recreations of Figures 3a and 3b
merged. (c) Recreation of Figure 4a.

(d) Recreation of Figure 4b.

Figure 4: Recreated figures from Ortu et al. (2024).

α factual recall%
0 0.67
1 4.13
2 32.18
5 50.14
10 51.56
100 52.29

Table 3: Percentage of factual recall with boosting factor α.
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B Baselines for factual boosting

Methods

1 2 3 4 5 6 7 8 9 10 11 12
Layer

2

3

4

5

All positions altered

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Attribute position altered

Fa
ct

ua
l R

ec
al

l %

Factual Recall by Layer

Figure 5: Box plot of factual recall af-
ter modifying randomly selected attention
heads per layer, with 5 to 10 heads altered
per layer.

To establish baselines for the efficacy of attention modifica-
tion as a strategy for increasing factual recall, we examine how
boosting individual attention heads across the model affects the
percentage of factual responses produced by the model. In per-
forming this experiment, we seek to answer if we can increase
factual recall by boosting random attention heads or if this ca-
pability is intrinsic exclusively to the identified factual recall
heads. We chose 100 random attention heads (seed=347) from
various layers in the model, excluding the attention heads we
identified as highly involved in the competition of mechanisms.
In addition, we boost random pairs of attention heads located
in different locations within the model, following Section 4.5
and using a boosting factor of α = 5. For both individual
heads (Figure 5) and pairs of attention heads (Table 4), we examine interventions of the attention patterns
in the attribute position and all token positions attended by the last token position.

Distance between All Attribute
head pairs (Mean %fr) (Mean %fr)
Same Layer (d = 0) 4.49 6.68
Consecutive (d = 1) 4.02 3.53
1 < d < 5 4.53 4.07
d > 5 4.24 5.42

Table 4: Random boosting of attention head pairs
(pairwise comparisons).

Results

Figure 5 shows that random boosting leads to fac-
tual accuracy between 1% and 6%. We see less vari-
ability in factual accuracy when modifying all to-
ken positions across all model layers compared with
modifying only the attribute position. In addition,
when only modifying the attribute we see that the
range of accuracies in later layers is larger than in
the earlier layers. This is another indication that the
competition occurs in the later layers of the model
and not in the early layers, supporting Claim 1.

We also note that boosting random head pairs does
not increase factual recall, regardless of the distance between the heads in a pair and whether the modification
was applied to all positions or only the attribute position. When boosting head pairs at the the attribute
position, we find that the mean factual recall ranges between 4% and 4.6%. Random modifications of head
pairs at all token positions result in mean factual accuracies between 3.5% and 7%, depending on the distance
between the heads as seen in Table 4. Once more, we observe greater variability in factual accuracy when
modifying all token positions. Additionally, while boosting at the attribute position we observe higher mean
factual recall for some distance values, there is no clear trend based on distance.

Importantly, both trials demonstrate that random boosting of single heads or head pairs does not cause the
factual accuracy to deviate significantly from that of the unmodified model. This implies that the attention
heads observed in Section 4.4 are indeed specialized to the factual recall process and further validates Claim
3.
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C Supplemental experiments

α factual recall%
1 4.13

0.5 21.38
0.2 34.22
0.1 36.7
0 38.78

Table 5: Percentage of factual recall with suppressing factor α.
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