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Abstract

In this work, we utilize the high-fidelity generation abilities of diffusion models
to solve blind image restoration tasks, using JPEG artifact removal at high com-
pression levels as an example. We propose a simple modification of the forward
stochastic differential equation (SDE) of diffusion models to adapt them to such
tasks. Comparing our approach against a regression baseline with the same net-
work architecture, we show that our approach can escape the baseline’s tendency
to generate blurry images and recovers the distribution of clean images signifi-
cantly more faithfully, while also only requiring a dataset of clean/corrupted im-
age pairs and no knowledge about the corruption operation. By utilizing the idea
that the distributions of clean and corrupted images are much closer to each other
than to a Gaussian prior, our approach requires only low levels of added noise, and
thus needs comparatively few sampling steps even without further optimizations.

1 Introduction

Diffusion models have taken the world of machine learning by storm due to their unprecedented
ability to generate high-fidelity images and great flexibility to condition on a variety of user inputs.
Previous works on diffusion models have largely concentrated on unconditional and conditional
image generation. Recently, Bansal et al. [1] and Daras et al. [2] have proposed to extend and
improve diffusion models by adding known deterministic corruptions, but have only evaluated their
ideas for unconditional generation tasks, rather than for faithfully inverting corruptions to restore
plausible original images. Here, we try to go a different route, and explicitly modify and train
diffusion models to restore plausible images from corrupted ones.

In contrast to other recent works [2, 3], our approach does not require the underlying corruption
operator to be known, linear, nor differentiable, and instead requires only a dataset of (clean image,
corrupted image) pairs. We also propose an alternative way of combining a deterministic corruption
with noise. In this work, we consider JPEG compression with low quality levels (10–20%), as an
example corruption with a nonlinear and nondifferentiable corruption operator that is unknown to the
restoration procedure at inference time. We propose a simple modification of the forward stochastic
differential equation (SDE) of diffusion models to adapt them to such tasks, building upon previous
work from the speech processing literature [4, 5] but extending their modification to a more general
form and newly applying these ideas to a nonlinear inverse problem in the image domain.
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2 Methods

2.1 A family of task-adapted linear SDEs

Following [6], the forward process of a diffusion model can be interpreted as a dynamical system
following a stochastic differential equation

dxt = f(xt, t)dt+ g(xt, t)dw (1)

where in this work, x ∈ RC×H×W is the current image and w is a standard Wiener process of
the same dimensionality as x, and the process runs forward from t = tε until t = T := 1, with
tε ⪆ 0 for numerical reasons [6]. Each image in the training dataset then represents the initial value
x0 of a particular realization of this SDE. Song et al. [6] showed that previous diffusion models
in the discrete-time domain can be interpreted to follow either the so-called Variance Exploding
(VE) SDE or the so-called Variance Preserving (VP) SDE. Both SDEs have the aim of progressively
turning images into Gaussian white noise, thereby turning the intractable image distribution into a
tractable prior. To generate images, one then samples from this prior and numerically solves the
corresponding reverse SDE [7],

dxt = [−f(xt, t) + g(t)2∇xt log pt(xt, t)]dt+ g(xt, t)dw̄ (2)

where the only unknown term is the score ∇xt log pt(xt, t). A deep neural network called a score
network Sθ(xt, t) is then trained to estimate this score, given the current process state x and time t.

Rather than turning the clean image distribution into pure noise, here we aim to turn the clean image
distribution into a noisy version of the corrupted image distribution. This has two purposes:

1. Instead of pure noise, this uses the corrupted image (plus tractable noise) as the initial value
of the reverse SDE, thus achieving the task adaptation through the formulation of the pro-
cess itself, as opposed to only providing the corrupted image as conditioning information.

2. Since the added Gaussian noise is white, it functions as a continual source of all possible
spatial frequencies throughout the reverse process. The trained score model then filters
these frequencies appropriately, generating plausible clean image estimates without a loss
of high-frequency detail.

Note that the distribution of noisy corrupted images is still “tractable” for the purposes of the restora-
tion task, as a sample from it can be drawn by taking a corrupted image and adding Gaussian noise.
We now propose the following family of linear forward SDEs to realize our idea:

f(xt, t) = γtα(y − xt) , g(t) = ν

(
σmax

σmin

)2t

, (3)

where y is the corrupted image corresponding to x0, γ is a stiffness hyperparameter controlling how
strongly xt is pulled towards y, and α ∈ R≥0 controls the shape of the curve pulling xt towards y. ν
is a normalization factor determined to ensure that σT ≈ σmax, where σt is the closed-form variance
of the Gaussian process described by (3). Intuitively, our family of SDEs combines the diffusion g
of the VE SDE with an added drift term f that pulls xt towards the corrupted image y.

2.2 The two considered SDEs

In this work, we will only consider α ∈ {0, 1} for simplicity. The case of α = 0 was previously
proposed for similar tasks in the speech processing literature [4], and we refer to it as the Ornstein-
Uhlenbeck Variance Exploding (OUVE) SDE. We also newly propose using α = 1, which we call
the t-squared Decay Variance Exploding (TSDVE) SDE. To allow for efficient forward sampling in
order to perform denoising score matching [6], we determine closed-form expressions of the mean
µt and variance σt of the Gaussian processes described by each SDE, see for instance [8]. Since the
SDEs are linear in the state xt, the means of the two SDEs follow

µOUVE
t = e−γtx0 + (1− e−γt)y , µTSDVE

t = e−γ t2

2 x0 + (1− e−γ t2

2 )y . (4)

Both expressions describe a linear interpolation between x0 and y, with the interpolation parame-
ter controlled by an exponential (OUVE) or half-Gaussian-shaped (TSDVE) decay over time. We
relegate the somewhat involved closed-form expressions for the variance to Appendix A.
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For both SDEs, µt ̸= y for all finite t, which may seem like an issue since the aim was to have the
process move towards y. However, letting z ∼ N (0, I), it is only required that the distributions of
(µT + σT z) and (y+ σT z) are similar, so that the latter can function as a plausible initial value for
the reverse sampling process. We can control how well the distributions of these two expressions
match, either by increasing the stiffness γ at the cost of potentially destabilizing the reverse process,
or by increasing σmax to further smooth the density functions of both distributions at the cost of more
reverse iterations. Here, we choose a set of parameters that empirically work well, and leave further
optimization of them to future work.

2.3 Dataset

For x0, we use the CelebA-HQ dataset [9], resized to 256x256 and split into 24000 images for
training, 1500 for validation and 4500 for testing. To generate y, we first randomly sample a JPEG
quality value from 0 to 30 for each image x0 and training iteration, and then apply JPEG compression
to x0. During evaluation, we set the JPEG quality values to a constant value across all compared
images and models (but do not provide this quality value to any model).

2.4 Network training and process parameterization

We utilize the NCSN++ architecture [6], both for the regression baseline and as a score network. We
train the regression baseline Rθ to recover x0 given y via a simple L2 loss:

θ∗ = argmin
θ

E(x0,y)

[
∥Rθ(y)− x0∥22

]
, (5)

where we pass a constant “dummy” value of t = 1 to the time embedding layers of NCSN++ to
avoid making any changes to the DNN that may affect the qualitative behavior of each layer. To
train the score models Sθ, we use the idea that diffusion models based on such linear SDEs can still
be trained by the same denoising score matching target as in [6]:

θ∗ = argmin
θ

Et,(x0,y),xt|(x0,y,t)

[
∥Sθ(xt,y, t) + z∥22

]
, xt = µt + σtz (6)

with z ∼ N (0, I), and image pairs (x0,y) sampled from the dataset. The only changes in this
objective are that the expectation is also calculated over y, and that y is provided to the score
network. We provide y as an input to Sθ by concatenating xt and y along the channel dimension,
for which we change the number of input channels of NCSN++ from 3 to 6. For training, we use the
AdamW optimizer [10], and set the hyperparameters of the process and training as listed in Table 1.
For evaluation, we use each method’s checkpoint with minimum loss on the validation set. In line
with the diffusion model literature [6], we update an exponential moving average (decay of 0.999)
of all network parameters after each training step, and use these parameters for evaluation.

SDE α γ σmax σmin tε N

OUVE 0 1 0.3 0.01 0.01 100
TSDVE 1 2 0.3 0.01 0.01 100

(a) Process parameterization

Learning rate 0.0002
Batch size per GPU 6
Number of GPUs 2
Max. epochs 100

(b) Training hyperparameters

Table 1: Parameters for the SDEs (a) and network training (b)

3 Results and Discussion

We generate reconstructions from our diffusion models with the Euler-Maruyama sampler dis-
cretized to N = 100 steps, and retrieve reconstructions from the regression baseline via a single
pass. In Figure 1, we compare the regression baseline against our SDE-based diffusion models
for JPEG quality level 10. Qualitatively, the baseline reconstructs major features well, but fails to
produce plausible high-frequency details. This is particularly visible for hair, facial hair and skin
textures, and results in a painting-like look. In contrast, our approach subjectively results much more
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Figure 1: Example images for JPEG quality level 10, comparing the regression baseline and both
proposed SDEs (OUVE, TSDVE) against the ground truth and corrupted images. The baseline
reconstructions exhibit a blurry, painting-like quality (best visible when zoomed in).

natural-looking images and, for both proposed SDEs, shows a remarkable ability to reconstruct nat-
ural skin and hair textures that are plausible given the corrupted image. Further example images can
be found in Appendix B. Both SDEs generally result in perceptually very similar images.

In Table 2, we compare the distributions of the corrupted and reconstructed images of each method
against the distribution of the ground-truth images, using the metrics FID [11] and KID [12]. We
also list the average SSIM [13] and LPIPS [14] values, and evaluate all metrics on our test set of
4500 images. Judging from the distribution-based metrics, both of our diffusion-based approaches
model the clean image distribution of CelebA-HQ significantly more faithfully than the baseline,
which even performs worse than the corrupted (compressed) images in this regard. On the other
hand, the baseline achieves a significant SSIM improvement whereas our proposed models do not.
This is to be somewhat expected due to the generative nature of our approach. We argue that SSIM
does not match human perception well here: the blurry look of the baseline images is clearly visible,
but does not seem to be strongly penalized. Indeed, for the perceptual LPIPS metric our methods
consistently outperform the baseline. Both proposed SDEs perform very similarly in all regards.

KID FID LPIPS SSIM

Corrupted 22.53 36.26 0.20 0.82
Baseline 38.18 45.92 0.13 0.90
TSDVE 2.32 15.72 0.08 0.83
OUVE 2.37 15.69 0.08 0.83

(a) JPEG quality level 10

KID FID LPIPS SSIM

Corrupted 8.63 21.17 0.08 0.90
Baseline 27.34 35.71 0.08 0.94
TSDVE 0.59 12.99 0.05 0.89
OUVE 0.57 12.97 0.05 0.89

(b) JPEG quality level 20

Table 2: Distribution-based metrics (KID [12], FID [11]), average SSIM [13] and LPIPS [14],
comparing corrupted and reconstructed test images to the ground truth for two JPEG quality levels.
KID scores are multiplied by 1000 for readability. Lower is better for all metrics except SSIM. Best
values are listed in bold.

4 Conclusion

Based on work from the speech processing literature, we propose a simple change to SDE-based
diffusion models to adapt them to image restoration tasks. Our approach does not require the cor-
ruption operator to be available in closed form and does not impose strong restrictions on its nature,
but only requires a dataset of paired images. Compared to a regression baseline using the same ar-
chitecture, our approach restores images of perceptually higher quality and models the ground-truth
image distribution significantly more faithfully. While currently requiring 100x more DNN passes
than the baseline, we expect that recent progress on efficient sampling for diffusion models will
allow this number to drastically decrease and make the approach competitive in terms of runtime.
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[8] S. Särkkä and A. Solin, Applied Stochastic Differential Equations. Cambridge University
Press, 2019.

[9] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of GANs for improved
quality, stability, and variation,” in Int. Conf. on Learning Representations (ICLR), 2018.

[10] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” in Int. Conf. on Learning
Representations (ICLR), 2019.

[11] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “GANs trained by a
two time-scale update rule converge to a local Nash equilibrium,” in Advances in Neural Inf.
Proc. Systems (NeurIPS), vol. 30, 2017.
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A Closed-form variance solutions of the OUVE and TSDVE SDEs

In the following, we provide the expressions for the diffusion normalization factors ν and the solved
variance of the Gaussian process, for the OUVE SDE and the TSDVE SDE. We utilized the software
Mathematica 12.1 to solve the mean and variance ODEs [8] for the initial value σ0 = 0. This choice
is in contrast to [6], where the initial value σ0 = σmin was used. Our reasoning for this change is that
due to the influence of our added drift terms, the choice by Song et al. may result in nonmonotonous
functions σt, particularly depending on the choice of γ and the relative scale of σmax in comparison
to σmin. We admit that the convenient name of σmin may be misleading under this assumption, since
it is not a “minimum sigma” under our assumptions. Nonetheless, we keep this parameter as a way
to control the shape of the variance curve, and also keep its name in line with the previous literature.

For the OUVE SDE, we follow [6] to determine an approximate normalization factor:

νOUVE =

√
2

(
γ + log

(
σmax

σmin

))
, (7)

resulting in the variance

σ2
t,OUVE = σ2

min

((
σmax

σmin

)2t

− e−2γt

)
. (8)

One may observe that the condition σ1 = σmax is only approximately fulfilled here, but the error is
small when σmin is small and γ is reasonably large: for our parameter choice, it is equal to

0.012(−e−2·1·1) ≈ −1.4× 10−5 (9)

and we therefore use this factor νOUVE due to its relative simplicity.

For the TSDVE SDE, we first solved for the unnormalized variance expression using ν = 1:

σ2
t,TSDVE,unnorm =

σ2
min√
γ
e−γt2

e
γt2+2t log

(
σmax
σmin

)
D

 tγ + log
(

σmax
σmin

)
√
γ

−D

 log
(

σmax
σmin

)
√
γ


(10)

where D is the Dawson function. Solving for ν such that ν2σ2
T = σmax exactly, we retrieve

νTSDVE =

√√√√√ σ2
max

√
γ

e−γ

(
eγσ2

maxD

(
γ+log

(
σmax
σmin

)
√
γ

)
− σ2

minD

(
log

(
σmax
σmin

)
√
γ

)) . (11)

We then multiply the diffusion term g(t) of the forward SDE by this νTSDVE, finally resulting in

g(t) := νTSDVE

(
σmax

σmin

)2t

(12)

=⇒ σ2
t,TSDVE = ν2TSDVE · σ2

t,TSDVE,unnorm (13)

Note that we are now already dealing with unwieldy functions such as the Dawson function just
by setting α = 1 (TSDVE SDE). This was the principal reason for us to not investigate α = 2
and higher, though exploring a solution or approximation of σt for these cases may be helpful:
Increasing α keeps the process mean close to x0 for longer early in the forward process, which may
help the reverse process to result in higher-quality reconstructions; however, in practice we did not
find significant differences between α = 0 and α = 1 in this work.
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B More example images

Corrupted Baseline OUVE TSDVE Ground truth

Figure 2: Further example images for the restoration task with JPEG quality level 10.
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Corrupted Baseline OUVE TSDVE Ground truth

Figure 3: Further example images for the restoration task with JPEG quality level 20.
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