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Abstract001

Multiple choice question (MCQ) is a com-002
mon task for evaluating large language models003
(LLMs). LLMs’ performance on MCQ is often004
affected by various biases. Previous research005
has extensively examined the impact of inher-006
ent option bias on MCQ predictions, where007
this bias refers to a preference for a specific008
option ID token introduced during the model’s009
training. However, in an in-context learning010
scenario, few-shot prompting can also intro-011
duce a form of bias, known as context option012
bias. For example, when all demonstration013
answers are consistently option A, LLMs may014
predict A regardless of the question. Context015
option bias can significantly degrade LLMs’016
performance. To observe LLMs’ behavior un-017
der context option bias, we use demonstrations018
with obvious bias to amplify the effect. The019
results indicate that certain attention heads in020
LLMs are particularly sensitive to context op-021
tion bias. Motivated by this observation, we022
propose our approach, CoLo, to address this023
issue. CoLo first compares outputs from ordi-024
nary and biased demonstrations and localizes025
attention heads sensitive to context option bias026
through sequential interventions. Then, we pro-027
pose an attention scaling-based method to inter-028
vene in the identified attention heads during the029
inference stage, thereby mitigating the impact030
of context option bias on the LLMs’ predictions.031
Experimental results show that CoLo alleviates032
context option bias and improves LLMs’ ro-033
bustness on MCQ tasks.034

1 Introduction035

Multiple-choice question (MCQ) is a common type036

of question-and-answer format in daily life and is037

also a common method used in the field of natu-038

ral language processing to test the generalization039

ability of large language models (LLMs). There ex-040

ist benchmarks and datasets specifically designed,041

spanning a variety of fields(Hendrycks et al., 2021;042

Talmor et al., 2019; Clark et al., 2018). We hope043

LLMs can well understand the question and choose 044

the most appropriate answer from all options. For 045

this purpose, many efforts have been made and few- 046

shot in-context learning has been shown to be one 047

of the effective methods. It provides some demon- 048

strations before the question as prompts and can 049

largely improve an LLM’s performance on MCQs. 050

Despite the above efforts, LLMs are still af- 051

fected by certain biases and yield unexpected 052

answers. Previous works(Wang et al., 2024b; 053

Pezeshkpour and Hruschka, 2024; Zheng et al., 054

2023) have investigated several inherent option 055

bias of LLMs. For example, experiments indicate 056

that gpt-3.5-turbo tends to prefer option A, and 057

using prompt-based debiasing methods shows un- 058

satisfactory results (Zheng et al., 2023). However, 059

bias introduced by context, referred to as context 060

option bias, has not been carefully studied. 061

Intuitively, if all demonstrations’ answers hap- 062

pen to be A, then LLMs will also prefer to predict 063

A no matter what question is given. In contrast, if 064

answers for demonstrations do not show too much 065

preference to a certain option, the model will be 066

more inclined to choose the correct answer. The 067

results indicate that context option bias has an im- 068

pact on an LLM’s prediction. Figure 1 provides 069

evidence, that is, when given demonstrations all 070

with answers A, LLMs will predict much more A 071

than with ordinary demonstrations1. 072

However, demonstrations with evenly distributed 073

options still introduce context option bias towards 074

certain answer choices. We observed that demon- 075

strations with evenly distributed answer options 076

significantly influence the model’s predictions. For 077

instance, in the 5-shot Gemma-2B model, we modi- 078

fied the sequence of options in the MMLU dataset 079

demonstrations to two different configurations: 080

1Ordinary demonstrations mean those with the same ques-
tions as biased demonstrations but do not show preference to
a certain option. We implement this by swapping options in
demonstration questions.
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Figure 1: Biased context is constructed by few shot
through answer is always A. We counted the predictions
of some LLMs on MMLU dataset(Hendrycks et al.,
2021)

.A-B-C-D-A and D-C-B-A-D. Compared to the ran-081

dom sequence demonstration, the total number of082

A selections in configuration A-B-C-D-A decreased083

by 33%, while the total number of D selections084

in configuration D-C-B-A-D decreased by 47%.085

We speculate that this behavior arises because the086

model tends to avoid selecting the same option con-087

secutively, believing that the probability of repeated088

occurrences of the same option is low, thus intro-089

ducing a bias in answering questions with similar090

option distributions.091

To better excavate the reasons behind this prob-092

lem and resolve it, we deliberately construct some093

demonstrations with obvious context option bias094

and compare the model’s behavior under these con-095

ditions with that under ordinary demonstrations.096

The experiments find that even with simple option097

swaps in demonstrations, the attention map’s distri-098

bution in an LLM varies significantly. This obser-099

vation inspires us to test the attention distribution100

under conditions with obvious biased demonstra-101

tions, identify the attention heads that are more102

sensitive to context option bias, and intervene ac-103

cordingly to mitigate the impact of context option104

bias on the model behavior.105

Following this motivation, we propose our106

method CoLo to localize and mitigate context op-107

tion bias in LLMs. Particularly, (1) CoLo first108

takes samples with biased demonstrations as input109

to obtain the LLM’s predictions, which we refer110

to as biased answers. (2) We then intervene in dif-111

ferent layers and different attention heads within112

each layer. If the LLM’s predictions after the in-113

tervention is more inclined towards the correct or114

ordinary answers, it indicates that the correspond-115

ing attention head is sensitive to context option bias116

and likely to lead the model to biased answers. (3)117

CoLo selects a set of attention heads that are most118

sensitive to context option bias and applies inter-119

ventions to these heads simultaneously during the120

subsequent inference stage.121

Extensive experiments show that for MCQ in an122

in-context learning scenario, when there is context123

option bias in demonstrations, our method can ef- 124

fectively mitigate the impact of the bias, improving 125

an LLMs’ accuracy on MCQ to a level similar to 126

that with ordinary demonstrations without affect- 127

ing other LLMs’ abilities. Besides, the identified 128

attention heads demonstrate powerful generaliza- 129

tion across datasets and tasks. That is, for a cer- 130

tain model, the attention heads identified with one 131

dataset also applies to other datasets. More impor- 132

tantly, even when the demonstrations look unbi- 133

ased, applying our proposed intervention can also 134

further enhance the model’s accuracy. We assume 135

it is because seemingly unbiased demonstrations 136

may also contain some context option bias that 137

are imperceptible, thereby affecting the model’s 138

predictions. 139

It is worth summarizing our contributions as fol- 140

lows: 141

• We propose a method to identify attention 142

heads that are sensitive to context option 143

bias in multiple-choice questions under an in- 144

context learning scenario. 145

• Our attention scaling-based method mitigates 146

the impact of context option bias on the 147

LLM’s predictions and improves performance 148

without compromising other capabilities. 149

• Extensive experiments are conducted and the 150

results show the effectiveness of our method. 151

2 Related work 152

Inference intervention techniques. Inference in- 153

tervention comprises various methods designed to 154

modulate the behavior of large-scale models post- 155

training. Commonly employed inference interven- 156

tion strategies include activation editing(Li et al., 157

2024b), weight editing(Dai et al., 2022; Meng et al., 158

2022), guidance vectors(Zou et al., 2023), and al- 159

ter the output distribution through comparison(Li 160

et al., 2023; Chuang et al., 2024). Our method fo- 161

cuses on modifying the attention distribution by 162

attention scaling, which is a technique that origi- 163

nates from GPT-2(Radford et al., 2019). Contrary 164

to the broader method of global attention scaling 165

of GPT-2, our approach is distinctly less invasive, 166

selectively targeting attention heads that are asso- 167

ciated with context option bias. By identifying 168

and scaling the attention heads linked to context 169

option bias, our method effectively mitigates this 170

bias using a significantly smaller dataset, requir- 171

ing far fewer examples than those needed for rein- 172

forcement learning (RL) (Ouyang et al., 2022) and 173
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fine-tuning-based methods (Hu et al., 2022). Our174

approach to structuring the comparison of specific175

contexts is analogous to the ICD method(Zhang176

et al., 2024).177

Bias of LLMs. There are various types of bi-178

ases in LLMs(Gallegos et al., 2024), with option179

bias being one of the most prominent and actively180

researched(Zheng et al., 2023; Pezeshkpour and Hr-181

uschka, 2024; Wang et al., 2024a; Xue et al., 2024).182

We argue that option bias is not only introduced183

during the model training phase, but may also arise184

through in-context learning. Although in-context185

learning can significantly enhance the model’s task-186

learning capabilities, it may also introduce negative187

effects on the model’s performance(Turpin et al.,188

2024). Distinct from post-processing methods like189

PriDe(Zheng et al., 2023), CoLo intervenes inter-190

nally within the model to mitigate context option191

bias without impacting text generation processes,192

such as Chain of Thought (CoT)(Kojima et al.,193

2022). This technique requires only a minimal194

number of samples to identify a general head that195

responds to biases across various contexts. In con-196

trast, PriDe functions primarily as a pre-processing197

technology, necessitating recalibration of bias each198

time the context changes, and it often performs sub-199

optimally in scenarios with limited data samples.200

3 Method201

3.1 Overview202

During the LLM’s inference, different attention203

heads perform distinct functions(Zhang and Nanda,204

2024; Gould et al., 2024). While some attention205

heads may correspond to option bias, it is not fea-206

sible to directly identify which ones specifically207

linked to option bias during inference. To iden-208

tify attention heads strongly associated with option209

bias, it is necessary to amplify the presence of the210

bias. Due to the difficulty of directly manipulat-211

ing the model’s inherent option bias, we choose to212

amplify context option bias by constructing biased213

demonstrations. We can obtain the state output of214

the model in these two different situations stateb215

and stateo corresponding to biased and ordinary216

demonstrations, respectively. The gap between the217

two states arises from the amplification of the con-218

text option bias. We employ an intervention func-219

tion f that acts on specific attention heads to reduce220

the state difference between stateb and stateo. The221

extent of this reduction is compared to evaluate the222

correlation strength between these attention heads223
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Figure 2: The overall of CoLo, encompassing offline
heads identification and the inference phase.

and context option bias, allowing us to select the 224

most relevant set of attention heads. The algorithm 225

flow is described in detail in Section 3.2 226

After identifying attention heads strongly associ- 227

ated with context option bias, different intervention 228

methods are employed to modify the attention dis- 229

tribution of these heads and mitigate context option 230

bias. We describe the intervention methods utilized 231

in Section 3.3. 232

3.2 Localizing attention heads 233

We amplify context option bias by swapping op- 234

tions in the demonstration. Specifically, we consol- 235

idate all correct answers into a single option, such 236

as always setting the correct answer to A. This cre- 237

ates a biased demonstration, denoted as db, while 238

the ordinary demonstration is do, and the problem 239

is represented by q. Each sample includes the true 240

label yt. We randomly select N samples to create 241

the set used for localizing attention heads, denoted 242

as D = (dio, d
i
b, q

i, yit)
N
i=1. 243

We describe the general pattern by which large 244

models accomplish selection tasks as: 245

p(y|d, q) = softmax({ϕ(g)c, c ∈ C}), (1) 246

where C represents the token ID of the option 247

after tokenizer encoding, the vocabulary head ϕ(·) 248

predicts the probability of the choice token, g is the 249

output of the last layer of the model. 250

The probability of the correct option of the 251

model under biased demonstration is p(yt|db, q), 252

and under ordinary demonstration is p(yt|do, q). 253
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Choose the option with the highest probability as254

the answer y:255

y = yc, argmax
c

p(yc|d, q), (2)256

thus, we can obtain yo through do. The probabil-257

ity of the model output option after intervention258

function f will change. The probability distribu-259

tion after intervention function f is recorded as260

p′(y|d, q). Particularly, p′hl (y|d, q) represents prob-261

ability distribution after intervention function f act262

on the h-th attention head in the l-th transformer263

decoder block.264

We define E to quantify the effectiveness of the265

intervention function, described as:266

E = p′(y|db, q)− p(y|db, q), y ∈ {yo, yt}, (3)267

where y ∈ {yo, yt} represents our expectation that,268

following the application of the intervention func-269

tion, the model’s output previously influenced by270

biased demonstrations will either align with the la-271

bel yo, corresponding to the output under ordinary272

demonstrations, or with the true label yt of the cur-273

rent sample. Another intuitive approach is to use274

KL divergence to define the effectiveness of the275

intervention. To this end, we attempted to measure276

it by calculating the KL divergence between the277

model’s output after the intervention under biased278

demonstrations and the output from the original,279

unbiased demonstration, as well as the true label.280

However, this approach yielded poor results, as281

detailed in the Appendix G.282

By further partitioning the sample dataset D and283

conducting multiple rounds of voting, the top Kl284

layers are selected, followed by the selection of285

the top Kh heads within each layer based on their286

E values. The details of the localizing algorithm287

are provided in Algorithm 1. The rationale for288

partitioning D and performing multiple rounds of289

voting is to mitigate the influence of outliers.290

It is essential to emphasize that we first identify291

the top Kl layers and then select the top Kh heads292

within these layers. This approach may overlook293

some heads in lower-ranked layers that could be of294

greater importance. Although traversing all heads295

would produce better results, the computational296

cost is significantly higher. Therefore, we adopt297

this compromise method to efficiently localize at-298

tention heads.299

We employ random sampling to partition the300

sample set and use multiple rounds of voting to301

identify the top Kl layers. The context option bias302

Algorithm 1 Localizing Attention Heads
Require: Language model, test samples D =

{(dio, dib, qi, yit)}Ni=1, rounds number n, sam-
ple number of every round m = N/n, divide
D into {Di}ni=1.

Ensure: Model attention heads set to intervene H
1: Initialize decoder layers set L = ∅ and the

attention heads set H = ∅ ▷ Initialization
2: Sample the estimation samples De under K

and the remaining samples Dr = D\De

3: for Di ∈ {Di}ni=1 do
4: for l ∈ model.layers do
5: for (d0, db, q, y0) ∈ Di do
6: El+ = p′l(yo|db, q) + p′l(yt|db, q)
7: end for
8: select top Kl layers l1, . . . , lKl

of El

9: end for
10: Find the top Kl layers with the largest

scores and add them into L ▷ Get intervene
layers

11: cntli ++, i = 1, . . . ,Kl

12: end for
13: select top Kl layers in cnt get L
14: for l ∈ L do
15: for h in l.heads do
16: for (d0, db, q, yt) ∈ D do
17: Eh

l + = p′hl (yo|d, q)+p′hl (yt|db, q)
18: end for
19: select Top Kh of Eh

l ,add (l, h) to H
20: end for
21: end for
22: return H

present in each sample set is determined during 303

this process. If the identified attention head cor- 304

responds to the option bias, its focus should be 305

concentrated on a specific layer and remain robust 306

across samples containing the same context option 307

bias but differing in content. We use the indicator 308

S ∈ [0, 1] to measure the stability of the identified 309

attention head: 310

S =
∑ cntl

m×Kl
, l ∈ L, (4) 311

The variable cnt represents the number of se- 312

lections after n rounds of sampling, while m de- 313

notes the number of samples in each round. A 314

larger value of S indicates greater concentration 315

and higher effectiveness of the attention head local- 316

ization strategy. 317
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3.3 Intervention methods318

To establish the notation and context, we briefly319

outline some fundamental aspects of transformer320

architecture(Vaswani et al., 2017), a sequence of321

transformer layers indexed by the variable l.322

Throughout the inference process, the token un-323

dergoes initial encoding into the embedding space324

via the embedding layer x0 ∈ RDH , initiating the325

residual stream. We use h to represent head in-326

dex of each layer.The inputs of multi-head atten-327

tion(MHA) are Qh ∈ RD, Kh ∈ RD, Vh ∈ RD,328

all represented by xi is obtained through linear op-329

eration. In each layer, MHA consists of H heads.330

Each head is an independent linear operation. Af-331

ter concating the H attention heads, it is processed332

through Wo ∈ RDH×DH projection gets the result333

of Multi-head Attention.334

xl+1 = xl + [headl0, . . . , head
l
H−1]Wo (5)335

Every attention head can be written as:336

headlh = softmax(f(
Ql

hK
l
h√

D
))× V l

h, (6)337

Specifically, in the standard transformer, f(x) =338

x, whereas in our approach, the function f rep-339

resents an intervention method applied to the at-340

tention weights. After preliminary experimental341

attempt in Appendix D, we guess that attention342

scaling can better adjust the distribution of atten-343

tion weight thereby reducing the gap in the final344

output state of the model. We conducted further345

experiment with different forms of f(x), such as346

scaling and zeroing, on specific heads to modify the347

distribution of attention weights in order to achieve348

the highest possible E.349

Attention scaling is equivalent to adding the tem-350

perature coefficient T to the softmax of the attention351

score. Given the relatively limited exploration of352

the softmax operation of attention scores in prior353

work, LLMs conventionally set the temperature354

parameter to 1 during reasoning.355

After identifying the head set H through Al-356

gorithm 1, we intervene in attention head headlh,357

(l, h) ∈ H during model inference stage.358

3.4 Discussion359

The overall process of CoLo is shown in the Figure360

2. It operates in two stages: offline and inference.361

Parameters setting of CoLo. An important set362

of parameters in CoLo includes T ∈ R+, along363

with Kl,Kh, N ∈ Z+ for localizing. Although364

Table 1: Compare different intervention methods f on
Gemma-2B. Report accuracy improvement δ and localiz-
ing stability S.

Methods Scaling Setting
T = 0.5 T = 2 zero mean

S 0.8 0.25 0.23 0.35
biased δ(%) 2.22 -0.26 -0.19 0.14

ordinary δ(%) 1.74 0.03 -0.08 0.15

no theoretical framework exists to determine the 365

optimal value, we explore these effects through ex- 366

perimental analysis. It is important to emphasize 367

that a small number of additional samples are re- 368

quired in Algorithm 1. Moreover, the dataset can 369

be expanded by modifying the context option bias 370

in the demonstration. For instance, in a four-option 371

multiple-choice question (MCQ), the options can 372

be altered to consist entirely of A, B, C, or D, thereby 373

increasing the sample size fourfold. Clearly, a 374

larger number of additional samples contributes 375

to greater stability in the final attention head, a 376

conclusion that we will empirically validate in our 377

experiments. We ultimately decided to use Kl = 2, 378

Kh = 4, T = 0.5 and N = 10 additional samples, 379

expanding the dataset to 40. This serves as the pri- 380

mary parameter setting for our main experiments, 381

and we further discuss the impact of different pa- 382

rameter configurations on CoLo’s performance by 383

experiments. 384

Additional computational overhead of CoLo. 385

In the offline stage, the additional computational 386

overhead introduced by the localization process 387

scales with the number of samples N used for po- 388

sitioning and is also influenced by the number of 389

layers and attention heads in the model. For in- 390

stance, in the case of the Gemma-2B model, this 391

process requires approximately 150N additional 392

inferences. A detailed breakdown of the computa- 393

tional overhead is provided in Appendix E. Once 394

the relevant attention heads are identified, CoLo 395

can be applied to other datasets without incurring 396

any further computational overhead during the in- 397

ference stage. 398

4 Experiments 399

In our experiments, we employed LLMs such as 400

Llama(Touvron et al., 2023) and Gemma(Team 401

et al., 2024). Our methodology is also applicable 402

to other LLMs with accessible internal attention 403

weights and computational mechanisms. 404
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4.1 Main results405

We select the MMLU (Hendrycks et al., 2021) as406

our benchmark. Initially, we randomly select 10407

samples from this dataset and increase the sample408

size fourfold to construct D. Utilizing this set, we409

identify the attention heads by localizing algorithm410

and then perform intervention, subsequently assess411

accuracy on the remaining samples.412

According to the localizing method we gave, we413

try different attention intervention functions and414

find that using attention scaling method has the415

best effect as shown in Table 1, which is reflected416

in the most obvious improvement in accuracy on417

the dataset and higher localizing stability S. This418

is the same as our guess. The following will pro-419

vide a detailed introduction to the effects of using420

attention scaling method as intervention function f421

on large-scale datasets.422

To quantify the mitigation of option bias, we423

use recall standard deviation (RStd) as an indica-424

tor(Zheng et al., 2023), measuring the balance of re-425

call rates across different option IDs. Additionally,426

we compare the bias mitigation performance and427

computational overhead with PriDe. Since CoLo428

operates during inference, it can be combined with429

PriDe to further reduce option bias.430

Additional positioning samples are randomly se-431

lected from the development set, and this procedure432

is repeated five times to mitigate random variabil-433

ity. We report the mean accuracy obtained across434

these iterations. The experimental results are pre-435

sented in Table 2. We can conclude that CoLo436

effectively mitigates option bias, particularly in437

addressing context option bias. The reduction in438

RStd indicates a weakening of the model’s option439

bias. Although our primary objective was to re-440

duce option bias, the simultaneous improvement in441

model accuracy alongside the reduction in RStd442

further validates the effectiveness of the CoLo.443

CoLo exhibits better debiasing performance under444

biased demonstrations than under ordinary demon-445

strations. This is because the biased demonstration446

was specifically designed to amplify context option447

bias, which highlights CoLo’ ability to effectively448

mitigate such biases.449

CoLo alleviates option bias under both ordinary450

demonstration and zero-shot settings. A plausible451

explanation is that, while the option distribution452

in the few-shot setting is uniform, it still contains453

implicit context option bias as shown in Appendix454

C. Furthermore, the mitigation of option bias in455

the zero-shot setting may stem from the inclusion 456

of the question as part of the input context, which 457

can introduce additional context option bias. In 458

summary, the reduction of bias and improvement 459

in accuracy observed in both ordinary demonstra- 460

tion and zero-shot scenarios further underscore the 461

significance and broad applicability of the CoLo. 462

As shown in the Table 2, we compare the perfor- 463

mance of CoLo and PriDe on the MMLU dataset 464

and find that combining the two methods achieves 465

a more effective debiasing outcome. Addition- 466

ally, we compare CoLo and PriDe across different 467

settings, as well as in combination, and present 468

detailed experimental results on domain transfer 469

within MMLU dataset. The results in Appendix H 470

demonstrate that CoLo exhibits distinct advantages 471

in domain transfer. 472

4.2 Cross-dataset generalization 473

In order to further illustrate that the head obtained 474

by positioning corresponds to the context option 475

bias of the model, and has a certain degree of ro- 476

bustness, we will apply the attention head obtained 477

through random sampling localizing in MMLU 478

and the intervention method of attention scaling 479

to different fields and different forms tasks , 1) 480

MCQ dataset CMMLU(Li et al., 2024a) and CE- 481

VAL(Huang et al., 2023), 2) comprehensive dataset 482

AGIEVAL(Zhong et al., 2024), including multiple 483

choice questions. 484

The results of the experiment in Table 3 illus- 485

trates the improvement in accuracy of MCQ in 486

other fields, which demonstrates the robustness 487

of our approach in mitigating option bias across 488

datasets. Additionally, the stable performance 489

on the TruthfulQA indicates that our intervention 490

method will not cause the model to lose the ability 491

to generate general text, the result in Appendix I. 492

4.3 Robustness across different format 493

To validate whether the attention heads selected 494

by CoLo correspond to context option bias, we 495

perform format transformations on the original 496

MCQ input format, varying factors such as the 497

number of options, the length of demonstrations, 498

and the format of option identifiers. We aim to 499

verify the following two points: 500

1. Whether the selected attention heads remain 501

effective in mitigating context option bias af- 502

ter format transformations. 503

2. Whether the selected attention heads are con- 504

sistent across different modes. 505
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Table 2: The experimental results of CoLo on the MMLU dataset, along with a comparison to PriDe, encompass
evaluations of computational cost, accuracy, and RStd performance. Biased 5 shot is constructed by consistently
modifying the standard answers to A.

Model Cost Zero Shot Ordinary (5 shot) Biased (5 shot)
Acc(%) RStd(%) Acc(%) RStd(%) Acc(%) RStd(%)

Gemma-2B 1 33.8 21.8 39.9 14.3 38.2 16.1
+CoLo ×1.19 36.2 12.6 41.7 10.8 40.5 7.0

+PriDe(5%) ×1.15 34.1 10.6 41.7 7.5 / /
+CoLo PriDe(5%) ×1.34 37.0 5.0 42.5 4.2 / /

Gemma-7B 1 61.6 5.2 62.6 5.4 59.3 10.6
+CoLo ×1.29 62.0 5.5 63.4 3.7 61.5 10.9

+PriDe(5%) ×1.15 61.6 5.2 64.4 5.0 / /
+CoLo PriDe(5%) ×1.44 62.1 1.8 64.5 3.5 / /

Llama2-7B 1 40.9 13.9 45.5 10.7 43.5 11.5
+CoLo ×1.45 43.2 4.4 46.5 3.8 45.6 6.2

+PriDe(5%) ×1.15 40.0 5.7 45.6 7.0 / /
+CoLo PriDe(5%) ×1.60 43.5 4.2 46.8 4.2 / /

Llama3-8B 1 61.4 13.8 64.6 7.8 60.7 12.0
+CoLo ×1.45 61.9 6.8 64.8 2.3 62.0 8.9

+PriDe(5%) ×1.15 63.6 5.3 65.0 2.1 / /
+CoLo PriDe(5%) ×1.60 63.5 3.9 64.9 1.9 / /

Table 3: Cross-dataset experiments were conducted us-
ing the attention heads obtained from MMLU, along
with ordinary few-shot learning across all datasets. FS
stands for 5-shot in table. We use lm-eval-harness(Gao
et al., 2024) as the evaluation tool.

Model CMMLU CEVAL AGIEVAL
ZS FS ZS FS ZS

Gemma-2B 28.4 30.9 26.5 31.3 31.0
+CoLo 29.8 31.7 29.8 32.2 31.6

Gemma-7B 44.8 48.9 41.2 48.2 38.7
+CoLo 45.4 49.8 44.4 49.4 38.8

Llama2-7B 27.2 32.7 30.0 34.0 32.3
+CoLo 28.2 32.8 30.3 35.0 33.1

Llama3-8B 47.5 50.5 47.9 51.9 37.3
+CoLo 47.2 50.6 49.7 52.0 39.0

For the first point, we selected the model’s at-506

tention heads based on the sample set D in the507

base mode and reported the accuracy improvements508

across different modes of D. As shown in Figure509

3(a), the results indicate that accuracy improves fol-510

lowing mode transformation. For the second point511

is to use different D after mode transformation512

to select attention heads. For different modes, the513

heads selected are similar in Figure 3(b). The result514

indicates that the attention heads selected through515

our method is robust to mode transformations.516

4.4 What’s the optimal parameters of CoLo?517

For T < 1,head positions remain similar, while518

for T > 1, they become more dispersed, as shown519

in Figure 3(b) and Figure 4(b). Additionally, in-520

creasing T beyond 1 does not improve accuracy.521

This implies that T > 1 may identify non-essential522

Table 4: The performance Acc/RStd of the Gemma-2B
model on the MMLU dataset, using different values for
Kl and Kh, with N = 10 and T = 0.5

Kl\Kh 1 2 4 8

1 40.6/12.3 40.9/11.8 41.7/10.7 41.0/10.9
2 41.3/11.8 41.4/10.7 41.7/8.8 41.2/10.6
3 41.5/11.6 41.5/11.3 41.2/9.8 41.0/10.1
4 40.9/11.1 41.8/9.4 41.2/9.8 40.9/9.7
5 40.9/11.8 41.1/10.9 40.9/8.0 39.4/11.7
6 40.8/11.2 41.0/10.6 40.8/10.8 38.4/10.7

heads, and aligning attention closer to the mean 523

has minimal effect. Within a reasonable interval 524

T ∈ [0.1, 0.6], the bias mitigation and accuracy 525

remain stable. 526

We explored Kl and Kh using Gemma-2B model 527

in Table 4. When the number of heads is between 528

6 and 8, the performance remains consistent; how- 529

ever, as the number of heads increases further, the 530

effectiveness of the method diminishes. Similarly, 531

the number of intervention layers should not be 532

excessive. Based on our findings, we recommend 533

using 2–3 intervention layers and 6–8 heads as op- 534

timal. Moreover, our experiments across various 535

models reveal a consistent pattern regarding the 536

placement of intervention layers: the most effec- 537

tive intervention layer is typically situated in the 538

middle layers of the model. 539

We conducted experiments on Gemma-2B, vary- 540

ing the number of samples for CoLo in Table 5. 541

The results indicate that performance improvement 542

plateaus when the sample size reaches 10. Based 543

on these findings, we estimate that a minimum of 544

10–12 samples is required and recommend using 545

12 samples for improved stability. 546
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(a) We first localize the attention head in the base mode (five
choices, four demonstrations, and A as the biased answer) and
then modify the mode for different samples, reporting the corre-
sponding accuracy improvements.
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(b) T>1(b) We localize attention heads across different modes and
present the localization frequency for each attention head.

Figure 3: Experimental result of mode transformations
based on the Gemma-2B model on MMLU dataset.

Table 5: The performance scale with different sample
number N for CoLo.

N 4 8 10 12 14 16

Acc 40.0 41.2 41.7 41.6 41.7 41.6
Acc Var 0.25 0.42 0.2 0.09 0.12 0.11

RStd 12.2 10.5 10.8 9.4 9.6 9.6
RStd Var 1.3 3.6 3.4 2.3 2.5 2.1

4.5 Prompts to amplify context option bias547

To amplify the context option bias, in addition to548

manipulating the order of options in a few-shot set-549

ting, a prompt-based, zero-shot approach provides550

an alternative effective method. This approach in-551

volves incorporating a phrase such as "The answer552

can be any one of A/B/C/D, and option A is more553

likely." within the prompt. The remaining steps554

follow the same procedure. Through multiple ex-555

periments and the reporting of average results, both556

approaches identified the same layer heads: 12.3,557

12.7, 12.1, 14.0, 14.1, and 14.6. The detailed ex-558

perimental results show in Table 13. This is an559

encouraging outcome, as the prompt-based method560

significantly reduces the complexity of bias con-561

struction while improving its generalizability.562

4.6 Explanations and analyses563

The motivation behind CoLo is primarily driven by564

experimental observations. To investigate this fur-565
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(a) Using T >1, respectively, and observe the frequency of the
localized head.

0.25 0.50 0.75 1.00 1.25
T

0.08

0.06

0.04

0.02

0.00

0.02

(c)

ordinary (T < 1)
biased (T < 1)
ordinary (T > 1)
biased (T > 1)

0 1 2 3 4 5 6 7 8 9 1011121314151617
layer

0
1

2
3

4
5

6
7

he
ad

(a) T<1

0 1 2 3 4 5 6 7 8 9 1011121314151617
layer

0
1

2
3

4
5

6
7

he
ad

(b) T>1

(b) Different attention scaling coefficients T were tested
on Gemma-2B using the head identified by CoLo, and the
accuracy improvements were evaluated on the MMLU.

Figure 4: Different T’s impact on CoLo

ther, we offer potential explanations by analyzing 566

attention distribution across various layers. The ex- 567

perimental results show that our method effectively 568

reduces the model’s reliance on demonstrations in 569

the deeper layers, thereby mitigating bias associ- 570

ated with context options. Further discussions and 571

experimental validations of this phenomenon are 572

provided in Appendix K. 573

5 Discussion and conclusions 574

We propose CoLo, a general localization method 575

designed to mitigate context option bias and im- 576

prove the accuracy of MCQ. Specifically, by ampli- 577

fying context option bias through rearranging the 578

order of options in demonstrations, we compare 579

the LLMs’ outputs of biased and ordinary demon- 580

stration to localizing attention heads strongly asso- 581

ciated with context option bias. Attention scaling 582

interventions are then applied to reduce this bias. 583

CoLo requires only small labeled samples to lo- 584

calize attention heads which can be applied across 585

different datasets. Once the attention heads requir- 586

ing intervention are identified, CoLo introduces no 587

additional inference delay. Compared to previous 588

debiasing methods, CoLo has a natural advantage 589

in extending to generative tasks. 590
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Limitations591

This work has the following limitations: (1) As592

aforementioned in Section 3.4, there remains a lack593

of theoretical proof supporting the efficacy of this594

method in reducing such bias while we have pro-595

vided a plausible explanation for why the identified596

attention heads can mitigate option bias. (2) Al-597

though the selection of attention heads exhibits598

generalizability, achieving optimal results neces-599

sitates that the small labeled sample set used for600

positioning be identical to the final test set, which601

will incur additional offline computational over-602

head. (3) CoLo is currently designed to specifically603

demonstrate its effectiveness in mitigating option604

bias, without evaluating its performance across a605

broader spectrum of biases. We believe extend-606

ing it to generative tasks presents a promising and607

ambitious research direction worthy of further ex-608

ploration. (4) We have conducted experiments on609

currently mainstream models and achieved promis-610

ing results, but due to limitations in computational611

resources, CoLo has not been tested on larger-scale612

models. (5) CoLo introduces additional compu-613

tational costs related to the number of layers and614

heads in the model, which become more significant615

for models with a large number of parameters, as616

we discuss in the Appendix E.617
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Question: Find the degree for the given field 

extension Q(sqrt(2), sqrt(3), sqrt(18)) over Q.

Option:
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Answer: B
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Figure 5: An example of inherent bias
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All experiments in the paper can be completed in 4808

× GeForce RTX4090(24GB). All the raw versions809

of evaluation data are accessible from their official810

repositories in Table 6. All datasets and models811

used in our experiments are employed strictly for812

research purposes813

B Inherent bias814

Position bias manifests itself as inconsistencies in815

model predictions when the sequence of options816

changes but all other elements are held constant.817

Token bias, on the other hand, arises when the818

substitution of option tokens impacts predictions.819

Figure 5, an example of inconsistent prediction820

result of Llama2-7B due to position bias and token821

bias. The correct answer A initially selected by822

the model may arrive at by chance due to its own823

biases. By swapping option positions/swapping824

option contents LLMs will get the wrong answer.825

C Context option bias in demonstrations826

with evenly distributed options827

Demonstrations with evenly distributed correct828

choices in a 5-shot setting yield varying effects829

on predictions depending on the order in which830

they are presented.831

D Comparison of attention distribution832

The experiments find that even with simple option833

swaps in demonstrations, the attention map’s distri-834

bution in an LLM varies significantly as shown in835

Figure6.836

Based on the difference in attention distribution837

as shown in Figure 7, we speculate that attention838

scaling can be used to strengthen attention to the839
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Figure 6: Utilizing the Llama2-7B model, we report
the average value of the attention coefficients for every
head in layer 14th when applied to the BBH’s sports
understanding dataset(Suzgun et al., 2022). (a) ordinary
demonstrations (b) biased demonstrations

question to make the attention distribution in the 840

two states closer. 841

E Additional computational overhead 842

The model consists of L candidate layers, with each 843

layer containing H attention heads. Given a sam- 844

ple size of N , the number of additional inferences 845

required is: 846

L×N × 2 +Kl ×H ×N × 2, (7) 847

2 means that both biased and ordinary demonstra- 848

tion require one inference. 849

As the model size increases, the associated com- 850

putational overhead also grows. Specifically, for 851

models scaling from Llama2-7B to Llama2-70B, 852

the number of layers increases from 32 to 80, and 853

the number of heads increases from 32 to 64. Con- 854

sequently, the localization overhead is expected to 855

grow by a factor of 4.5, calculated as 80/32+64/32. 856

The following are some potential directions for op- 857

timization: 858

• The computational overhead can be mitigated 859

by employing a grouping strategy for layers 860

and heads. For instance, adjacent layers and 861

heads can be combinedcan. This approach 862

effectively reduces the Llama2-70B to "40 863

layers" and "32 heads", resulting in additional 864

computational overhead comparable to that of 865

Llama2-7B. 866
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Table 6: Evaluated open-source models

Models URLs

Llama2-7B https://huggingface.co/meta-llama/Llama-2-7b
Llama3-8B https://huggingface.co/meta-llama/Meta-Llama-3-8B
Gemma-2B https://huggingface.co/google/gemma-2b
Gemma-7B https://huggingface.co/google/gemma-7b
Mistral-7b-v0.1 https://huggingface.co/mistralai/Mistral-7B-v0.1
Qwen2.5-0.5B https://huggingface.co/Qwen/Qwen2.5-0.5B
Qwen2.5-1.5B https://huggingface.co/Qwen/Qwen2.5-1.5B
Qwen2.5-3B https://huggingface.co/Qwen/Qwen2.5-3B
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Figure 7: We used biased and ordinary demonstrations on the BBH dataset to obtain the attention distribution on
head 9th and layer 14th respectively.

Table 7: With uniform distribution but different order in
Gemma-2B result in varying predictions.

Sequence A B C D

Random 1094 4886 5295 2767
A-B-C-D-A 736 5833 5215 2258
D-C-B-A-D 1202 5849 5526 1465

• In multi-round voting for layers, the layers867

with lower rankings can be eliminated in each868

round.869

F Located attention heads870

CoLo is mainly divided into the offline head local-871

ization phase and the inference phase. The offline872

localization phase primarily consists of three steps:873

1. Construct biased MCQ by altering the order874

of options.875

2. Vote to select top Kl layers.876

3. Select top Kh heads based on E.877

Table 8 shows the attention heads we obtained878

by randomly selecting 80 samples from the MMLU879

data set and positioning them on different models.880

We use {layer:(head list, T)} to represent the posi-881

tioned attention head, Kl = 2, Kh = 4.882

G Calculate score by KL divergence 883

Using the same positioning strategy and sample 884

set, modify the equation 3 to following equation 8. 885

KL(·) represents the calculation of KL divergence. 886

E = 1−KL(p′(yo|db, q), p(yo|db, q)) 887

+p′(yt|db, q)− p(yt|db, q) (8) 888

H Comparison of cross-domain MMLU 889

performance 890

Table 2 presents the performance of non-cross- 891

domain CoLo and PriDe on the MMLU dataset. 892

To compare the cross-domain transfer capabilities 893

of CoLo and PriDe, we conducted cross-domain 894

experiments on MMLU under different settings as 895

shown in Table 9. The MMLU dataset consists of 896

four domains: STEM, Social Science, Humanities, 897

and Others. For both CoLo and PriDe, offline com- 898

putations were performed within a single domain 899

to prepare for debiasing. Specifically, PriDe cal- 900

culates the prior probability, while CoLo identifies 901

the relevant attention heads. Accuracy across the 902

various domains is then obtained through cross- 903

domain evaluation, and the average for each do- 904

main is calculated to determine the overall accuracy 905

on MMLU. 906
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Table 8: The attention heads obtained by CoLo of each model

Models Attention heads

Llama2-7B {14: ([24, 4, 20, 31], 0.5), 18: ([30, 10, 25, 28], 0.5)}
Llama3-8B {17: ([24, 25, 26, 28], 0.5), 14: ([23, 5, 4, 20], 0.5)}
Gemma-2B {12: ([3, 7, 2, 1], 0.5), 14: ([0, 1, 6, 7], 0.5)}
Gemma-7B {18: ([0, 8, 6, 2], 0.5), 2: ([1, 5, 3, 0], 0.5)}
Mistral-7B-v0.1 {16: ([12, 14, 13, 1], 0.5), 19: ([8, 16, 9, 10], 0.5)}
Qwen2.5-0.5B {15: ([13, 12, 9, 7], 0.5), 14: ([0, 3, 6, 11], 0.5) }
Qwen2.5-1.5B {21: ([11, 9, 6, 8], 0.5), 18: ([3, 11, 0, 6], 0.5)}
Qwen2.5-3B {27: ([1, 4, 3, 11], 0.5) 8: ([7, 12, 3, 9], 0.5)}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
layer

0
1

2
3

4
5

6
7

he
ad

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
layer

0
1

2
3

4
5

6
7

he
ad

(b)

Figure 8: (a) calculate score by equation 3.(b) Modify the original formula through KL divergence.

Table 9: Cross-domain comparative experiment between CoLo and PriDe on MMLU.
MODEL Baseline CoLo PriDe(5%) PriDe(40%) PriDe(40%)+CoLo

Cost ×1 ≈ ×1.5 ×1.15 ×2.2 ×3.7
MMLU-Transfer Acc RStd Acc RStd Acc RStd Acc RStd Acc RStd

Gemma-2B 33.8 21.8 36.2 12.6 33.8 10.1 35.5 7.6 37.8 7.5
Gemma-2B+FS 39.9 14.3 41.7 10.8 41.6 6.4 42.4 5.1 42.9 4.6
Gemma-7B 61.6 5.2 62.0 5.5 61.7 6.7 62.3 5.5 62.5 5.1

Gemma-7B+FS 62.6 5.4 63.4 3.7 64.3 5.9 64.7 4.9 64.5 4.2
Llama2-7B 40.9 13.9 43.2 4.4 40.0 9.2 41.7 7.6 44.3 6.9

Llama2-7B+FS 45.5 10.7 46.5 3.8 45.5 9.0 46.5 7.4 47.4 8.0
Llama3-8B 61.4 13.8 61.9 6.8 63.4 5.9 63.7 4.8 63.1 4.0

Llama3-8B+FS 64.6 7.8 64.8 4.7 65.0 3.9 65.4 3.1 64.7 2.7

I Generate general text after CoLo907

The complete table containing TruthfulQA is pre-908

sented in Table 11.909

J Supplementary experiments910

In our study, we initially selected 10 samples but911

did not investigate or elaborate on how sample size912

influences the method’s performance. To address913

this limitation, we conducted additional experi-914

ments using Gemma-2b on the MMLU benchmark,915

varying the number of samples. Each experiment916

was repeated five times, with the mean accuracy917

and RStd reported. The results demonstrate that918

when the sample size reaches 10, the performance919

improvement is approaching a plateau. Based on920

these findings, we estimate that the minimum num-921

ber of samples required is approximately 10–12922

as shown in Table 5. For improved stability, we923

recommend using 12 samples.924

K Explanations and analyses 925

We define the focus coefficient to measure the ex- 926

tent to which the model attends to different parts 927

of the context, including context demonstrations 928

Cd, question Cq, and self-rational Cr. pl represents 929

the last position of the encoded text, pd represents 930

the end position of the ID after the demonstration 931

is encoded by the tokenizer, pq represents the end 932

position of the question. According to the decoder 933

structure, we can calculate its attention coefficient 934

for each attention head when the model finally 935

determines the answer to the question. We use 936

Al,h(i, j) represents the attention score of the (i, j) 937

position of the h-th attention head in the l-th layer. 938

After normalizing, the final attention coefficient 939

Cd, Cq and Cr is obtained. 940

C =

e∑
j=s

Al,h(pl, j)

|e− s+ 1|
, 941

(s, e) ∈ {(0, pd), (pd + 1, pq), (pq + 1, pl)} (9) 942
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Table 10: Supplementary experiments on the Qwen2.5 series model using CoLo

Model Cost Zero Shot Ordinary (5 shot) Biased (5 shot)
Acc(%) RStd(%) Acc(%) RStd(%) Acc(%) RStd(%)

Qwen2.5-0.5B 1 46.2 17.2 47.5 13.7 47.5 13.7
+CoLo ×1.10 47.4 13.5 48.6 7.9 48.6 7.9

Qwen2.5-1.5B 1 58.8 8.4 59.4 3.6 59.4 3.6
+CoLo ×1.19 59.6 7.5 60.5 0.9 60.5 1.0

Qwen2.5-3B 1 64.2 8.3 65.6 3.2 65.2 3.2
+CoLo ×1.25 65.4 6.3 66.4 1.4 66.2 1.4

Table 11: Cross-dataset experiments were conducted using the attention heads obtained from MMLU, along with
ordinary few-shot learning across all datasets. For TruthfulQA, the MC1/2/3 indicators were used for evaluation,
while accuracy was employed as the evaluation metric for the remaining datasets. FS stands for 5-shot in table. We
use lm-eval-harness(Gao et al., 2024) as the evaluation tool.

Model MMLU CMMLU CEVAL AGIEVAL TruthfulQA
ZS FS ZS FS ZS FS ZS MC1 MC2 MC3

Gemma-2B 33.0 41.7 28.4 30.9 26.5 31.3 31.0 0.233 0.371 0.173
+CoLo 36.2 42.8 29.8 31.7 29.8 32.2 31.6 0.241 0.372 0.173

Gemma-7B 61.6 64.5 44.8 48.9 41.2 48.2 38.7 0.308 0.476 0.228
+CoLo 62.0 65.2 45.4 49.8 44.4 49.4 38.8 0.322 0.479 0.236

Llama2-7B 40.9 45.6 27.2 32.7 30.0 34.0 32.3 0.286 0.434 0.207
+CoLo 43.2 46.8 28.2 32.8 30.3 35.0 33.1 0.291 0.440 0.215

Llama3-8B 61.4 66.5 47.5 50.5 47.9 51.9 37.3 0.324 0.492 0.244
+CoLo 61.9 66.9 47.2 50.6 49.7 52.0 39.0 0.321 0.491 0.245

Table 12: The proportion of doubtful and firm types in
the MMLU, and the confidence to the question.

Model proportion % confidence
firm doubtful firm doubtful

Llama2-7B 79.3 20.7 0.402 0.269
Gemma-2B 73.8 36.2 0.333 0.256

Options with high uncertainty are more sus-943

ceptible to context option bias in demonstrations.944

In Table 12, context option bias is intensified by945

constructing biased demonstrations, and MCQs are946

divided into two categories: "doubtful," where se-947

lections change after switching from ordinary to948

biased demonstrations, and "firm," where selec-949

tions remain unchanged. The confidence in the950

altered options is significantly lower than in the951

unchanged ones, averaging 0.25 for the four-option952

questions. Thus, when context option bias is ampli-953

fied, options with lower certainty are more likely954

to change.955

Context option bias tends to manifest more956

prominently in the deeper layers of the model.957

In Figure 9, we analyze the variations in attention958

allocation for different types of MCQ. The model959

tends to rely more on contextual demonstrations960

when handling uncertain questions, while it focuses961

more on the question itself for more confident ones.962

Based on this, we hypothesize that context-option963

bias primarily arises in the model’s deeper layers. 964

CoLo mitigates this bias by reducing the model’s 965

reliance on context in these deeper layers, thereby 966

effectively decreasing context option bias. 967

Deep layers reduce attention to context 968

demonstrations following intervention. CoLo 969

is designed to mitigate context-option bias, which 970

often arises from contextual information and typi- 971

cally manifests in the deeper layers of the model. 972

This is supported by the observed reduction in atten- 973

tion to context demonstrations in the deeper layers 974

through our method. However, at the intervention 975

layer, attention to context demonstrations Cd may 976

increase, as shown in Figure 10(b). This suggests a 977

trade-off between attention to examples, questions, 978

and rationale, with the model internally adjusting 979

to maintain a balanced approach. 980
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Figure 9: We utilized the Llama2-7B model to evaluate the impact of using CoLo on attention to demonstrations
within the MMLU dataset. It was observed that the model exhibited increased attention to demonstrations in deeper
layers when faced with doubtfule MCQs, thereby introducing contextual option bias. By employing CoLo, the
model’s attention to demonstrations could be reduced, mitigating the bias introduced in deeper layers.
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Figure 10: Llama2-7B model was used to evaluate the difference in attention to context demonstrations before and
after the intervention. Figures (a) and (b) illustrate the head positioning in the 14th and 18th layers, respectively,
following the intervention on the BBH sports understanding dataset (Suzgun et al., 2022).

Table 13: Both the prompt-based approach and the method of swapping the order of option choices to amplify
context option bias achieve good performance.

Model Zero shot Ordinary 5-shot Biased 5-shot
Gemma-2B 33.8/21.8 39.9/14.3 38.2/16.1
Gemma-2B + CoLo (option order) 36.2/12.6 41.7/10.8 40.5/7.0
Gemma-2B + CoLo (custom prompt) 36.0/13.8 41.4/10.9 40.3/7.0
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