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Abstract

Topological descriptors have been increasingly utilized for capturing multiscale
structural information in relational data. In this work, we consider various filtrations
on the (box) product of graphs and the effect on their outputs on the topological de-
scriptors - the Euler characteristic (EC) and persistent homology (PH). In particular,
we establish a complete characterization of the expressive power of EC on general
color-based filtrations. We also show that the PH descriptors of (virtual) graph prod-
ucts contain strictly more information than the computation on individual graphs,
whereas EC does not. Additionally, we provide algorithms to compute the PH dia-
grams of the product of vertex- and edge-level filtrations on the graph product. We
also substantiate our theoretical analysis with empirical investigations on runtime
analysis, expressivity, and graph classification performance. Overall, this work
paves way for powerful graph persistent descriptors via product filtrations. Code is
available at https://github.com/Aalto-QuML/tda_graph_product.

1 Introduction

Message-passing GNNs are prominent models for graph representation learning [18]. However, they
are bounded in expressivity by the WL hierarchy [32-34, 48] and cannot compute fundamental graph
properties such as cycles or connected components [10, 17]. Topological descriptors (TDs) such
as those based on persistent homology (PH) and the Euler characteristics (EC) can provide such
information and thus are being increasingly employed to augment GNNs, boosting their empirical
performance [7-9, 23, 46, 49].

In this work, we study two prominent types of topological descriptors based on PH [1, 12] and EC
[39, 41, 44] respectively. Both descriptors are defined with respect to a fixed filtration of a graph.
On a high level, PH keeps track of the birth and death times of topological features (e.g., connected
components and loops) in a (parameterized) graph filtration. EC is a simpler, less expensive invariant
that keeps track of the number of vertices minus the number of edges in the filtration. Both PH and
EC have found use across a wide range of applications in GNNs [15, 35, 41].

A precise characterization of PH has been established for graphs based on color-based filtrations in
[25]. Here, we offer a complete characterization of the expressivity of EC in terms of combinatorial
data on the colors of the graph. EC also compares favorably with other TDs in terms of computation,
which is another important aspect we explore here. In particular, we streamline PH and EC with
what we call their “max" versions. We show that the vertex death times, as well as the cycle birth
times, of vertex-level and edge-level max PH are the same. We also establish that max EC retains
the expressivity of EC, but is even more-cost effective than EC. Interestingly, we show that this
expressivity equivalence on graphs extends to a more general equivalence for color filtrations on
finite higher-dimensional simplicial complexes. This immediately opens avenues for integrating
max EC as an economical alternative to PH-based TDs into Topological Neural Networks, which
generalize GNNs through higher-order message-passing [5, 6, 14, 36, 37] and have recently been
shown to benefit from TDs both theoretically and empirically [45].
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Table 1: Overview of our theoretical results.

Expressive Power of PH and EC (Section 2, 3)

Matching Vertex Deaths and Cycle Births within max PH Proposition 1
EC Diagram = max EC Diagram on graphs Theorem 1
The Combinatorial Characterization of EC Diagrams on Graphs Theorem 2
Generalization EC = max EC to Simplicial Complexes Theorem 3

Topological Descriptors on Graph Products (Section 4):
EC of Product Graphs Does Not Add New Information Proposition 5
PH of (Virtual) Product Graphs > PH of Components Corollary 1

Computational Methods for Products Filtrations (Section 5):
Product of Vertex Filtrations ~ Some Vertex Coloring on Product  Proposition 6
Product of Edge Filtrations ~ Some Edge Coloring on Product Proposition 7
Algorithm for 0-th Persistence Pairs for Vertex Product Filtrations Theorem 4
Algorithm for 0-th Persistence Pairs for Edge Product Filtrations ~ Theorem 5
Algorithm for 1-st Persistence Pairs for Product Filtrations Proposition 8

From a practical micro-level perspective, the design of effective filtration functions is also paramount.
However, almost invariably, filtration functions are either fixed a priori or learned without any
structural considerations (e.g., symmetries), obfuscating how they are about the corresponding
diagrams. We seek to address this gap from a rigorous theoretical perspective, in pursuit of principled
design of richer topological descriptors.

The (box) product of graphs [26] naturally leads to symmetries and thus provides an effective starting
point for us, where we treat individual components as graph fractals. From a machine learning
perspective, graph products also arise naturally in the context of subgraph GNNs [3, 4], serve as a
natural tool for modeling and analyzing multi-way data [28, 43] and relational databases (see, e.g.,
Motivation | in Section 4), and have been incorporated in various GNN architectures [13, 42].

For two colored graphs G and H, there is a natural coloring on the graph product GOH. This
enables us to consider vertex-level and edge-level color-based filtration on GL1H. Under a technical
modification to the graph product, we show that the PH of the graph product is strictly more expressive
than the PH of the individual components. Surprisingly, the benefits of graph products under PH do
not extend to EC. Leveraging our complete characterization of the expressive power of EC, we show
that taking the EC of graph products provides does not provide any expressivity benefit beyond the
EC of individual components.

A notable subcollection of filtrations on graph products is given by the (box) product of filtrations on
the individual components. We initiate here a formal analysis by characterizing product filtrations:
we establish that the product of vertex filtrations is the max of vertex colors, and that the product
of edge filtrations is a certain edge coloring on the product. We also provide algorithms to track
the evolution of persistence diagrams under the product filtration induced by vertex filtrations and
edge filtrations respectively (in fact, the algorithm for 1-dimensional features works for any product
filtrations). This gives a computationally cost-effective method to compute these PH diagrams.

In sum, our work introduces a calculus for topological descriptors under the graph product. We
summarize our theoretical results in Table 1, and relegate all the proofs to the Appendix.

2 Preliminaries

A graph is the data G = (V, E, ¢, X) where V is a finite vertex set, E C V x V is the set of edges,
c¢:V — X is a vertex coloring function, and X is the finite set of possible colors. An isomorphism
between graphs G = (V, E, ¢, X) and G' = (V', E’, ¢/, X') is a bijection h : V' — V"’ such that (a)
¢=c ohand(b) (v,w) € E if and only if (h(v), h(w)) € E’. We will only consider finite simple
graphs in this work, and all graphs in this work will share the same coloring set.



In this work, we consider two types of color-based filtrations based on vertex-level and edge-level.

Definition 1 (Color-Based Filtrations). On a color set X, we consider the pair of functions (f,, : X —
R, fe : X x X — Rsq) where f. is symmetric (ie. fc(c,c') = fe(c',¢)). Ona graph G with a vertex
color set X, (fy, fe) induces the following pair of functions (F, : VUE — R, F, : VUE — R>).

1. For all v € V(G), F,(v) = fu(c(v)). For all e € E(G) with vertices vy, vs,
Fy(e) = max{F,(v1), F,(v2)}. Intuitively, we are assigning the edge e with the color
c(argmax, F,(v;)) (the vertex color that has a higher value under f,).

2. For all v € V(G), F.(v) = 0. Forall e € e(G) with vertices vi,vs, Fe(e) =

fe(e(vy), c(ve)). Intuitively, we are assigning the edge e with the color (c(v1), ¢(v2)).

For each t € R, we write GI* == F; 1 ((—00,t]) and G{* := F; (=00, t]). When there is a clear
fixed choice of filtration, we may drop the superscripts and simply write G.

Note we used G as opposed to GI to emphasize that the function G — ({G7* Vier, {GI*}r) is
well-defined for any graph G with the coloring set X. The lists {G{" };er and {G* };cr define a
vertex filtration of G by F), and an edge filtration of G by F, respectively. It is clear that G{ v can
only change when ¢ crosses a critical value in {f,(c) : ¢ € X}, and GJ* can only change when ¢

crosses a critical value in { f¢(c1,¢2) : (¢1,¢2) € X x X}. Hence, we can reduce both filtrations to
finite filtrations at those critical values.

We now review the two relevant classes of topological descriptors (TDs) for us, namely, persistent
homology (PH) and the Euler characteristic (EC).

2.1 Persistent Homology

A vertex v (ie. O-dimensional persistence information) is born when it appears in a given filtration
of the graph. When we merge two connected components represented by two vertices v and w, we
use a decision rule to kill off one of the vertices and mark the remaining vertex to represent the new
connected component. A cycle (ie. 1-dimensional persistence information) is born when it appears in
a given filtration of a diagram, and it will never die. For color-based vertex and edge filtration, there
is a canonical way to calculate the persistence pairs of a graph with a given filtration. We refer the
reader to Appendix A of Immonen et al. [25] for a precise introduction. We say a 0-th dimensional
persistence pair (b, d) is a real hole if d = oo, is an almost hole if b # d < oo, and is a trivial hole
if b = d. We say that a birth or death of a vertex is trivial if its persistence tuple is a trivial hole.

Definition 2. Let f = (f,, f.) be on the coloring set X. The persistent homology diagram of a
graph G is a collection PH(G, f) composed of two lists PH(G, f)V, PH(G, f)¥ where PH(G, f)V
are all the persistent pairs in the vertex filtration {G{” Yeer and PH(G, f)¥ are all the persistent
pairs in the edge filtration {G{“ }eer-

PH is an isomorphism invariant (Theorem 2 of Ballester and Rieck [2]) that generalizes an older
invariant - the homology. We will sometimes use So(G) and ;1 (G) to denote the 0-th and 1-st Betti
number of a graph (ie. the rank of the 0-th and 1-st homology).

2.2 Euler Characteristic

Including topological features in graph representation learning using persistent homology can be
computationally expensive. The Euler characteristic (EC) provides a weaker isomorphism invariant
that is easier to compute (but typically less expressive). For a graph G, the Euler characteristic x(G)
is given by x(G) = #V(G) — #E(G). Given a filtration of a graph G, we can track its Euler
characteristic throughout the filtration.

Definition 3. Let f = (f,, f.) be on the coloring set X. Write a1 < ... < ay, as the list of values f,
can produce, and by < ... < by, as the list of values f. can produce. The EC diagram of a graph G

is two lists EC(G, f) = EC(G, )V UEC(G, f)E, where EC(G, f)V is the list {x(G{*)}7_, and
EC(G, f)¥ is the list {X(G{f) m

We would also like to consider a weaker variant of EC that we will call the max EC.

Definition 4. Given only a vertex coloring function f, : X — Rso. We define the max EC
diagram of G as EC™ (G, f,) = EC(G, (fv, h([f))), where h(f,) : X x X — Ryq is defined



as h(fy)(c1,c2) == max(fy,(c1), fo(c2)). Note that max EC is the restriction of EC to only the
max-induced edge filtrations.

The reader might wonder what happens when we could consider a suitable analog of max PH as well.
We discuss this possibility in Appendix B and give an explicit method to compute it.

Proposition 1. Write f = (f, > 0, h(f,)), where h is defined in Definition 4. The vertex death times
(as a multi-set) of PH(G, f)F and PH(G, f)V are the same. The cycle birth times are also the same.

3 The Expressive Power of the Euler Characteristics

In this section, we will discuss a surprising equivalence between the expressivity of max EC diagrams
and EC diagrams on graphs.

Theorem 1. EC and EC™ have the same expressive power, that is, EC can differentiate
non-isomorphic graphs G and H if and only if EC™ can also differentiate them.

In fact, Theorem | will follow as an immediate corollary of a stronger theorem that we will prove
below, where we give a complete characterization of the expressivity of (max) EC diagrams on
graphs. We will first discuss two complete characterizations of the expressivity of EC with respect to
vertex-level and edge-level filtrations.

Let G, H be two graphs both on n vertices. We will consider the following combinatorial objects.

Notation: We use Fg(a,b) to denote the set of edges in G with endpoints being a vertex of color
a and a vertex of color b, Viz(a) to denote the set of vertices in G with color a, and G(c), H(c) to
denote the subgraphs of GG, H generated by the vertices of color c.

In our next results, Proposition 2 and Proposition 3, we establish that the (max) EC diagrams of a
graph G may be completely interpreted in terms of the combinatorial data provided by the objects
E¢(a,b),Va(a) and G(c) defined in the notations above.

Proposition 2 (Characterization of (max) EC Edge Filtrations). The following are equivalent:

1. For all (symmetric) edge color functions g : X x X — R, EC(G, g)¥ = EC(H, g)F.
2. For all vertex color functions f : X — R, EC™(G, f)¥ = EC™(H, f)E.
3. #Eq(a,b) = #Eg(a,b) forall colors a,b € X.

Proposition 3 (Characterization of (max) EC Vertex Filtrations). The following are equivalent:

1. For all vertex color functions f : X — R, EC(G, f)V = EC(H, f)".
2. For all vertex color functions f : X — R, EC™(G, f)V = EC™(H, f)V.
3. Foralla #b,c€ X, x(G(c)) = x(H(c)) and #Eg(a,b) = #Ey(a,b).

Combining the statements of Proposition 2 and Proposition 3, we obtain the following theorem.

Theorem 2 (Characterization of (max) EC Diagrams). The following are equivalent:
1. G and H have the same EC diagram for any choice of coloring functions.
2. G and H have the same max EC diagram for any choice of coloring functions.
3. #Va(c) = #Vu(c) forall c € X and #E¢(a,b) = #En(a,b) forany a,b € X.

While the majority of our work is focused on graphs, the equivalence of EC and max EC is a special
case of a more general equivalence on the level of (colored) simplicial complexes (see Appendix D).

Theorem 3. There is a natural extension of the definition of EC and max EC to colored
simplicial complexes such that they have the same expressive power for color-based filtrations.

4 Persistent Topological Descriptor for Graph Products

When dealing with large or complex graphs that have the structural property of being some product,
it is often easier to work with the components of the graph product rather than the graph as a whole.



There are common situations where graph data have a natural product structure (e.g. relational
databases [40], Hamming graphs [22, 24]) that can be analyzed using the methods here.

Our focus is to look at topological descriptors on product of graphs, as a special kind of structure.

Definition 5. Let G, H be graphs, the box product (Cartesian product) of G and H is the graph
GUH, where the vertex set of GOH is the set {(g,h) | g € V(G),h € V(H)} and the edge set
is constructed as follows. For vertices (g1, h1) and (g2, h2), we draw an edge if (1) g1 = g2 and
hy ~ hgin H or (2) hy = ho and g1 ~ g2 in G. Here, by hy ~ hs, we mean that h, and hy are
related by an edge in H (and similarly for g1 ~ g2). Note that if one of G and H is empty, then the
box product is empty.

There is a natural coloring on GOH where a vertex (g,h) € V(GOH) is assigned the color
(c(g),c(h)). For simplicity, we will view (c1, c2) and (cz, ¢1) as the same color for all ¢q,co € X.
Unless mentioend otherwise, a vertex-level (resp. edge-level) color-based filtration on GOH is
always taken to be with respect to the product color structure above.

Motivation 1. Graph products provide a natural model to convert database analysis questions
to inputs for GNNs. For example, suppose one has two tables - Table A is the wage income of
residents in New York, and Table B is the wage income of residents in London, with some additional
demographic / financial information for both. For each table, we can view the rows as nodes and
assign a similarity metric on the rows such that two nodes with sufficient similarity are linked with an
edge. Suppose our goal is to compare the residents in New York against the residents in London, then
one natural operation would be to take the Cartesian product of the tables, call this new table Table C.
A reasonable graph one can make out of Table C is as follows - the nodes are still the rows. For person
X in Table A paired with person Y in Table B, in order to analyze how X compares with Y™ and those
similar to Y, we ought to look at how X connects with everyone in 7able B that are connected to Y
under the similarity metric before. What this means in terms of graphs is that we should link the node
(X,Y) to (X,Y”) for all Y that is linked to Y. We can also do this symmetrically, which produces
exactly the box product of Table A and Table B.

We can define PH and EC on graph products with respect to the color-based filtrations in Definition 5.
We wish to examine whether the graph product contains information that the components do not give.
Given two graphs GG and H and suppose for contradiction that they are isomorphic, then it follows
that their products GOG, GOH, and HOH are all isomorphic graphs. If we could show that any
two product graphs in the triplet are not isomorphic, then G and H are not isomorphic.

In the case of PH, the graph product does capture structure not seen by the individual components.

Proposition 4. There exist graphs G and H such that PH cannot tell apart, but PH can tell apart
GUOG and HUH. Furthermore, an example is given in Figure 1.
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Figure 1: Graphs G and H that vertex-level and edge-level PH cannot tell apart, but they can be
differentiated by running edge-level PH on GUJG and HJH. Here, connecting the edges between
vertices of color (blue, blue) and (red, blue) creates a non-trivial cycle in (A) and no cycles in (B).

The EC, on the other hand, does not obtain any more expressivity over the product filtration.

Proposition 5. Let G and H be graphs with the same number of vertices. If EC cannot differentiate
G and H, the EC diagrams for GG, GUH, and HUH are also all the same.

The proof of Proposition 5 comes from a direct application of Theorem 2, as we will show in the
Appendix that GOG, HOH, and GUH all have the same combinatorial data in the statement.



In light of Proposition 4, a natural question to ask is - can the PH of the product contain strictly more
information than the PH of the two components? The answer is guaranteed to be yes if we adjoin a
“virtual node" in the following sense.

Definition 6. Let G = (V, E, ¢, X) be a graph, we define G, as (V U {x}, E, ', X U {virtual})
where « is a disjoint basepoint and we define ¢ (x) = virtual and ¢/ (x) = ¢(z) for all x € X. For
any color-based filtration of G 4, we also require the vertex x to be born at time —oo (ie. it appears
before any other vertices).

With the example given in Proposition 4, we have the following corollary.

Corollary 1. Let G and H be graphs, then the PH of G.0OG, G OH ., H{[OH contain strictly
more information then PH of G and H.

In other words, taking the PH of “virtual" graph products contain strictly more information than
comparing the PH of each component. We remark that the EC of “virtual” graph product still would
not add more information. This is because if graphs A and B have the same EC diagram for all
possible filtrations, so does A, and B, allowing us to apply Proposition 5.

5 Product Filtrations

In this section, we focus on a strict subset of possible filtrations on the graph product. Given graphs
G and H, we investigate what information about the graph product GLH can be recovered from
filtrations on G and H alone. Formally, we want to consider filtrations of the following form.

Definition 7. Let G and H be graphs with filtration functions fq and fg respectively. We can define
a product filtration of GLH with respect to the two filtration functions as the following - let t € R,
then the subgraph (GOH ), is exactly GISOH]™ .

5.1 Characterization of Vertex-level and Edge-level Product Filtrations

The two notable forms of filtrations on G and H we want to consider are vertex-level and edge-level
filtrations in the sense of Definition 1. Here, we give a characterization of their respective product
filtrations in terms a convenient coloring on GLIH.

Proposition 6. Suppose fa and f are injective vertex color functions. The product filtration with
respect to fg and fy is equivalent to the filtration on GLIH given by the vertex coloring function F,
where F'((g, h)) = max(fa(c(g)), frr(c(h))), forall (g,h) € V(GOH). In particular, this implies
that the persistence diagrams of this product filtration are well-defined. We write F' = fo fy when
the context is clear.

Proposition 7. Suppose fo > 0and fr > 0 are injective edge color functions. The product filtration
with respect to fq and fy is equivalent to the filtration on GLOH given by the function F where where
F sends all vertices to 0 and for all e = ((g1, h1), (92, h2)) € E(GOH), F(e) = fu(c(hy),c(hs))
if g1 = g2 and F(e) = fa(c(g1),c(g2)) if h1 = ha. Note that g1 = g2 and hy = hs cannot both be
satisfied on a simple graph. We write F = fcU fy when the context is clear.

5.2 Computational Methods for Product Filtrations

In this section, we discuss algorithmic procedures to compute the PH of the vertex-level and edge-
level persistence diagrams. The computational methods we obtain for 1-dimensional persistence
diagrams is more general, so we will discuss them separately. For a graph G, we let m¢ and ng be
the number of vertices and edges respectively.

Following Proposition 6, we can in fact obtain an algorithmic procedure to keep track of how the 0-th
dimensional persistence diagram of GLJH changes under the product of vertex filtrations.

Theorem 4. Let (G, fc), (H, frr) be two vertex-based filtrations, then the 0-dimensional PH
diagram for (GOH, fcOfy) can be computed using Algorithm 1. This can be equivalently
be computed by Algorithm 3 in the Appendix. The runtime is O(ngng + mglogmea +
mpylogmpy + ng + ny), assuming the coloring set has constant size.




We remark that the runtime complexity in Theorem 4 is more efficient than the naive method. A naive
calculation for vertex-level product filtrations would be to run PH on the entire graph product directly.
This incurs a runtime of O(ngng + (ngmy + npmeg)log(ngmp + ngme)). This is because,
by the discussions before 4.1 of [23], the PH of a connected graph with r edges can be calculated
in O(rlog(r)) time. If the graph is not connected, the runtime is O(s + rlog(r)), where s is the
number of vertices, to account for the worst-case scenario where the graph is totally disconnected.
We demonstrate the runtime benefits of Theorem 4 empirically later in Figure 3.

We now describe a concrete example of computation using Algorithm | outlined in Theorem 4.

Example 1. Consider the graphs G = H in Figure 2, and let ay = f,(blue) < a1 = f,(red). Here
we take fg = fg = f,. Observe that both G and H’s individual filtrations proceed by spawning
two blue vertices at ag and completing to the entire graph at a1. We would like to compute the
O-dimensional PH of the product of vertex filtrations. Before the for-loop, we initialize 16 birth-death
pairs with 4 copies of (a1, —) and 12 copies of (az, —) (we omit their vertex representatives for
simplicity).

We start with t = ag. Note that since we removed —oo before the loop, the index 1 elements in the
precomputed lists correspond to the relevant values at time aq. Since there are no deaths in either G
or H at ap, we skip the two internal for-loops. bett[0] is empty (since this is recorded at —cc), and
bettig[1] x birthsg[1] represent the 4 blue vertices and there are no non-trivial deaths. We then
mark all tuples that are not the 4 blue vertices with birth time ay to die at ag, but there are no such
tuples. Thus, we conclude that nothing happens at t = ay.

At t = a3, 2 red vertices and 1 blue vertex die for both G and H. Only the blue vertex death is
non-trivial, so in the first inner for-loop we mark 2 of the blue vertices in GOH to die as (ag, a1). In
the second inner for-loop, one of the blue vertex is marked already, and we mark another tuple to
(ag,a1). This produces 3 copies of (ag, a1). There are no non-trivial births at this stage, so we mark
all vertices born at aq to die at a1, which makes 12 copies of (a1, a).

At t = 400, the final blue vertex dies for both G and H, so we mark the final vertex in GOH to die
as (a1, 00). There are no non-trivial deaths, and also no remaining tuples to fill out, so we stop.

Algorithm 1 Computing the 0-dim PH Diagrams in Product of Vertex-Level Filtrations

Input: The vertex-level filtrations (G, f¢) and (H, fi)
Output: The 0-dim PH diagram for (GOH, fcOfH)

1: implg, imply < 0-dim PH diagrams for (G, f¢) and (H, fg).

2: filtration_steps < {—oo}U filtration steps for fo and fr U{+0o0}, and ordered.

3: birthsg, birthsy < list of tuples born non-trivially in G (resp. H) at each time in
filtration_steps.

4: bettig, bettiyy < list of vertices alive representing components of the subgraph of G (resp. H) at
each time in filtration_steps.

5: deaths, deathsy < list of tuples that die non-trivially in G (resp. H) at each time in
filtration_steps.

6: Remove {—oc} from filtration_steps.
7: output < [(4, j, max(fg(¢), fu (7)), None) for (i, ) in V(G) x V(H)].
8: foriin [0, len(filtration_steps)] do
9: a; < filtration_steps[i].
10: for v in deathsy [i + 1] do > Marking Non-Trivial Deaths
11: Mark all tuples p in output with p[1] = v, p[2] < a;, p[3] = None with p[3] < a;.
12: for w in deaths;[i + 1] do > Marking Non-Trivial Deaths
13: Mark all tuples p in output with p[0] = w, p[2] < a;, p[3] = None with p[3] + a;.

14: nt_births < birthsg[i + 1] x bettig[i] + bettig[i + 1] X birthsg[i 4 1].

15: nt_deaths < birthsg[i + 1] X deathsg[i + 1].

16: nt_births <+ nt_births — nt_deaths.

17: Mark all tuples p in output with (p[0], p[1]) ¢ nt_births, p[2] = a;,p[3] = None with
p[3]  a;. > Marking Trivial Deaths

18: return [(p[2], p[3]) for p in output]
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Figure 2: The product of the vertex filtrations on G = H given by f,(red) > f,(blue). See
Example 1 for how the algorithm in Theorem 4 is used to compute the PH of this filtration.

Now we describe an algorithm for the 0-th dimensional persistence diagram of the product of edge
filtration. Since all vertices are born at the same time in this filtration, it suffices for us to keep track
of the number of deaths at each time.

Theorem 5. Let (G, fq),(H, fu) be two edge-based filtrations. The O-dimensional
PH diagram for (GOH, fcOfw) can be computed using Algorithm 2. The runtime is
O(max(nglogng + ny logng, malogme + ng, mylogmpy + ng)).

The runtime in Theorem 5 is again an improvement over the naive case, which is O (ngng+(nemup+
ngmg)log(ngmpy + ngme)), and we empirically assess their performance in Figure 3. We give
a computational example using Theorem 5 in Example 2 of the Appendix. Finally, we describe a
procedure to calculate the 1-dimensional persistence diagrams for a general product filtration.

Algorithm 2 Computing the 0-dim PH Diagrams in Product of Edge-Level Filtrations

Input: The edge-level filtrations (G, f¢ > 0) and (H, fg > 0)
Output: The 0-dim PH diagram for (GOH, fcOfx)
: implg, imply < 0-dim PH diagrams for (G, f¢) and (H, fm).
: filtration_steps +— {—oo}U filtration steps for fo and fir U{-+o0}, and ordered.
: deathsq, deaths g < list of number of vertices that die at each time in filtration_steps.
. still_aliveq, still_alivey < list of number of vertices that are still alive at each time in
filtration_steps.
: Remove {—oo} from filtration_steps.
: output =[]
: foriin [0, len(filtration_steps)] do
a; + filtration_steps[i].
num < still_alivey [i]-deathsg[i + 1] + still_aliveg[i + 1]-deathsg[i + 1].
output += [(0, a;) for i in range(0, num)]
: return output
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Proposition 8. Ler {G;} and { H;} be two filtrations of G and H respectively. Consider the induced
filtration on GOH given by (GOH); := G;UOH,, and let a1 < as < ... < a,, mark the times where
(GOH); changes. The 1-dimensional PH of this filtration is exactly the data of 81 (G, 0H,, ) copies
of (a1,00) and 1(Go,0H,,) — f1(Ga,_,0H,, ) copies of (a;,0) for i > 1. The runtime is
O(mglogmg + ng +mpy logmpy + ng) because, for any two graphs A and B, we may compute
B1(ADB) = #E(A)#E(B) + fo(4)Bo(B) — x(A)x(B).

Limitation. The algorithms presented here only cover a subcollection of possible color-based
filtrations on the graph product GO H. In general, for a filtration on GOH that does not arise from
the product of filtration on G and H, there is no reason to expect the PH for the filtration on GLIH can
be neatly decomposed similarly to the algorithms in this section. Computing PH on graph products
with color-based filtrations outside of product filtrations may be more computationally expensive.



Table 2: Accuracy on the BREC datasets. Notably, our approach (GProd) perfectly distinguishes
every pair of graphs across all BREC datasets under all considered filtration functions.

Degree Betweeness Closeness FR Curvature
Dataset PHY RePHINE GProd” PH” RePHINE GProd” PHY RePHINE GProd"” PH® GProd”
Reg 0.00 0.94 1.00 0.96 0.98 1.00 0.26 0.98 1.00 0.94 1.00
Ext 0.07 0.77 1.00 0.82 0.94 1.00 0.46 0.88 1.00 0.70 1.00
Basic 0.03 0.97 1.00 0.95 1.00 1.00 0.27 1.00 1.00 0.97 1.00
DR 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 1.00
STR 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 1.00

6 Experiments

To evaluate the empirical power of topological descriptors for graph products, we run three sets
of experiments. The first investigates their effectiveness on the BREC datasets [47] — a popular
benchmark for assessing the expressive power of graph models. The second examines the runtime per-
formance of the algorithms described in Theorems 4 and 5, also using the BREC datasets. Finally, the
third demonstrates how these descriptors can be integrated with GNNSs for graph classification tasks.
Our code is publicly available at https://github.com/Aalto-QuML/tda_graph_product.

Expressivity. For two input graphs G and H, we use graph products to decide isomorphism as follows.

1. Compute the persistence diagrams for GUJG and GLIH. If the diagrams differ, we conclude that
G and H are not isomorphic. Otherwise, proceed to Step 2.

2. Compute the persistence diagrams for GUG and HOH. If these diagrams differ, we again
conclude that G and H are not isomorphic. If they are identical, the test is deemed inconclusive
—i.e., G and H are considered isomorphic by this test.

Following this strategy, we compare our method (GProd) against PH (with vertex and edge filtrations)
and RePHINE [25], considering four filtration functions: degree, betweenness centrality, closeness
centrality, and Forman—Ricci (FR) curvature. For RePHINE, we employ FR curvature as the edge
filtration and evaluate the results under different node filtrations.

Table 2 presents accuracy results. GProd achieves the best overall performance, followed by RePHINE.
Remarkably, GProd successuflly distinguishes all pairs of graphs, including those from the challenging
Distance Regular (DR) and strongly regular (STR) datasets, where the other descriptors fail to
differentiate any pair. To the best of our knowledge, this is the first approach to achieve such a result.
Overall, these findings underscore the effectiveness of leveraging (persistent) topological information
of graph products to distinguish non-isomorphic graphs.

Runtime. For the vertex-level product filtration, we evaluated three algorithms: (i) our proposed
method (Theorem 4); (ii) a naive computation on the full graph product using the union-find PH
implementation described in Algorithm 1 of [25]; and (iii) a naive computation using the persistent
homology routines from the gudhi library [38]. Similarly, for the edge-level product filtration, we
compared three counterparts: our method (Theorem 5), a union-find PH implementation on the graph
product, and the gudhi-based approach. We provide implementation details in Appendix E.

Runtime (Vertex-based)

I Theorem 4 (ours)
I Union Find
102 | M gudhi

Runtime (Edge-based)

73.3

Theorem 5 (ours)
Union Find
gudhi

10!

Average runtime (s, log scale)
Average runtime (s, log scale)

10°

Basic STR

Basic STR DR CFI

Figure 3: Average runtime (in sec.) of different implementations of topological descriptors for graph
products. Our algorithms (Theorems 4 and 5) consistently outperform previous implementations.

We evaluated all algorithms using BREC datasets. For each pair of graphs G and H, we apply degree
filtration and compute the persistence diagrams of GLIH. Figure 3 reports the average runtime (in


https://github.com/Aalto-QuML/tda_graph_product

seconds, taken over 10 trials) each algorithm took to go over the entire dataset. Notably, as the graph
sizes increase, Theorems 4 and 5 significantly outperform the union-find and gudhi implementations.

Graph classification. We employ the following procedure for integrating descriptors based on graph
products into GNNs for graph-level classification tasks. First, we select a diverse set of reference
(or anchor) graphs, such as cycles, random graphs, and complete graphs. Then, for a given input
graph G and choice of filtration function, we either compute the product filtration between G' and
each reference graph or obtain a filtration directly from their product. This process yields as many
persistence diagrams as reference graphs. The resulting diagrams are then vectorized using an
appropriate embedding scheme [8]. Finally, the topological embeddings are concatenated with the
GNN ones and passed through a classification head. In this work, we employ seven reference graphs
generated using the NetworkX library [19]. Also, we apply the Gaussian vectorization scheme in [8].
We refer to Appendix E for further details.

In order to assess the effect of integrating topological descriptors, based on graph products, on the
performance of GNNs, we consider two variants. GProd consists of computing PH on the box product
of two graphs; ProdFilt consists of computing (vertex) product filtrations (as in Algorithm 1). In
addition, we consider three GNN architectures: GIN [48], GCN [31], and GraphSAGE [20]. Each
model uses a hidden dimension of 64, and the optimal number of layers (chosen from 2, 3, 5) is
selected based on validation performance. For the graph product descriptors, we additionally treat the
filtration functions (degree and betweenness centrality) as hyperparameters.

We consider six real-world popular datasets for molecular property prediction: COX2, DHFR,
NCI1, NCI109, ZINC (12K), and PROTEINS [11, 29]. All tasks are binary classification, except
ZINC, which is a regression dataset. For ZINC, we use the publicly available train/validation/test
splits; for the remaining datasets, we adopt a random 80/10/10% split. Further details on datasets,
hyperparameter selection, and model configuration are provided in the supplementary material.
We compute the mean and standard deviation of the performance metrics (MAE | for ZINC, and
accuracy T for all other datasets) over five runs with different seeds.

Table 3: Graph classification results. The inclusion of topological descriptors derived from graph
products leads to consistent improvements in the predictive performance of GNNs.

Model DHFR 1 COX2 1 PROTEINS 1 NCI1 1 NCI109 ZINC |

GIN 80.53 £4.10 76.60+2.61 70.18+5.11 80.19+1.83 78.74+1.65 0.57+0.02
GIN + GProd 82.89 £4.16 7830£590 73.04 £491 81.65+242 8097182 0.54=+0.02
GIN + ProdFilt 81.58 £2.79 78.72+336 7250+3.54 80.19+£1.08 80.15+247 0.54+0.02

GCN 78.68 £5.54 79.15+£381 73.04£292 79.12£1.07 79.08+195 0.64£0.08
GCN + GProd 83.95+£538 7532+£387 7375+£570 79.71£1.64 80.00+1.10 0.62=+0.01
GCN + ProdFilt ~ 80.00 £8.99 80.85+6.73 74.114+328 79.90£0.82 80.53£1.23 0.62+0.01

SAGE 84.21 £348 76.17£095 7286£1.62 7898+0.94 79.81+131 0.51=+0.01
SAGE + GProd 83.16 £4.10 80.85+261 7143340 8029+0.75 7850+3.16 0.48+0.01
SAGE + ProdFilt 84.21 £2.63 77.87 £4.41 7321£5.79 80.00+1.09 79.66+141 0.48+0.01

Table 3 reports the results. Overall, incorporating topological descriptors leads to best performance
for most GNN/dataset combinations. Also, there is no clear winner between GProd and ProdFilt,
and they yield the same performance on ZINC (the largest dataset). These experiments show that
combining expressive topological features with GNNs can lead to consistent empirical improvements.

7 Conclusion and Broader Impact

We characterized the expressive power of EC on general color-based filtrations, and introduced a
more efficient variant that has the same expressivity. We also examined the interaction of both EC and
PH with graph box products, establishing contrasting results in terms of their respective benefits over
the EC and PH of individual components. Furthermore, we devised efficient algorithms to compute
persistence diagrams for a sub-collection of filtrations arising from the product of vertex-level and
edge-level filtrations. Our experiments demonstrated consistent empirical gains. As graphs are
ubiquitous in many real-world scenarios such as molecules, recommendation systems, and multi-way
data, we envision that this work would open several avenues for applications in multiple areas.
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A  Proofs

A.1 Proofs for Section 2

We treat the proof of Proposition | separately in Appendix B.

A.2 Proofs for Section 3

In this section, we will characterize the expressivity of EC on graphs. For the discussion of EC on
simplicial complexes, please see Appendix D.

Before we state the proofs, we first remind the reader that in Section 3, we assumed that G and H
have the same number of vertices (otherwise, they clearly are not isomorphic to each other).
Remark 1. This assumption on G and H also gives a justification for why our definition of

EC(G, f)¥ does not include the Euler characteristic of G le as that is Jjust the number of vertices on
the graph.

Proof of Proposition 2. We will first show that the second and third items are equivalent. For each
vertex color function f : X — R, weuse g¢ : X x X — R to denote its correspondent edge color
function.

Suppose EC™ (G, f)¥ = EC™(H, f)¥ for all possible f : X — R. Recall by assumption G and H
have the same number of vertices n. Let f be an vertex color function such that 0 < f(a) < f(b) <
ming, cc—{a,b} f(ci), then we have that

n-— #EG(G,G) = X(Ggf) = X(Hgf) =n- #EH(G,G)

Hence #E¢(a,a) = #Fp(a,a). By choosing another appropriate vertex color function, we can
similarly show that # E¢ (b, b) = #Ep (b, b). Now, if we look back on the function f, we have that

n — #Eq(a,a) — #Eg(a,b) — #E¢(b,b) = x(G})
=x(H}") =n—#FEy(a,a) — #Eu(a,b) — #Eu(b,b).
This implies that #E¢(a,b) = #Fp(a,b) since we already know that #F¢(a,a) = #Epn(a,a)
and #Eg (b, b) = #Ex (b,b).

Conversely, suppose #FE¢(a,b) = #FEg(a,b) for all colors a,b € X. Let f be an edge color
filtration function such that 0 < f(dy) < ... < f(ds), where d; is a relabeling of the colors ¢y, ..., ¢s

by this ordering.

Since G and H have the same number of vertices n, we have that x(Gg’) = n = x(Hj"). Thus, it
suffices for us to show that x(GJ’) = x(H;”) for all t > 0. Indeed,

X(GY) =n— > #Eq(di, dj)
i<d st £(di).f(dy)<t
=n-— Z #Eu(d;, d;)
i<d st £(di).f(d))<t
= x(H/).

Hence, we have that the second and third items are equivalent. Finally, we observe that clearly (1)
implies (2) because the edge function induced by the max EC diagram is a special case of a symmetric
edge coloring function. An argument very similar to the proof of (3) implies (2) will also show that
(3) implies (1). This is because for all ¢ > 0,

xX(GY) =n— > #E¢(d;, d;)
i< st g(di,dy) <t
=n-— Z #Ey(di,d;)
i< st g(di,dy) <t
= x(HY).
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Proof of Proposition 3. There is no difference between the definition of the 0-th dimensional compo-
nent of the EC diagram and the max EC diagram, so the first two items are equivalent.

For (1) implies (3), we can choose any injective vertex color function such that f obtains its minimum
at the color ¢, Then G}c(c) and H J{(c) will be G(c) and H(c), and hence their Euler characteristics

will be the same. For any a # b € X, we can choose an injective vertex color function f such that f
is smallest at ¢ and second smallest at b. In this case, we have that

_ f
X(Ghiy) = X(H ).

Here we have that
X(Ghpy) = x(Gla) = #Ec(a,b) + x(G (b)),

N ) = x(H (@) — #Er(a,b) + X(H(b).

Hence, we conclude that #E;(a,b) = #Fg(a,b) for all a # b € X. The proof of (3) implies (1) is
similar to that in Proposition 2. O

Proof of Theorem 2. The first two statements come directly from combining the statements of Propo-
sition 2 and Proposition 3. The third statement follows from the observation that x(G(c)) +
O

#Ec(c,c) = #Va(c).
A.3 Proofs for Section 4

Proof of Proposition 4. The proof for why edge-level PH can differentate GOJG and HOH is mainly
self-explanatory by the caption of Figure 1. The reason why edge-level PH is able to differ GG
and HOH is because when adding the edges between (blue, blue) and (red, blue) creates a cycle
for GG and does not change the 1-dimensional persistence diagram for HLIH.

To see why PH cannot tell apart G and H individually. We first note that there are no cycles, so we
only need to focus on the 0-th dimensional components.

For vertex-level PH: Write = f,(red) and b = f, (blue). If r = b, then their persistence diagrams
are the same since G and H have the same number of vertices and connected components. If b > r,
then the subgraphs G, and H,. are exactly the same graph, so PH cannot tell that step apart. Att = b,
for both G and H, two blue vertices are born and deceased at the same time, and one red vertex is
also killed. If » > b, then again G, and H}, are isomorphic graphs. At ¢ = r, for both G and H, two
red vertices are born and dead at the same time, and one blue vertex is also killed. Thus, we conclude
the vertex-level PH cannot tell apart G and H.

For edge-level PH: Write a = f.(red,red) and b = f.(red, blue). If a = b, then they have the same
persistence diagrams because G and H have the same number of vertices and connected components.
If a > b, then there are two deaths that occur at ¢ = b and one death at ¢t = a for both graphs. If
b > a, then there is one at ¢ = a and then two deaths are ¢ = b for both graphs. Thus, we conclude
the edge-level PH cannot tell apart G and H. O

Proof of Proposition 5. For two general colored graphs A and B. For colors a,b € X, we observe
that #Vanp((a,0)) = #Va(a)#Ve(b) + #Vie(a)#Va(a) (here the second term is due to the
symmetry assumption).

For colors (a,b), (¢,d) € X x X, we also wish to enumerate #F a0 ((a,b), (¢, d)). Indeed, without
loss when both a # c and a # d, the definition of box product indicates that # E 405 ((a, b), (¢,d)) =
0. The axioms for the box product indicates that edges can only occur between two pairs of colors
that share at least one color in common. By rearranging the order of tuples if necessary, we without
loss only need to enumerate #F 405 ((a,b), (a,d)). If b # d, then the number is given exactly as

#Eaos((a,b), (a,d)) = #Va(a)#Ep (b, d) + #Vp(a)#Ea(b, d).

Now since GG and H in the statement of the proposition have the same EC diagram for all possible
filtrations, Theorem 2 implies that for all ¢;,c2 € X, #Vi(c1) = #Vu(c1) and #E¢g(c1,c2) =
#FEp(c1,c). Plugging this equality into the formulas derived above, we have that

#Vanoa((a, b)) = #Veou((a,b) = #Vaou((a, b)),
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#EGDG((Q7 b)7 (C7 d)) = #EGDH((G7 b)a (07 d)) = #EHDH((CL7 b)7 (C, d))
for all possible choices of colors. Thus, Theorem 2 implies that GLIG, GL1H, and HIH all have the
same EC diagrams for all possible filtrations. O

Proof of Corollary 1. We first observe that for any two graphs A and B, we have that
When A = B = G from the statement of this corollary, we observe that
G+|:|G+ = (G (] G (] GDG)+

Write the two disjoint copies of G produced here as G. Observe that each vertex v € Gy (or
G1) has the color (¢(v), virtual). Observe that no vertices in GOG has the color that has the tag
virtual in it, so we can choose a coloring procedure such that we go through the filtrations on
Gy and G first before going through GUG. Running vertex-level (resp. edge-level PH) through
this coloring procedure, we will produce two copies of vertex-level PH (resp. edge-level PH) for G,
which recovers the original information. A similar procedure also works for H. Thus, the PH of
G OG+,GLOHy, H{[OH, has at least as much information as the PH of G and H. The part for
“strictly more information" follows from Proposition 4. O

A.4 Proofs for Section 5

Proof of Proposition 6. To check that the graphs are the same, we wish to check that they have the
same vertex set and edge sets. Indeed, let t € R, then

V(G{eOH]") = {(9.h) | fa(c(g)) < tand fr(c(h)) < t}

={(g,h) | max(fa(c(g)), fu(c(h)) <t} ={(g,h) [ F((g,h)) <t} = V((GOH),).
Now to check edges, we have that for (g1, k1), (92, he) € V(G,OH;) = V((GOH),). Now suppose
there is an edge between (g1, k1) and (ga, hs) in (GOH)! C GOH. Since this is an edge in GOH
it means either of two following cases

1. g1 = g2 and h; ~ ho in H. Now if we can show that h; ~ hs in Hy, then this will give
an edge between (gy, h1) and (go, hs) in GIOH/" . Indeed, that just comes from the
definition of a vertex filtration as the colors on hj, ho are both less than or equal to ¢ under

fa.

2. h1 = ho and g1 ~ g9 in G. The argument is nearly identical to the first case.

Conversely, suppose there is an edge between (g1, k1) and (go, ho) in G{ ¢ DHtf %, Then, since
F((g1,h1)) < tand F((ge, ha)) <t (as they have the same vertex set), it follows that this edge has
to be in (GOH); by definition of vertex filtration. O

Proof of Proposition 7. To check that the graphs are the same, we wish to check that they have the
same vertex set and edge sets for all £ > 0. The vertex set at time ¢ for £ > 0 is always the collection
of all vertices. The proof for the edge sets follows similarly to the proof in Proposition 6. O

Now we will prove that the outputs of Algorithm | and Algorithm 2 gives the 0-dimensional
PH diagrams for the product of vertex-level filtraitons and edge-level filtrations respectively. For
Theorem 4 and Algorithm 1, we also note that there is a more symmetric presentation of Algorithm |
in terms of Algorithm 3, which we will show gives the same output. We now proceed to prove
Theorem 4.

Proof. For Algorithm Output: We first observe that if we modify nt_deaths in Algorithm 1
to be defined as nt_deaths = bettig[i + 1] x deathsy[i + 1], then it would give the same
output. This is because every vertex in birthsg[i + 1] is in bettig[¢ + 1] (with compati-
ble representatives), and subtracting the two versions of nt_deaths from nt_births would still
give the same set (since the intersection of nt_births with their respective complements are the same).

From here, showing that Algorithm | produces the correct output is equivalent to showing the
following theorem.
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Theorem 6. In the set-up of Proposition 6, mark all the times G;[JH, changes as ay < ... < a,. Let
bi(GQ) and d;(G) be the number of non-trivial births at a; and the number of non-trivial deaths at a,
(and similarly for H). The O-dimensional PH of the filtration may be computed inductively by the
following procedure.

For time after —oo to ay, initialize the list with Bo(Ga,)Bo(Ha, ) tuples of the form (ag, —). Each
tuple represents a connected component X [1Y; where X3,’s and Y;’s are the connected components
of Gu, and H,, respectively. Then mark the remaining tuples as trivial holes, ie. (ag, ag).

For time after a; to a;y1, 1 > 0:

1. If H,, , = H,,, then there are exactly By(H;)b;1(G) non-trivial births of tuples of the
SJorm (a;11,—). The non-trivial deaths that die at a;11 are exactly as follows - for each
component Y; of H,,, and for each component Xy, of G, the component (Xy,,Y;) dies for
all Xy’s that die in the filtration G,, C G, .

2. If Gq,,, = G, then a similar statement holds by symmetry.

3. Inthe general case, we refine the filtration of GOH from a; to a; 1 into a two-step filtration:

(4) (B)
Go,0H,, C G,,.,0H,, C G,,,,0H,

and apply Step 1 to (A) and Step 2 to (B).

i+1 i1

Note that when applying Step 2 to (B), “some of the non-trivial deaths produced are trivial
deaths". The reason why is, although in algorithmic times, there may be vertices that are
born in Go,,,00H,,; and die in Go,, \UH,,  ,, Steps (A) and (B) both happened at the same
time during filtration time.

Thus, we need to retroactively go back and mark all vertices born in G, ,(0H,, and die
in Go, \0OH,,,, as trivial pairs. In total, this incurs a subtraction of b;1(G)d;1(H)
(where biy1(G) is the number of non-trivial births from Go, C Gy, , and d;41(H) is the
number of non-trivial deaths from H,, C H,,, ), with clear vertex representatives, from
the components produced to be counted as trivial holds.

4. The remaining tuples produced but not in the discussion above are all trivial holes.

Proof of Theorem 6. For two arbitrary simple graphs A and B, we first observe note that 3y (AOB) =
Bo(A)Bo(B). This can either be seen directly from the definition or by noting that ACIB is exactly
the 1-skeleton of the topological product A x B (equipped with the canonical cell structure). Since
removing 2-cells does not change connectivity, it follows that Hy(AOB) = Hy(A x B), and the
rank of the latter can be computed by the Kunneth formula to be 35(A4)5y(B). (Note that we are able
to use the Kunneth formula here because the integral homologies of a (finite) graph are all finitely
generated free abelian groups, so the rank does not change when switching to a field).

Let us prove the theorem by induction. Our inductive hypothesis will be that the k-th step of the
algorithm agrees with the PH diagram at the stage G,, [1H,, . Also note that Step 3 subsumes Step
1 and 2 as special cases, so in our proof we only need to check Step 3 and 4. By convention, we
write a_; = —oo. When k = —1, clearly this holds since the lists are both empty. At k& = 0, the
discussion in the paragraph above shows that it agrees with the PH diagram calculation.

Now by induction suppose we have that the result matches with PH up to k£ = ¢ > 0, then we wish to
show this is also the case for k£ = ¢ + 1. By the algorithm, this step of the filtration is divided into

(B)
OH,, C G,,.,,0H,

(4)
GaiDHai C G Aj41°
Observe that this refinement clearly does not change the PH diagram (since the PH diagram is
independent of the over of attaching new vertices and edges in one step of the color-based filtration).
Thus, we only need to show that the algorithm the Theorem provides behaves the same as PH in both

step (A) and (B).

Let us first examine (A). Now observe that 5y(Gy,,,0H,,) — Bo(Ga,0H,,) = (Bo(Ga,sy) —
Bo(Ga))Bo(He,) = (bix1(G) — diy1(G))Bo(Hy,). On the other hand, we also have that
Bo(Ga,ypOH,,) — Bo(Ga,0H,,) = by (GOH) — diy1 (GOH). Thus, if we could show that
di+1(GOH) = diy1(G)Bo(H,,), it also follows that b; 11 (GOH) = b;+1(G)Bo(H,,) (which

proves the birth times). Since there are already b;11(G)Bo(H,,) components created in the filtration

i

iyl
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step (A) by the product, this would show that this constitutes all the non-trivial births (in particular
this allows an identification of the component with the birth time).

Thus it suffices for us to show that the deaths occur exactly in the following form - for each component
Y; of H,,, and for each component X, of G, the component (X, Y;) dies for all X},’s that die in
the filtration G, C G,,,,. Now because the component from H does not change in this step, it is
clear that there are at least d; +1(G)Bo(H,,;) such many deaths coming from the description above.
What we want to check is that these are the only deaths that occur. Since we accounted for all possible
merging of (Xj,,Y;) and (Xy,,Y;), another death that could occur has to be of the form to merge
(X%, Y;,) and (Xy,Y;,) (by the virtue of box product). However, for such death to occur, it must
mean that H has changed in the filtration, which is a contradiction. Thus, we have identified all the
deaths in the filtration step (A).

The case for (B) follows by symmetry, and we gave an extensive discussion in the theorem statement
on why some non-trivial deaths would be marked as trivial deaths. Finally, by induction, we have
proven the theorem. U

Equivalence between Algorithm 1 and Algorithm 3: It suffices to show that the list nt_births
produced for both Algorithm 1 and Algorithm 3 are the same. Indeed, at index 4, nt_births produced
by Algorithm 3 is exactly the set {(v,w) € GOH | ((1) or (2)) and ((3) or (4))}, where:

* (1) v is born non-trivially at a; and w is still alive at ;1.
* (2) visstill alive at a; and w is born non-trivially at a;.
* (3) vis still alive at a;—; and w is born non-trivially at a;.

* (4) v is born non-trivially at a; and w is still alive at a;.

On the other hand, the list nt_births produces for Algorithm I is exactly the set {(v,w) €
GUOH | (1)}, where:

* (7) is the condition that - (1) or (2) holds, but excluding the pairs (v, w) where v is born
non-trivially at a; and w dies at a;.

Now suppose (v, w) is in nt_births for Algorithm 3, so (1) or (2) holds. Suppose for contradiction
v is born non-trivially at a; and w dies at a;, then the pair (v, w) is false for the statement (3) or
(4), since both (3) and (4) require w to still be alive at a;. Thus, (v, w) is in nt_births for Algorithm 1.

Now suppose (v, w) is in nt_births for Algorithm 1, so (1) or (2) holds. We wish to show that (v, w)
also satisfies (3) or (4). Indeed, since (v, w) is not excluded, this means that either (5) v is not born
non-trivially at a; or (6) w does not die at a;. In this case, we see that:

* If (1) holds, then (5) is not possible, so (6) has to hold, which implies (4) holds.

* If (2) holds, then (6) always holds, and w is born non-trivially at a;. If v is born before a;,
then (3) holds. If v is born at a;, it is a non-trivial birth by (2) and (4) holds since w is still
alive at a;.

For Runtime: We can compute the two individual persistence diagrams in O(mg log(me) + ng)
and O(my log(my) + ngr) time. We can pre-compute the relevant data from the diagrams. If we
assume the coloring set has constant size, then filtration steps are also constant, so this can be done
in the runtime dominated by the result of the theorem. We initialize the persistence diagram with
ngny tuples with empty entries. In this case, when we loop through the filtration steps, our (possibly
unoptimized) algorithm implements the intermediate steps in the Theorem by looping through the
neny tuples. This yields the runtime as O(ngny + mg logmeg + my logmy + ng +ng).

O

Now we will look of the algorithm for the product of two edge-level filtrations. Let us first rewrite
the algorithmic description in Algorithm 2 into a more mathematical formulation below.
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Algorithm 3 Computing the 0-dim PH Diagrams in Product of Vertex-Level Filtrations (Symmetric)

Input: The vertex-level filtrations (G, f¢) and (H, fr)
Output: The 0-dim PH diagram for (GOH, fcOfx)

1: implg, imply < 0-dim PH diagrams for (G, fg) and (H, fm).

2: filtration_steps < {—oo}U filtration steps for f and fr U{+0c0}, and ordered.

3: birthsg, birthsyy < list of tuples born non-trivially in G (resp. H) at each time in
filtration_steps.

4: bettig, betti < list of vertices alive representing components of the subgraph of G (resp. H) at
each time in filtration_steps.

5: deathsg, deathsy < list of tuples that die non-trivially in G (resp. H) at each time in
filtration_steps.

6: Remove {—oc} from filtration_steps.

7: output < [(7, j, max(fa (), fu (7)), None) for (i,7) in V(G) x V(H)I.

8: foriin [0, len(filtration_steps)] do

9: a; < filtration_steps[i].
10:  for v in deathsy[i + 1] do > Marking Non-Trivial Deaths
11: Mark all tuples p in output with p[1] = v, p[2] < a;, p[3] = None with p[3] < a;.
12: for w in deathsg[i + 1] do > Marking Non-Trivial Deaths
13: Mark all tuples p in output with p[0] = w, p[2] < a;, p[3] = None with p[3] < a;.

14: nt_birthsl < birthsg[i + 1] x bettig[i] + bettig[i + 1] x birthsg[i + 1].

15: nt_births2 < bettig[i] x birthsg[i + 1] 4+ birthsg[i + 1] x bettig[i + 1].

16: nt_births <+ nt_birthsl Nnt_births2.

17: Mark all tuples p in output with (p[0], p[1]) ¢ nt_births, p[2] = a;,p[3] = None with
p[3] < a;. > Marking Trivial Deaths

18: return [(p[2], p[3]) for p in output]

Theorem 7. In the set-up of Proposition 7, mark all the time Gy[H,; changes as ag = 0 < a1 <
... < ay. The 0-dimensional persistence diagram of (GOH); = G{[OH;y with respect to f can be
computed by the following procedure:

1. All vertices are born at time 0.
2. Fori > 0, for each filtration step Go,00H,, C G,,, ,0H,, ,, we refine the step as
(4) (B)
GaiDHai C GCL11+1 DH{M C Gai+1 DH@¢+1'
3. In Step (A), there are hY - g deaths. Here hY is the number of vertices alive in H,, and
g&. | are the number of vertices that die in the step Go, C Gq,,,.
4. In Step (B), there are gfﬂ . hg’lﬂ deaths. Here g° is the number of vertices alive in G
and h{, , is the number of vertices that die in the step H,, C H,

5. The remaining vertices after a,, all die at co.

Aj41

141"

The runtime is O(max(ng logng + ng logng, mglogme + ng, mylogmp + ngy)).

Evidently, we can see that Algorithm 2 outlined in Theorem 5 is equivalent to the description of
Theorem 7. Thus, it suffices for us to prove Theorem 7. Before this, we first give a concrete example
of using Theorem 7.

Example 2. Consider the setup of G = H given in Figure 4, and so ag = 0,a1; = 1, a3 = 2. Note
that G is the discrete graph with 2 red nodes and 1 blue node. G, connects an edge between I red
node and 1 blue node. G connects the last remaining edge.

We wish to compute the PH of the product of edge filtrations on GLUH. Att = 0, all vertices are
spawned, so there are 9 pairs of tuples of the form (0, —). At t = 1, we see that 5 vertex deaths occur
during this time. This number can be seen from the algorithm as

ho - gi +g7-hi=(3) (1) +(2)- (1) =5.

Thus, we mark 5 of the 9 tuples as (0,1). At t = 2, we see that 3 vertex deaths occur during this time.
This can be computed from the algorithm as

hi-gs+g5-hs=(2)-(1)+(1)- (1) =3.
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Thus, we mark 3 of the remaining tuples as (0,2). Fort > 2, there is 1 vertex left, so we mark the
last tuple as (0, 00).

fe(red,red) =2 > f.(red, blue) = 1

O O ®© o O0—©
e 18
© © O

t=1 t=2

G=H t=0

Figure 4: The product of the edge filtrations on G = H given by f,(red,red) = 2 > f.(red, blue) =
1. See Example 2 for how the algorithm in Theorem 5 is used to compute the PH of this filtration.

We now proceed with the proof.

Proof of Theorem 7. For Algorithm Output: Step (1) is obvious. By the well-definedness of PH,
the number of deaths in the filitration G,,[0H,, C Gg,, ,[JH,, , is the sum of deaths in the two
step refinement given. Thus, it suffices for us to verify Step (A) gives the correct number of deaths,

since the case for Step (B) follows by a symmetric argument.

For the ease of notations, let us write n = h? and m = gfﬂ. We seek to show that the number of

(A
deaths in the step G,,00H,, C) G, ,0H,, is nm.

i+1

Indeed, since the number of vertices still alive in H,, corresponds to its number of connected
components, we can write C, ..., C,, as the connected components of H,,. Now we have that,

Gao,0H,, = Go,0(| | C)j) = | | Go,0C; and G, ,OH,, = | | Ga,.,0C;.
j=1 j=1

j=1

The number of vertices that dies in Step (A) is additive under this disjoint union, so it suffices for us
to show that the number of vertices that die in the step G,,[1C; C G4, ,,[0C; is m. Now indeed,
write D1, ..., Dy as the connected components of G,. The connected components D; and Dy, are
merged in the step G, C G, ,, if and only if the connected components D;[1C; and Dy0C; are
merged. This proves the desired claim.

For Runtime: We see that Algorithm 2 does not need to compute the graph product and is dependent
on the PH for G and PH for H separately. As we discussed in the paragraph under Theorem 4, the
runtime to precompute the PH diagrams for G and H respectively are O(m¢ log(ma) + ng) and
O(mpy log(mpy) +ng). We can precompute the number of non-trivial deaths and number of vertices
still alive in O(ng log(ng)) and O(n g log(ngr)) time by sorting the two (0-dim) PH diagrams by
death-times and count accordingly. Then we loop through both lists in parallel to compute the
diagram (which is in linear time). Thus, the runtime of Theorem 5 would be O (max(ng log(ng) +
nylog(ng), malog(ma) + ng,ulog(my) +nm)).

Finally, we discuss the algorithm for the 1-dimensional PH diagrams of product of filtrations.

Proof of Proposition 8. Since a cycle born in a graph never dies, the 1-dimensional persistence
diagrams are always of the form (b(e), oo) where e represents the edge that creates an independent
cycle. To track the evolution of the 1-dimensional persistence diagrams for the product of any
filtration, it suffices for us to track how the first Betti number changes. The number of tuples created
is the difference between successive (31’s.

Thus, it suffices for us to verify the formula for 5y (AOB). The box product ACIB is exactly the
1-skeleton of the topological product G x H, endowed with the canonical CW complex structure
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from both A and B. The Euler characteristic of the product of two finite CW complexes is the product
of their Euler characteristics, so we have that x(A x B) = x(A)x(B) (see Exercise 2.2.20 of [21]).
On the other hand, since ACIB is the 1-skeleton of A x B, we have that

X(AOB) = x(A x B) = #E(A)#E(B).
On the other hand we have that
X(AOB) = 5o (A0B) — 41 (AOB),
and hence we have that
$1(A0B) = #E(A)#E(B) + fo(ADB) — x(A)x(B).

Since removing 2-cells do not affect the connectivity of the complex, we have that
Bo(AOB) = Bo(A x B) = Lo(A)Bo(B), where the last equality follows from Kunneth’s
formula. This concludes the proof.

For Runtime: For G and H graphs, we see that the quantity 81 (GLIH ) can be expressed in terms of
(1) the number of edges, (2) the number of connected components, and (3) the number of vertices of
G and H respectively. To compute the 1-dim persistence diagram of a product filtration, it suffices for
us to keep track of how (1), (2), (3) changes over time. These can all be done in a time dominated by
O(mglogmeg + ng + mpy logmpy + ny) (ie. the time to compute the persistence diagrams on the
two separate graphs). O

B A Max Version of Persistent Homology

In this section, we discuss a max version of persistent homology where the edge-level filtration
function f. in PH is determined by the vertex-level filtration function f,. We will show that the
edge-level PH of max PH can be computed directly from the vertex-level PH. More precisely, we
reformulate the first part of Proposition | more generally to the following proposition:

Proposition 9. Let f, be a vertex-level filtration on G. Consider an edge-level filtration f. on G with

1. F.(w) is constant for all w € V(G) and is less than the minimum of F,, on V(QG).
2. Fo(w,w") = max(f,(w), fo(w")) for all (w,w") € E(G).

The vertex death-times of f. are the same as the death-times of f,. Furthermore, if the edge-level
filtration is given a decision rule to kill off the vertex that has higher value under f, (and we
arbitrarily choose which vertex to kill off in a tie), it may be chosen so that the same vertices die at
the same time for both filtrations.

Proof. To show that the death-times of f. are the same as that of f,, it suffices to check that at
each time step ¢, the number of vertices that die on both filtrations (notationally we write D, (¢) and
D, (t)) are the same. Indeed, write the possible values of f, in order as a; < ... < a,. Outside of
this list of values, we clearly have that D, (¢) = D.(t) = 0.

At t = ay, the vertex level filtration creates G(a1) (see Section 3 to see the notation) and all the
deaths can only happen in G(a1). At the same time, observe that all the edges spawned at time
t = a; for edge level filtration happens only in the subgraph of V5 (a1) and gives the full subgraph
G(ay). Thus, we have that D, (a1) = D.(a;). Furthermore in the first step, we could clearly choose
the same vertices to kill off for both filtrations.

Now suppose by induction we have that at t = a,;_1, the previous death times have been the same
and that we have chosen the same vertices to kill off for both filtrations. Now at ¢ = a;, the

vertex level filtration creates U;Zl E¢(aj,a;), and the edge level filtration also adds all the edges
in U;’:l Ec¢(aj,a;). For our purposes, the vertex level filtration will first spawn all of G(a;) first

(before adding the edges in Eg(a;, a;) for j < ), and the edge level filtration will first add in all of
the edges in G(a;) similarly. In this case, clearly we can still choose the same vertices to kill off for
both filtrations by the inductive hypothesis. Doing this up to a,, concludes the proof. O
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Figure 5: Graph G in Example 3.

The second part of Proposition | can be more generally reformulated to the following statement.

Proposition 10. Let f, be a vertex-level filtration on G. Consider the same edge-level filtration f,
given in Proposition 9. The cycle birth times of the vertex-level filtration are the same as the cycle
birth-times of the edge-level filtration.

Proof. This is because the birth-time of the edges are the same in both the vertex-level filtration and
the edge-level filtration. Since color-based PH is independent of the order in adding in the simplicies
marked with the same color, we can add the edges in both filtrations in order such that a cycle occurs
in the vertex-level filtration if and only if it occurs in the edge-level filtration. A similar proof as in
the previous proposition shows that the creation of cycles would be the same. O

C An Example Computing EC

Here we give an explicit example computing the EC diagram.

Example 3. Consider the graph G in Figure 5 with f,(red) = 1, f,(blue) = 2, f.(red,red) =
1, fe(blue, blue) = 2, f,(red, blue) = 3. We have that

EC(G, /) = x(G]*), x(G§") = 0,1 and EC(G, [)F = x(G]*), x(GL), x(G}) = 2,1, -1.

Proof for Example 3. Consider the set-up in the example again, recall this gives a graph G with
fo(red) =1, f,(blue) = 2, fe(red,red) = 1, f.(blue, blue) = 2, f.(red, blue) = 3. We wish to
show that

EC(G, /) = x(G]*), x(G§") = 0,1 and EC(G, f)® = x(G*), x(GL), x(G]*) = 2,1, 1.

Now to compute EC(G, f)V, we observe that G{“ is the subgraph of G generated by red vertices
(A, B, C), so it is the cycle graph of 3-vertices. Thus, x(G{”) = 0. When ¢ reaches 2, we have that
Gg = @, so the Euler characteristic is —1.

Now to compute EC(G, f)¥, we note that at t = 0, Gge is the discrete graph on 5 vertices. At
t = 1, all the red edges are added in, so G{ is the disjoint union of 2 vertices and the cycle graph
of 3-vertices. Thus, x(GJ*) = 0+ 2 = 2. Att = 2, a single blue edge is added between the two
disjoint vertices, so X(GgE) = X(G{e) —1=1. Att = 3, two more edges are added and hence
x(Gf)y=1-2=-1. O

D Expressivity of EC on Simplicial Complexes

Let K be a simplicial complex of dimension n where each vertex is assigned a color in some coloring
set X. The Euler characteristic of K is defined by

X(K) = Z(—l)"#{simplicies in K of dimension i}.
i=0

Notation: Let cq,...,c; € X be a list of distinct colors with ¢ < j, we define S%(ch ..., ¢;) as the
number of j-simplices in K whose vertice’s set of colors is {cy, ..., ¢; }.
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Under suitable extension of the definition of EC and max EC diagrams to a simplicial complex, we can,

in fact, characterize them completely in terms of the combinatorial data provided by S}; (C1y ey ).
We will make these definitions precise and in particular prove the following theorem.

Theorem 8. Let K, M be simplicial complexes of dimension n. The following are equivalent:
1. EC(K, fo,..., fn) = EC(M, fo, ..., fn) for all possible fy, ..., fn. Here, each f; is
an i-simplex coloring function, to be elaborated upon in Appendix D.
2. EC™(K, fo) = EC™(M, fo) for all possible f.
3. Forall j <n, S (c1,...,c;) = Sy (c1, ..., ¢;) for all distinct colors ¢y, ..., ¢; with
1<i<y.

Note that Theorem 8 is a stronger formulation of Theorem 3 in the main text.

We first extend our definition of EC and EC™ to a simplicial complex K of dimension n with a
vertex coloring function ¢ : V(K) — X.
Definition 8. Let K be a simplicial complex of dimension n with vertex color set X. For 0 < i < n,

we define a color value function f; : Hi,+1 X — Ry as follows:

j=1

1. For any permutation o € S;11, fi(0(Z)) = fi(Z).

2. For any 2,9 € H;J:l X such that & and i have the same coordinates modulo order
and multiplicity, f;(Z) = fi(¥). For example, if X = {red,blue}, fo(red,red,blue) =
f2(blue, blue, red). The intuition is, as sets (so we forget about order and multiplicity),
{red, red, blue} is the same set as {blue, blue, red}.

We define the i-th simplex filtration function f; of K as follows:

* For all simplices o with dimension less than i, F;(c) = 0.
* For all i-simplices o with vertices vy, ..., v;, Fi(c) = fi(c(vo), ..., c(v;)).
* For all simplices o with dimension greater than i, F;(0) = maX; gmpiex o [i(T).

Note that when K = G is a graph fo, f1, Fo, F1 agrees with our construction of f,, fe, Fy, Fe.
Finally, for each i and t € R, we define

K{" = F7((—o0,1]).

K2

From here, we can construct the EC and max EC diagram on simplicial complexes as follows.

Definition 9. Letr K be a simplicial complex of dimension n with simplex filtration functions
Jos 1, Jn- The EC diagram EC(K, fo, ..., fn) of K is composed of n + 1 lists EC(K, f;) for
i=0,...,n+ 1. For each i, write a| < ... < aj, as the list of values f; can produce, EC(K, f;) is

the list {x (K1)}

i
a;: Jj=1

Suppose we are only given a vertex filtration function fy. We define the max EC diagram of K as
Ecm(Ka fO) = EC(K; f07 g1, - gn) Here 91(0) = MaX.simplex rCo MaAXy,; e fO(Ui)-

One can check that the g;’s defining max EC are consistent with the setup in Definition 8. As an
immediate corollary of Theorem 8, we will see that EC and EC™ have the same expressive power on
the level of simplicial complexes.

Theorem 9. EC and EC™ have the same expressive power.

Remark 2. The choice of Condition (2) in Definition 8 is intentional so that Theorem 9 would
hold. The intuition is that Condition (2) corresponds to coloring the i-th simplex o, with vertices
V0y vy Vit1, Of K with the feature being the set {vy, ..., v;11} that forgets about multiplicity and
order. However, Theorem 9 is not true if we modify Condition (2) such that we color o with the
feature being the multi-set {c(vo), ..., c(viy1)} to remember multiplicity.

We will now prove Theorem 8. To do this, we will first prove a lemma.
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Lemma 1. Let K and M be two simplicial complexes of dimension n, if they have the same max EC
diagram for all possible fo, then K and M have the same f-vector, meaning that their respective
number of simplicies are the same at each dimension.

Proof. For this proof, let K* denote the subcomplex of K with all simplicies with dimension < 1.
By comparing any complete filtration, we will have that  (K) = x(M) (so x(K"~1) = xy(M"~1)).
Comnparing time ¢ = 0 for any induced i-simplex coloring filtration by an injective fy will give
us that y(K*%) = x(M?) for all i = 0,...,n — 1. From here we can see that they have the same
f-vector. O

Now we will finally prove Theorem 8.

Proof of Theorem 8. Clearly (1) implies (2). To see that (3) implies (1), we first note that (3) implies
K and M have the same f-vector, so the starting values of their Euler characteristics for any f; are
always the same. For any change of the Euler characteristic as time varies, we will be modifying the
value by adding or subtracting values of the form S%-(c1, ..., ¢;) = S4,(c1, ..., ¢;). Hence, their Euler
characteristics will agree as time varies.

For (2) implies (3), we first note that Lemma 1 implies K and M have the same f-vector. We will
now prove the claim from a backward induction on 7 = 0, 1, ..., n. Indeed, when 7 = n, we have that

1. We will induct on 1 < 4 < n. For ¢ = 1, we wish to show that S%(c;) = S7,(c1) for all
¢1 € C. Note that S7-(cq) is just the number of n-simplicies whose vertices all have color
c1. Choose fy such that ¢; has the minimum value, then under the induced max n-simplex
coloring filtration, we have that

f”L — f’n
X(E ) = XM,
Since K and M have the same f-vector by Lemma 1, we conclude that ST (¢1) = Sy (¢1).

2. Suppose thisistrueupto 1 < ¢ = k < n. We wish to show this is true for i = k£ + 1.
Indeed, let ¢y, ..., cx41 be k + 1 distinct colors. Choose fj such that ¢; has the minimum
value, ¢ is the second smallest, and so on until c;;. Under the induced max n-simplex
coloring filtration, we have that

fn _ f’n/
X(Kfo(0k+1)) - X(Mf0(0k+1))

Subtracting their Euler characteristics at the time step fo(cx), we have that
(=D)" > Sk(a) = (=1)" ) Siy(a).
acA acA

where A is the collection of subsets of {cy, ..., k41 } that contains ¢ 1. Since the inductive
hypothesis is true up to ¢ = k, we know that for all a € A such that |a| < k, S%(a) =
ST (a). Hence cancelling both sides gives us

Y. Skl@= Y Sila).
a€A,la|>k a€A,la|>k

Now, there is only one element in A with |a| > k, namely a = {cy, ..., cx4+1}. Hence, we
have proven this for the case © = k + 1.

3. Thus, by induction, we have shown this for j = n.

Now we will induct down from j = n. Indeed, suppose thisis trueupto0 < j =k + 1 < n, we
wish to show this is true for j = k. Now we wish to show that S%(c1, ..., ¢;) = S¥,(c1, ..., ¢;) for all
distinct colors ¢y, ..., ¢; and 1 < ¢ < k. We will do this by an induction on .
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1. Fori = 1, we wish to show that S¥ (c;) = S%,(c1). Indeed, choose f; such that ¢; has the
minimum value. Then we have that

(ka

Feen) = XM

fO(Cl))

Since K and M have the same f-vector, cancelling that out gives us that
> Sieler) =Y Shler).
=k =k

By our inductive hypotehsis on j, we know that S% (c1) = S¢,(c1) for all £ > k, hence
subtracting them off gives us that S& (¢1) = S%,(c1).

2. Suppose this is trueup to 1 < ¢ = ¢ < k. We wish to show this is true for i = ¢ + 1. Indeed,
let ¢y, ..., cey1 be £ 4 1 distinct colors. Choose fj such that ¢; has the minimum value, ¢,
is the second smallest, and so on until cy;. Under the induced max k-simplex coloring
filtration, we have that

S _ S
X(Kfo(ce+1)) B X(Mfo(0e+1))

Since they have the same Euler characteristics at the time step fo(c¢+1), we can cancel those
terms out and obtain

IPNEICAVED ) BN

ac€Ap=~k a€Ap=k

Here A is the collection of all subsets of {c1, ..., ce+1} that contains the color ¢y 1. Now
by the inductive hypothesis on j, we know that S%-(a) = S%,(a) for all p > k, so we can
cancel the expressions and obtain

7Y Skla) = (=17 Y Si(a)

acA acA

Now by the inductive hypothesis for i, we have that for all |a| < £ + 1, S%,(a) = S (a),
hence we have that

(=17 Y Skl@)=(=1" > Sila)

a€A,la|>L a€A,la|>L

There is only one subset of size £ + 1, namely {cy, ..., ce+1}. Hence, we conclude that
S;:((Ch ey C€+1) = SJ]?/I(CD ey Cf+1)'

Thus, by the principle of induction, we have proven that (2) implies (3). O

E Implementation details

E.1 Datasets

With the exception of ZINC, all datasets originate from the TUDataset repository — a comprehensive
benchmark suite commonly employed for assessing graph kernel methods and GNNs. The datasets
can be accessed at https://chrsmrrs.github.io/datasets/docs/datasets/. ZINC(12K)
corresponds to a subset of the widely used ZINC-250K collection of chemical compounds [27],
which is particularly suited for molecular property prediction [11].

BREC is a benchmark designed to evaluate the expressiveness of graph neural networks (GNNs). It
comprises 800 non-isomorphic graphs organized into 400 pairs, grouped into four categories: Basic,
Regular, Extension, and CFI. The Basic category includes 60 pairs of 1-WL-indistinguishable graphs,
while the Regular category contains 140 pairs of regular graphs further divided into simple regular,
strongly regular, 4-vertex-condition, and distance-regular graphs. For a detailed description of the
remaining categories and graph constructions, we refer the reader to Wang and Zhang [47].

Table 4 reports summary statistics of the datasets used in this paper.
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Table 4: Statistics of the datasets.

Dataset #graphs #classes Avg#nodes Avg #edges
NCI1 4110 2 29.87 32.30
PROTEINS (full) 1113 2 39.06 72.82
DHRF 756 2 42.43 44.54
NCI109 4127 2 29.68 32.13
COX2 467 2 41.22 4345
ZINC 12000 - 23.16 49.83

E.2 Runtime experiments

The runtime experiments were conducted on Google Colab and written in Python. This was done in
the standard Python 3 Google Compute Engine backend without any subscription.

E.3 Experiments on graph classification

We implement all models using the PyTorch Geometric Library [16]. For all experiments, we use
Tesla V100 GPU cards and consider a memory budget of 64GB of RAM.

For the TU datasets, we use a random 80/10/10% (train/validation/test) split, which varies with the ran-
dom seed (i.e., a different split is used for each of the five runs). All models are trained with an initial
learning rate of 10~3, which is halved if the validation accuracy does not improve for 10 consecutive
epochs. We employ early stopping with a patience of 40 epochs and train for up to 500 epochs using
the Adam optimizer [30]. A batch size of 64 and batch normalization are used in all experiments.

We apply the vectorization scheme of [8] with Gaussian point transformations, identity weight
function, and mean aggregation. Formally, let D = {p1,...,p,} be a persistence diagram with n
tuples p; € R?. We compute

n

1
h(D) = — i), 1
(D)= gw(p,) ¢))
where
@(p) = [Lp(1), -, T'p(9yg)] wit p(¢i) = exp s (2)
and ¢1,...,¢94 € R? are learnable parameters. In all experiments, we restrict our analysis to 0-

dimensional persistence diagrams and adopt ¢ = 100. Two filtration functions are considered: degree
centrality and betweenness centrality. The optimal one is determined, together with the number of
GNN layers, based on validation performance — i.e., the filtration function is a hyperparameter.

Here, the topological embeddings h(-) are concatenated with the graph-level GNN embeddings
(obtained via a mean readout) and passed through an MLP consisting of two hidden layers with ReLU
activations and a hidden dimension of 64.

We consider seven graphs as references in our approach, implemented in the NetworkX library:
nx.cycle_graph(4), nx.star_graph(5), nx.turan_graph(5,2), nx.complete_graph(5),
nx.lollipop_graph(3,3), nx.watts_strogatz_graph(10,2,0.2), and nx.house_graph.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We summarize all contributions in Figure 1, explicitly indicating propositions
and theorems and where to find them in the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations of our algorithms in Section 5.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: | Yes]
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Justification: We provide detailed proofs in the Appendix.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: | Yes]

Justification: We provide implementation details in Appendix E, including architectures
used, range of hyper-parameters, and the optimization procedure.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: | Yes]

Justification: We provide link to the official repo in Section 6 (Experiments) and in the
Abstract. Also, all datasets are publicly available.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Details on datasets, splits, and hyperparameters are provided in Appendix E.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: | Yes|
Justification: We provide error bars for all experiments on real-world datasets.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: | Yes]

Justification: We report the compute resources in Appendix E, including GPU cards used.
We also report the running time of different algorithms in Section 6.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: | Yes|
Justification: The authors have reviewed the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impacts at the end of the main text (before the acknowl-
edgments and references).

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper does not poses high risk for misuse.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: | Yes]
Justification: We cite the original papers related to all datasets/toolboxes we used.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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