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ABSTRACT

Self-supervised representation learning methods often fail to learn subtle or com-
plex features, which can be dominated by simpler patterns which are much easier
to learn. This limitation is particularly problematic in applications to science and
engineering, as complex features can be critical for discovery and analysis. To
address this, we introduce Split Component Embedding Registration (SpliCER),
a novel architecture which splits the image into sections and distils information
from each section to guide the model to learn more subtle and complex features
without compromising on simpler features. SpliCER is compatible with any self-
supervised loss function and can be integrated into existing methods without mod-
ification. The primary contributions of this work are as follows: i) we demonstrate
that existing self-supervised methods can learn shortcut solutions when simple
and complex features are both present; ii) we introduce a novel self-supervised
training method, SpliCER, to overcome the limitations of existing methods, and
achieve significant downstream performance improvements; iii) we demonstrate
the effectiveness of SpliCER in state-of-the-art medical and geospatial imaging
settings. SpliCER offers a powerful new tool for representation learning, enabling
models to uncover complex features which could be overlooked by other methods.

1 INTRODUCTION

Recent advances in acquiring highly detailed, information-rich imaging at scale have resulted in
high-content imaging – imaging which aims to maximise data capture – being widely used in science
(Way et al., 2023), medicine (Radtke et al., 2022; Lin et al., 2023), and engineering (Xia et al., 2010).
In general, however, computer vision methods are designed for natural images such as ImageNet
(Deng et al., 2009), which can be well-described with relatively simple features (Singla & Feizi,
2021). High-content imaging generally contains subtle, complex features which can be difficult to
distinguish from noise without strong supervision. The effect of this can be that simple features
dominate the representation of the image, and subtler features are ignored. However, subtle or
complex features can be among the most interesting features for scientific discovery, such as the
interaction or morphology of subtly different cell types (Hale et al., 2024), as simpler features are
generally more readily discovered by humans.

In many cases, we can leverage an intuitive reason or some prior knowledge indicating that the
features of a region or channel of an image are of particular interest. It is usually possible to split the
image into smaller components, perhaps by generating a segmentation mask or cropping the image,
or by separating channels in multiplex images. This information can be used to guide the model to
learn features from each component (Farndale et al., 2023a;b; 2024; Nakhli et al., 2024). Ensuring
features are distributed across all components could ensure that complex features which cluster in a
certain component will be learned. However, we generally lack the methods to enable this type of
divide and conquer strategy for high-content imaging.

A prime example is multiplex imaging: information-dense images containing more than three chan-
nels, each with a distinct meaning and significant variation in the complexity of the features in each
channel. Despite their prevalence, multiplex images are generally understudied in computer vision,
and largely lack dedicated methods to extract key information from them.

In this work we introduce a novel representation learning architecture, Split Component Embedding
Registration (SpliCER), which deconstructs an image into components, and distils information from
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Figure 1: (a) SpliCER training architecture. (b) Schematic of the benefits of SpliCER compared to
mapping multiple inputs to a shared latent space.

each component to direct models to learn features from each part, significantly improving repre-
sentation learning and downstream performance. This forces the model to learn features from each
component, meaning components with more complex or subtler features cannot be ignored. As this
deconstruction is only performed during training, the encoder can then be used downstream without
requiring deconstruction. SpliCER is able to utilise any self-supervised architecture or loss, so it is
generally applicable across self-supervised methods.

2 BACKGROUND AND RELATED WORK

Self-supervised learning (SSL) uses inherent structure in data to learn useful representations with-
out relying on manual labels. This is achieved using a proxy objective which directs the model to
learn features satisfying certain conditions (Shwartz-Ziv & LeCun, 2023), without prior knowledge
of the desired downstream task(s). Recent work demonstrates that many of the most effective meth-
ods map multiple views of the same input into a joint embedding (JE) (Giakoumoglou & Stathaki,
2024), maximising the mutual information shared between views. Typically, this is achieved through
augmenting the input to artificially create different views, with augmentations designed to avoid
augmenting the key semantic features which the model should learn (Bachman et al., 2019).

Consequently, models have a tendency towards learning simple features, as these are generally more
robust to augmentations (Jing et al., 2021). However, as models have no signal with which to
determine the true importance of features, this can lead models to exhibit simplicity bias and ignore
more informative, complex features (Shah et al., 2020; Pinto et al., 2022; Vasudeva et al., 2023).
Models must compress their inputs, and the structural properties used can often favour shortcut
solutions, where models learn redundant features which are correlated with informative features in
the training set (Geirhos et al., 2020; Robinson et al., 2021; Chen et al., 2021). This can lead models
to learn low-dimensional representations of the true underlying manifold, missing key predictive
features that would be desirable for downstream tasks. Complexity should not be confused for
density (e.g. Wang et al. (2021)), which refers to the spatial coverage of representations learned for
every local region of an image, as opposed to the semantic intricacy of those representations.

There have been efforts to address these shortcomings by leveraging prior knowledge about the data.
By aligning multiple inputs in a shared latent space, complex features which may be ignored in a
unimodal setting may be learned if they align well with simple features in the paired inputs (Radford
et al., 2021; Girdhar et al., 2023; Farndale et al., 2023a). However, it has been demonstrated that
alignment in a shared latent space can reduce performance if predictive information is present in
only one modality (Farndale et al., 2023b). This is because the model loses its implicit supervisory
signal for all features which are not present in the paired information. For example, it is impossible
to completely describe the semantics of an image with words, so a vision/language model will have
a considerable amount of the content of the image not shared between inputs. Similarly, an image
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(a) (b)

Loss Paired Image Method rNONE rMNIST rCIFAR
(All) (Complex) (Simple)

VICReg

NONE TriDeNT 0.9954 0.6230 0.9939
Baseline 0.9908 0.6410 0.9918

MNIST
SpliCER 0.9974 0.6425 0.9974
TriDeNT 0.9985 0.4990 0.9980
Baseline 0.9980 0.5270 0.9980

CIFAR
SpliCER 0.9888 0.6840 0.9852
TriDeNT 0.8699 0.6645 0.8041
Baseline 0.7372 0.6830 0.7020

BOTH SpliCER 0.9964 0.6675 0.9969
Σ-JE 0.9934 0.6530 0.9934

(c)

Figure 2: (a) MNIST-CIFAR examples (b) Ranked singular values of models trained on MNIST-
CIFAR (c) SSL performance for models trained and evaluated on randomised MNIST (rMNIST),
randomised CIFAR (rCIFAR), or with no randomisation (rNONE).

could be equally well-described with poetry or a technical description. Neglecting this unshared
information represents a major limitation of methods such as CLIP (Radford et al., 2021).

TriDeNT (Farndale et al., 2023b) addresses these issues by using multiple joint-embeddings to en-
able model to receive signal from both unimodal and multimodal objectives, but it is limited by
having to align entire representations across modalities. While potentially leading to emergent align-
ment (Girdhar et al., 2023), it has been shown that this can overconstrain models, meaning features
not shared between branches are ignored, especially as more input modalities are added. These ar-
chitectures are typically motivated by using a paired input to improve the performance of a model
for a primary input. We refer to the encoder of this primary input as the primary encoder, and the
encoder of the paired input as the paired encoder.

2.1 MULTIPLEX IMAGING

Widely used in domains as varied as medicine (Kobayashi et al., 2010), biology (Lewis et al., 2021),
and geoscience (Drusch et al., 2012), multiplex/multichannel images are hyperstacks of spatially
registered greyscale images each containing different information about the same scene or object.
We consider two types of multiplex imaging: spatial proteomics and hyperspectral imaging.

Spatial proteomics are a range of methods used to analyse the spatial distribution of proteins in
tissue samples, winning Nature Methods’ Method of the Year 2024 (Nature Methods, 2024). These
techniques generate multiplexed images where each channel represents the localisation of a specific
protein, revolutionising researchers’ capacity to understand the morphology and interactions of dif-
ferent cell types. However, manual analysis of these images requires extensive knowledge of each
protein and its typical distribution. Typical analysis reduces each cell to a vector of mean expression
in each channel (Brbić et al., 2022; Shaban et al., 2024), neglecting morphology, secreted proteins,
and extracellular matrix components (Bussi & Keren, 2024). There is a paucity of manually labelled
datasets, meaning that supervised approaches have limited efficacy, and can only reproduce known
phenotypes. Images from different experiments usually feature different numbers of channels with
different proteins, prohibiting the use of generalist foundation models (Vorontsov et al., 2024; Xu
et al., 2024).

Hyperspectral imaging captures frequencies outside the range of human vision in 13 bands. The
electromagnetic spectrum contains rich information beyond visible light that can be utilised for
applications from food processing (Gowen et al., 2007) to urban planning (Weber et al., 2018) and
atmospheric monitoring (Stuart et al., 2019). A key application is land-use classification, where
hyperspectral bands from satellite images contain information such as cloud cover, vegetation health,
geology, and soil moisture content (Drusch et al., 2012). These images are rapidly produced at scale,
with the Sentinel-2 satellites covering the entire surface of the earth approximately every five days
(Drusch et al., 2012). Machine learning tools which can fully leverage the vast amounts of data
generated by these satellites could discover critical information on climate change and land use
patterns (Prexl & Schmitt, 2023). However, like medical imaging, different bands have significantly
different feature complexity, meaning critical subtle or complex information may be ignored.
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3 SPLICER: SPLIT COMPONENT EMBEDDING REGISTRATION

Despite the difficulty in creating manually labelled datasets for supervised learning, it can be rela-
tively simple to systematically isolate the image component containing a feature of interest. This
could be done manually, using some prior knowledge about the image structure, particularly for
multiplex images which are naturally decomposed. Alternatively, this could be automated with a
model such as Segment Anything (Kirillov et al., 2023). Methods which can leverage this informa-
tion without overconstraining the model by enforcing pairwise embedding alignment will be able to
train models which identify complex features in images and achieve better downstream performance.

We introduce Split Component Embedding Registration (SpliCER), a self-supervised training archi-
tecture which allows models to flexibly learn features from all components of a deconstructed image
while avoiding shortcut solutions. SpliCER optimises this process by i) mapping the primary (not
deconstructed) image to an embedding, ii) mapping each component of the image to a distinct em-
bedding, iii) splitting the primary image’s learned embedding into chunks, with the embedding of
each component registered to a distinct chunk of the primary embedding.

This creates a separate joint embedding between the embedding of each deconstructed input compo-
nent and a chunk of the primary image’s embedding. Figure 1b illustrates the intuition behind this.
When the embeddings of all branches must be aligned to the entire primary embedding, this neces-
sitates that branches which do not contain a feature must align their embedding to branches with
that feature. These embeddings therefore contain random noise or collapse to a constant, resulting
in gradients which oppose learning that feature in the primary embedding. In contrast, SpliCER
aligns only a portion of the primary embedding to each branch’s embedding, resulting in gradients
not opposing features which are only present in one or few branches.

Consider a primary input x̄, with paired inputs x∗
1, . . . , x

∗
n, a primary representation z̄, and paired

representations z∗1 , . . . , z
∗
n, mapped into embeddings ē ∈ RN and e∗1, . . . , e

∗
n ∈ RM respectively.

Splitting ē into n chunks such that ē = ē1||ē2|| . . . ||ēn, we can construct an optimisation problem

L =
∑

i=1,...,n

Li(λi) =
∑

i=1,...,n

I(xi; ei|x̄) + I(x̄; ē|xi)− λi [I(x̄; ei)− I(xi; ē)] (1)

following Equation S4. We assume that all chunks are of equal size for brevity. Note that differ-
ent chunks of the embedding are optimised separately, meaning that there is less risk to the model
predicting low-variance features from the paired inputs, as these do not come at the cost of features
from a different paired input, and there is no need for different chunks to be aligned in embedding
space. Note also that this formulation removes the requirement that all inputs are jointly optimised,
as each branch is only optimised relative to a chunk of the primary branch. As the primary embed-
ding ē will, in general, have a significantly greater dimension than the primary representation z̄, an
optimal model should condense features shared between different chunks into few elements of z̄,
allowing more complex features to be learned.

4 EXPERIMENTS

As there are few established methods for our problem setting, we first consider some preliminary
elements motivating the design of SpliCER and justify why these form strong baselines. The first
baseline we use in each experiment is a standard self-supervised architecture, either VICReg (Bardes
et al., 2022) or SimCLR (Chen et al., 2020) (denoted Baseline). We use ResNet (He et al., 2016)
models for each input, with the number of channels determined by the number of image channels.
Full details are provided in Section S3.

We also include mapping each input into a shared latent space as a baseline (denoted Σ-JE), to study
the aggregation of different joint embeddings. The input to the primary branch is the original image,
while the input to each additional branch is a component of the image. This allows us to isolate
the impact of the chunking aspect of SpliCER, compared to the impact of simply aligning inputs
in a latent space. Where applicable we also include TriDeNT, however, there are few scenarios
considered where there is only one source of paired data, as TriDeNT requires.

We provide full descriptions of the datasets and training hyperparameters used in Sections S2 and
S3 respectively. We also provide model ablations in Section S4.
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(a)

Loss Method Cell Types
(Simple)

T Cells
(Complex)

VICReg
SpliCER 0.9003 0.8136
Σ-JE 0.6715 0.5222

Baseline 0.8820 0.5665

SimCLR
SpliCER 0.8950 0.8469
Σ-JE 0.8407 0.6886

Baseline 0.8972 0.5539

(b) (c)

Hyperstack

B01 B02 B03 B04 B05 B06

B08 B09 B10 B11 B12 B8AB07

(d)

Loss Method EuroSAT MMEarth

VICReg SpliCER 0.8921 0.7015
Baseline 0.8481 0.4976

SimCLR SpliCER 0.9044 0.7061
Baseline 0.8479 0.5986

(e)

Figure 3: (a) Example of a multiplex immunofluorescence hyperstack (b) Orion-CRC classification
accuracy (c) Mean absolute correlation between representation elements and marker intensities on
Orion-CRC for baseline and SpliCER (d) Example of a hyperspectral image hyperstack (e) Hyper-
spectral imaging classification accuracy

MNIST-CIFAR Simplicity Bias Evaluation. Our first experiment compares the complexity of
features learned by SpliCER to those learned by baselines. We use the MNIST-CIFAR dataset,
an established benchmark for simplicity bias, to assess whether the model learns simple features,
complex features, or both. The dataset is an amalgam of the MNIST handwritten digit dataset
(LeCun et al., 1998), which contains simple features, and the CIFAR-10 dataset, which contains
more complex features. Each image in the MNIST-CIFAR dataset is constructed by concatenating
an MNIST image to a CIFAR image with the same label, such that the model concurrently processes
both. Classes are mapped such that 0 is always car and 1 is always truck, so a model can find shortcut
solutions by only learning MNIST features, as these are just as informative about the label as the
CIFAR features, but are easier to learn.

We evaluate which features have been learned by training a classifier while randomising either the
MNIST or CIFAR images, denoted as rMNIST and rCIFAR respectively, with rNONE being unran-
domised. On rMNIST, a model which has learned a complete shortcut solution will have accuracy
around 50%, as it will not be able to make predictions from the CIFAR features. On rCIFAR, this
is unlikely to have an effect on a model which has learned a shortcut solution. Models which have
learned more complex features will be less affected by MNIST randomisation and more affected by
CIFAR randomisation.

In Figure 2c we demonstrate that baseline SSL training does not learn a complete shortcut solution,
with accuracy of 64% on rMNIST and near perfect (∼100%) performance on rNONE/rCIFAR.
However, this indicates that predictive features have not been learned, as a model trained on the
CIFAR data alone achieves 72.6% accuracy. Figure 2b demonstrates the effect of the choice of
paired data on the learned features. Pairing MNIST results in a lower rank representation, while
the model trained with CIFAR as paired data has similar rank to unpaired training and SpliCER.
We pair either the MNIST image, the CIFAR image or both, to compare the efficacy of different
distillation methods. We find that SpliCER can make up to a 4 percentage point improvement when
given CIFAR as paired information. This implies that the signal from the CIFAR branch guides the
model to learn more complex features.

In baseline or TriDeNT, using MNIST as paired information appears to cause the model to focus
even more on the simple features and collapse to a shortcut solution, resulting in poorer performance
on rMNIST, but marginally increasing performance on rCIFAR. Similarly, using CIFAR as paired
information increases performance on rMNIST, but heavily degrades performance on rCIFAR. This
is because the paired information forces the model to primarily pay attention to the shared features,
at the expense of the unshared features.
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Original Lungs Background

Original  Nuclei  Background

(a)

Loss Method Histology X-ray
NCT Camelyon PneumoniaMNIST

VICReg SpliCER 0.9372 0.8230 0.8718
Baseline 0.8855 0.6822 0.8446

SimCLR SpliCER 0.9368 0.8674 0.9119
Baseline 0.9067 0.8346 0.8462

(b)

Figure 4: (a) Sample segmentations for ChestMNIST (top) and NCT (bottom) (b) Classification
accuracy on NCT, Camelyon and PneumoniaMNIST tasks

SpliCER achieves similar performance to the baseline and TriDeNT on the task that corresponds to
the paired information, but also completely mitigates the performance degradation observed in the
other models. This implies that SpliCER can benefit from being guided by the paired data, but the
chunking of its embedding does not restrict its ability to learn the remaining features. Achieving a
classification accuracy of 68.4%, the SpliCER approaches the performance of a model trained on the
CIFAR images alone, which achieves an accuracy of 72.6%, without the option to learn the simple
features in MNIST.

Spatial Proteomics. We next demonstrate the applicability of SpliCER to multiplex immunoflu-
orescence images. As there are no established benchmarks for multiplex immunofluorescence, we
construct three datasets from the Orion-CRC dataset (Lin et al., 2023): a pretraining dataset sub-
sampled from all cell types with a distribution reflecting normal tissue distribution; Cell Types - a
balanced evaluation dataset for classifying different cell types which require relatively simple fea-
tures; and T Cells - a more fine-grained balanced evaluation dataset for classifying subtypes of T
cells, requiring more complex features. As discussed in Section 2.1, there are significant differences
in the variance of features in different channels of multiplex image, as shown in Figure S1a. The
Cell Types task requires models to learn both simple and complex features, while T Cells assesses
the whether the model has learned features of the low variance markers CD4, CD8, and FOXP3.

Consistent with the MNIST-CIFAR tasks, we find that SpliCER significantly improves performance
for learning the complex features without degrading performance on the simple features. This leads
to a consistent performance of around 89% on the cell type classification task, and a large im-
provement from 57/55% to 81/85% on the T cell subtyping task for VICReg/SimCLR respectively.
Furthermore, we show in Figure 3c that SpliCER learns features with a considerably greater corre-
lation with the marker intensities of the inputs, confirming that SpliCER is able to learn features of
the individual markers more effectively than standard self-supervised methods.

Hyperspectral Geodata. We next assess SpliCER’s performance in analysing hyperspectral geo-
data. We pretrain on either the EuroSAT (Helber et al., 2019) or MMEarth (Nedungadi et al., 2024)
datasets, which contain 13-band hyperspectral imaging from the Sentinel-2 satellite program. These
bands each correspond to an interval of the electromagnetic spectrum, and each band contains dis-
tinct information about a different aspect of the environment, such as atmospheric conditions or soil
moisture. We evaluate the quality of the learned representations on the EuroSAT land use classi-
fication task, which requires models to use information from all spectral bands to make effective
classifications.

Figure 3e shows that the land-use classification accuracy is significantly improved from 85% to
89-90% by using SpliCER on the 13-band images. In contrast, restricting the model to only use
the RGB channels demonstrates no significant different in performance between the methods, and
a worse performance overall of 79.67% for SpliCER and 79.78% for the baseline VICReg model.
This demonstrates that incorporating the additional bands improves classification accuracy, and that
ensuring the model learns from all of these additional channels significantly improves performance
compared to baseline SSL approaches. We see an even greater increase in performance for SpliCER
above baseline when pretraining on MMEarth, with accuracy improved from 50/60% to 70/71% for
VICReg/SimCLR respectively, indicating that learning more complex features makes models more
robust to distribution shift.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.1 SEGMENTATION MASKS AS IMAGE DECONSTRUCTION

Until now the images used for each task have been naturally predisposed to deconstruction due to
their compositional design. This is not necessary for SpliCER to provide improved performance,
however, as we can use segmentation masks to deconstruct images. In many cases, we have prior
knowledge that features of a particular part of the image should be learned, and this can be leveraged
with segmentation to improve the quality of the learned representations. By using a segmentation
to deconstruct an image into a region of interest and its complement, the model is still able to learn
any image features, is no longer able to neglect either segmented component.

Histopathology Nuclei Segmentation. It has been shown that histopathology models routinely
ignore cell nuclei, instead learning simpler, higher-variance features related to the connective tissue
(Farndale et al., 2023b; 2024). Here we use HoVer-Net (Graham et al., 2019) to generate nuclei
segmentation masks for each image in the NCT-CRC-100K dataset (Kather et al., 2019), which we
then use to generate images containing only nuclei, or only connective tissue, as shown in Figure 4a.
SpliCER can then be used to distil information from both paired images, with the goal of learning
features from the nuclei as well as the connective tissue. The simple features here are still useful
for downstream prediction, so it is no longer desirable to disregard these. We use synthetically gen-
erated segmentation masks to demonstrate that there is no need for exhaustive manual annotation,
particularly with the availability of generalist segmentation models such as Segment Anything (Kir-
illov et al., 2023). There is also a very real biological application of this task, as representation
learning is increasingly being used for biological discovery in histopathology (Bahadir et al., 2024),
but could be hampered by models only learning simple features.

We evaluate on the NCT tissue type classification and Camelyon metastasis detection (Bandi et al.,
2018) tasks. Camelyon features a training set of images from three hospitals, and a test set from a
different hospital. This results in a distribution shift due to the significant differences in the imaging
artefacts between sets. To achieve better performance on Camelyon, models must learn biologically
robust features that generalise beyond the training set. Figure 4 demonstrates that SpliCER outper-
forms baseline accuracy on both tasks: 94/94% on NCT – a 5 percentage point improvement over
baseline, and 82/87% on Camelyon, compared to a baseline of 68/83% for VICReg/SimCLR re-
spectively. We evidence in Table S2 that the background features are useful to learn for these tasks,
as models paired with only the nuclei mask have worse downstream performance.

X-Ray Lung Segmentation. Chest radiographs are typically used to identify very subtle changes
in the body, and require extensive training to use effectively. A slight change in brightness can in-
dicate the presence of disease, which may be lost to standard self-supervised models. Radiologists
will typically look at the expected site of disease to identify these changes, but the context of the
surrounding tissue is also important for identifying disease. We use the HybridGNet model (Gag-
gion et al., 2022) to generate lung segmentation masks for the ChestMNIST (Yang et al., 2023)
dataset. These are then used in SpliCER with to direct the model to complex features specifically in
the lungs, which are the primary site of the disease. We evaluate the models’ performance on Pneu-
moniaMNIST, which is a binary classification task prediction the presence of pneumonia. SpliCER
achieves a significantly improved accuracy, with 87/91% compared to the baseline of 84/85% for
VICReg and SimCLR respectively.

5 ANALYSIS

We have established empirically that standard SSL approaches can ignore complex features in favour
of learning only simpler features. Here we analyse this phenomenon formally to provide some
intuition for its causes. Let X = (X1, . . . , Xn) be a composite image consisting of components
X1, . . . , Xn, where Xk represents the kth component. These components represent image features,
for example, in the MNIST-CIFAR example we have two components X = (XMNIST, XCIFAR). We
have an encoder f yielding a representation z = f(X; θf ) parameterised by θf and a projector g
yielding the embedding e = g(X; θg) parameterised by θg . For some SSL joint embedding loss
LJE(e

′, e′′), for embeddings e′, e′′ of augmented views X ′, X ′′ of X . Considering the gradient
∂LJE

∂e on the encoder and projectors’ parameters θf and θg respectively, we have

∂LJE

∂θf
=

∂LJE

∂e
· ∂e
∂z

· ∂z

∂θf
,

∂LJE

∂θg
=

∂LJE

∂e
· ∂e

∂θg
. (2)
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The term ∂LJE

∂e is a single vector dictating the sensitivity of the total loss to changes in the embed-
ding. Suppose that component Xk contains simple features which are highly effective for minimis-
ing LJE , which could be encoded by some embedding ek. These features are likely to be quickly
discovered and reinforced by successive early iterations, resulting in an embedding e ≈ ek being
learned. As this will significantly decrease the loss value, the the term ∂LJE

∂e will push the model
to converge towards this state, compared to deviating away from ek. Consequently, the gradients
favouring other features are quickly diminished, as these can incur large penalties for deviating from
the simple, learned features.

The critical issue is that there is no mechanism in standard SSL to push the model to improve the
representation of distinct features, as this could incur a larger loss value. There is no guarantee that
these features would lead to a lower optimal loss value, and requiring that they are learned may
increase the optimal loss value if they are less predictable. Particularly in cases where the images
are dense in features, a limited representation capacity would require models to s acrifice highly
predictable, simple features to learn these more complex features. Unlike supervised learning, there
is no intrinsic signal where the model could experience any added value from these features, meaning
that they will be ignored.

We propose that this simplicity bias is driven by the information bottleneck induced by mutual
information maximisation. Following the information bottleneck principle (Balestriero et al., 2023).
From Equation S3, we have

I(X ′; e′) = I(X ′; e′|X ′′)︸ ︷︷ ︸
superfluous information

+ I(X ′′; e′)︸ ︷︷ ︸
predictive information

. (3)

The objective implicitly maximises the predictive information I(X ′′; e′) and minimises the super-
fluous information I(X ′; e′|X ′′) unique to view X ′ given X ′′. If features from Xk dominate the
predictive information, a reasonable strategy for the model is to robustly learn these features at the
expense of features Xj which may be less consistently shared between views, or harder to identify,
causing them to be viewed as ‘superfluous’.

5.1 SPLICER LEARNS COMPLEX FEATURES BY DECOUPLING OPTIMISATION

SpliCER is explicitly designed to overcome these issues, with a loss that separately optimises learn-
ing features from each component. This prevents features from one component from dominating
the learning process for chunks associated with other components, and enables the model to learn
complex features which do not reduce the loss or even incur a higher loss than simple features. By
associating each component X∗

i (via its embedding e∗i ) with a unique, dedicated chunk ēi of the
primary embedding ē, SpliCER creates largely decoupled optimization pathways for the features of
different components within the primary encoder.

Gradients with respect to the projector’s parameters θg . The gradient of the total loss with
respect to the projector’s parameters θg is

∂LSpliCER

∂θg
=

n∑
j=1

∂LJE,j(ēj , e
∗
j )

∂θg
=

n∑
j=1

∂LJE,j(ēj , e
∗
j )

∂ēj
· ∂ēj
∂θg

. (4)

The term
∂LJE,j(ēj ,e

∗
j )

∂ēj
is the gradient of the jth loss component with respect to the jth chunk of

the primary embedding, and is determined solely by the relationship between ēj and e∗j . There is no
direct impact of any other chunk ēk (j ̸= k), or any other component embedding e∗k.

Suppose that we have a sufficiently sparse primary projector that the final layers can be partitioned
such that a subset θg,j ⊂ θg predominantly or exclusively produces the chunk ēj . This will mean
that ∂ēk

∂θg,j
≈ 0 for j ̸= k. Therefore, the gradient for θgj is

∂LSpliCER

∂θg,j
≈

∂LJE,j(ēj , e
∗
j )

∂θg
=

∂LJE,j(ēj , e
∗
j )

∂ēj
· ∂ēj
∂θg

(5)

This shows that the parameters θg,j which produce the chunk ēj are updated based on the supervisory
signal from LJE,j , which is specific to component X∗

j , decoupled from the other components.
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Gradients with respect to the encoder’s parameters θf . Similar to above, the chain rule gives

∂LSpliCER

∂θf
=

n∑
j=1

∂LJE,j(ēj , e
∗
j )

∂θf
=

n∑
j=1

∂LJE,j(ēj , e
∗
j )

∂ēj
· ∂ēj
∂zprimary

·
∂zprimary

∂θf
. (6)

The primary encoder produces the shared representation zprimary, which is used to derive all chunks
ēj , meaning fprimary receives gradient contributions from all n component-specific terms. Here we

see that each gradient contribution is formed of a component-specific term
∂LJE,j(ēj ,e

∗
j )

∂ēj
, which is

independent of all other terms. Therefore a large improvement in the representation of features from
a specific component will be reinforced with a strong gradient signal, regardless of the behaviour
of the other components. The primary encoder must produce a representation which is sufficiently
expressive that the projector can form all chunks to satisfy their respective loss terms. If this is not
achieved, a large loss will be incurred from the affected chunks. However, if a chunk has reached its
optimal embedding while still incurring a large loss, its gradients will saturate and have less impact
on the overall learning, allowing other chunks to be prioritised in the optimisation process. This
way, even small improvements in each chunk can be beneficial.

This occurs irrespective of how well other components X∗
k (for k ̸= j) are being represented or

how low their corresponding losses LJE,k are. In a standard SSL setup with a single, unchun-
ked embedding, if features from X∗

k (e.g., simple MNIST features) can already minimize the total
loss effectively, the impetus to learn features from X∗

j (e.g., complex CIFAR features) might be
diminished or lost. SpliCER avoids this by ensuring that there is a dedicated loss component and
a corresponding portion of the primary embedding whose quality is judged solely on its ability to
represent X∗

j .

Therefore, the learning pressure for features from component X∗
j (acting through LJE,j and its

influence on ēj) is preserved and not overridden by the learning status of other components. This
allows fprimary to be trained to recognize and encode features from all components X∗

1 , . . . , X
∗
n into

zprimary, as each has a distinct pathway to exert its learning influence.

6 DISCUSSION

Shortcut solutions are a key issue for self-supervised learning approaches. In the absence of a
supervisory signal to enforce the learning of complex features, we have shown that models can
default to learning shortcut solutions. We have shown that SpliCER integrates well with existing
self-supervised losses, and is highly effective for training models to learn complex features, enabling
many more settings to make use of available prior knowledge, particularly multiplex images and
those with segmentation masks available. With the development of generalist segmentation models
such as Segment Anything (Kirillov et al., 2023), there are a wide range of fields where SpliCER
could be used.

SpliCER can be easily adapted to suit different use cases. If a particular channel is known to be more
informative, then more features can be allocated to that channel, or if a channel is known to not be
informative, then it can be allocated fewer features or omitted altogether. Different losses could be
applied for each embedding chunk, allowing customisation of the learned features.

Limitations. Regardless of the pretraining method, the classifier head used for downstream tasks
is still susceptible to shortcut solutions. If the encoder has simple and complex features but the
simple features occur more frequently or are more predictive, these are the features which will be
used by the classifier, even if there is value in the complex features. There has been considerable
existing work on mitigating simplicity bias (Vasudeva et al., 2023; Tiwari & Shenoy, 2023). These
techniques could be combined with SpliCER, potentially creating a complementary effect in further
reducing simplicity bias.

SpliCER is also highly dependent on the quality of the image deconstruction. There may not always
be an easy way to segment images, or we may lack the knowledge to do so. Additionally, SpliCER
could in theory negatively impact features which span multiple components, as their signal may be
impacted by being separated.
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