
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

GENERATIVE MONOCULTURE IN LARGE LANGUAGE
MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce generative monoculture, a behavior observed in large language mod-
els (LLMs) characterized by a significant narrowing of model output diversity
relative to available training data for a given task: for example, generating only
positive book reviews for books with a mixed reception. While in some cases,
generative monoculture enhances performance (e.g., LLMs more often produce
efficient code), the dangers are exacerbated in others (e.g., LLMs refuse to share
diverse opinions). As LLMs are increasingly used in high-impact settings such as
education and web search, careful maintenance of LLM output diversity is essen-
tial to ensure a variety of facts and perspectives are preserved over time. We exper-
imentally demonstrate the prevalence of generative monoculture through analysis
of book review and code generation tasks, and find that simple countermeasures
such as altering sampling or prompting strategies are insufficient to mitigate the
behavior. Moreover, our results suggest that the root causes of generative mono-
culture are likely embedded within the LLM’s alignment processes, suggesting a
need for developing fine-tuning paradigms that preserve or promote diversity.

1 INTRODUCTION

Figure 1: (Left) Comparison of the range of average-
per-book sentiment scores for book reviews generated
by an LLM (gen) and by human reviewers from the
Goodreads dataset (src). Note the generated reviews
have a much smaller range, as they are overwhelmingly
positive. Model: Llama-2-chat. (Right) The spec-
trum of the mean pairwise Jaccard similarity among the
algorithms of coding solutions. Note the generated code
covers a narrower range of algorithms. Model: GPT-4

Large language models (LLMs) show promise
due to their emergent abilities (Wei et al.,
2022a) and state-of-the-art performance on sev-
eral NLP tasks (Bommasani et al., 2023). How-
ever, concerns have been raised about the in-
creasing reliance on LLM-based systems with
insufficient testing, and how they impact soci-
ety (Anwar et al., 2024; Wang et al., 2023). Re-
cent evidence has shown that LLMs have dan-
gerous tendencies: they convincingly return in-
correct information (Dahl et al., 2024; Li et al.,
2023a; Zhang et al., 2023), produce toxic lan-
guage (Abid et al., 2021; Wen et al., 2023), and
can effectively propagate misinformation (Bar-
man et al., 2024; Sun et al., 2024).

In this paper, we focus on a different concern:
that for a given prompt and task, LLMs do not faithfully represent the diversity of potential responses
available in their training data. We call this behavior generative monoculture: given some task (e.g.,
generating book reviews) and a data attribute (e.g. sentiment), generative monoculture refers to the
narrowing of the probability distribution of the considered attribute from source data (i.e., available
human-written book reviews as part of the training data) to the generated data (i.e., LLM-generated
book reviews).

As a preview, for book reviews (Fig. 1(Left)), we compare the diversity in sentiment of Goodreads
reviews (Wan et al., 2019) (i.e., src)—very likely a portion of LLM training data (Achiam et al.,
2023)—with LLM-generated reviews (i.e., gen). The range of mean sentiment scores per book
across gen book reviews is much narrower than that in the src: in the experiment pictured, the
average sentiment score for gen reviews are mostly over 0.85, whereas the the average sentiment

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

score for src reviews over the same books have a wider range from zero to one. For the code
generation task (Fig. 1(Right)), the range of algorithms employed in (correct) solutions to a given
coding problem (i.e., gen) was much less varied than a sample of human answers (src) available
on the web (Li et al., 2022): we show this through the range of Jaccard similarity of the algorithms
employed in sets of human-written (src) and LLM-generated (gen) responses to a coding prompt.

Through the rapid adoption of LLMs such as ChatGPT, CoPilot, and Devin across education, code
generation, and day-to-day information gathering, generative monoculture can harm society through
loss of information, creativity, and intellectual diversity. For example, students asking LLMs ques-
tions about class material to get help researching for an essay may have their opinions formed with-
out exposure to a sufficiently wide subset of available information; this will allow for certain opin-
ions to die out over time. Concretely, a reduction in diversity of sentiment displayed above may
lead to the loss of arguments from negative opinions on controversial books, potentially crucial for
historical or literary context or a nuanced understanding of a book’s contributions.

Generative monoculture could even lead to security threats, depending on the application: soft-
ware engineers across the globe relying on ChatGPT and CoPilot receiving similar code generations
which do not reflect the true diversity of methods to solve a given problem may lead to similar code
vulnerabilities across several large tech companies. Indeed, as we preview in Fig. 1 and show in
detail in § 5, LLM output exhibits are less diverse than human-written solutions in the training data
(e.g., by employing a narrower array of algorithms), which could lead to similarity across a wide
range of code bases, leading in turn to repeated vulnerabilities (Perry et al., 2023; Pearce et al.,
2022). However, in this case, LLM outputs not reflecting the full diversity of available coding ex-
amples can be positive: LLM outputs over-represent correct and efficient solutions. We present a
nuanced picture of generative monoculture: while it can highlight the optimal portion of human-
written data for some attributes, its pervasiveness across generation tasks and attributes may cause
harm without careful intervention.

In this paper, we (1) define the concept of generative monoculture, and compare it to prior work
around related topics (§ 2 and 7); (2) introduce a paradigm for measuring generative monoculture
in LLMs (§ 3); (3) show experimental evidence for the prevalence of generative monoculture across
a variety of application areas (book reviews and code) and (open-source and proprietary) LLMs,
and provide some evidence for what may exacerbate generative monoculture, such as alignment
tuning (Ouyang et al., 2022), (§ 5 and 6); and (4) show the (in)efficacy of several methods to abate
generative monoculture: changing temperature, sampling, and prompting techniques (§ 5 and 6).

2 DEFINING GENERATIVE MONOCULTURE

We broadly characterize generative monoculture as a distribution shift from source data (i.e., human-
written training data) to model generated data (i.e., model outputs) for a specific task, such as gen-
erating reviews for books or solutions to coding problems. This can be formalized using measures
of statistical dispersion applied to various task-specific attributes.

Definition 1 (Generative Monoculture). For a given task, let Psrc denote the probability distri-
bution of the source data, Pgen denote the probability distribution of the LLM-generated data, h
denote a function extracting attributes from data (such as sentiment, or algorithms used in code),
and Dispersion(·) denote a dispersion metric (e.g., entropy). Then we define generative monocul-
ture as the condition where Pgen is statistically narrower than Psrc, namely: Dispersion(h(x)|x →
Pgen) < Dispersion(h(x)|x → Psrc).

Note, Psrc/ Pgen can be the distribution of human-written/model-generated responses, for a given
task, conditioned on one specific given prompt (which we refer to as the conditional distribution),
or the distribution of human-written/model-generated responses for any possible prompt in a con-
sidered domain (which we call the unconditional distribution).

This phenomenon signifies a shift towards less varied outputs. We emphasize that the investigation
of generative monoculture is intrinsically task-dependent, as the attributes of interest differ across
tasks. In addition, as we often do not have access to the source distribution in practice, we approxi-
mate it using a source dataset (Dsrc), comprised of a subset of the training data of the LLMs. Simi-
larly, we approximate the generated distribution through a dataset generated by the model (Dgen).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Generative Monoculture, Human Preference, and Alignment: Generative monoculture can
cause LLMs to over-emphasize human-preferred areas of a distribution for a certain data attribute;
this is often desired behavior. For example, as we demonstrate in § 6, generative monoculture can
result in having a narrower distribution of code correctness or efficiency biased towards correct,
fast, and low-memory code. We conjecture this is a consequence of alignment procedures such as
reinforcement learning with human feedback (RLHF) Ouyang et al. (2022).

However, when a tendency stemming from human preference bleeds beyond its intended use—e.g.,
a preference for positive sentiment affecting outputs that need or should not be positive—these
seemingly advantageous behaviors can prevent an equally important goal: maintaining diversity of
opinion and expression. Further, along data attributes which do not have a clear “preferred area” of
the distribution, generative monoculture can limit the scope of methods, topics, or ideas expressed.

3 MEASURING GENERATIVE MONOCULTURE

We outline a general approach to measuring generative monoculture in LLMs. In particular, follow-
ing Definition 1, we outline steps to construct Dsrc and Dgen and compare their diversity through
extracting data attributes and calculating dispersion metrics. We illustrate our approach in Fig. 2.

3.1 DATA CURATION

For a given task, we aim to create a source dataset that is likely to have been used in training the
LLM we wish to investigate. Training data for most LLMs is a closely guarded secret. While recent
work (Oren et al., 2023) describes how dataset contamination can be determined, such approaches
are (a) riddled with false positives, and (b) computationally expensive. Thus, we often take an
educated guess (based on dataset popularity and ease of use) in ascertaining if a given dataset is a
likely training dataset candidate.

Formally, we define the source dataset as Dsrc = {qi,srci}i→[N] where (a) qi is a problem
instance within a task (e.g., name of a book for which a review has to be written), and (b)
srci = {srcj

i}j→[ni] is a set of ni human-written answers to the given prompt qi (e.g., a set
of ni of book reviews for that particular book). In practice, we utilize existing datasets likely to be
used during LLM training, and perform filtering and sub-sampling to obtain our Dsrc.

To create the model-generated dataset Dgen, for each sample qi, we prompt the LLM (M) we
wish to evaluate, mi times to generate a set of responses, geni = {genj

i}j→[mi]. Here, genj
i ↑

Mj(Ptask(qi),kwargs) is the response obtained in the j-th call of M, where (a) Ptask denotes the
task-specific formatting prompt that wraps the sample qi, and (b) kwargs denotes the generation
keyword arguments (e.g., temperature) that specify the sampling strategy. Across both Dsrc and
Dgen, we select or generate a large enough number of responses per qi to ensure variety.

Figure 2: An overview of the procedure.

3.2 ATTRIBUTE EXTRACTION

For a given task, we identify and compile a list of attributes that are of interest from the perspective of
preserving diversity. This is a subjective task, but we focus on metrics which target understanding the
content of LLM output (e.g., book review sentiment and topic; code time complexity and algorithms
used), as opposed to more general metrics of output language quality such as saliency, fluency and
coherence. More importantly, we need to ensure that extraction functions are efficient, accurate, and

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

reproducible—we outline our tests to ensure these qualities in § 5 and the Appendices B and D. For
example, care must be taken to use LLMs for attribute extraction, as they are known to be biased
towards their own responses (Xu et al., 2024). For a given attribute A, extraction function hA takes
a string tgt to obtain the attribute value hA(tgt). Note that tgt can either be srcj

i or genj
i .

The extracted attribute can either be a continuous/categorical variable or of other more complicated
types, depending on the nature of the attribute.

3.3 METRIC CALCULATION

As the last step, we compute metrics on the extracted attributes. Given a set of responses, dispersion
metrics aim to capture their breadth or coverage of these attributes. We describe those used in this
paper below and in Fig. 3.

Dispersion Metrics. We introduce dispersion metrics suited to different data types.

A. Distribution of the mean. For ordinal or continuous attributes, we calculate the mean over the
conditional distribution—that is, we calculate the metrics over each srci or geni (e.g. reviews for
a given book), and show the distribution of this mean over all qi for a certain task (e.g. over all
books). While the mean itself does not directly measure dispersion, the distribution of the mean
values sheds light on dispersion: concentrated mean values indicates a smaller dispersion of the
data. The advantage is that it not only describes dispersion, but also the qualitative tendency of the
attribute (e.g. bias towards positive/negative sentiment), which cannot be captured otherwise.

B. Entropy and standard deviation. For categorical attributes, we measure dispersion using entropy
over the conditional distribution. For continuous attributes, we use standard deviation over the con-
ditional distribution to quantify the dispersion of values around the mean, providing the variability.

C. Mean pairwise similarity. For attributes that are not easily characterized as categorical or contin-
uous, we adopt specific similarity metrics catered to the data type. We then calculate the pairwise
similarity values for the conditional distribution—i.e. calculate the mean similarity value for all the
pairs of elements within each srci/geni, then show the distribution for all N samples. We use:

1. Mean pairwise Jaccard index: Given two sets of categorical variables A and B, the Jaccard index,
J(A,B) = |A↑B|/|A↓B|, measures similarity between them. An example of such a set could be a
set of several algorithms inferred from a piece of code. A higher mean Jaccard index indicates a
higher overall similarity between the set, and consequently, lower dispersion.

2. Mean pairwise cosine similarity: Given two multi-dimensional embeddings e1 and e2 obtained
via a sentence embedder (Reimers & Gurevych, 2019), we calculate their similarity via cosine
similarity, i.e., SC(e1, e2) = ↔e1,e2↗/↘e1↘↘e2↘. A higher mean cosine similarity indicates a higher
similarity and lower dispersion.

3. Mean pairwise fingerprint similarity: For tasks related to coding or computer programs, sim-
ilarity is based on the overlap of selected hash values (or fingerprints) generated by Winnow-
ing (Schleimer et al., 2003). We adopt an existing open-source tool COPYDETECT (Lingenfel-
ter), which takes in a set of programs and returns the pairwise similarity scores for all programs in
the set. We then calculate the mean value of these pairwise similarity scores as an indicator of the
similarity for the set of programs. A higher mean fingerprint similarity indicateshigher structural
and syntactical similarity of the code.

In addition to the dispersion metrics, we consider one other approach—visualizing the top modes of
unconditional distributions for certain attributes, e.g., topics. This helps identify areas of emphasis
in src and gen distributions, as well as the tendency of change across distributions.

4 MITIGATING GENERATIVE MONOCULTURE

To attempt to mitigate generative monoculture, we test four methods known to increase LLM output
diversity: increasing the temperature T , top-p parameter, setting a temperature decay, and changing
prompts. More details are in Appendices A and C.6.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Temperature T . This determines the dispersion of the probability distribution over the next token:
increasing the temperature leads to a more flat probability distribution and increases the likelihood
of sampling from less probable tokens, resulting in more diverse generations.

Top-p. This controls the randomness of the generations by limiting the range of tokens considered.
Specifically, it considers the smallest subset (consisting of the top probability tokens) whose cumu-
lative probability exceeds the threshold p. A smaller p encourages the model to sample from a more
focused set of likely tokens.

Decaying Temperature. We choose the starting temperature T = 10.0 and follow a linear schedule
for temperature decay, over the course of 50 time-steps (i.e., from the 1-st output token to the 50-th
output token), with an ending temperature T = 1.2. The method is inspired by Carlini et al. (2021).

Prompts. Tuning the specific content and framing of the prompt can steer the model’s output more
effectively (Brown et al., 2020; Sclar et al., 2023) and significantly impact the diversity of the gener-
ated text. We use “role-playing” or impersonation (Salewski et al., 2024), which instructs the model
to produce the output in the persona of a specific person, and expect it to induce more personalized
and varied responses.

5 EXPERIMENTAL SETUP

In this section, we describe our experimental setup for measuring and mitigating generative mono-
culture for two tasks, namely, generating book reviews and code solutions. We provide details for
datasets, LLMs used, and most notably, the data attributes and metrics considered. We open source
our code at https://github.com/GeMoLLM/GeMO.

5.1 GENERATING BOOK REVIEWS

Data Curation: For Dsrc, we use the Goodreads dataset (Wan et al., 2019), which contains multiple
books with several reviews each. We perform filtering and sampling to ensure reliable attribute
extraction (see Appendix B.1), and craft a final dataset of N = 742 books with English titles, and
↓i, ni = 10 reviews per book such that the review length is between 300 and 700 words.

Attribute Data type Level Metric

Book
review

sentiment categorical C mean, entropy

topic categorical C entropy
U distribution visualization

wording categorical U count, entropy

Coding

correctness categorical C mean
efficiency
(complexity) categorical C entropy

U distribution visualization
efficiency
(runtime) continuous C mean, standard deviation

fingerprint hash values C mean pairwise
fingerprint similarity

code summary
(text) embedding C mean pairwise

cosine similarity
code summary
(categorical) categorical C mean pairwise

Jaccard index

Figure 3: A summary of the scenarios, the attributes
we consider, their data types, and the corresponding
analysis levels as well as metrics. C and U stand for
conditional and unconditional distributions.

To obtain Dgen, we used the following LLMs:
(a) Llama-2-13b (Touvron et al., 2023)
(henceforth referred to as Llama-2), (b)
Llama-2-13b-chat (Touvron et al., 2023)
(henceforth referred to as Llama-2-chat),
(c) Vicuna-13b-v1.5 (Chiang et al., 2023)
(henceforth referred to as Vicuna-13b),
(d) GPT-3.5-turbo-instruct
(0914) (Ouyang et al., 2022) (hence-
forth referred to as GPT-3.5), and (e)
GPT-4-turbo (0125) (Microsoft, 2024;
Achiam et al., 2023) (henceforth referred
to as GPT-4). We performed nucleus
sampling (Holtzman et al., 2019) with var-
ious sampling parameters: (a) temperature
T ↔ {0.5, 0.8, 1.0, 1.2, 1.5}, and (b) top-
p ↔ {0.90, 0.95, 0.98, 1.00}. We also experi-
mented with two candidates for Ptask: prompt
(1) “Write a personalized review
of the book titled {title}:”, and
prompt (2) “Write a book review for the book titled {title} as if you
are {person}:”. Prompt (2) was chosen as LLMs are known to generate more diverse responses
when instantiated with a persona (Salewski et al., 2024). We list the names of the 10 persons we
considered in Appendix B.2. For comprehensiveness, we experimented with three more groups of
prompts and report the results in Appendix C.7. For each combination of LLM, sampling parameter,
and prompt, we independently sampled from the LLM 10 times to generate responses. We filtered
out low-quality (generated) reviews by examining their perplexity (see Appendix C.1). This is to

5

https://github.com/GeMoLLM/GeMO

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

ensure that the data used for analysis represents well-formed and coherent text, thereby improving
the reliability of our findings. Thus, ↓i,mi ↗ 10.

Attribute Extraction: We want attributes that capture both the semantics and syntax of book re-
views, representative of the key thematic and linguistic elements. Most importantly, while these
attributes are not exhaustive, their extraction is reliable and efficient.

1. Sentiment indicates whether a review is positive (praising the book) or negative (criticizing the
book). We employ a fine-tuned sentiment classifier (HuggingFace, b) as the attribute extractor
which accepts text and returns a prediction in {0, 1}. This model has been downloaded → 5.4
million times, and reaches an accuracy of 91.3 % on the dev set of SST-2 (Socher et al., 2013).

2. Topic refers to the themes discussed in a review (Wallach, 2006; Alghamdi & Alfalqi, 2015).
We leverage BERTopic (Grootendorst, 2022) pre-trained on Wikipedia (HuggingFace, a) which
assigns one topic to each review out of a total of →2,000 topics.

3. Word choice captures the lexical diversity in a review. To quantify this, we produce a frequency
table of the unique words (see Appendix B.3), and immediately have the number of unique words.

Metric Calculation: For sentiment, we calculate mean and entropy for the conditional distribution.
For topic, we calculate entropy for the conditional distribution as well as visualize the unconditional
distribution of topics across all reviews, focusing on the top 10 classes. Finally, for word choice, we
calculate count and entropy of the unconditional distribution.

5.2 GENERATING CODE SOLUTIONS

Data Curation: For Dsrc, we chose the CodeContests dataset (Li et al., 2022), a competitive
programming problem dataset where each problem comes with multiple correct and incorrect solu-
tions. We limited the scope to a subset (N = 100) of level-A problems (easy problems) on Code-
forces (CodeForces), and the language of the solutions to python3. More details in Appendix D.1.
For each problem in the subset, we randomly sampled ↓i, ni = 20 correct solutions from all of the
ncorrect
i solutions for that problem.

To obtain Dgen, we use: (a) GPT-4, and (b) Claude-3-Sonnet (Anthropic, 2024). We
did not use open-source LLMs, as these were not able to generate correct solutions for the
problems we chose. More details are in Appendix E.4. We performed nucleus sampling (Holtz-
man et al., 2019) with various sampling parameters: (a) temperature T ↔ {0.5, 1.0}, and
(b) top-p ↔ {0.9, 1.0}. We used only one candidate for Ptask i.e., “Please read the
below problem description and generate a python code to solve
the problem {problem description} Please only generate code and
nothing else.” While we experimented with providing the LLM with a persona i.e., asking
the LLM to pretend to be a “grandmaster in solving competitive programming problems”, the
resulting accuracy was lower (see Appendix E.2). For each combination of LLM, sampling
parameter, and prompt, we produce ↓i,mi ↘ 20 generations such that at least 20 of the generated
solutions were correct (details in Appendix D.2). We instantiated this by keep generating samples
and measuring their correctness, until at some point all problems reached at least 20 correct
solutions; we then stopped. This gave us k = 100 for GPT-4 and k = 200 for Claude-3.

Attribute Extraction: We consider the following attributes which characterize different aspects of
code. We rely on GPT-3.5 for extracting some of the attributes; we manually verified the extracted
attributes and confirmed their quality is high (see Appendix E.3).

1. Correctness refers to whether a piece of code correctly solves the given problem and passes all
the test cases. We measure accuracy as the ratio of correct solutions among all solutions (details
in Appendix D.3), to quantify the quality of human-/model-generated solutions.

2. Efficiency is crucial for scalability (Huang et al., 2024). This is measured through: asymptotic
time/space complexity and runtime efficiency. We prompt GPT-3.5 to infer the big O time and
space complexity (MacNeil et al., 2022), and execute the code on test cases to measure runtime
and memory usage (see Appendix D.4).

3. Fingerprint provides insights into the structural and syntactical uniqueness of each code segment.
As stated in Section 3.3, we use the COPYDETECT tool for this.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

4. Code Summary (textual) explains the functionality of the code. Prior work has demonstrated
the effectiveness of GPT-3.5 in code understanding (Nam et al., 2024). Thus, we use it to pro-
duce text-based summaries, and a description, functionality, algorithm, and data
structure (prompt for this task is in Appendix D.5). To compare the similarity for these text
summaries, we produce their embeddings using the all-MiniLM-L6-v2 model (Hugging-
Face, c).

5. Code Summary (categorical) reflects the techniques employed in the code through categorical
tags, as used on the Codeforces website. We prompt GPT-3.5 to assign tags to a code segment
by providing it a set of tags to choose from (prompt for this task is in Appendix D.5). We obtain
one set per code segment. We similarly prompt GPT-3.5 to choose from a list of algorithms
and data structures.

Metric Calculation: For correctness, we calculate the mean value i.e., accuracy over the con-
ditional distribution. For efficiency (asymptotic complexity), we calculate: (a) entropy for the
conditional distribution, and (b) plot the histogram for the unconditional distribution. For runtime
efficiency, we calculate mean and standard deviation for the conditional distribution. We measure
the following over the conditional distribution: (a) fingerprints, where we calculate the mean
pairwise fingerprint similarity; (b) code summary (textual), where we calculate the mean pairwise
cosine similarity in their embedding space; and (c) code summary (categorical), where we calculate
the mean pairwise Jaccard index.

6 RESULTS AND TAKEAWAYS

(a) Sentiment (varying sampling)

(b) Sentiment (varying prompt)

(c) Sentiment (varying models)

(d) Topic (temperature decay)

D
en

si
ty

Entropy

(e) Topic (unconditional)

Percentage

Figure 4: (a-c) stacked barplots for the mean sentiment scores under varying sampling parameters, prompts,
and models. For these plots, in each bar, darker hues (bottom) represent lower scores while lighter one
(top) denote higher scores. See the legend for the value range of each hue. In subfigure (b), (1) and (2)
refer to the two prompts as introduced in Section 5.1. In subfigure (c), (a-c) refer to Llama-2-chat,
Vicuna-13b, and Llama-2. (d) kernel density estimation (KDE) for the entropy values calculated on
the conditional distribution of the topics. (e) unconditional topic distribution for top-10 topics. For all the
subfigures, we mark the sampling parameters in them; unless marked with (1-2) or (a-c), the results are
obtained on Llama-2-chat under prompt (1). These subfigures show that the model-generated reviews
are overwhelmingly positive and cover a narrower range of the topics per book; moreover, there is distinctive
under- and over-representation of the topics covered overall.

Guide: We present our results on measuring, and attempting to mitigate, generative monoculture
in Fig. 4 and 5. We display results mainly in three formats: (a) stacked bar charts, where different
hues correspond to different value ranges as indicated in the legend; (b) histograms (or grouped bar
charts), to reflect the probability mass of a categorical variable; and (c) kernel density estimation

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

(KDE) plots, to reflect the estimated probability density of a continuous variable. We note that, in
the code results, for all plots except that evaluating accuracy, we restrict to correct solutions.

Takeaway 1: Monoculture Exists and is Severe, Within and Across LLMs. As shown in Fig. 4
and 5, there exists significant narrowing from the source to generation distribution in all attributes
considered for both scenarios, book reviews and coding.

Notably, for book review, proprietary OpenAI LLMs (GPT-3.5 and GPT-4) demonstrate even
more severe monoculture compared with the open-source Llama family LLMs (see Fig. 9 in Ap-
pendix C.5 for more details). Particularly, for both GPT-3.5 and GPT-4, 100% of the samples
have average positivity falling in (0.95,1.00] under prompt (1), and 98.9% and 97.6% under prompt
(2). For coding, similar reductions in diversity can be seen: in Fig. 5(e), we see increased simi-
larity in natural language descriptions of LLM-generated code solutions, and Fig. 5(f) shows the
Jaccard similarity of the generated solutions in terms of the inferred algorithms, with the ma-
jority of problems displaying high similarity across generated solutions. Of particular interest, the
plagiarism scores of the LLM-generated code are extremely high (Fig. 5(b)), compared to the source
solutions which achieve an utterly zero plagiarism score for all the problems. We examine a few
pairs of examples and their plagiarism scores in Appendix E.1.

Takeaway 2: LLMs tend to produce Human-favorable Generations. Our results show that
LLMs tend to over-represent parts of the attribute distribution that are preferred by humans: hu-
mans largely prefer text with positive sentiment (Dodds et al., 2015; Augustine et al., 2011; Boucher
& Osgood, 1969) as well as correct and efficient code, and researchers have specifically infused
these preferences into LLM assistants through preference tuning (e.g. RLHF) (Ouyang et al., 2022;
Bai et al., 2022; Roziere et al., 2023). Fig. 4(a) and Appendix C.5 show that LLMs produce over-
whelmingly positive generations. Fig. 5, as well as Fig. 22 and 23 in the Appendix reveal that
LLM-generated code segments (a) are over 2≃ more accurate than the average human solutions, (b)
enjoy an overall lower asymptotic time and space complexity, and (c) use less runtime and memory
during execution. This may just be the intended consequence of RLHF, which explicitly optimizes
the LLM towards producing human-favored responses in its objective, as guided by a reward model
trained on human preferences.

However, as our results show, this implies a loss of diversity guided by human preferences, which,
if only naively understood and enforced, could lead to unwanted consequences if going unnoticed.
One example of the unintended artifacts is the under- and over-represented topics (Fig. 4(e)); the
topic group 15 which contains keywords “rob” and “kill” etc. is significantly under-represented,
likely a consequence of RLHF alignment tuning.

Takeaway 3: RLHF Hurts Diversity the Most. Llama-2-chat is obtained via performing
RLHF tuning (Ouyang et al., 2022) on the pre-trained (PT) Llama-2. Similarly, Vicuna-13b is
obtained via supervised fine-tuning (SFT) on the PT Llama-2 (Chiang et al., 2023). Comparisons
on these LLMs (see Fig. 4(c), as well as Fig. 8 in Appendix C.4) show that the PT LLM-generated
reviews are much more similar to the source. The PT LLM Llama-2 has 5.9% of samples with av-
erage sentiment values falling in the range of (0.95,1.00], which is much closer to the source percent-
age of 2.8% than 44.7% for Vicuna-13b and 82.1% for Llama-2-chat. Vicuna-13b also
shows better diversity than Llama-2-chat—this is consistent with findings suggesting RLHF
reduces output diversity compared with SFT (albeit with different metrics) (Kirk et al., 2024).

Takeaway 4: Naive Mitigations are Insufficient. Changing the sampling parameter (increasing T
and p) and using a more diversity-inducing prompt (e.g., prompt (2) for book reviews) can reduce
the gap (see Fig. 4(a-b) and Fig. 5). For example, using prompt (2) reduces the percentage of the
most positive range from 82.1% to 58.1% in Fig. 4(b) for T = 1.2, p = 1.0. However, the gap is still
large. More results in Appendix (Figures 13 and 14, and Appendix E) show similar conclusions.

We attempted two other strategies: (a) picking a higher temperature, and (b) leveraging a decaying
temperature scheme (see § 4). Results in Appendix C.2 show that the gap still remains big even
at such high randomness. Furthermore, for larger T , we notice a significant degradation of the
generation quality as a result of the increased randomness. In Table 1, we present the average fraction
of valid generations for Llama-2-chat and Vicuna-13b under various sampling parameters.
The table shows that the valid number of generations rapidly drops as the randomness increases,
particularly at T = 1.5; the implication is that such a high randomness setting cannot be adopted for
practical use.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

(a) Accuracy

(b) Plagiarism score

Pe
rc

en
ta

ge

Mean Pairwise Similarity

(c) Time complexity (unconditional)

Percentage
(d) Time complexity (conditional)

Pe
rc

en
ta

ge

Entropy

(e) Description

D
en

si
ty

Mean Pairwise Similarity
(f) Algorithms

Figure 5: (Left) (a) stacked barplot for accuracy and (b) probability mass along with KDE for plagiarism
scores. (Middle) Time complexity: (c) histogram of the (unconditional) distribution of the asymptotic com-
plexity and (d) probability mass for the (conditional) distribution of entropy values. (Right) Selected code
summary: (e) KDE plot for the mean pairwise cosine similarity scores for “description” as natural language
and (f) stacked barplot for the mean pairwise Jaccard scores for “algorithms” as categorical values. Overall, the
model-generated solutions are more accurate and efficient, display higher description similarity to each other,
and cover a narrower span of algorithms. (More results in Appendix E.5.)

Table 1: The average fraction of valid generations (out of a total of 10) for two models under various
sampling parameters (temperature, top-p, and prompt–denoted (1) and (2)). We regard a “valid” generation as
text of perplexity value → 20—as a support, we present high perplexity samples in Appendix C.1. We observe
that the number drops as the randomness increases (along the increase of both T and top-p values). As a
reference, GPT-4 achieves an average ratio of 1.000 at T = 1.2 and p = 1.0.

LLama-2
-13b-chat

p = 0.90 p = 0.95 p = 0.98 p = 1.00

(1) (2) (1) (2) (1) (2) (1) (2)

T = 0.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
T = 1.0 1.000 1.000 0.999 1.000 0.999 1.000 0.998 0.999
T = 1.5 0.994 0.988 0.930 0.883 0.743 0.649 0.512 0.394

Vicuna
-13b

p = 0.90 p = 0.95 p = 0.98 p = 1.00

(1) (2) (1) (2) (1) (2) (1) (2)

T = 0.5 0.987 0.992 0.987 0.990 0.984 0.989 0.984 0.988
T = 1.0 0.961 0.962 0.951 0.958 0.942 0.953 0.935 0.947
T = 1.5 0.871 0.903 0.835 0.876 0.766 0.840 0.680 0.767

Though prior work showed promise for decaying temperature to encourage diversity while main-
taining quality (Carlini et al., 2021), this too failed to achieve higher diversity (see Fig. 4(d) and Ap-
pendix C.6).

7 RELATED WORK

Diversity and LLMs. Santurkar et al. (2023) demonstrate that LLMs do not give representative
opinions to polling questions when compared to the general U.S. population. Our work focuses on
the narrowing of diversity in LLM output from its human-written training data—while Santukar et
al. demonstrate a narrowing in diversity from actual human survey respondents (and not training
data). Additionally, our work proposes a general framework for measuring monoculture. Padmaku-
mar & He (2023) demonstrate that using LLM assistance can lead to reduced diversity in human-
written argumentative essays when compared to essays written without LLM assistance. While
they mention that this is partially because the models themselves do not produce diverse output,
they do not focus on the narrowing of diversity from LLM training data to LLM-generated data.
Finally, Zhang et al. (2024) propose an approach to fine-tune LLMs to output desired target distri-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

butions, and Sorensen et al. (2024) outline an alignment framework to emphasize pluralism to work
towards creating models which express a variety of opinions and perspectives. While these are cer-
tainly related to our work, generative monoculture as a phenomenon extends beyond differences in
opinion, and expresses the narrowing of any number of task-specific attributes, from code correct-
ness to topics covered to many others. One common thread across many of these works, which our
work adds to, is that current alignment practices—namely RLHF— harms output diversity.

Other Notions of Monoculture. Our notion of generative monoculture relates to, but differs from,
other notions of monoculture in the AI literature. For example, algorithmic monoculture (Kleinberg
& Raghavan, 2021) and outcome homogeneity (Bommasani et al., 2022) describe the societal state
where many decision-making actors rely on the same underlying algorithms to generate (classifica-
tion or ranking) predictions, from the perspective of decision-making actors and individuals subject
to those decisions respectively. These works show that algorithmic monoculture is sub-optimal for
both decision-making actors (due to correlated failures across models) and for those subject to model
decisions, as repeated outcomes across models leave little room for algorithmic recourse. In contrast,
generative monoculture focuses on documenting the phenomenon of individual LLMs narrowing the
diversity of their output in relation to their source data—for example, only returning positive book
reviews about a controversial book. We do, however, document in this work that generative mono-
culture exists to similar extents and in similar directions across a variety of available LLMs, (e.g.,
Llama, Vicuna, ChatGPT-4) leaving open the possibility of concerns brought up by Kleinberg &
Raghavan (2021), but in a generative context.

Connections to Model Collapse: We evaluate models trained on human-curated data, whereas
model collapse evaluates models trained iteratively on synthetic data (either fully, or mixed with
human data). In settings of model collapse where the model is trained only on synthetic data (Shu-
mailov et al., 2023; Taori & Hashimoto, 2023), it is understandable that the generation quality is
low. In contrast, our work shows that the generation quality is good (e.g., model generates correct
coding solutions), but the “diversity” in generations is low. Unlike model collapse which converges
to the mean of the distribution (Shumailov et al., 2023), our observation is there’s an emphasis on a
specific part of the distribution which is not necessarily the mean. In this way, the work is tangen-
tially related to collapse, but is not a special case of it (as the collapse phenomenon necessitates the
distribution to match the mean with many rounds).

8 CONCLUSION AND LIMITATIONS

In this work, we introduce the concept of generative monoculture, a phenomenon where LLMs nar-
row the diversity of their output relative to their source data for a given task. We experimentally
demonstrate its prevalence across text and code generation tasks, and show the difficulty in miti-
gating the behavior. Our work has limitations: first, we did not analyze the full training set of the
LLMs we study due to time and compute restrictions, as the corpora are large and often proprietary.
Further, as we note in § 3, measuring monoculture is difficult as selecting attributes is subjective,
and the attribute extraction process is sensitive to the reliability of extraction techniques. (We ver-
ify our own attribute extraction techniques in the appendix). Further, while generative monoculture
itself can have unfair consequences by enforcing the suppression of minority opinions, mitigating
monoculture without extreme care could lead to the proliferation of harmful ideas or even toxicity by
allowing for representation of the entire distribution of source text. We look forward to future work
mitigating monoculture while maintaining low levels of toxicity and other dangerous behavior.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Abubakar Abid, Maheen Farooqi, and James Zou. Persistent anti-muslim bias in large language
models. In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, pp. 298–
306, 2021.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Rubayyi Alghamdi and Khalid Alfalqi. A survey of topic modeling in text mining. Int. J. Adv.
Comput. Sci. Appl.(IJACSA), 6(1), 2015.

Anthropic. Claude-3 language model. https://www.anthropic.com/, 2024. Accessed:
2024-04-08.

Usman Anwar, Abulhair Saparov, Javier Rando, Daniel Paleka, Miles Turpin, Peter Hase,
Ekdeep Singh Lubana, Erik Jenner, Stephen Casper, Oliver Sourbut, et al. Foundational
challenges in assuring alignment and safety of large language models. arXiv preprint
arXiv:2404.09932, 2024.

Adam A Augustine, Matthias R Mehl, and Randy J Larsen. A positivity bias in written and spo-
ken english and its moderation by personality and gender. Social Psychological and Personality
Science, 2(5):508–515, 2011.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

Dipto Barman, Ziyi Guo, and Owen Conlan. The dark side of language models: Exploring the
potential of llms in multimedia disinformation generation and dissemination. Machine Learning
with Applications, pp. 100545, 2024.

Steven Bird and Edward Loper. NLTK: The natural language toolkit. In Proceedings of the ACL
Interactive Poster and Demonstration Sessions, pp. 214–217, Barcelona, Spain, July 2004. Asso-
ciation for Computational Linguistics. URL https://aclanthology.org/P04-3031.

Rishi Bommasani, Kathleen A Creel, Ananya Kumar, Dan Jurafsky, and Percy S Liang. Picking on
the same person: Does algorithmic monoculture lead to outcome homogenization? Advances in
Neural Information Processing Systems, 35:3663–3678, 2022.

Rishi Bommasani, Percy Liang, and Tony Lee. Holistic evaluation of language models. Annals of
the New York Academy of Sciences, 1525(1):140–146, 2023.

Jerry Boucher and Charles E Osgood. The pollyanna hypothesis. Journal of verbal learning and
verbal behavior, 8(1):1–8, 1969.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data
from large language models. In 30th USENIX Security Symposium (USENIX Security 21), pp.
2633–2650, 2021.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

CodeForces. Codeforces. URL https://codeforces.com/. Accessed: 2024-03-20 at
https://codeforces.com/.

11

https://www.anthropic.com/
https://aclanthology.org/P04-3031
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://codeforces.com/
https://codeforces.com/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

OpenAI Community. Web chat default temperature for gpt-3.5 and 4. https://community.
openai.com/t/web-chat-default-temperature-for-gpt-3-5-and-4/
167356/5, 2023. accessed: 2024-04-08.

Matthew Dahl, Varun Magesh, Mirac Suzgun, and Daniel E. Ho. Hal-
lucinating law: Legal mistakes with large language models are per-
vasive, Jan 2024. URL https://hai.stanford.edu/news/
hallucinating-law-legal-mistakes-large-language-models-are-pervasive.

Peter Sheridan Dodds, Eric M Clark, Suma Desu, Morgan R Frank, Andrew J Reagan, Jake Ryland
Williams, Lewis Mitchell, Kameron Decker Harris, Isabel M Kloumann, James P Bagrow, et al.
Human language reveals a universal positivity bias. Proceedings of the national academy of
sciences, 112(8):2389–2394, 2015.

Maarten Grootendorst. Bertopic: Neural topic modeling with a class-based tf-idf procedure. arXiv
preprint arXiv:2203.05794, 2022.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. arXiv preprint arXiv:1904.09751, 2019.

Dong Huang, Jie M Zhang, Yuhao Qing, and Heming Cui. Effibench: Benchmarking the efficiency
of automatically generated code. arXiv preprint arXiv:2402.02037, 2024.

HuggingFace. Maartengr/bertopic wikipedia, a. URL https://huggingface.
co/MaartenGr/BERTopic_Wikipedia. Accessed: 2024-03-20 at https:
//huggingface.co/MaartenGr/BERTopic_Wikipedia.

HuggingFace. distilbert/distilbert-base-uncased-finetuned-sst-2-
english, b. URL https://huggingface.co/distilbert/
distilbert-base-uncased-finetuned-sst-2-english. Ac-
cessed: 2024-03-20 at https://huggingface.co/distilbert/
distilbert-base-uncased-finetuned-sst-2-english.

HuggingFace. sentence-transformers/all-minilm-l6-v2, c. URL https://huggingface.co/
sentence-transformers/all-MiniLM-L6-v2. Accessed: 2024-03-20 at https://
huggingface.co/sentence-transformers/all-MiniLM-L6-v2.

Michael Kerrisk. time(1) — linux manual page, 2023. URL https://man7.org/linux/
man-pages/man1/time.1.html.

Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis, Jelena Luketina, Eric Hambro, Edward
Grefenstette, and Roberta Raileanu. Understanding the effects of RLHF on LLM generalisation
and diversity. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=PXD3FAVHJT.

Jon Kleinberg and Manish Raghavan. Algorithmic monoculture and social welfare. Proceedings of
the National Academy of Sciences, 118(22):e2018340118, 2021.

Junyi Li, Xiaoxue Cheng, Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen. HaluEval: A large-scale hal-
lucination evaluation benchmark for large language models. In Houda Bouamor, Juan Pino, and
Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 6449–6464, Singapore, December 2023a. Association for Computational
Linguistics. doi: 10.18653/v1/2023.emnlp-main.397. URL https://aclanthology.org/
2023.emnlp-main.397.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023b.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven

12

https://community.openai.com/t/web-chat-default-temperature-for-gpt-3-5-and-4/167356/5
https://community.openai.com/t/web-chat-default-temperature-for-gpt-3-5-and-4/167356/5
https://community.openai.com/t/web-chat-default-temperature-for-gpt-3-5-and-4/167356/5
https://hai.stanford.edu/news/hallucinating-law-legal-mistakes-large-language-models-are-pervasive
https://hai.stanford.edu/news/hallucinating-law-legal-mistakes-large-language-models-are-pervasive
https://huggingface.co/MaartenGr/BERTopic_Wikipedia
https://huggingface.co/MaartenGr/BERTopic_Wikipedia
https://huggingface.co/MaartenGr/BERTopic_Wikipedia
https://huggingface.co/MaartenGr/BERTopic_Wikipedia
https://huggingface.co/distilbert/distilbert-base-uncased-finetuned-sst-2-english
https://huggingface.co/distilbert/distilbert-base-uncased-finetuned-sst-2-english
https://huggingface.co/distilbert/distilbert-base-uncased-finetuned-sst-2-english
https://huggingface.co/distilbert/distilbert-base-uncased-finetuned-sst-2-english
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://man7.org/linux/man-pages/man1/time.1.html
https://man7.org/linux/man-pages/man1/time.1.html
https://openreview.net/forum?id=PXD3FAVHJT
https://aclanthology.org/2023.emnlp-main.397
https://aclanthology.org/2023.emnlp-main.397

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson, Push-
meet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code
generation with alphacode. Science, 378(6624):1092–1097, 2022. doi: 10.1126/science.abq1158.
URL https://www.science.org/doi/abs/10.1126/science.abq1158.

Bryson Lingenfelter. blingenf/copydetect: Code plagiarism detection tool. URL https://
github.com/blingenf/copydetect. Accessed: 2024-03-20 at https://github.
com/blingenf/copydetect.

Stephen MacNeil, Andrew Tran, Dan Mogil, Seth Bernstein, Erin Ross, and Ziheng Huang. Gener-
ating diverse code explanations using the gpt-3 large language model. In Proceedings of the 2022
ACM Conference on International Computing Education Research-Volume 2, pp. 37–39, 2022.

Microsoft. Openai models - azure openai service. https://learn.microsoft.com/
en-us/azure/ai-services/openai/concepts/models, 2024. accessed: 2024-04-
08.

Daye Nam, Andrew Macvean, Vincent Hellendoorn, Bogdan Vasilescu, and Brad Myers. Using
an llm to help with code understanding. In 2024 IEEE/ACM 46th International Conference on
Software Engineering (ICSE), pp. 881–881. IEEE Computer Society, 2024.

OpenAI. Chat completions - openai api. https://platform.openai.com/docs/
api-reference/chat/create, 2024. accessed: 2024-04-08.

Yonatan Oren, Nicole Meister, Niladri Chatterji, Faisal Ladhak, and Tatsunori B Hashimoto. Proving
test set contamination in black box language models. arXiv preprint arXiv:2310.17623, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Vishakh Padmakumar and He He. Does writing with language models reduce content diversity?
arXiv preprint arXiv:2309.05196, 2023.

Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and Ramesh Karri.
Asleep at the keyboard? assessing the security of github copilot’s code contributions. In 2022
IEEE Symposium on Security and Privacy (SP), pp. 754–768. IEEE, 2022.

Neil Perry, Megha Srivastava, Deepak Kumar, and Dan Boneh. Do users write more insecure code
with ai assistants? In Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security, pp. 2785–2799, 2023.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 11 2019. URL https://arxiv.
org/abs/1908.10084.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

Leonard Salewski, Stephan Alaniz, Isabel Rio-Torto, Eric Schulz, and Zeynep Akata. In-context im-
personation reveals large language models’ strengths and biases. Advances in Neural Information
Processing Systems, 36, 2024.

Shibani Santurkar, Esin Durmus, Faisal Ladhak, Cinoo Lee, Percy Liang, and Tatsunori Hashimoto.
Whose opinions do language models reflect? arXiv preprint arXiv:2303.17548, 2023.

Saul Schleimer, Daniel S Wilkerson, and Alex Aiken. Winnowing: local algorithms for document
fingerprinting. In Proceedings of the 2003 ACM SIGMOD international conference on Manage-
ment of data, pp. 76–85, 2003.

13

https://www.science.org/doi/abs/10.1126/science.abq1158
https://github.com/blingenf/copydetect
https://github.com/blingenf/copydetect
https://github.com/blingenf/copydetect
https://github.com/blingenf/copydetect
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models
https://platform.openai.com/docs/api-reference/chat/create
https://platform.openai.com/docs/api-reference/chat/create
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane Suhr. Quantifying language models’ sen-
sitivity to spurious features in prompt design or: How i learned to start worrying about prompt
formatting. arXiv preprint arXiv:2310.11324, 2023.

Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Yarin Gal, Nicolas Papernot, and Ross Anderson.
The curse of recursion: Training on generated data makes models forget, 2023.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language pro-
cessing, pp. 1631–1642, 2013.

Taylor Sorensen, Jared Moore, Jillian Fisher, Mitchell Gordon, Niloofar Mireshghallah, Christo-
pher Michael Rytting, Andre Ye, Liwei Jiang, Ximing Lu, Nouha Dziri, et al. A roadmap to
pluralistic alignment. arXiv preprint arXiv:2402.05070, 2024.

Yanshen Sun, Jianfeng He, Limeng Cui, Shuo Lei, and Chang-Tien Lu. Exploring the deceptive
power of llm-generated fake news: A study of real-world detection challenges. arXiv preprint
arXiv:2403.18249, 2024.

Rohan Taori and Tatsunori Hashimoto. Data feedback loops: Model-driven amplification of dataset
biases. In International Conference on Machine Learning, pp. 33883–33920. PMLR, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Hanna M Wallach. Topic modeling: beyond bag-of-words. In Proceedings of the 23rd international
conference on Machine learning, pp. 977–984, 2006.

Mengting Wan, Rishabh Misra, Ndapa Nakashole, and Julian J. McAuley. Fine-grained spoiler
detection from large-scale review corpora. In Anna Korhonen, David R. Traum, and Lluı́s
Màrquez (eds.), Proceedings of the 57th Conference of the Association for Computational Lin-
guistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pp. 2605–
2610. Association for Computational Linguistics, 2019. doi: 10.18653/V1/P19-1248. URL
https://doi.org/10.18653/v1/p19-1248.

Boxin Wang, Weixin Chen, Hengzhi Pei, Chulin Xie, Mintong Kang, Chenhui Zhang, Chejian Xu,
Zidi Xiong, Ritik Dutta, Rylan Schaeffer, et al. Decodingtrust: A comprehensive assessment of
trustworthiness in gpt models. arXiv preprint arXiv:2306.11698, 2023.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language
models. arXiv preprint arXiv:2206.07682, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022b.

Jiaxin Wen, Pei Ke, Hao Sun, Zhexin Zhang, Chengfei Li, Jinfeng Bai, and Minlie Huang. Un-
veiling the implicit toxicity in large language models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pp. 1322–1338, 2023.

Wenda Xu, Guanglei Zhu, Xuandong Zhao, Liangming Pan, Lei Li, and William Yang Wang. Perils
of self-feedback: Self-bias amplifies in large language models. arXiv preprint arXiv:2402.11436,
2024.

Yiming Zhang, Avi Schwarzschild, Nicholas Carlini, Zico Kolter, and Daphne Ippolito. Forcing
diffuse distributions out of language models. arXiv preprint arXiv:2404.10859, 2024.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting Huang, Enbo Zhao,
Yu Zhang, Yulong Chen, et al. Siren’s song in the ai ocean: a survey on hallucination in large
language models. arXiv preprint arXiv:2309.01219, 2023.

14

https://doi.org/10.18653/v1/p19-1248

	Introduction
	Defining Generative Monoculture
	Measuring Generative Monoculture
	Data Curation
	Attribute Extraction
	Metric Calculation

	Mitigating Generative Monoculture
	Experimental Setup
	Generating Book Reviews
	Generating Code Solutions

	Results and Takeaways
	Related Work
	Conclusion and Limitations
	Sampling Parameters
	Additional Details: Book Reviews
	Construction of the Source Dataset
	Names of the Celebrities Used in Prompt 2
	Text Processing for Analyzing Wording Choice

	Additional Results: Book Reviews
	Filtered-out Reviews
	Generation Results at Higher Randomness
	Topic Shifts
	Pre-trained Model
	Results of OpenAI models
	Mitigation via temperature decay
	Evaluation on Additional Prompts
	More Results

	Additional Details: Coding
	Restriction to Level-A Problems
	Correctness Testing: Autojudge with Testcases
	Measuring Accuracy
	Measuring Runtime Efficiency
	Prompting GPT-3.5 to Generate Code Summary (both Text Descriptions and Categorical Values)

	Additional Results: Coding
	Examples for Plagiarism Scores
	Attempts on Varying Prompts
	Human annotations for the quality of LLM summary
	Failure results with open-source models
	A Complete Set of Results for the Experiments on GPT-4
	Claude

	Additional Details for Experiments
	Compute
	Licenses

	Influence of Model Size on Monoculture
	Influence of Length on Sentiment Scores
	More Training Data Control & Connections to Monoculture

