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a b s t r a c t

In order to convert a finite element mesh model to the spline representation for the purpose of
isogeometric analysis, one needs to parameterize the solid. This work introduces a novel volumetric
parameterization method, which guarantees to be free of volume distortion.

Given a simply connected tetrahedral mesh with a single boundary surface, we first compute a
harmonic map from the boundary triangle mesh to the unit sphere by non-linear heat diffusion method;
then we use the surface harmonic map as the boundary condition to compute the volumetric harmonic
map to parameterize the solid onto the unit solid ball; finally we compute an optimalmass transportation
map from the unit solid ball with the push-forward volume element induced by the harmonic map onto
itself with the Euclidean volume element. The composition of the volumetric harmonic map and the
optimal mass transportation map gives an volume-preserving parameterization.

The method has solid theoretic foundation, and is based on conventional algorithms in computational
geometry, easy to implement. We have thoroughly tested our algorithm on many solid models in reality.
The experimental results demonstrate the efficiency and efficacy of the proposed method. To the best of
our knowledge, it is the first work addressing volume-preserving parameterization in the literature.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Recent years have witnessed the rapid development of the
methodology of isogeometric analysis [1,2]. In Computer AidedDe-
sign (CAD) field, the geometric shapes are represented as Spline
surfaces/solids. In Computer Aided Engineering (CAE) field, the
isoparametric philosophy represents the solution space for depen-
dent variables in terms of the same functions which represent the
geometry. In reverse engineering field [3], shapes in real life are of-
ten acquired by 3D scanning technologies and represented as point
clouds. The point cloud is triangulated to generate the boundary
surface, the tetrahedron mesh is generated to tessellate the inte-
rior using automatic meshing generation tools, such as Tetgen [4].
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In order to apply isogeometric analysis method, the solid needs to
be parameterized and fit by volumetric Splines.

Volumetric mesh parameterization refers to the process of
mapping a tetrahedral mesh onto a canonical domain in three di-
mensional Euclidean space R3. The parameterization unavoidably
introduces geometric distortions. Geometric distortions can be
classified into two categories: angle distortion and volume dis-
tortion. A parameterization preserves both angle and volume el-
ement must be isometric, hence preserves curvatures. In general,
isometric parameterization doesn’t exist between the input vol-
ume and the Euclidean domain, therefore people pursue either
angle-preserving parameterization or volume-preserving param-
eterization.

Volumetric angle-preserving parameterization can be approxi-
mated by volumetric harmonic mapping. Intuitively, the harmonic
energy of amap between two Riemannianmanifoldsmeasures the
elastic deformation energy induced by the map, a harmonic map
minimizes the harmonic energy. In surface case, a harmonic map
between two genus zero closed surfaces must be angle-preserving

http://dx.doi.org/10.1016/j.cad.2016.05.020
0010-4485/© 2016 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.cad.2016.05.020
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
mailto:skh@whu.edu.cn
mailto:nalei@outlook.com
mailto:junwei.zhang@stonybrook.edu
mailto:gu@cs.stonybrook.edu
http://dx.doi.org/10.1016/j.cad.2016.05.020


2 K. Su et al. / Computer-Aided Design ( ) –

(conformal). Finding harmonic maps between manifolds is equiv-
alent to solve special geometric partial differential equations. For
surface case, the necessary and sufficient condition for a map to
be harmonic is that the tangential component of the Laplacian at
each point is zero; for volume case, a map is harmonic if the Lapla-
cian is zero everywhere in the interior. In discrete settings, these
geometric PDEs can be solved approximately using finite element
method.

Locally, angle-preserving parameterization can be treated as
scaling transformations, therefore preserves local shapes. But
angle-preserving parameterization may induce large volume
distortions. For surface case, if a long tube surface is conformally
mapped onto the planar disk, the area distortion at the tip is
exponential with respect to the height of the tube. Large volume
distortions will introduce numerical inaccuracy/instability for the
down streaming geometric processing tasks. For example, in
volumetric spline fitting, the geometric approximation accuracy
in the region with large volume distortions is low, or complicated
knot structure is required to compensate the large distortions.
In practice, for some special applications, volume-preserving
parameterizations have advantages.

To the best of our knowledge, there is few works for volume-
preserving parameterization. In the current work, we propose
to use optimal mass transportation framework to achieve this
goal. Given a convex domain in the Euclidean space with two
different measures (volume elements), the optimal transportation
map is an automorphismof the domain itself,which transforms the
source measure to the target measure in the most economic way.
According to Brenier’s theorem, the optimal transportation map
is the gradient map of a convex function defined on the domain.
The problem of finding the optimal transportationmap boils down
to finding the convex function. In practice, the target measure is
approximated by discrete measures (Dirac measures), the convex
function is approximated by the upper envelope of a family of
hyper-planes in R4, the normals of the planes are fixed but the
heights (intercepts) are unknown. The heights can be obtained by
optimizing a convex energy using Newton’s method.

In our current work, for a given simply connected tetrahedral
mesh with a single boundary surface, we first map it onto the
unit solid ball using a harmonic map, and the volume element
of the initial mesh is pushed forward to the unit ball; then we
compute an optimal mass transportation map of the unit ball
from the push-forward volume element to the canonical Euclidean
volume element. The composition of the harmonic map and the
optimal mass transportation map gives the volume-preserving
parameterization of the initial tetrahedral mesh.
Contributions. This work proposes a novel algorithm to compute
volume-preserving parameterization for a simply connected
tetrahedral mesh with a single boundary surface. The algorithm
is based on the discrete optimal mass transportation theory,
therefore is rigorous. To the best of our knowledge, this is the first
work on volume-preserving tetrahedral mesh parameterization.

2. Previous works

The literature for parameterization is vast, a thorough survey
is beyond the scope of the current work. In the following,
we only briefly review the most related works in volumetric
parameterization and optimal mass transportation.

2.1. Volumetric parameterization

There are mainly three kinds of methods for volumetric
parameterization.

The most widely used method is harmonic mapping, which
is first proposed by Wang et al. in [5]. They use a variational

procedure to reduce the discrete harmonic energy and map a
genus-zero volume to a solid sphere, and later used this method
on brain mapping [6]. Li et al. [7] use a meshless approach to
compute the harmonic mapping between two solid models. Xu
et al. [8] compute a bi-harmonic map applying a multiple fun-
damental solutions system for fast computation. Martin et al.
construct trivariate spline for cylindrical volumes by computing
harmonic volumetric parameterization in [9]. Xia et al. [10] param-
eterize star-shaped volumes by Green’s functions. They show that
the constructed map is bijective and smooth except at the unique
critical point. They also propose an algorithm to decompose a vol-
ume into the direct product of a two-dimensional (2D) surface and
a one-dimensional (1D) curve and then trace the integral curve
along the harmonic function in [11]. Gupta et al. [12] present an ap-
proach for the problemof volumetric parameterization of a general
nonconvex (genus-0) domain to its topologically equivalent con-
vex domain by combining harmonicmap and streamline approach.

Many mappings are constructed by means of generalized
barycentric coordinates with closed form expressions [13]. The
mean-value coordinates method was extended from surface [14]
to volume by Ju et al. [15] and Floater et al. [16] to compute
the interpolation of volumetric data. Lipman et al. [17] propose
Green coordinates which lead to mappings with shape-preserving
property.

Another kind of popular method is to find a mapping which
minimizes a specific energy. Chao et al. [18]minimize the so-called
ARAP (as-rigid-as-possible) deformation energy, which is a sim-
ple geometric model measuring distance from the Jacobian of the
mapping to an isometry. Frame field driven methods use the en-
ergy measuring difference between the Jacobian and the guidance
frame field [19–21] and compute the volumetric parameterization
in a variational way. Jin et al. [22] extend the stretch-minimizing
method to volumetric parameterization by deriving a 3D version of
stretch-distortion energy and incorporating fixed boundary condi-
tions.

2.2. Optimal mass transportation

Monge raised the classical Optimal Mass Transport Problem
that concerns determining the optimal way, with minimal
transportation cost, to move a pile of soil from one place
to another [23]. Kantorovich [24] has proved the existence
and uniqueness of the optimal transport plan based on linear
programming. Monge–Kantorovich optimization has been used in
numerous fields from physics, econometrics to computer science
including data compression and image processing [25]. Recently,
researchers have realized that optimal transport could provide a
powerful tool in image processing, if one could reduce its high
computational cost [26,27]. However, it has one fundamental
disadvantage that the number of variables is O(n2), which is
unacceptable to computer vision andmedical imaging applications
since a high resolution 3D surface normally includes up to
hundreds of thousands of vertices.

An alternative Monge–Brenier optimization scheme can signif-
icantly reduce the number of variables to be optimized. In late
1980’s, Brenier [28] developed a different approach for a special
class of optimal transport problems, where the cost function is a
quadratic distance. Brenier’s theory shows that the optimal trans-
port map is the gradient map of a special convex function. Assume
the target domain is discretized to n samples, theMonge–Brenier’s
approach reduces the unknown variables from O(n2) to O(n),
which greatly reduces the computation cost, and improves the ef-
ficiency. In our framework, we take Monge–Brenier’s approach.
However, our work is based on the newly discovered variational
principle [29] which is the underpinning of Monge–Brenier’s ap-
proach. Our framework is general and works with any valid mea-
sures, µ and ν, defined on two volumes. Within the scope of
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this paper, we only consider the volume induced measures. Re-
cently, Su et al. applied Brenier’s approach for shape matching
and comparison in computer vision field [30]. Similar method has
been used for surface area-preserving parameterization in graph-
ics/visualization field by Kaufman et al. in [31]. So far, to the best
of the authors’ knowledge, there is no existing work on volume-
preserving parameterization.

3. Theoretic background

This section briefly introduces the theoretic background of
harmonic mapping and Optimal Mass Transport theory. We refer
readers to classical textbooks [32,33] for harmonic map, the
seminal papers [24] on optimal transport map with Kantorovich’s
method, [28,34] for Brenier’s approach, [29] for more detailed
proofs of the proposed method.

3.1. Harmonic maps

Smooth harmonic map theory can be found in [32]. This section
focuses on discrete harmonic maps (see Fig. 1). We use K to
represent the simplicial complex, u, v to denote the vertices, and
{u, v} to denote the edge spanned by u, v. We use f , g to represent
the piecewise linear functions defined on K , and use g to represent
vector valued functions. We use ∆PL to represent the discrete
Laplace–Beltrami operator.

Definition 3.1. All piecewise linear functions defined on K form a
linear space, denoted by CPL(K).

Definition 3.2. Suppose a set of string constants ku,v are assigned
for each edge {u, v}, the inner product on CPL is defined as the
quadratic form

⟨f , g⟩ =
1
2


{u,v}∈K

ku,v(f (u)− f (v))(g(u)− g(v)). (1)

The harmonic energy is defined as the norm on CPL.

Definition 3.3 (Harmonic Energy). Suppose f ∈ CPL, the string
energy is defined as

E(f ) = ⟨f , f ⟩ =
1
2


{u,v}∈K

ku,v∥f (u)− f (v)∥2. (2)

Definition 3.4 (Laplace–Beltrami Operator). The piecewise Lapla-
cian–Beltrami operator is the linear operator ∆PL : CPL

→ CPL on
the space of piecewise linear functions of K , defined by the formula

∆PLf (u) :=

{u,v}∈K

ku,v (f (v)− f (u)) . (3)

Surface case. Suppose (S, g) is a smooth Riemannian surface
embedded in R3, g is the induced Euclidean metric. One can put
the sample points on the smooth surface, compute a geodesic
triangulation using these sample points as vertices, then replace
each triangle on the surface by a Euclidean triangle fixing the
vertex positions. In this way, we obtain a simplicial complex, a
piecewise linear surface, denoted as K .

Suppose {u, v} is an edge on K , shared by two faces {u, v, w},
{l, v, u}, then we can define the edge weight as

ku,v = cot θw
u,v + cot θ l

v,u, (4)

where θw
u,v is the corner angle at the vertex w in the triangle

{u, v, w}, θ l
v,u the corner angle at the vertex l in the triangle {v, u, l}

respectively. Let f : K → S2 be a mapping, represented by channel
scalar functions (f 1, f 2, f 3), then its Laplace–Beltrami operator is

∆PLf = (∆PLf 1, ∆PLf 2, ∆PLf 3), (5)

its normal component is given by

∆PLf⊥ = ∆PLf− ⟨∆PLf, f⟩f, (6)

its tangential component is

∆PLf∥ = ∆PLf−∆PLf⊥. (7)

The mapping is discrete harmonic, if and only if for each vertex
u ∈ K , the tangential component vanishes

∆PLf∥(u) = 0, ∀u ∈ K . (8)

Volume case. Suppose (M, g) is a solid embedded in R3, where g
is the induced Euclidean metric. We put sample points on both
the boundary surface and the interior of the solid, then compute
a triangulation using the samples as vertices, denote the simplicial
complex as K .

Suppose {u, v} is an edge in K , its length is lu,v , and {u, v, w, t}
is a tetrahedron attaching to the edge {u, v}, the dihedral angle in
the tetrahedron on edge {w, t} is θw,t

u,v , the edge weight is defined
as

ku,v =
1
12


w,t

lu,v cot θw,t
u,v . (9)

Let f : K → D3 be a mapping from the simplicial complex K to the
unit solid ball D3

⊂ R3, its Laplacian is

∆PLf(u) =


v

ku,v(f(v)− f(u)). (10)

We fix the boundary mapping f|∂K : ∂K → S2, if the mapping is
harmonic with Dirichlet boundary condition, then for all interior
vertex, its Laplacian vanishes,

∆PLf(u) = 0, ∀u ∉ ∂K . (11)

3.2. Optimal mass transport

Monge [23] raised the optimal mass transportation problem in
the 18th century.

Problem 3.1 (Optimal Mass Transport). Suppose (X, µ), (Y , ν) are
metric spaces with probabilities measures, which has the same
total mass


X µdx =


Y νdy. A map T : X → Y is measure

preserving, if for any measurable set B ⊂ Y , µ(T−1(B)) = ν(B).
Given a transportation cost function c : X × Y → R, find the
measure preserving map T : X → Y that minimizes the total
transportation cost

C(T ) :=


X
c(x, T (x))dµ(x). (12)

In the 1940s, Kantorovich introduced the relaxation of Monge’s
problem and solved it using linear programming method [24].

At the end of 1980’s, Brenier [28] discovered the intrinsic con-
nection between optimal mass transport map and convex geome-
try.

Definition 3.5 (Convex Function). Suppose f : X → R is a func-
tion, f is convex if f

 x1+x2
2


≤

1
2 (f (x1) + f (x2)). If f is C2 contin-

uous convex function, its Hessian matrix is semi-positive definite.
∂2f

∂xi∂xj


≥ 0.
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Fig. 1. The bimba surface is conformally mapped onto the unit sphere. The mapping is unique up to a Möbius transformation.

Definition 3.6 (Gradient Map). Suppose f : X → R is a function,
the gradient map ∇f : X → Y is defined as x → ∇f (x).

Theorem 3.1 (Brenier). Suppose X and Y are the Euclidean space
Rn, and the transportation cost is the quadratic Euclidean distance
c(x, y) = |x − y|2. If µ is absolutely continuous and µ and ν

have finite second order moments, then there exists a convex function
f : X → R, its gradient map ∇f gives the solution to the Monge’s
problem. Furthermore, the optimalmass transportationmap is unique.

This theorem converts the Monge’s problem to solving the
following Monge–Amperé partial differential equation:

det


∂2f (x)
∂xi∂xj


=

µ(x)
ν ◦ ∇f (x)

.

Detailed proof can be found in [35].

3.3. Discrete optimal mass transport

We focus on the Brenier’s approach, as illustrated in Fig. 2.
Suppose µ has compact support on X , define Ω = supp µ =

{x ∈ X |µ(x) > 0}, assume Ω is a convex domain in X . The
space Y is discretized to Y = {y1, y2, . . . , yk} with Dirac measure
ν =

k
j=1 νjδ(y− yj) (see Fig. 2).

We define a height vector h = (h1, h2, . . . , hn) ∈ Rk, consisting
of k real numbers. For each yi ∈ Y , we construct a hyperplane
defined on X ,

πi(h) : ⟨x, yi⟩ + hi = 0. (13)

Define a function

uh(x) =
k

max
i=1
{⟨x, yi⟩ + hi}, (14)

then uh(x) is a convex function.Wedenote its graph byG(h), which
is an infinite convex polyhedronwith supporting planes πi(h). The
projection of G(h) induces a polygonal partition of Ω ,

Ω =

k
i=1

Wi(h), (15)

where each cell Wi(h) is the projection of a facet of the convex
polyhedron G(h) onto Ω ,

Wi(h) = {x ∈ X |uh(x) = ⟨x, yi⟩ + hi} ∩Ω. (16)

Note that, this partition is similar to the power diagram concept in
computational geometry [36]. The volume ofWi(h) is given by

wi(h) =


Wi(h)

µ(x)dx. (17)

The convex function uh on each cellWi(h) is a linear functionπi(h),
therefore, the gradient map

grad uh : Wi(h)→ yi, i = 1, 2, . . . , k (18)

maps eachWi(h) to a single point yi.
The following theorem plays a fundamental role for discrete

optimal mass transport theory,

Theorem 3.2. For any given measure ν , such that
n

j=1 νj =
Ω

µ, νj > 0, there must exist a height vector h unique up to adding
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Fig. 2. Discrete optimal mass transportation map with Brenier’s approach.

a constant vector (c, c, . . . , c), the convex function Eq. (14) in-
duces the cell decomposition of Ω , Eq. (15), such that the follow-
ing volume-preserving constraints are satisfied for all cells,

Wi(h)

µ(x)dx = νi, i = 1, 2, . . . , n. (19)

Furthermore, the gradient map grad uh optimizes the following trans-
portation cost

C(T ) :=


Ω

|x− T (x)|2µ(x)dx. (20)

The existence and uniqueness was first proven by Alexandrov [37]
using a topological method; the existence was also proven by
Aurenhammer [38], the uniqueness and optimality was proven
by Brenier [28]. Recently, Gu et al. [29] give a novel proof for the
existence and uniqueness based on the variational principle, which
leads to the computational algorithm directly.

Define the admissible space of height vectors H0 := {h|
k

j=1 hj

= 0 and

Wi(h)

µ > 0,∀i = 1, . . . , k, }. Then define the energy
E(h),

E(h) =


Ω

uh(x)µ(x)dx−
k

i=1

νihi (21)

or equivalently

E(h) =

 h

0

k
i=1

wi(η)dηi −

k
i=1

νihi + C, (22)

where C is a constant. Consider the shape bounded by the graph
G(h), the horizontal plane {xn+1 = 0} and the cylinder consisting
of vertical lines through ∂Ω , the volume of the shape is given by
the first term.

The gradient of the energy is given by

∇E(h) = (w1(h)− ν1, . . . , wk(h)− νk)
T . (23)

Suppose the cellsWi(h) andWj(h) intersect at a cell eij = Wi(h)∩
Wj(h) ∩Ω , then the Hessian of E(h) is given by

∂2E(h)

∂hi∂hj
=



eij

µ(x)dx

|yj − yi|
Wi(h) ∩Wj(h) ∩Ω ≠ ∅

0 otherwise.

(24)

The following theorem lays down the theoretic foundation of
our OMT map algorithm.

Theorem 3.3 (Discrete Optimal Mass Transport [29]). If Ω is convex,
then the admissible space H0 is convex, the energy (Eq. (21)) is convex.
The unique globalminimumh0 is an interior point of H0. Furthermore,
the gradient map (Eq. (18)) induced by the minimum h0 is the unique
optimalmass transportmap,whichminimizes the total transportation
cost (Eq. (20)).

The proof of Theorem 3.3 is reported in [29]. Due to the
convexity of the volume energy Eq. (21), With this theory,
the global minimum can be obtained efficiently using Newton’s
method. Comparing to Kantorovich’s approach, where there are
O(n2) unknowns, this approach has only O(n) unknowns.

The optimal mass transportation theory holds for arbitrary
dimensions. In practice, there are key differences between surface
and volume cases. OMT requires the source domain to be convex.
For surface case (see Fig. 3), it is easy to parameterize a simply
connected surface with a single boundary to a convex planar
domain, such as using harmonic map or conformal map; in
contrast, this is much more challenging for volume case, because
volumetric harmonic map may not be homeomorphic. Therefore,
the preprocessing step of volume OMT is much more complicated
and challenging.

4. Computational algorithms

This section focuses on the algorithms. The theoretic deduction
for spherical harmonic map can be found in [39], for volumetric
harmonic map in [5], for optimal mass transportation map in [30].
In order to be complete, we give all details of these algorithms.

4.1. Spherical harmonic maps

Suppose K is a triangle mesh (a triangulated polyhedral
surface), the following algorithm finds a harmonic map from the
mesh to the unit sphere f : K → S2. The input to the algorithm is
a genus zero closed triangle mesh K , and a step length parameter
δ, a threshold ε. The algorithm is summarized in Alg. 1.
Step 1. Initial mapWe construct the Gauss map as the initial map.
For each face {u, v, w}, we compute the area of the face,

au,v,w =
1
2
|(v − u)× (w − u)|,

and the normal to the face,

nu,v,w :=
(v − u)× (w − u)

2au,v,w

.
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Then we compute the normal to each vertex

nu =


v,w

nu,v,wau,v,w
v,w

nu,v,wau,v,w

 .
The Gauss map maps each vertex to its normal,

G(u)← nu.

The initial map is set to be the Gauss map.
Step 2. DiffusionWe reduce the harmonic energy. For each vertex,
we compute its Laplacian∆PLf(u) using formula Eq. (5), project the
Laplacian onto the tangent plane using Eq. (7), then we update the
image of the mapping of each vertex,

f(u)← f(u)− δ∆PLf∥,

where δ is a step length parameter.
Step 3. Normalization In order to remove the Möbius ambiguity,
we need to enforce themass center of the image coincideswith the
origin. For each vertex, we compute the mass associated with it

au =
1
3


v,w

au,v,w,

the center of the mass is given by

c =


u
f(u)au

u,v,w

au,v,w

.

We update the image of each vertex as

f(u)←
f(u)− c
|f(u)− c|

.

Step 4. Iteration We repeat step 2 and 3, compute the harmonic
energy at each step using Eq. (2). If the difference between the
energies of two consecutive steps is less than the threshold ε, the
algorithm terminates.

Algorithm 1 Spherical Harmonic Map
Input:Agenus 0 closed trianglemeshM , a step length parameter
δ, a threshold ϵ.
Output: A harmonicmap fromM to the unit sphere, f : M → S2.

Compute the Gauss map, G : M → S2, initialize the map f← G.
repeat

Compute the Laplacian of each vertex ∆PLf(u), ∀u ∈ M .
Compute the tangential component of the Laplacian ∆

∥

PLf(u),
∀u ∈ M .
Update the mapping f(u)← f(u)− δ∆

∥

PLf(u), ∀u ∈ M .
Normalize the mapping, such that the center of mass is at the
origin.
Compute the harmonic energy of the current mapping E(f).

until the change of the harmonic energy is less than ϵ.
return The harmonic map f : M → S2.

4.2. Volumetric harmonic map

Suppose M is a tetrahedral mesh embedded in R3, M is simply
connected with a single boundary surface, namely a topological
solid ball. We would like to map M onto the unit solid ball in R3

by a discrete harmonic map f : M → D3.

Step 1. Boundary map The boundary of M is a triangle mesh ∂M ,
which is a topological sphere. Similarly, the boundary of the solid
ballD3 is the unit sphere ∂D3

= S2.Weuse the algorithmdescribed
in the last subsection to find the boundary map h : ∂M → S2.
Step 2. Interior map The harmonic map f : M → D3 can
be obtained by solving the Laplace equation with the Dirichlet
boundary condition,

∆PLf(u) = 0, ∀u ∉ ∂M
f(u) = h(u), ∀u ∈ ∂M (25)

for each interior vertexu, the discrete Laplacian of f atu∆PLf(u) is0,
the formulation is given in Eqs. (10) and (11). The discrete Laplace
equation is a large sparse linear system, it can be shown that the
linear system is positive definite, therefore the solution exists and
is unique. In practice, we use conjugate gradient method to solve
the linear system, which is stable and efficient.

Algorithm 2 Volumetric Harmonic Map
Input: A simply connected tetrahedral mesh M with a single
boundary, a step length parameter δ, a threshold ϵ.
Output: A harmonic map from M to the solid ball, f : M → D3.

Compute a harmonic map from the boundary surface to the unit
sphere, f : ∂M → S2,
Solve the Laplace equationwith theDirichlet boundary condition
Eqn. (25).
return The volumetric harmonic map f : M → D3.

The volumetric harmonic map may not be injective, non-
homeomorphic parameterization will cause some problems in IGA
solving as shown in the following references [40,41]. We can use
local detection and local modification as proposed in [42] to avoid
the few flip elements.

4.3. Discrete optimal mass transportation map

Given a discrete point set P ⊂ R3, P = {(pu, Au), u ∈ L}, where
L is a index set, such that
u∈L

Au =
4
3
π.

Our goal is to find a discrete optimal mass transportation from the
unit solid ball to the measured point set P , denoted as ϕ : D3

→ P .
The algorithm pipeline is summarized in Alg. 3.
Brenier potential. According to Brenier’s theorem, there should be
a convex function, the so-called Brenier potential f : D3

→ R, the
optimal mass transportation map is given by the gradient map of
the Brenier potential.

In the discrete setting, the Brenier potential is a piecewise linear
convex function, constructed as follows. For each vertex u ∈ M ,
suppose f(u) is (au, bu, cu), we construct a plane πu in the four
dimensional Euclidean space R4, namely a linear function

πu(x, y, z) = aux+ buy+ cuz + hu.

The Brenier potential is defined as

f (x, y, z) := max
u∈M

πu(x, y, z) = max
u∈M
{aux+ buy+ cuz + hu}

its graph is the upper envelope of family of planes {πu, u ∈ M} in
R4.

We use Ω(h) to represent the (open) convex polyhedron of the
upper envelope, where h = (hu) is the height vector. πu’s are the
supporting planes of the upper envelope Ω(h), the face Fu is the
intersection between πu and Ω(h),

Fu = Ω(h) ∩ πu,
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(a) Gargoyle front view. (b) Gargoyle back view.

(c) Conformal mapping. (d) Area-preserving mapping.

Fig. 3. The gargoyle surface is conformallymapped onto the unit disk (c). The conformal factor is treated as themeasure densityµ. The optimal transportationmap is carried
out between the measure density µ and the planar measure density (d), which induces the area-preserving mapping from the surface (a), (b) to the unit disk.

the projection of Fu into R3 is defined as a cellWu in R3,

Wu(h) := {(x, y, z) ∈ R3
|∇f (x, y, z) = (au, bu, cu)}

therefore, the projection of the upper envelopeΩ(h) toR3 induces
a cell decomposition of the unit solid ball, denoted as D(h):

D3
=


u∈M

D3
∩Wu(h),

we call this cell decomposition as the power Voronoi diagram of D3.
The volume of each cell is defined as

wu(h) = vol(D3
∩Wu(h)).

Legendre dual. The computation of the upper envelop of a family
of planes {πu, u ∈ M} is converted to convex construction of its
Legendre dual.

Definition 4.1 (Legendre Dual). Suppose f : R3
→ R, its Legendre

dual is a function f ∗ : R3
→ R, defined as

f ∗(x∗, y∗, z∗) := sup
(x,y,z)∈R3

{xx∗ + yy∗ + zz∗ − f (x, y, z)}.

Each plane πu(x, y, z) = aux+ buy+ cuz + hu is dual to a point

π∗u := (au, bu, cu,−hu) ∈ R4.

The upper envelope of the supporting planes

Ω(h) = Env({πu, u ∈ M})

is the graph of the Brenier potential f ; the graph of the Legendre
dual of the Brenier potential f ∗ is the lower convex hull of the dual
points of the supporting planes

Ω∗(h) := Conv({π∗u , u ∈ M}).

The projection of the lower convex hull Ω∗(h) to R3 forms a
triangulation, which we call as the power Delaunay triangulation,
denoted as T (h).

The dual relations between the power Voronoi diagram D(h)
and the power Delaunay triangulation T (h) can be represented as
follows: each cellWu(h) ⊂ D(h) is dual to the vertex f(u) ⊂ T (h);
the 3 dimensional cell Wu(h) ∩ Wv(h) ⊂ D(h) is dual to the
edge {f(u), f(v)} ⊂ T (h); each vertex in the Voronoi diagram is
the intersection of 4 cells Wu(h) ∩ Wv(h) ∩ Ww(h) ∩ Wl(h) ⊂
D(h) corresponds to a tetrahedron in the Delaunay triangulation
{f(u), f(v), f(w), f(l)} ⊂ T (h).

Optimization. The key to solving the optimal mass transportation
map is to find the appropriate height vector h, then construct the
upper envelop Ω(h), and the Brenier potential function, whose
gradient map is the desired map. The height vector is the unique
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minimizer of the following convex energy

E(h) =

 h 
u∈M

wu(η)dηu −

u∈M

Auhu,

with the constraint
u∈M

Auhu = 0.

Due to the convexity of the energy, it can be optimized using
Newton’s method. The gradient of the energy has the form

∇E(h) = (wu(h)− Au), u ∈ M. (26)

The Hessian matrix of the energy is constructed as follows. If the
cellsWu(h) andWv(h) are adjacent in the power Voronoi diagram
D(h), then their intersection is a 2-cell Wu(h) ∩ Wv(h), the dual
of this 2-cell in the power Delaunay triangulation T (h) is an edge
{f(u), f(v)}, then we define

ku,v :=
Area(Wu(h) ∩Wv(h))

|f(u)− f(v)|
.

IfWu(h)∩Wv(h) = ∅, then the corresponding ku,v is 0. TheHessian
matrix is given by

∂2E(h)

∂hu∂hv

:=


−ku,v u ≠ v
w

ku,w u = v. (27)

At the first step, we initialize the height vector as

hu = −
1
2
⟨f(u), f(u)⟩ =

1
2
(a2u + b2u + c2u ).

At each step, we solve the linear system
∂2E(h)

∂hu∂hv


δh = ∇E(h)

then update the height vector h ← h − δh, until the norm of the
gradient ∇E(h) is less than a predefined threshold.

Algorithm 3 Optimal Mass Transport Map (OMT-Map)
Input: A discrete point set in R3 with measure P = {(pu, Au)},
Au > 0,


u Au =

4
3π ; a threshold ϵ.

Output: The unique discrete OMT-Map ϕ : D3
→ P .

Scale and translate P , such that P ⊂ D3.
Initialize hu ←−

1
2 ⟨pu, pu⟩.

repeat
Compute the upper envelope Env({πu}), where the plane
πu(p) = ⟨pu, p⟩ + hu,
Project the upper envelope to obtain the power diagramD(h),

Compute the dual power Delaunay triangulation T (h) ,
Compute the cell volumesw(h) = (wu(h)).
Compute ∇E(h) using Eqn. (26).
Compute the Hessian matrix using Eqn. (27).
Update the height vector h← h− δH−1∇E(h).

until ∥∇E∥ < ϵ.
return ϕ : Ω → P , Wu(h)→ pu.

4.4. Volume-preserving parameterization

Let M be the simply connected tetrahedral mesh with a single
boundary surface, we would like to compute a volume preserving

mapping fromM to the unit solid ball D3. The algorithm pipeline is
described in Alg. 4.

Suppose t ∈ K is a tetrahedron in M , with vertices {u, v, w, l}.
We calculate its volume using the formula:

vol(t) =
1
6


xu yu zu 1
xv yv zv 1
xw yw zw 1
xl yl z l 1

 .
The total volume of M is the summation of the volumes of all
tetrahedra,
vol(M) =


t∈M

vol(t).

Then we scale the whole tetrahedron mesh M , such that the total
volume equals to 4

3π .
We use the algorithms described in the previous subsections to

find the harmonic map fromM to D3, f : M → D3. For each vertex
u ∈ M , we define the measure associated with it as the one fourth
the total volume of all tetrahedra adjacent to it,

Au :=
1
4


{u,v,w,l}∈M

vol({u, v, w, l}), (28)

therefore, the total measure equals to the volume of the unit solid
ball,
u∈M

Au =
4
3
π.

Then we define the discrete point set with measures

P =

u∈M

{(f(u), Au)} . (29)

We compute the discrete optimal mass transportation map ϕ :
D3
→ P , the inverse map ϕ−1 maps each point pu ∈ P to the mass

center of Wu. The composition ϕ−1 ◦ f : M → D3 is the desired
volume-preserving parameterization.

Algorithm 4 Volume-preserving Parameterization
Input: A simply connected tetrahedron mesh M with single
boundary surface.
Output: A volume-preserving parameterization.

Compute a volume harmonic mapping f : M → D3.
Compute the discrete measures using Eqn. (28), construct the
measured point set using Eqn. (29).
Compute the discrete optimal mass transportation map ϕ :
D3
→ P ,

return ϕ−1 ◦ f : M → D3.

5. Experimental results

In this section, we demonstrate the efficiency and efficacy of
our method using examples from real world. All the experiments
were conducted on a laptop computer of Intel Core i5-4200U CPU,
2.29 GHz with 8 GB memory. All the algorithms are implemented
using C++ with visual studio 2013 on windows10 platform. The
envelope of hyperplanes, power Voronoi diagram are computed
using CGAL [43].

5.1. Volume-preserving parameterization

We have tested our volumetric parameterization on several
models, including Michelangelo’s King David in Fig. 4, Stanford
bunny in Fig. 5, the bimba sculpture in Fig. 5, the buddha model in
Fig. 6, the duck model in Fig. 7, the bimba sculpture model in Fig. 8
and the lion cup model in Fig. 9. Frame (a) shows the input solid
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(a) The solid mesh of King
David.

(b) The boundary of King
David.

(c) Spherical conformal
mapping result of (b).

(d) OMT result.

(e) Volumetric harmonic map
(front view).

(f) Volumetric harmonic
map (side view).

(g) OMT result (front view). (h) OMT result (side
view).

Fig. 4. Volume-preserving parameterization for Michelangelo’s King David head model.

(a) The solid mesh of
Stanford bunny.

(b) The boundary of
Stanford Bunny.

(c) Spherical conformal
mapping result of (b).

(d) OMT result.

(e) Volumetric harmonic map
(front view).

(f) Volumetric harmonic
map (side view).

(g) OMT result (front view). (h) OMT result (side
view).

Fig. 5. Volume-preserving parameterization for the Stanford bunny model.

tetrahedron mesh; frame (b) is its 3D boundary surface, frame (c)
is the spherical conformal mapping result of the surface (b); frame
(d) shows our OMT mapping result (exterior view). We calculate
the volumetric harmonic mapping using the Dirichlet boundary
condition of frame (b). The volumetric harmonic map result is
shown with the interior structure in frame(e) (front view) and
frame (f) (side view); the OMT result is shown with the interior
structure in frame (g) (front view) and side frame (h) (side view).

5.2. Volumetric morphing

Volume-preserving parameterization can be directly applied
for volumetricmorphing. Using volumetric harmonicmapping and
OMT technique, we can transform one complex solid model to

the canonical geometry model, the unit solid ball. Figs. 10, 11
show the animation sequence of volumetric morphing, using our
volumetric-preserving parameterization technique.

5.3. Comparison

We have compared our volume-preserving parameterization
techniquewith Levy’smethod [44]. In hiswork [44], Levy proposes
to utilize the uniform sampling andmulti-level algorithm to accel-
erate the computation of OMT. However, Levy’s method changes
the tetrahedron structure of the input solid, only gives an approx-
imation to OMT and the final result is not bijective on the bound-
ary. In contrast, our method preserves the combinatorial structure
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(a) The solid mesh
of Buddha.

(b) The boundary of
Buddha.

(c) Spherical conformal
mapping result of (b).

(d) OMT result.

(e) Volumetric harmonic map
(front view).

(f) Volumetric harmonic
map (side view).

(g) OMT result (front view). (h) OMT result (side
view).

Fig. 6. Volume-preserving parameterization for the Buddha model.

(a) The solid mesh of Duck. (b) The boundary of Duck. (c) Spherical conformal mapping
result of (b).

(d) OMT result.

(e) Volumetric harmonic map
(front view).

(f) Volumetric harmonic
map (side view).

(g) OMT result (front view). (h) OMT result (side
view).

Fig. 7. Volume-preserving parameterization for the Duck model.

of the input solid, gives the accurate solution and the result is bi-
jective for both interior and the boundary surface. Therefore, our
method can produce smoother,more physically sensiblemorphing
sequence. By comparing themorphing sequences generated by our
method in Figs. 10 and 11 and those by Levy’s method in Figs. 12
and 13, we can see Levy’s method produces large foldings near the
boundary surfaces, whereas our method gives diffeomorphic de-
formation for the whole solids including the boundaries.

5.4. Quantitative analysis

In order to verify the volume-preserving property of our pro-
posed parameterization algorithms, we calculate the histograms of

angle distortion and volume distortion explicitly. For volume dis-
tortion, we compute the ratio between the volume of each tetrahe-
dron in the source solid and the volumeof its image in the unit solid
ball, and illustrate the histograms of the logarithms of the volume
ratios. For angle distortion, we compute the ratio between each di-
hedral angle in the source solid and that of its image in the pa-
rameter domain, and show the histograms of the logarithms of the
dihedral angle-ratios.

Figs. 14–16 show the distortion distributions of the King
David, Buddha and Duck, respectively. For each model, frame (a)
shows the volume-distortion of the volumetric harmonicmapping;
frame (b) illustrates the volume-distortion of the volumetric-
preserving parameterization; frame (c) the angle-distortion of
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(a) The solid mesh of
Bimba.

(b) The boundary of
Bimba.

(c) Spherical conformal
mapping result of (b).

(d) OMT result.

(e) Volumetric harmonic map
(front view).

(f) Volumetric harmonic
map (side view).

(g) OMT result (front view). (h) OMT result (side
view).

Fig. 8. Volume-preserving parameterization for the Bimba sculpture model.

(a) The solid
mesh of
Lion-cup.

(b) The boundary
of Lion-cup.

(c) Spherical conformal
mapping result of (b).

(d) OMT result.

(e) Volumetric harmonic map
(front view).

(f) Volumetric harmonic
map (side view).

(g) OMT result (front view). (h) OMT result (side
view).

Fig. 9. Volume-preserving parameterization for the Lion-cup model.

the harmonic mapping; frame (d) the angle-distortion of the
volumetric-preserving parameterization.

By carefully examining the histograms in frames (a) and (b),
one can see that the volume-distortion histogramsproduced by the
volume-preserving parameterization algorithm are highly concen-
trated near the origin, which verifies that our parameterizations
are highly volume-preserving; in contrast, the volume-distortion
histograms produced by the volumetric harmonic mappings are
much more dispersed. The angle-distortion histograms in frame
(c) and (d) show that our volume-distortion parameterization
method produces small angle distortions as well. Furthermore, the

experiments validate one merit of our proposed OMT algorithm,
the robustness to mesh tessellation. The algorithm performs well
even if the input mesh has many very skinny tetrahedra.

Table 1 summarizes the number of iterations and the compu-
tation time for different models. Current method doesn’t apply
any sophisticated optimization, such as multi-level or dynamic
kinetics and so on. Unlike the surface harmonic mapping, the
volumetric harmonic mapping cannot guarantee the mapping is
bijective. In general, there will be small number of flipped tetra-
hedra, which can be easily fixed manually. We report the number
of flipped tetrahedra in the table as well.
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(a) t = 0. (b) t = 0.25. (c) t = 0.5. (d) t = 0.75. (e) t = 1.0.

Fig. 10. The volumetric morphing process from the Bimba sculpture to the unit solid ball using our volumetric-preserving parameterization technique.

(a) t = 0. (b) t = 0.25. (c) t = 0.5. (d) t = 0.75. (e) t = 1.0.

Fig. 11. The volumetric morphing process from the Stanford bunny to the unit solid ball using our volumetric-preserving parameterization technique.

(a) t = 0. (b) t = 0.25. (c) t = 0.5. (d) t = 0.75. (e) t = 1.0.

Fig. 12. The volumetric morphing sequence of the Bimba model (front view) using Levy’s method.
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(a) t = 0. (b) t = 0.25. (c) t = 0.5. (d) t = 0.75. (e) t = 1.0.

Fig. 13. The volumetric morphing sequence of the Stanford Bunny model (side view) using Levy’s method.

a b

c d

Fig. 14. The comparison histograms of the volume and angle distortion; (a) Volume distortion of harmonic mapping for David King; (b) Volume distortion of OMT for David
King; (c) Angle distortion of harmonic mapping for David King; (d) Angle distortion of OMT for David King.

6. Summary and future directions

This work proposes a novel volume-preserving parameteri-
zation method for simply connected tetrahedron mesh with a
single boundary surface. The method is based on optimal mass
transportation theory. The algorithm includes three main steps,
boundary surface harmonic mapping, volumetric harmonic map-
ping, and volumetric optimal mass transportation map.

The method has solid theoretic foundation, utilizes the mature
algorithms from computational geometry, produces volumetric
parameterizations with the volume-preserving property. We
have tested our algorithm on many models in real life, which
demonstrates the efficiency and efficacy of the method. To the
best of our knowledge, this is the first work addressing volume-
preserving parameterization in the literature.

In the current version of implementation, we focus on proving
the concepts and no code optimization has been considered. In
the future version, we will focus on improving the efficiency

by adopting the hierarchical optimal transportation framework,
which will significantly reduce the time complexity.

This work is based on volumetric harmonic map, which may
not produce diffeomorphic mapping. In the future, we will explore
alternative volumetric mapping algorithms to replace this step
and generalize the method to volumes with more complicated
topologies. Furthermore, we will apply the proposed method for
Spline volume parameterization and Spline volume fitting.
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a b

c d

Fig. 15. The comparison histograms of the volume and angle distortion for Buddha model.

a b

c d

Fig. 16. Comparison histograms of the volume and angle distortion for Duck model.

Table 1
Performance statistics.

Model Vertices Tetrahedron Iteration Total time (s) Flip tetrahedrons

David King 19984 90576 24 17758 0
Bunny 22466 116740 386 151084 13
Buddha 20934 99113 91 50480 8
Duck 20320 96873 63 31634 4
Bimba 21700 89282 58 35304 9
Lion-cup 20874 97132 50 33257 4
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