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Abstract

Differential privacy (DP) auditing aims to provide empirical lower bounds on the privacy
guarantees of DP mechanisms like DP-SGD. While some existing techniques require many
training runs that are prohibitively costly, recent work introduces one-run auditing approaches
that effectively audit DP-SGD in white-box settings while still being computationally efficient.
However, in the more practical black-box setting where gradients cannot be manipulated
during training and only the last model iterate is observed, prior work shows that there is still
a large gap between the empirical lower bounds and theoretical upper bounds. Consequently,
in this work, we study how incorporating approaches for stronger membership inference
attacks (MIA) can improve one-run auditing in the black-box setting. Evaluating on image
classification models trained on CIFAR-10 with DP-SGD, we demonstrate that our proposed
approach, which utilizes quantile regression for MIA, achieves tighter bounds while crucially
maintaining the computational efficiency of one-run methods.

1 Introduction

Differential privacy (DP) (Dwork et al., 2006) has become an effective, practical framework for specifying
and ensuring privacy guarantees of statistical algorithms, including stochastic gradient descent (DP-SGD) for
training large models privately (Chaudhuri et al., 2011; Abadi et al., 2016). While DP provides an upper
bound on the privacy guarantee ε of the algorithm, it is useful to additionally have a lower bound on ε to
validate it in practice and potentially detect errors in implementations (Ding et al., 2018; Jagielski et al.,
2020; Tramer et al., 2022). This lower bound is derived empirically through privacy auditing.

DP Auditing often requires training a model hundreds—if not thousands—of times, inducing heavy com-
putational requirements that simply don’t scale when auditing larger models (Tramer et al., 2022). These
costs are further exacerbated by the computational costs of calculating per-example gradients in DP-SGD.
Despite recent advancements in computational efficiency (Nasr et al., 2023), multiple-run auditing still incurs
overheads that can lead to prohibitively costly experiments (Muthu Selva Annamalai & De Cristofaro, 2024).
In light of these problems, Steinke et al. (2023) introduce a new framework requiring only a single run.
Framed as a guessing game, the goal is to identify among a set of “canary” examples the ones that were seen
during training. If one is able to make more guesses correctly, then one can establish higher empirical lower
bounds on ε.

We view these types of guessing games for DP auditing as a form of membership inference (Shokri et al.,
2017), where the goal is determine if a given sample was used in training a machine learning model. However,
Steinke et al. (2023) and Mahloujifar et al. (2024) introduce and evaluate their auditing schemes using only
the simplest strategy for MIA, which can be summarized as looking at some score function (i.e., loss of the
canary) and sorting (i.e., predicting that it was used in training if the loss is small and vice versa). We posit,
however, that in applying this naive strategy, these auditing procedures may underestimate the empirical
lower bounds for DP-SGD.

Contributions. In this work, we evaluate to what extent using strong MIA methods for privacy auditing in
the one-run setting can tighten empirical privacy estimates. Given that the purpose of such one-run auditing
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procedures is to assess privacy mechanisms while maintaining efficiency, we specifically adopt approaches for
MIA introduced in Bertran et al. (2023), who introduce a class of attacks that compete with state-of-the-art
shadow model approaches for MIA (Shokri et al., 2017; Carlini et al., 2022) while being computationally
efficient (i.e., also require one training run).

We consider the black-box setting for auditing, where the auditor can only access the model at the final
training step. Evaluating on image classification models trained on CIFAR-10 using DP-SGD, we demonstrate
that MIA significantly improves empirical lower bounds estimated from one-run procedures introduced by
Steinke et al. (2023) and Mahloujifar et al. (2024). Furthermore, we find that the advantage holds across a
wide range of data settings (i.e., the number of training examples and proportion of canaries inserted into
training), improving the lower bound by up to 3x in some cases.

1.1 Additional Related Works

In addition to those mentioned above, there have many other works that have recently studied private
auditing under various scenarios. For example, rather than auditing models that are made private during
training, Chadha et al. (2024) audit methods that are made private during inference. Pillutla et al. (2023),
on the other hand, introduce the definition of Lifted Differential Privacy (LiDP) and propose a multi-run
auditing procedure that can utilize multiple, randomized canaries (similar to our one-run auditing setting, in
which the auditor also inserts many canaries). Furthermore, a variety of works have recently studied private
auditing specifically under the constraints of black-box model access. Steinke et al. (2024) study black-box
auditing of DP-SGD for models with linear structure, proposing a heuristic that predicts the outcome of an
audit performed on only the last training iterate. Muthu Selva Annamalai & De Cristofaro (2024) show that
empirical lower bounds for black-box auditing are much tighter when models are initialized to worst-case
parameters, and lastly, Cebere et al. (2024) study black-box auditing in the case where an adversary can
inject sequences of gradients that are crafted ahead of training.

2 Preliminaries

At a high level, differential privacy provides a mathematical guarantee that the output distribution of an
algorithm is not heavily influenced by any single data point. Formally, it is defined as the following:
Definition 2.1 (Differential Privacy (DP) (Dwork et al., 2006)). A randomized algorithm M : X N → R
satisfies (ε, δ)-differential privacy if for all neighboring datasets D, D′ and for all outcomes S ⊆ R we have

P (M(D) ∈ S) ≤ eεP (M(D′) ∈ S) + δ

To train deep learning models with privacy guarantees, Abadi et al. (2016) propose a differentially private
form of stochastic gradient descent (DP-SGD), in which the algorithm noises and clips gradients before every
update step. In our work, we aim to audit models trained with DP-SGD. We present DP-SGD in more detail
in Algorithm 1.

2.1 One-run auditing

To audit models trained using DP-SGD, we consider the following “one-run” auditing procedures:

1. Steinke et al. (2023). Steinke et al. (2023) first developed the notion of auditing in one training run.
Rather than training many models on neighboring datasets that differ on single examples, their auditing
scheme requires training only a single model on a dataset with many “canary” examples. Specifically,
these canaries are randomly sampled from a larger set of canaries. The auditor then attempts to predict
which canaries were in and not in the training set (with abstentions are allowed). The final empirical
lower bound is determined by how many guesses were made and how many were correct.

2. Mahloujifar et al. (2024). More recently, Mahloujifar et al. (2024) present an alternative approach,
which they show provides better privacy estimates in the one-run setting. Rather than having a single
set of canaries, Mahloujifar et al. (2024)’s method first constructs a set of canary sets of size K, where
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Algorithm 1 Differentially Private Stochastic Gradient Descent (DP-SGD)
Require: x ∈ X n

Require: Loss function f : Rd × X → R
Require: Number of iterations ℓ ≥ 1, clipping threshold c > 0, noise multiplier σ > 0, sampling probability

q ∈ (0, 1], learning rate η > 0
1: Initialize w0 ∈ Rd

2: for t = 1, . . . , ℓ do
3: Sample St ⊆ [n] where each i ∈ [n] is included independently with probability q
4: Compute gt

i = ∇wt−1f(wt−1, xi) ∈ Rd for all i ∈ St

5: Clip g̃t
i = min

{
1, c

∥gt
i
∥2

}
· gt

i ∈ Rd for all i ∈ St

6: Sample ξt ∈ Rd from N (0, σ2c2I)
7: Sum g̃t = ξt +

∑
i∈St g̃t

i ∈ Rd

8: Update wt = wt−1 − η · g̃t ∈ Rd

9: end for
10: return w0, w1, . . . , wℓ

Algorithm 2 Auditor with One Training Run
Require: Algorithm to audit A, target number of examples to train on n, scoring function Score
Require: Number of positive and negative guesses k+ and k− respectively,
Require: x ∈ X m+r consisting of m auditing examples (a.k.a. canaries) and r non-auditing examples, where

n = r + m
2

1: Randomly assign Si = +1 to half of the m canaries and Si = −1 to the other half. Set Si = 1 for all
remaining examples i ∈ [m + r] \ [m].

2: Partition x into xIN ∈ X nIN and xOUT ∈ X nOUT according to S, where nIN + nOUT = n. Namely, if
Si = 1, then xi is in xIN; and, if Si = −1, then xi is in xOUT.

3: Run A on input xIN with appropriate parameters, outputting w.
4: Compute the vector of scores Y = (Score(xi, w) : i ∈ [m]) ∈ Rm

5: (i.e., T ∈ {−1, 0, +1}m maximizes
∑

i Ti · Yi subject to
∑

i |Ti| = k+ + k− and
∑

i Ti = k+ − k−).
6: return The vector S ∈ {−1, +1}m indicating the true selection and the guesses T ∈ {−1, 0, +1}m.

a random example in each canary set is using in training. Here, the goal is to guess which of the K
canaries in each set was used in training. As in Steinke et al. (2023), abstentions are also allowed, and
again, the empirical lower bound is determined by the number of guesses made and the number that are
correct.

We present in Algorithms 2 and 3 the auditing procedures for Steinke et al. (2023) and Mahloujifar et al.
(2024), respectively.

We note that in Algorithms 2 and 3, we make minor changes to the notation compared to how they were
original introduced in their respective works (Steinke et al., 2023; Mahloujifar et al., 2024). In this way, we
make the notation of the two algorithms consistent with each other. For example, we now let n denote the total
number of examples used in training (rather than the total number of auditing and non-auditing examples in
Steinke et al. (2023)) and m be the total number of canaries (rather than canary sets in Mahloujifar et al.
(2024)). In Algorithm 2, exactly half of the canaries are randomly sampled such that the data partitioning is
exactly equivalent to Mahloujifar et al. (2024) when the canary set size is K = 2.

Black-box auditing. Nasr et al. (2023) presents two main threat models:

• White-box access: The auditor has full access throughout the training process to both model’s weights
and gradients, being able to inject arbitrarily-designed gradients at each update step

• Black-box access (with input space canaries): This approach is more restrictive. The auditor is only able
to insert training samples in the dataset and observe the model at the end of training.
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Algorithm 3 Reconstruction in one run game
Require: Algorithm to audit A, target number of examples to train on n, scoring function Score
Require: Number of guesses k respectively
Require: M = m

K sets (of size K) of canary examples and r non-auditing examples, where n = r + m
K

(assume that m is a multiple of K).
1: Let C = {xi

j}i∈[M ],j∈[K] be the matrix of canaries
2: Let u = (u1, . . . , uM ) be a vector uniformly sampled from [K]M .
3: Let S = {xi

ui
: i ∈ [M ]}.

4: Run mechanism A on S ∪ T to get output w.
5: Compute the matrix of scores Y = (Score(xi

j , w) : i ∈ [M ], j ∈ [K]) ∈ RM×K

6: Use scores Y to run a reconstruction attack on w to obtain a vector v = (v1, . . . , vM ) ∈ ([K] ∪ {⊥})M in
which the number of guesses is k (i.e., k =

∑M
i 1{vi ̸= ⊥})

7: (i.e., v is a vector guessing the index of the canary in each set that was used in training. ⊥ indicates an
abstention.)

8: return The vector v

(a) Train “MIA” regressor (b) “Rescore” canaries

Figure 1: We provide a high-level diagram describing our quantile-regression based MIA approach to auditing.
In the first part (a), we (1) calculate the score s(x) (e.g., loss) using the privately trained model and (2),
train the Gaussian likelihood model on the images x themselves and s(x). Once the Gaussian likelihood model
has been trained on the holdout set, in part (b), we take each canary and (1) use the Gaussian likelihood
model to output the parameters of a Gaussian distribution (i.e., µ, σ). (2) Next, we again feed the canary
into the private model to obtain s(x). (3) Finally, we calculate our new score, q(x) = P (s < s(x) | µ, σ).

In our work, we study the black-box setting that does not allow modifications to the training procedure (i.e.,
modifying gradients like in white-box setting with Dirac gradients (Nasr et al., 2023; Steinke et al., 2023;
Mahloujifar et al., 2024) or in an alternative black-box setting studied in Cebere et al. (2024) that allows
gradient sequences to be inserted). This threat model is often more practically relevant and includes settings
such as publishing the final weights of an open-sourced model. As shown in Nasr et al. (2023) and Steinke
et al. (2023), the gap between the empirical lower bound and theoretical upper bound is generally still large
in the black-box setting, suggesting that this area of research may still be underexplored.1

3 Applying (Efficient) MIA to Privacy Auditing

Membership inference often requires the attacker to train several shadow models on a random subsets of
data (Carlini et al., 2022). This approach, while effective, requires high computational demands that do not
align with the goals of one-run auditing. In contrast, Bertran et al. (2023) introduce a new class of MIA
methods that relies on training a single quantile regressor on holdout data only. In doing so, they predict
a sample-specific threshold for determining membership that outperforms marginal thresholds, which are

1Mahloujifar et al. (2024), for example, do not evaluate their proposed method in the black-box setting at all.
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equivalent to the sort and rank (by loss) procedure employed in Steinke et al. (2023) and Mahloujifar et al.
(2024).

Formally, the quantile regressor can be written as the following:
Definition 3.1 (Quantile Regressor). Given a target false positive rate α, a quantile regressor is a model
q : X → R trained on an holdout dataset P to predict the (1−α)-quantile for the score distribution associated
to each given sample:

∀(x, s) ∈ P, Pr[y ≤ q(x)] = 1 − α

Given the relatively small sample size in image datasets like CIFAR-10, Bertran et al. (2023) propose an
alternative method for outputting quantile thresholds in which they train a model that instead predicts the
mean µ(x) and the standard deviation σ(x) of the score s(x) (e.g., loss of the model to be attacked) associated
with each example x. The per-example threshold is then calculated based on this normal distribution (i.e.,
P (s < s(x) | µ, σ)).

The loss can then be written as the following:
Definition 3.2 (Negative Log-Likelihood for Gaussian Distributions). The negative log-likelihood loss for a
Gaussian distribution with mean µ and standard deviation σ is given by:

LNLL = Ex∼p(x)

[
(x − µ)2

2σ2 + log σ

]
where x ∼ p(x) represents samples from some underlying data distribution (e.g., losses from an image
classification model).

In our proposed method (See Figure 1), we also adapt this approach and train a neural network to output a
Gaussian distribution for each canary image. However, rather than using as a threshold the q-quantile for
some predetermined value of q (Bertran et al., 2023; Tang et al., 2024), we calculate q directly (i.e., the CDF
P (s < s(x) | µ, σ)). We then use q as the input Score function for Algorithms 2 and 3.

4 Empirical Evaluation

Auditing setup. For our empirical evaluation, we follow the experimental set up in prior work (Nasr et al.,
2023; Steinke et al., 2023; Mahloujifar et al., 2024) and train Wide ResNet models (Zagoruyko & Komodakis,
2016) using DP-SGD on the CIFAR-10 dataset (Krizhevsky et al., 2009). All models are trained using code
provided by Balle et al. (2022), which implements training of state-of-the-art DP CIFAR-10 models presented
in De et al. (2022). While Steinke et al. (2023) experimented with black-box canaries with both flipped and
unperturbed class labels, we found early on that flipping labels did not improve the lower bound. Thus, given
that perturbing the labels can only hurt the final DP model’s accuracy, we do not flip the canary labels in
our experiments.

Quantile regressor. Following Bertran et al. (2023), we use ConvNeXt (Liu et al., 2022) as our model
architecture for the quantile regressor. Similarly, we use as our score function the difference in logit of the
true class label and the sum of the remaining logits. As shown in Carlini et al. (2022), this score function—in
contrast to cross-entropy loss—follows a normal distribution, making it a natural choice for our approach.

Choice of number of guesses k. In general, empirical lower bounds on ε can be quite sensitive to the
number guesses made (Mahloujifar et al., 2024). However, it is unclear from both Steinke et al. (2023) and
Mahloujifar et al. (2024) how the number of guesses was chosen to produce their main results. For example,
Steinke et al. (2023) state that they ”evaluate different values of k+ and k− and only report the highest
auditing results,” but do not specify what exact values were tested. We reached out to the authors, who
told us that some values between 10 and 1000 were chosen (but not exactly how many values of k were
tested). Consequently, we evaluate all methods in our experiments from 10 to the maximum number of
guesses possible in multiples of 10, and like prior work (Nasr et al., 2023; Steinke et al., 2023; Mahloujifar
et al., 2024), report the highest auditing results for each run.
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Table 1: We present the empirical lower bounds estimated using baseline method and quantile regression
(ours). εor corresponds to Steinke et al. (2023), εor-fdp corresponds to Mahloujifar et al. (2024), and εor-max
corresponds to max of the two. We calculate ε for 5 different runs and report the average.

n method r = 45000, m = 5000
εor εor-fdp εmax

47500 baseline 0.159 0.147 0.208
ours 0.210 0.134 0.253

Table 2: We present the empirical lower bounds estimated using baseline method and quantile regression
(ours) for various data settings, including when the canaries make up all (r = 0) and half (r = n

2 of the
training examples. εor corresponds to Steinke et al. (2023), εor-fdp corresponds to Mahloujifar et al. (2024),
and εor-max corresponds to max of the two. We calculate ε for 5 different runs and report the average.

n method r = 0, m = 2n r = n
2 , m = n

εor εor-fdp εmax εor εor-fdp εmax

5000 baseline 0.181 0.175 0.237 0.299 0.234 0.393
ours 0.280 0.240 0.364 0.279 0.486 0.503

10000 baseline 0.202 0.172 0.216 0.227 0.115 0.241
ours 0.201 0.339 0.364 0.341 0.217 0.356

20000 baseline 0.055 0.086 0.098 0.128 0.191 0.204
ours 0.146 0.246 0.268 0.165 0.313 0.324

5 Results

All results reported in Tables 1 and 2 are averages over the maximum lower bound (with 95% confidence)
over 5 different runs, each of which is conducted on a different random sample of the dataset. In these tables,
εor corresponds to Steinke et al. (2023) and εor-fdp corresponds to Mahloujifar et al. (2024). In addition, we
consider the setting in which one considers the choice of auditing procedure (i.e., Steinke et al. (2023) vs
Mahloujifar et al. (2024)) as an additional parameter that can be chosen by the auditor.2 In this case, we
take the max of εor and εor-fdp for each run, which we denote as εmax, and again report the average over 5
runs in Tables 1 and 2.

In Table 1, we present our results when auditing a model trained with n = 47500 examples where m = 5000
and r = 450003. For our method, we use the remaining 10000 holdout set examples to train the quantile
regression model. In Table 2, we run experiments similar to those found in Steinke et al. (2023) for the black-
box setting, where the number of training examples n is smaller. For each choice of n, we run experiments for
both when r = 0 (all training examples are canaries) and r = n

2 (half of the training examples are canaries).
In these experiments, we randomly sample 20000 examples out of the remaining holdout set examples to
train our quantile regression model.

In most cases, we find that our method achieves higher auditing results, regardless of data setting (i.e., choices
of n, m, and r) and all auditing procedures (εor, εor-fdp, and εmax) In cases where the baseline performs
better, the difference between it and our method is small (e.g., difference of 0.20 for n = 5000, r = n

2 ). Our
results strongly indicate that better member inference attacks can improve DP-SGD auditing and suggest
that in general, MIA methods should be incorporated into auditing experiments when applicable.

2Similarly to how Steinke et al. (2023) report the maximum over lower bounds produced by flipping and not flipping labels.
3We note that this data setup corresponds to the experiments described in Steinke et al. (2023) under their notation of

n = 50000 and m = 5000. While both Steinke et al. (2023) and Mahloujifar et al. (2024) audit this model in the white-box
setting, neither report results for it in the black-box setting.
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Additional insights. Lastly, we present additional observations about how one-run auditing procedures
operate in the black-box setting. First, we note that generally speaking, we observe no clear winner between
Steinke et al. (2023) and Mahloujifar et al. (2024) in the black-box setting, in contrast to the white-box
setting in which Mahloujifar et al. (2024) achieves much tighter auditing results compared to Steinke et al.
(2023). In all cases, the average εmax strictly dominates both εor and εor-fdp, further suggesting that one
auditing procedure does not consistently outperform the other. In addition, while Steinke et al. (2023) posit
that when all training examples are canaries (r = 0), one can achieve higher auditing results, Table 2 does
not clearly corroborate this hypothesis (if anything, the auditing procedures estimate slightly higher lower
bounds when r = n

2 ). We leave further investigation of such observations to future work.

6 Conclusion

We study auditing of differential privacy in the black-box setting, empirical auditing image classification
models when trained with DP-SGD. Focusing on one-run auditing methods, we make the observation
that quantile-regression based MIA approaches complement the computationally efficient nature of one-run
procedures introduced by Steinke et al. (2023) and Mahloujifar et al. (2024). Empirically, we demonstrate
that our quantile-regression based approach improves the baseline procedures across a wide range of data
settings. We recognize, however, that our experiments show that large gap between empirical and theoretical
privacy still exists. We hope that our work will help inspire future studies that may attempt to further close
this gap in the black-box auditing setting.
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