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Abstract

Differential privacy (DP) auditing aims to provide empirical lower bounds on the privacy
guarantees of DP mechanisms like DP-SGD. While some existing techniques require many
training runs that are prohibitively costly, recent work introduces one-run auditing approaches
that effectively audit DP-SGD in white-box settings while still being computationally efficient.
However, in the more practical black-box setting where gradients cannot be manipulated
during training and only the last model iterate is observed, prior work shows that there is still
a large gap between the empirical lower bounds and theoretical upper bounds. Consequently,
in this work, we study how incorporating approaches for stronger membership inference
attacks (MIA) can improve one-run auditing in the black-box setting. Evaluating on image
classification models trained on CIFAR-10 with DP-SGD, we demonstrate that our proposed
approach, which utilizes quantile regression for MIA, achieves tighter bounds while crucially
maintaining the computational efficiency of one-run methods.

1 Introduction

Differential privacy (DP) (Dwork et al., 2006) has become an effective, practical framework for specifying
and ensuring privacy guarantees of statistical algorithms, including stochastic gradient descent (DP-SGD) for
training large models privately (Chaudhuri et al., 2011; Abadi et al., 2016). While DP provides an upper
bound on the privacy guarantee ε of the algorithm, it is useful to additionally have a lower bound on ε to
validate it in practice and potentially detect errors in implementations (Ding et al., 2018; Jagielski et al.,
2020; Tramer et al., 2022). This lower bound is derived empirically through privacy auditing.

DP Auditing often requires training a model hundreds—if not thousands—of times, inducing heavy com-
putational requirements that simply don’t scale when auditing larger models (Tramer et al., 2022). These
costs are further exacerbated by the computational costs of calculating per-example gradients in DP-SGD.
Despite recent advancements in computational efficiency (Nasr et al., 2023), multiple-run auditing still incurs
overheads that can lead to prohibitively costly experiments (Muthu Selva Annamalai & De Cristofaro, 2024).
In light of these problems, Steinke et al. (2023) introduce a new framework requiring only a single run.
Framed as a guessing game, the goal is to identify among a set of “canary” examples the ones that were seen
during training. If one is able to make more guesses correctly, then one can establish higher empirical lower
bounds on ε.

We view these types of guessing games for DP auditing as a form of membership inference (Shokri et al.,
2017), where the goal is determine if a given sample was used in training a machine learning model. However,
Steinke et al. (2023) and Mahloujifar et al. (2024) introduce and evaluate their auditing schemes using only
the simplest strategy for MIA, which can be summarized as looking at some score function (i.e., loss of the
canary) and sorting (i.e., predicting that it was used in training if the loss is small and vice versa). We posit,
however, that in applying this naive strategy, these auditing procedures may underestimate the empirical
lower bounds for DP-SGD.

Contributions. In this work, we evaluate to what extent using strong MIA methods for privacy auditing in
the one-run setting can tighten empirical privacy estimates. Given that the purpose of such one-run auditing
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Algorithm 1: Differentially Private Stochastic Gradient Descent (DP-SGD)
Input: x ∈ Xn

Requires: Loss function f : Rd ×X → R
Parameters: Number of iterations ℓ, learning rate η, clipping threshold c > 0, noise multiplier σ > 0,

sampling probability q ∈ (0, 1]
1 Initialize w0 ∈ Rd;
2 for t = 1, . . . , ℓ do
3 Sample St ⊆ [n] where each i ∈ [n] is included independently with probability q;
4 Compute gt

i = ∇wt−1f(wt−1, xi) ∈ Rd for all i ∈ St;
5 Clip g̃t

i = min
{

1, c
∥gt

i
∥2

}
· gt

i ∈ Rd for all i ∈ St;
6 Sample ξt ∈ Rd from N (0, σ2c2I);
7 Sum g̃t = ξt +

∑
i∈St g̃t

i ∈ Rd;
8 Update wt = wt−1 − η · g̃t ∈ Rd;

Output: w0, w1, . . . , wℓ

procedures is to assess privacy mechanisms while maintaining efficiency, we specifically adopt approaches for
MIA introduced in Bertran et al. (2023), who introduce a class of attacks that compete with state-of-the-art
shadow model approaches for MIA (Shokri et al., 2017; Carlini et al., 2022) while being computationally
efficient (i.e., also require one training run).

We consider the black-box setting for auditing, where the auditor can only access the model at the final
training step. Evaluating on image classification models trained on CIFAR-10 using DP-SGD, we demonstrate
that MIA significantly improves empirical lower bounds estimated from one-run procedures introduced by
Steinke et al. (2023) and Mahloujifar et al. (2024). Furthermore, we find that the advantage holds across a
wide range of data settings (i.e., the number of training examples and proportion of canaries inserted into
training), improving the lower bound on ε by up to 3x in some cases.

1.1 Additional Related Works

In addition to those mentioned above, there have many other works that have recently studied private
auditing under various scenarios. For example, rather than auditing models that are made private during
training, Chadha et al. (2024) audit methods that are made private during inference. Pillutla et al. (2023),
on the other hand, introduce the definition of Lifted Differential Privacy (LiDP) and propose a multi-run
auditing procedure that can utilize multiple, randomized canaries (similar to our one-run auditing setting, in
which the auditor also inserts many canaries). Furthermore, a variety of works have recently studied private
auditing specifically under the constraints of black-box model access. Steinke et al. (2024) study black-box
auditing of DP-SGD for models with linear structure, proposing a heuristic that predicts the outcome of an
audit performed on only the last training iterate. Muthu Selva Annamalai & De Cristofaro (2024) show that
empirical lower bounds for black-box auditing are much tighter when models are initialized to worst-case
parameters, and lastly, Cebere et al. (2024) study black-box auditing in the case where an adversary can
inject sequences of gradients that are crafted ahead of training.

2 Preliminaries

Update: We have substantially revised this entire section to provide more details about the one-run auditing
methods of Steinke et al. (2023) and Mahloujifar et al. (2024) such that the information can be more digestible
to readers unfamiliar with the prior work. Therefore for this section, we only highlight in red the changed
text that is referenced directly in our review responses.

At a high level, differential privacy provides a mathematical guarantee that the output distribution of an
algorithm is not heavily influenced by any single data point. Formally, it is defined as the following:
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Definition 2.1 (Differential Privacy (DP) (Dwork et al., 2006)). A randomized algorithm M : XN → R
satisfies (ε, δ)-differential privacy if for all neighboring datasets D, D′ and for all outcomes S ⊆ R we have

P (M(D) ∈ S) ≤ eεP (M(D′) ∈ S) + δ

To train deep learning models with privacy guarantees, differentially private form of stochastic gradient
descent (DP-SGD) (Song et al., 2013; Bassily et al., 2014; Abadi et al., 2016), which the algorithm noises and
clips gradients before every update step, is typically used. In our work, we aim to audit such models trained
with DP-SGD. We present DP-SGD in more detail in Algorithm 1.

2.1 Auditing Differentially Privacy

Differentially private mechanisms, including DP-SGD, are accompanied by some proof that upper bounds the
privacy parameters ε and δ. While the theoretical upper bound on ε guarantees that privacy loss (or leakage)
cannot exceed some threshold, this bound is not tight. Privacy auditing instead provides an empirical lower
bound on ε, using some form of membership inference and statistical testing to empirically show that (with
some probably p), the privacy loss of a DP mechanism must be at least some amount (i.e., showing that ε
must exceed some lower bound). At very high level, the more successful a membership inference attack on a
model trained with DP-SGD is (i.e., the more privacy leakage occurs), the higher ε must be. Our work thus
explores whether incorporating stronger membership inference attacks in privacy auditing can produce higher
lower bound estimates for ε.

Black-box auditing. Nasr et al. (2023) presents two main threat models for privacy audits:

• White-box access: The auditor has full access throughout the training process to both model’s weights
and gradients, being able to inject arbitrarily-designed gradients at each update step

• Black-box access (with input space canaries): This approach is more restrictive. The auditor is only able
to insert training samples in the dataset and observe the model at the end of training.

In our work, we study the black-box setting that does not allow modifications to the training procedure (i.e.,
modifying gradients like in white-box setting with Dirac gradients (Nasr et al., 2023; Steinke et al., 2023;
Mahloujifar et al., 2024) or in an alternative black-box setting studied in Cebere et al. (2024) that allows
gradient sequences to be inserted). This threat model is often more practically relevant and includes settings
such as publishing the final weights of an open-sourced model. As shown in Nasr et al. (2023) and Steinke
et al. (2023), the gap between the empirical lower bound and theoretical upper bound is generally still large
in the black-box setting, suggesting that this area of research may still be underexplored.1

2.2 One-run auditing

To audit models trained using DP-SGD, we consider the “one-run” auditing procedures proposed by Steinke
et al. (2023) and Mahloujifar et al. (2024), which we present in Algorithms 2 and 3, respectively, for black-box
auditing. At a high level for both procedures, the auditor uses the private model w to compute some
score(w, ci,1) (e.g., negative cross entropy loss) for each canary ci. Guesses are then made based on these
scores (described below), and the final empirical lower bound is estimated based on the accuracy of the
guesses.

We note that in Algorithms 2 and 3, we make minor changes to the notation compared to how they were
original introduced in their respective works (Steinke et al., 2023; Mahloujifar et al., 2024). In this way, we
make the notation of the two algorithms consistent with each other. For example, we now let n denote the total
number of examples used in training (rather than the total number of auditing and non-auditing examples in
Steinke et al. (2023)) and m be the total number of canaries (rather than canary sets in Mahloujifar et al.
(2024)). In Algorithm 2, exactly half of the canaries are randomly sampled such that the data partitioning is
exactly equivalent to Mahloujifar et al. (2024) when the canary set size is K = 2.

1Mahloujifar et al. (2024), for example, do not evaluate their proposed method in the black-box setting at all.
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Algorithm 2: Black-box Auditing - One Run (Steinke et al., 2023)
Input: probability threshold τ , privacy parameter δ, training algorithm A, dataset D, set of m canaries

C = {c1, . . . , cm}
Requires: scoring function score
Parameters: number of positive and negative guesses k+ and k−

1 Randomly split canaries C into two equally-sized sets CIN and COUT

2 Let S = {si}m
i=1, where si =

{
1 if ci ∈ CIN

−1 if ci ∈ COUT

3 Train model w ← A(D ∪ CIN)
4 Compute vector of scores Y = {score(w, ci)}m

i=1
5 Sort scores in ascending order Y ′ ← sort(Y )
6 Construct vector of guesses T = {ti}m

i=1, where

ti =


1 if Yi is among the top k+ scores in Y (i.e., Yi ≥ Y ′m−k+

) // guess ci ∈ CIN

−1 if Yi is among the bottom k− scores in Y (i.e., Yi ≤ Y ′k−
) // guess ci ∈ COUT

0 otherwise // abstain
7 Compute empirical epsilon ε̃ (i.e., find the largest ε̃ such that S, T , τ , and δ satisfy Theorem 1)

Output: ε̃

2.2.1 Auditing with One Run (Steinke et. al, 2023)

Steinke et al. (2023). Steinke et al. (2023) first developed the notion of auditing in one training run.
Rather than training many models on neighboring datasets that differ on single examples, their auditing
scheme requires training only a single model on a dataset with many “canary” examples. We summarize this
procedure in Algorithm 2. At a high level, half of the canaries are randomly sampled from a larger set of m
canaries and included in the training set. The auditor then predicts which of the m canaries were in and not
in the training set by sorting the canaries by their score and guessing that the top k+ are in the training set
and bottom k− are not (while abstaining for the remaining canaries). The final empirical lower bound on ε is
determined by how many total guesses were made and how many were correct. Specifically, Steinke et al.
(2023) use binary search to empirically estimate the largest value for ε such that Theorem 1 is still satisfied.

Theorem 1 (Analytic result for approximate DP (Steinke et al., 2023)). Suppose A : {−1, 1}m → {−1, 0, 1}m

satisfy (ε, δ)-DP. Let S ∈ {−1, 1}m be uniformly random and T = A(S). Suppose P[∥T∥1 ≤ r] = 1. Then,
for all v ∈ R,

PS←{−1,1}m

T←M(S)

[
m∑

i=1
max{0, Ti · Si} ≥ v

]
≤ f(v) + 2mδ · max

i∈{1,...,m}

{
f(v − i)− f(v)

i

}
,

where

f(v) := PW̃←Binomial(r, eε

eε+1 )
[
W̃ ≥ v

]
.

At a high level, Theorem 1 bounds the success rate (number of correct guesses v) of the auditor for the
privacy parameter ε. Given the success rate of some membership inference attack on m canaries, the auditor
can then check whether some ε would violate this bound. In more detail, A is some randomized mechanism
(i.e., DP-SGD in our work) that takes in as input some set of m canaries that are labeled as being included
(S = 1) or excluded (S = −1) from the training set. Observing the outputs of A, the auditor then makes
guesses T ∈ {−1, 0, 1}m for the m canaries where Ti = 0 means that the auditor abstains from making a
guess for a canary i. Ti · Si = 1 if a guess i is correct and

∑m
i=1 max{0, Ti · Si} counts the total number of

correct guesses. Thus, Theorem 1 bounds the probability of making at least v correct guesses.
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Algorithm 3: Black-box Auditing - One Run (Mahloujifar et al., 2024)
Input: privacy parameter δ, training algorithm A, dataset D, set of m canaries C = {c1, . . . , cm}
Requires: scoring function score
Parameters: number of guesses k

1 Randomly split canaries C into two equally-sized sets CIN and COUT

2 Create disjoint canary sets E = {ei}m/2
i=1 by randomly pairing canaries from CIN and COUT such that

ei = (ci,1, ci,2) for ci,1 ∈ CIN and ci,2 ∈ COUT (each canary c ∈ C appears in exactly one set ei)
3 Train model w ← A(D ∪ CIN)
4 Compute vector of scores Y = {|score(w, ci,1)− score(w, ci,2)|}m/2

i=1
5 Sort scores in ascending order Y ′ ← sort(Y )
6 Construct vector of guesses T = {ti}m/2

i=1 , where

ti =



1 if Yi is among the top k values in Y (i.e., Yi ≥ Y ′m−k)
and score(w, ci,1) > score(w, ci,2)// guess ci,1 ∈ CIN

−1 if Yi is among the top k values in Y (i.e., Yi ≥ Y ′m−k)
and score(w, ci,1) ≤ score(w, ci,2)// guess ci,2 ∈ CIN

0 otherwise // abstain

7 Let number of correct guesses k′ =
∑m/2

i=1 1{ti = 1}
8 Compute empirical epsilon ε̃ (i.e., find the largest ε̃ whose corresponding f -DP function f passes

Algorithm 4 for m, k, k′ τ , and δ.)
Output: ε̃

Algorithm 4: Upper bound probability of making correct guesses (Mahloujifar et al., 2024)
Input: probability threshold τ , functions f and f−1, number of guesses k, number of correct guesses k′,

number of samples m, alphabet size s
1 ∀0 < i < k′ set h[i] = 0, and r[i] = 0
2 Set r[k′] = τ · c

m

3 Set h[k′] = τ · c′−c
m

4 for i ∈ [k′ − 1, . . . , 0] do
5 h[i] = (s− 1)f−1(r[i + 1])
6 r[i] = r[i + 1] + i

k−i · (h[i]− h[i + 1])
7 if r[0] + h[0] ≥ k

m then
8 Return True (probability of k′ correct guesses (out of k) is less than τ)
9 else

10 Return False (probability of having k′ correct guesses (out of k) could be more than τ)

2.2.2 Auditing f -DP with One Run (Mahloujifar et. al, 2023)

More recently, Mahloujifar et al. (2024) present an alternative approach based on f -DP (Dong et al., 2022),
which they show provides better privacy estimates in the one-run setting. Rather than having a single set of
canaries, Mahloujifar et al. (2024)’s method first constructs a set of canary sets of size K, where a random
example in each canary set is using in training. Here, the goal is to guess which of the K canaries in each set
was used in training. Both in Mahloujifar et al. (2024)’s and our experiments, the canary set size is K = 2.
Thus to make guesses, we calculate the absolute difference in scores between the canaries in each pair and
sort these sets by this difference, making guesses for the k pairs with the largest absolute difference. For each
of these k pairs, we guess that the canary with the higher score was included in the training set. Finally, like
in Steinke et al. (2023), the empirical lower bound is determined by the number of guesses made and the
number that are correct. We present their procedure in Algorithms 3 and 4.
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To explain the auditing process in more detail, we first define f -differential privacy, which Mahloujifar et al.
(2024) use to estimate the empirical lower bound.
Definition 2.2 (f -Differential Privacy (Dong et al., 2022)). A mechanism M is f -DP if for all neighboring
datasets S,S ′ and all measurable sets T with |S△S ′| = 1, we have

Pr[M(S) ∈ T ] ≤ f̄ (Pr[M(S ′) ∈ T ]) . (1)

We note that f -DP relates to (ε, δ)-DP in the following way:
Proposition 1. A mechanism is (ε, δ)-DP if it is f -DP with respect to f̄(x) = eεx+δ, where f̄(x) = 1−f(x).

In Algorithm 3, the auditor makes and evaluates some set of k guesses and then computes and empirical
lower bound using Algorithm 4. To estimate the lower bound, the auditor first construct a set of candidate
values for ε and a corresponding f -DP function for each. For each value of ε (and function f), Algorithm 4
runs a hypothesis test for the number of correct guesses k′. The final empirical lower bound is the maximum
ε that passes this hypothesis test.

3 Applying (Efficient) MIA to Privacy Auditing

As discussed in the previous section, single-one run auditing requires running a membership inference attack
on the canaries, where the auditor makes guesses under the assumption that the higher the score is, the
more likely the canary was seen during training. In the formulation of their algorithm, Steinke et al. (2023)2

use the simplest approach for membership inference—taking the loss directly as the score function (e.g.,
calculating negative cross entropy loss). However, this simple approach can be naive. For example, if a canary
has a low cross-entropy loss, is it due to it being seen in training or it being an easy image to classify?

“Stronger” membership inference attacks more effectively account for the characteristics of the target sample.
For instance, the most effective approaches (Carlini et al., 2022) train multiple shadow models on random
subsets of data that either include or exclude the sample. These methods generate a distribution of losses for
models that have seen the sample during training and for those that have not. By performing a likelihood-ratio
test on this distribution, these approaches estimate the likelihood that the observed loss came from a model
trained on the sample. Since this likelihood-ratio test is conducted separately for each sample, the resulting
scores are inherently better calibrated to each individual sample, leading to more accurate membership
inference.

This shadow-model approach, while effective, requires high computational demands that do not align with
the goals of one-run auditing.3 In contrast, Bertran et al. (2023) introduce a new class of MIA methods that
relies on training a single quantile regressor on holdout data only. In doing so, they predict a threshold for
determining membership that like shadow-model approaches, is calibrated to the difficulty of each sample.
Moreover, Bertran et al. (2023) show that this lightweight approach both outperforms marginal thresholds,
which are equivalent to the sort and rank style procedure Steinke et al. (2023) and Mahloujifar et al. (2024),
and are competitive with state-of-the-art shadow-model approaches.

3.1 Membership Inference via Quantile Regression

Formally, the quantile regressor can be written as the following:
Definition 3.1 (Quantile Regressor). Given a target false positive rate α, a quantile regressor is a model
q : X → R trained on an holdout dataset P to predict the (1−α)-quantile for the score distribution associated
to each given sample:

∀(x, s) ∈ P, Pr[y ≤ q(x)] = 1− α

Given the relatively small sample size in image datasets like CIFAR-10, Bertran et al. (2023) propose an
alternative method for outputting quantile thresholds in which they train a model that instead predicts the

2Note that Mahloujifar et al. (2024) do not conduct black-box auditing experiments.
3For example, one run of DP-SGD for our experiments at ε = 8.0 takes approximately 12 hours on a single GPU, making

training even tens of shadow models (with DP) for each of the m canaries infeasible for us.
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(a) Train “MIA” regressor (b) “Rescore” canaries

Figure 1: We provide a high-level diagram describing our quantile-regression based MIA approach to auditing.
In the first part (a), we (1) calculate the score s(x) (e.g., loss) using the privately trained model and (2),
train the Gaussian likelihood model on the images x themselves and s(x). Once the Gaussian likelihood model
has been trained on the holdout set, in part (b), we take each canary and (1) use the Gaussian likelihood
model to output the parameters of a Gaussian distribution (i.e., µ, σ). (2) Next, we again feed the canary
into the private model to obtain s(x). (3) Finally, we calculate our new score, q(x) = P (s < s(x) | µ, σ).

mean µ(x) and the standard deviation σ(x) of the score s(x) (e.g., loss of the model to be attacked) associated
with each example x. The per-example threshold is then calculated based on this normal distribution (i.e.,
P (s < s(x) | µ, σ)).

The loss can then be written as the following:

Definition 3.2 (Negative Log-Likelihood for Gaussian Distributions). The negative log-likelihood loss for a
Gaussian distribution with mean µ and standard deviation σ is given by:

LNLL = Ex∼p(x)

[
(x− µ)2

2σ2 + log σ

]

where x ∼ p(x) represents samples from some underlying data distribution (e.g., losses from an image
classification model).

3.2 Proposed Methodology

At a high level, our approach can be summarized as proposing a new scoring function score that is used
in Algorithms 2 and 3 to produce guesses for auditing. In this way, we reduce the problem integrating
different membership inference attacks into existing one-run auditing procedures to simply changing score.
Importantly, by simply modifying how black-box auditing traditionally scores the canaries (i.e., directly
calculating some metric like cross entropy loss of the canary), our proposed methodology inherits the
statistical guarantees of the original auditing algorithms. Moreover, this approach—unlike shadow model
based ones—requires no additional runs of DP-SGD.

We present our proposed method in Figure 1. In more detail, let s(x) be some base scoring function. Adapting
the MIA approach of Bertran et al. (2023), we train a neural network that takes in as input the canary ci

and predicts a Gaussian distribution for s(ci). However, unlike Bertran et al. (2023), who use the Gaussian
distribution to predict the threshold of the q-quantile for some predetermined value of q, we calculate q
directly as the CDF: q(ci) = P (s < s(x) | µ, σ). We then use q as the input score function for Algorithms.

In the following sections discussing our empirical evaluation, we will refer to the base scoring function s(x)
(i.e., the baseline) as scorebase and the quantile scoring function q(x) (i.e., our method) as scorequantile.
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Table 1: We list the hyperparameters for training Wide ResNet 16-4 models using DP-SGD with ε = 8.0 and
δ = 10−5. We also report the average test accuracy of the trained models in our experiments.

Hyperparameter n = 47500 n = 20000 n = 10000 n = 5000
Augmentation multiplicity 16 16 16 16
Batch size 4096 2048 1024 512
Clipping norm 1.0 1.0 1.0 1.0
Learning rate 4.0 2.0 1.0 1.0
Noise multiplier 3.0 2.5 2.0 2.0
Test Accuracy 79.73 68.11 58.30 50.75

4 Empirical Evaluation

Auditing setup. For our empirical evaluation, we follow the experimental set up in prior work (Nasr et al.,
2023; Steinke et al., 2023; Mahloujifar et al., 2024) and train Wide ResNet (WRN) 16-4 models (Zagoruyko &
Komodakis, 2016) from scratch using DP-SGD (at ε = 8.0, δ = 10−5) on the CIFAR-10 dataset (Krizhevsky
et al., 2009). In these experiments, differential privacy is defined at the sample-level privacy with add/remove
adjacency. All models are trained using code provided by Balle et al. (2022), which implements training of
state-of-the-art DP CIFAR-10 models presented in De et al. (2022) using a Rényi DP (Mironov et al., 2019)
privacy accountant.

As conducted in Steinke et al. (2023) and Mahloujifar et al. (2024), we randomly sample 5000 examples from
the training set to be canaries and use the remaining 45000 as non-canaries, giving us in total n = 47500
(i.e., 45000 + 5000

2 ) examples in the training set. We also run additional experiments varying the size of the
training set, using n = 5000, 10000 and 20000 (discussed further in Section 5. We report the hyperparameters
of DP-SGD and test accuracy of the trained models for each value of n in Table 1.

Note that while Steinke et al. (2023) experimented with black-box canaries with both flipped and unperturbed
class labels, we found early on that flipping labels did not improve the lower bound. Thus, given that
perturbing the labels can only hurt the final DP model’s accuracy, we do not flip the canary labels in our
experiments.

Choice of number of guesses k. In general, empirical lower bounds on ε can be quite sensitive to the
number guesses made (Mahloujifar et al., 2024). However, it is unclear from both Steinke et al. (2023) and
Mahloujifar et al. (2024) how the number of guesses was chosen to produce their main results. For example,
Steinke et al. (2023) state that they ”evaluate different values of k+ and k− and only report the highest
auditing results,” but do not specify what exact values were tested. We reached out to the authors, who told
us that some values between 10 and 1000 were chosen (but not exactly how many values of k were tested).
Consequently, we evaluate all methods in our experiments from 10 to the maximum number of guesses
possible in multiples of 10, and like prior work (Nasr et al., 2023; Steinke et al., 2023; Mahloujifar et al., 2024),
report the highest auditing results for each run. We note that, as stated in Steinke et al. (2023) (Section 6),
while evaluating different guesses is equivalent to running multiple hypothesis tests (thereby reducing the
confidence value of experiments), the practice is commonly used in prior work on privacy auditing.

Quantile regressor. Following Bertran et al. (2023), we use a pretrained ConvNeXt (Liu et al., 2022) as
our model architecture for the quantile regressor. We train for 5 epochs using Adam with a learning rate
10−4 and batch size of 128. Similarly, we use as our base score function (i.e., scorebase) the difference in logit
of the true class label and the sum of the remaining logits. As shown in Carlini et al. (2022), this score—in
contrast to cross-entropy loss—follows a normal distribution empirically, making it a natural choice for our
approach.
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Table 2: We present the empirical lower bounds estimated the baseline method (scorebase) and quantile
regression (scorequantile). εor corresponds to Steinke et al. (2023), εor-fdp corresponds to Mahloujifar et al.
(2024), and εmax corresponds to max of the two. We calculate ε for 5 different runs and report the average.

n method r = 45000, m = 5000
εor εor-fdp εmax

47500 scorebase 0.159 0.147 0.208
scorequantile (ours) 0.210 0.134 0.253

5 Results

All results reported in Tables 2 and 3 are averages over the maximum lower bound (with 95% confidence) over
5 different runs, each of which is conducted by randomly partitioning the dataset into canary and non-canary
sets. In these tables, εor corresponds to Steinke et al. (2023) and εor-fdp corresponds to Mahloujifar et al.
(2024). In addition, we consider the setting in which one considers the choice of auditing procedure (i.e.,
Steinke et al. (2023) vs Mahloujifar et al. (2024)) as an additional parameter that can be chosen by the
auditor.4 In this case, we take the max of εor and εor-fdp for each run, which we denote as εmax, and again
report the average over 5 runs in Tables 2 and 3.

In Table 2, we present our results when auditing a model trained with n = 47500 examples where m = 5000
and r = 450005. For our method, we use the remaining 10000 holdout set examples to train the quantile
regression model. In Table 3, we run experiments similar to those found in Steinke et al. (2023) for the black-
box setting, where the number of training examples n is smaller. For each choice of n, we run experiments for
both when r = 0 (all training examples are canaries) and r = n

2 (half of the training examples are canaries).
In these experiments, we randomly sample 20000 examples out of the remaining holdout set examples to
train our quantile regression model.

In most cases, we find that our method, scorequantile, achieves tighter privacy estimates, estimating higher
empirical lower bounds on ε across various data settings (i.e., choices of n, m, and r) and auditing procedures
(εor, εor-fdp, and εmax). In cases where the baseline performs better, the difference between it and our
method is small (e.g., difference of 0.20 for n = 5000, r = n

2 ). Our results strongly indicate that better
member inference attacks can improve DP-SGD auditing and suggest that in general, MIA methods should
be incorporated into auditing experiments when applicable.

Additional insights. Lastly, we present additional observations about how one-run auditing procedures
operate in the black-box setting. First, we note that generally speaking, we observe no clear winner between
Steinke et al. (2023) and Mahloujifar et al. (2024) in the black-box setting, in contrast to the white-box
setting in which Mahloujifar et al. (2024) achieves much tighter auditing results compared to Steinke et al.
(2023). In all cases, the average εmax strictly dominates both εor and εor-fdp, further suggesting that one
auditing procedure does not consistently outperform the other. In addition, while Steinke et al. (2023) posit
that when all training examples are canaries (r = 0), one can achieve higher auditing results, Table 3 does
not clearly corroborate this hypothesis (if anything, the auditing procedures estimate slightly higher lower
bounds when r = n

2 ). We leave further investigation of such observations to future work.

6 Conclusion

We study auditing of differential privacy in the black-box setting, empirical auditing image classification
models when trained with DP-SGD. Focusing on one-run auditing methods, we make the observation
that quantile-regression based MIA approaches complement the computationally efficient nature of one-run

4Similarly to how Steinke et al. (2023) report the maximum over lower bounds produced by flipping and not flipping labels.
5We note that this data setup corresponds to the experiments described in Steinke et al. (2023) under their notation of

n = 50000 and m = 5000. While both Steinke et al. (2023) and Mahloujifar et al. (2024) audit this model in the white-box
setting, neither report results for it in the black-box setting.
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Table 3: We present the empirical lower bounds estimated using the baseline method (scorebase) and quantile
regression (scorequantile) for various data settings, including when the canaries make up all (r = 0) and half
(r = n

2 of the training examples. εor corresponds to Steinke et al. (2023), εor-fdp corresponds to Mahloujifar
et al. (2024), and εmax corresponds to max of the two. We calculate ε for 5 different runs and report the
average.

n method r = 0, m = 2n r = n
2 , m = n

εor εor-fdp εmax εor εor-fdp εmax

5000 scorebase 0.181 0.175 0.237 0.299 0.234 0.393
scorequantile (ours) 0.280 0.240 0.364 0.279 0.486 0.503

10000 scorebase 0.202 0.172 0.216 0.227 0.115 0.241
scorequantile (ours) 0.201 0.339 0.364 0.341 0.217 0.356

20000 scorebase 0.055 0.086 0.098 0.128 0.191 0.204
scorequantile (ours) 0.146 0.246 0.268 0.165 0.313 0.324

procedures introduced by Steinke et al. (2023) and Mahloujifar et al. (2024). Empirically, we demonstrate
that our quantile-regression based approach improves the baseline procedures across a wide range of data
settings. We recognize, however, that our experiments show that large gap between empirical and theoretical
privacy still exists. We hope that our work will help inspire future studies that may attempt to further close
this gap in the black-box auditing setting.
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