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ABSTRACT

Stochastic interpolants offer a robust framework for continuously transforming
samples between arbitrary data distributions via ordinary or stochastic differen-
tial equations (ODEs/SDEs), holding significant promise for generative modeling.
While previous studies have analyzed the finite-time convergence rate of discrete-
time implementations for SDEs, the ODE counterpart remains largely unexplored.
In this work, we bridge this gap by presenting a rigorous finite-time convergence
analysis of numerical implementations for ODEs in the framework of stochastic
interpolants. We establish novel discrete-time total variation error bounds for
two widely used numerical solvers: the first-order forward Euler method and the
second-order Heun’s method. Our analysis also yields optimized iteration complex-
ity results and step size schedules that enhance computational efficiency. Notably,
when specialized to the diffusion model setting, our theoretical guarantees for the
second-order method improve upon prior results in terms of both smoothness re-
quirements and dimensional dependence. Our theoretical findings are corroborated
by numerical and image generation experiments, which validate the derived error
bounds and complexity analyses.

1 INTRODUCTION

Stochastic interpolants (Albergo & Vanden-Eijnden, 2023; Albergo et al., 2023) provide a powerful
framework for constructing generative models by learning deterministic or stochastic transformations
that continuously map samples from an initial distribution ρ0 to a target distribution ρ1, governed by
ordinary or stochastic differential equations (ODEs/SDEs). To determine the differential equation,
the approach constructs stochastic interpolations between ρ0 and ρ1 samples, then estimates a mean
velocity field from these paths. With a learned approximation of the velocity field, one can build
a generative model by solving the approximated ODE or SDE. This novel framework unifies flow
matching (Lipman et al., 2023) and score-based diffusion (Song & Ermon, 2020; Ho et al., 2020;
Song et al., 2021), offering significant design flexibility through its various choices of the initial
distribution and generalized interpolation formulation, making it an important subject for generative
modeling (Chen et al., 2024b; Albergo et al., 2024a;b; Chen et al., 2024a).

Recent theoretical work has focused on understanding the convergence properties of stochastic
interpolants. For transformations based on stochastic differential equations (SDEs), theoretical
guarantees on generation error bounds have been established for both continuous-time (Albergo et al.,
2023) and discrete-time (Liu et al., 2025) scenarios. Continuous-time analysis focuses on the exact
solutions of the underlying equations, while discrete-time analysis further considers the numerical
approximation used in practice since the equations usually cannot be analytically solved. However,
for their deterministic counterparts, ODE-based transformations, the analysis has been limited to
the continuous-time setting (Albergo & Vanden-Eijnden, 2023; Benton et al., 2024b), despite their
widespread use in practical applications. Therefore, we address this critical gap by investigating
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the following question: What is the iteration complexity for numerical ODE solvers to ensure
accurate generation with stochastic interpolants?

This problem is important yet technically challenging. Although there have been insightful analyses
for diffusion models and related approaches that can transform Gaussian to target distributions (e.g.,
Li et al. 2025b; 2024b; Huang et al. 2025), they cannot be directly extended to stochastic interpolants
due to the general data-to-data transformation structures which make the interpolant non-Markovian.
While Liu et al. (2025) recently established finite-time error bounds for the SDE case, their methods
face inherent challenges in ODE cases due to the singular behavior in the degenerated process.

This work bridges the gaps by presenting the first systematic analysis of discretization schemes for
stochastic interpolant ODEs. Specifically, we provide a complete theoretical characterization of both
first-order (forward Euler) and second-order (Heun’s) methods applied to stochastic interpolants
(Theorem 4.5 and 5.4). We explicitly quantified the discretization error introduced by numerical
solvers under mild assumptions, and then derive O(ε−1d2) and O(ε−1/2d3/2) iteration complexity
bounds, respectively, for achieving ε distribution approximation error on d-dimensional data.

A key technical innovation is the introduction of carefully designed continuous-time interpolations.
These interpolations reformulate discrete-time iterations into ODE forms comparable to the true
process, which enables the use of continuous-time analytical tools to quantify the approximation
error by comparing the induced drifts and divergences with those of the true process.

Notably, our results establish a general analysis framework valid for every stochastic interpolant
process satisfying mild regularity assumptions, including the famous variance-preserving diffusion
(Song et al., 2021). Furthermore, our dedicated analysis on the Heun’s method achieves state-of-
the-art iteration complexity results on diffusion models (see Section 5.2 and Appendix B). This
advancement arises from our detailed error analysis, where we carefully partition the drift and
divergence errors into tractable expectation terms, yielding an improved error bound (check Appendix
B.1 for further comparison).

The contributions of this paper are summarized below:

• We provide the first finite-time analysis for stochastic interpolant ODEs. We derive general
TV error bounds for both first-order (Euler’s) and second-order (Heun’s) methods, which
are applicable to all stochastic interpolant process satisfying mild regularity assumptions.

• We explicitly quantify the discretization error introduced by numerical ODE solvers, es-
tablishing O(ε−1d2) and O(ε−1/2d3/2) iteration complexity bounds for both methods,
respectively. Especially, when degenerating to the variance-preserving diffusion model, our
result for Heun’s method improves the existing analyses on diffusion models.

• We employ carefully designed continuous-time interpolation to unify the comparison be-
tween the discrete-time approximation and continuous-time target processes, allowing us to
quantify the approximation error by comparing the induced drifts and divergences. We also
corroborate our findings with numerical experiments and validations on image generation.

2 RELATED WORKS

2.1 STOCHASTIC INTERPOLANTS ANALYSIS

The stochastic interpolant framework originates from continuous-time normalizing flows, providing a
principled approach for constructing data-to-data generative models (Albergo & Vanden-Eijnden,
2023). Subsequent work (Albergo et al., 2023) extended this framework through the incorporation
of Gaussian perturbations, enabling learnable score functions and facilitating the application of
stochastic differential equations for data transformation tasks.

Regarding ODE-based formulations, Albergo & Vanden-Eijnden (2023) established Wasserstein error
bounds for velocity field estimation under Lipschitz continuity assumptions. Benton et al. (2024b)
advanced these results by considering time-dependent Lipschitz constants, thereby obtaining tighter
error bounds. Their analysis further examined the control of Lipschitz constants specifically for linear
interpolants. Both studies focused exclusively on continuous-time settings.
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In the SDE context, Albergo et al. (2023) derived continuous-time Kullback-Leibler (KL) divergence
bounds between target and estimated distributions, expressed in terms of the mean squared error
of drift estimation. Liu et al. (2025) made progress by establishing finite-time error bounds for
the Euler-Maruyama discretization scheme, representing the first discrete-time analysis within the
stochastic interpolant framework. They also investigated the impact of schedule selection.

2.2 ODE-BASED DIFFUSION MODELS ANALYSIS

Recent theoretical work has made significant progress in analyzing the convergence properties
of probability-flow ODE diffusion models. Chen et al. (2023b) provided the first polynomial
convergence bounds for DDIM-type samplers. Chen et al. (2023a) developed a provably efficient
sampling algorithm incorporating corrector steps within the ODE solver framework, though this
approach introduces additional stochasticity to the process.

Recent theoretical analyses of purely deterministic generation typically adopt two principal ap-
proaches. The first directly examines discrete-time density evolution, where Li et al. (2024b)
established a foundational framework for controlling the total variation (TV) distance between target
and estimated distributions. Subsequent works (Li et al., 2024a;c; 2025a; Liang et al., 2025) extended
this framework to derive tighter bounds and accelerated convergence guarantees. The second ap-
proach considers equivalent continuous-time processes through partial differential equation (PDE)
analysis. While both Huang et al. (2025) and (Li et al., 2025b) employed PDE techniques to bound
TV error, the latter achieved superior results through more refined error decomposition methods.

Current theoretical understanding indicates that first-order methods only require Õ(d/ε) iterations
to achieve ε-precision in TV distance (Li et al., 2024c). However, existing analyses of higher-order
methods remain either non-tight or reliant on overly restrictive assumptions, highlighting the need for
more comprehensive theoretical frameworks for ODE-based approaches. See Appendix B and Table
1 for a comparison between our results and existing works.

3 BACKGROUND ON STOCHASTIC INTERPOLANTS

Consider two probability distributions ρ0, ρ1 ∈ ∆(Rd). The stochastic interpolant framework
(Albergo & Vanden-Eijnden, 2023; Albergo et al., 2023) provides a general approach for constructing
a learnable mapping between ρ0 and ρ1: by identifying a learnable vector field b(t, x) such that the
solution of ODE (see Appendix A for SDE cases)

dXt = b(t,Xt)dt (∗)

satisfies X1 ∼ ρ1 under initial condition X0 ∼ ρ0.

Specifically, b(t, x) is defined as the average velocity b(t, x) = E[ẋt|xt = x] of a stochastic
interpolant (xt)t∈[0,1] between ρ0 and ρ1, given by:

xt := I(t, x0, x1) + γ(t)z,

where

• (x0, x1) ∼ ν with marginals x0 ∼ ρ0, x1 ∼ ρ1, and z ∼ N (0, Id) is an independent noise.
• I is a C2-smooth interpolation satisfying I(0, x0, x1) = x0 and I(1, x0, x1) = x1.
• γ(t) > 0 for t ∈ (0, 1), so γ(t)z serves to smooth the marginal distributions.

Notably, the coupling ν can handle both paired and unpaired data, given (x0, x1) are dependent or
independent, respectively. Let ρ(t) denote the law of xt and ρ(t, ·) its density. Typically, we choose
γ(0) = γ(1) = 0 so that ρ(0) = ρ0 and ρ(1) = ρ1.

Under this definition of b(t, x), the solution Xt of ODE (∗) satisfies Xt ∼ ρ(t) for t ∈ [0, 1]. In
practice, since b(t, x) is generally not analytically computable, we usually use neural networks to
obtain an estimate b̂(t, x) (see Appendix A for more details). By applying numerical methods to
solve the ODE (∗) with b̂(t, x), we can then transform samples from ρ0 to ρ1.

Remark: The widely used diffusion model can be viewed as a special case of stochastic interpolants.
For example, consider the linear interpolant xt = (1− t)x0 + tx1 +

√
2t(1− t)z with x0 ∼ ρ0 =
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N (0, Id) and x1 ∼ pdata. In this case, the marginal distributions of xt coincide with those of the
variance-preserving (VP) diffusion model (see, e.g., Song et al. 2021).

Below, we conduct a novel analysis for stochastic interpolants based on two foundational methods:
the Euler’s method (Section 4) and the Heun’s method (Section 5). We derive finite-time TV error
bounds for both methods (Theorem 4.5 and 5.4) respectively, and compare their convergence rates.

4 THE FIRST-ORDER RESULTS FROM THE FORWARD EULER METHOD

We start by analyzing the ODE-based stochastic interpolants with the usage of the forward Euler
method, an important first-order scheme for solving ordinary differential equations. We derive a
finite-time error bound for its numerical solution, which further allows us to analyze the iteration
complexity.

4.1 ERROR BOUND FOR THE FORWARD EULER METHOD

To begin with, we formally define the iterations of the forward Euler method as follows. Consider
a time discretization given by the schedule {tk}Nk=0, where t0 < t1 < t2 < · · · < tN . Given an
initial condition X̂t0 , the forward Euler method approximates the solution of ODE (∗) iteratively by
{X̂ti}Ni=0. Specifically, at iteration (k + 1), we set

X̂tk+1
:= X̂tk + hk · b̂(tk, X̂tk), (Euler)

where b̂(t, x) is an estimator of the drift function b(t, x), and we use hk = tk+1 − tk to denote the
step size. Our objective is to quantify and control the difference between the approximated terminal
distribution ρ̂(tN ) given by X̂tN and the true terminal distribution ρ(tN ).

We make the following assumptions to rigorously analyze the forward Euler method.

Assumption 4.1 (Regularity). Let ν be the joint distribution of ρ0 and ρ1, we assume that:

• The fourth moment of the difference between the initial and goal distribution is bounded:
E(x0,x1)∼ν

[
∥x0 − x1∥4

]
< ∞.

• The p-th order time derivatives (for p = 1, 2) of I(t, x0, x1) and γ2(t) are bounded w.r.t. t:
There exist positive constants CI , Cγ > 0 such that for all x0, x1 ∈ Rd and p ∈ {1, 2},

∥∂p
t I(t, x0, x1)∥ ≤ CI∥x0 − x1∥,

∣∣∣∣ dp

dtp
[
γ2(t)

]∣∣∣∣ ≤ Cγ .

Assumption 4.1 ensures the regularity of both the stochastic interpolant process (xt)t∈[0,1] and the
function b(t, x). For example, with the linear interpolant xt = (1− t)x0 + tx1 +

√
2t(1− t)z, this

assumption is met if ρ0 and ρ1 both have finite fourth moments.

Assumption 4.2 (Drift Estimation Error). Let ε1,k(x) = ∥b̂(tk, x) − b(tk, x)∥ represent the error
between the estimated drift coefficient b̂(tk, x) and the true drift coefficient b(tk, x) at time tk and
state x. We assume that

N−1∑
k=0

hk E
xtk

∼ρ(tk)

[
ε1,k(xtk)

2
]
≤ ε2drift < ∞.

Assumption 4.2 is a standard condition for estimator quality, similar to those in (Benton et al.,
2024a; Liu et al., 2025). This assumption differs from continuous-time conditions by providing a
discrete-time formulation that focuses on the error at the time steps used in the numerical method.

However, unlike SDE-based models, Assumption 4.2 alone is insufficient to fully control the distribu-
tion error (Li et al., 2024b;a; 2025b). Therefore, we introduce further assumptions on b̂(t, x).
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Assumption 4.3 (Jacobian Estimation Error). Let ε2,k(x) =
∥∥∥∇b̂(tk, x)−∇b(tk, x)

∥∥∥
F

, we assume

N−1∑
k=0

hk E
xtk

∼ρ(tk)
[ε2,k(xtk)] ≤ εdiv < ∞.

Assumption 4.4 (Smoothness). b̂(t, x) is C2 w.r.t. x. Furthermore, there is a constant L > 0 such
that for all k = 0, 1, . . . , N and all x, y ∈ Rd,∥∥∥∇b̂(tk, x)

∥∥∥
F
≤ L,

∥∥∥∇2b̂(tk, x)
∥∥∥
F
≤ L3/2, ∥∇ · b̂(t, x)−∇ · b̂(t, y)∥ ≤ L3/2∥x− y∥.

Assumption 4.3 extends the estimation accuracy requirement of Assumption 4.2 to the Jacobian
of b̂(t, x). Similar assumptions are used by Li et al. (2024a) and Li et al. (2025b). Assumption
4.4 imposes a uniform Lipschitz constant on both b̂(t, x) and its divergence. Its reasonableness is
illustrated by cases where the data for ρ0 and ρ1 are bounded in each dimension; in such cases,
Lemma F.7 in the Appendix shows that L is of order O(d).

With the preceding assumptions established, we are now ready to present the main theoretical result
concerning the application of the forward Euler method.

Theorem 4.5. Under Assumptions 4.1, 4.2, 4.3 and 4.4, suppose the forward Euler method is
initialized with X̂t0 ∼ ρ̂(t0), and the step sizes satisfy hk ≤ 1

2L . Then,

TV(ρ(tN ), ρ̂(tN )) ≲ TV(ρ(t0), ρ̂(t0)) + εdiv + εdrift

(
d1/2S(γ, t0, tN )1/2 + L1/2

)
+

N−1∑
k=0

h2
k

[
γ̄−4
k d2 + γ̄−2

k M2
]

︸ ︷︷ ︸
Discretization Error

.

Here, we have defined: γ̄k := inft∈[tk,tk+1] γ(t), S(γ, t0, tN ) :=
∫ tN
t0

γ−2(t)dt and M :=

max
{
d, L,

√
Eν [∥x0 − x1∥4]

}
.

Theorem 4.5 provides a comprehensive upper bound on the total variation (TV) distance between the
true target distribution ρ(tN ) and its approximation ρ̂(tN ) obtained via the forward Euler method.
This result quantifies the convergence behavior of the Euler scheme, and elucidates how several
factors influence the approximation error: the initialization error TV(ρ(t0), ρ̂(tN )), dimension d, the
distance between source and target distribution captured by Eν [∥x0 − x1∥4], the Lipschitz constant
L, the estimation errors εdrift and εdiv, and the step size schedule {hk}N−1

k=0 .

The step sizes {hk}N−1
k=0 specifically influence the last term discretization error in Theorem 4.5,

which quantifies the influence of using the discrete-time numerical solver. The other terms are
independent with the step size schedule, reflecting the inherent quality achievable with an infinite
number of steps. Since the discretization error term is of order O(h2

k) for each step, summing them
up will yield an error bound proportional to the step size (see Section 4.2 for a detailed analysis when
the schedule is specified), so it approaches zero as the step sizes tend to zero. In addition, the O(h2

k)
discretization error per step coincides with prior works for diffusion models with first-order samplers
(Li et al. 2025b; Huang et al. 2025).

To avoid an unbounded right-hand side in Theorem 4.5 when γ(0) = 0 or γ(1) = 0 (which ensures
ρ(0) = ρ0 and ρ(1) = ρ1 in the stochastic interpolant definition), we follow Liu et al. (2025) and
simulate the process within a sub-interval [t0, tN ] ⊂ (0, 1). This means our sampling starts from an
estimation of ρ(t0) rather than ρ0, and similarly aims for an estimation of ρ(tN ) instead of ρ1. When
t is close to 0 and tN is close to 1, ρ(t0) and ρ(tN ) are close to ρ0 and ρ1, respectively. In addition,
the initialization error can be made very small (e.g., when forcing I(t0, x0, x1) = x0). This technique
is also known as early stopping in the context of diffusion models (Song et al., 2021; Hongrui et al.,
2023; Benton et al., 2024a).
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Main Ideas of the Proof We sketch the main ideas of the proof of Theorem 4.5, with the detailed
proof in Appendix D. Since we are comparing a continuous-time process with a discrete-time
estimator, the first key step is to bridge this gap. We do this by reinterpreting the discrete-time process
{X̂tk}Nk=0 as a piecewise-defined continuous process. Specifically, we define

X̂t = Ftk→t(X̂tk) := X̂tk + (t− tk)b̂(tk, X̂tk)

for t ∈ [tk, tk+1]. Under Assumption 4.4 and for sufficiently small step sizes hk, the mapping
Ftk→t : x 7→ x + (t − tk)b̂(tk, x) is a diffeomorphism on Rd, which allows us to write dX̂t =

b̂(tk, X̂tk)dt = b̂(tk, F
−1
tk→t(X̂t))dt. By defining the effective drift b̃(t, x) := b̂(tk, F

−1
tk→t(x))dt, we

obtain dX̂t = b̃(t, X̂t)dt, which is of the same form as the ground truth ODE.

To quantify the similarity between the two processes, the main technical challenge is to show that the
approximate drift b̃(t, x) closely matches the true drift b(t, x), as well as their respective divergences.
Let (Xt)t∈[0,1] denote the ground truth process. We apply the following sequential approximation
scheme to decompose the errors for both the drift and the divergence (see Appendix D.2 and D.3):

b̃(t,Xt) ≈ b̂(tk, Xtk) ≈ b(t,Xt), (Drift Error)

∇ · b̃(t,Xt) = tr
[
∇b̂(tk, F

−1
tk→t(Xt)) · ∇Ftk→t(F

−1
tk→t(Xt))

−1
]

≈ tr
[
∇b̂(tk, Xtk) · Id

]
≈ ∇ · b(t,Xt). (Divergence Error)

Combined with the analysis on partial differential equations (see Lemma D.2), we can then control
the overall TV distance by the controlled drift and divergence errors.

4.2 COMPLEXITY OF FORWARD EULER METHOD

Theorem 4.5 is built on a general stochastic interpolant framework, which is available to control
the convergence rates for every valid stochastic interpolants (i.e., valid I and γ) under necessary
assumptions. Below, we provide a detailed analysis on the convergence complexities for some widely
used stochastic interpolants.

Stochastic Interpolants with γ(t) =
√
at(1− t) For this case, γ2(t) = at(1− t) is the variance

of a Brownian bridge process, which is a popular choice (Albergo et al., 2023; De Bortoli et al., 2024).
To optimize the schedule, we focus on minimizing the discretization error in Theorem 4.5:

ε ≲
N−1∑
k=0

h2
k

[
γ̄−4
k d2 + γ̄−2

k M2
]
.

The error is proportional to h2
kγ̄

−4
k , which suggests setting hk ∝ γ̄2

k to balance the error. Inspired by
the time-scheduling method built for SDE in Liu et al. (2025), we construct the following schedule:
define a midpoint m at tm = 0.5 and select a step size scale parameter h > 0. The schedule {tk}Nk=0
is then constructed by exponentially decaying on both sides:{

tk = 1
2 (1− h)m−k, k ≤ m;

tk = 1− 1
2 (1− h)k−m, k > m.

(1)

Schedule (1) ensures hkγ̄
−2
k = O(h), and the total number of steps N = Θ

(
1
h log

(
1

t0(1−tN )

))
. By

setting δ = min{t0, 1− tN}, Theorem 4.5 directly gives the error bound for this scheduling:

TV(ρ(tN ), ρ̂(tN )) ≲ TV(ρ(t0), ρ̂(t0)) + εdiv + εdrift

(
d1/2 log1/2(1/δ) + L1/2

)
+ h

[
d2 log(1/δ) +M2

]︸ ︷︷ ︸
Discretization Error

,

indicating that achieving an ε-TV error requires N = O
(
1
ε

[
d2 log2(1/δ) +M2 log(1/δ)

])
steps.
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Variance-Preserving Diffusion Models Consider a stochastic interpolant defined as follows:
sample x1 ∼ ρdata and z ∼ N (0, Id), then set xt = tx1 +

√
1− t2z. Then xt ∼ N (tx1, (1− t2)Id)

when x1 is given, so the marginal distributions ρ(t) of the stochastic interpolant match those of the
variance-preserving diffusion model (under a change of parameter, see, e.g., Albergo et al. 2023).

Similar to the previous case, we aim for hk ∝ γ2 = 1− t2 = Θ(1− t). This leads to the schedule:

tk = 1− (1− h)k, 0 ≤ k ≤ N, (2)

where the scale parameter h > 0 controls the step sizes.

Let δ = 1 − tN be the early-stopping time, the number of steps satisfies N = Θ
(
1
h log 1

δ

)
. If we

further assume a data support bounded in each dimension, Theorem 4.5 yields that the forward Euler
method with this scheduling requires O

(
1
εd

2 log2 1
δ

)
iterations to achieve an ε-error, matching the

prior theoretical findings (Li et al., 2024b; 2025b; 2024c). Noting that Li et al. (2024c) reports a
faster Õ(d/ε) complexity, their result relies on specific analysis that is restricted to Gaussian-to-data
scenarios. Theorem 4.5 enables the extension to the more general data-to-data cases.

5 THE SECOND-ORDER RESULTS FROM THE HEUN’S METHOD

This section focuses on deriving a finite-time error bound and the corresponding iteration complexity
for Heun’s method, a widely used second-order approximation for solving ordinary differential
equations (ODEs) (see, e.g., Stoer et al. 1980). We will then compare the error and convergence
rates of Heun’s method to those of the forward Euler method, highlighting the Heun’s method as an
acceleration of the latter.

5.1 ERROR BOUND FOR THE HEUN’S METHOD

Similarly, we first provide a formal definition of the Heun’s method. Given a sequence of discrete time
steps {tk}Nk=0, let X̂tk denote the estimated solution at time tk. Beginning with an initial condition
X̂t0 , the method proceeds via the following iterative scheme:{

X̃tk+1
= X̂tk + hk · b̂(tk, X̂tk),

X̂tk+1
= X̂tk + 1

2hk

[
b̂(tk, X̂tk) + b̂(tk+1, X̃tk+1

)
]
.

(Heun)

Similar to the first-order case, we aim to quantify and control the error between the estimated terminal
distribution and the true terminal distribution. However, to accommodate this higher-order method,
we must modify some of our initial assumptions in Section 4.
Assumption 5.1 (Regularity). Let ν be the joint distribution of ρ0 and ρ1, we assume that:

• The sixth moment of the difference between the initial and goal distribution is bounded:
E(x0,x1)∼ν

[
∥x0 − x1∥6

]
< ∞.

• The time derivatives of I(t, x0, x1) and γ2(t) are bounded up to the third order: There exist
positive constants CI , Cγ > 0 such that for all x0, x1 ∈ Rd and p ∈ {1, 2, 3},

∥∂p
t I(t, x0, x1)∥ ≤ CI∥x0 − x1∥,

∣∣∣∣ dp

dtp
[
γ2(t)

]∣∣∣∣ ≤ Cγ .

Assumption 5.2 (Drift Estimation Error). Let ε1,k(x) = ∥b̂(tk, x)− b(tk, x)∥. Then we assume
N−1∑
k=0

hkE
[
ε1,k(xtk)

2 + ε1,k+1(xtk+1
)2
]
≤ ε2drift < ∞.

Assumption 5.3 (Jacobian Estimation Error). Let ε2,k(x) =
∥∥∥∇b̂(tk, x)−∇b(tk, x)

∥∥∥
F

. We assume

N−1∑
k=0

hkE
[
ε2,k(xtk)

2 + ε2,k+1(xtk+1
)2
]1/2 ≤ εdiv < ∞.

7



Published as a conference paper at ICLR 2026

Assumptions 5.1, 5.2, and 5.3 are similar to Assumptions 4.1, 4.2, and 4.3, respectively, while they
are adapted for the higher-order Heun’s method. Assumption 5.1 requires a stricter regularity since
we are analyzing higher-order integrator. Assumptions 5.2 and 5.3 incorporate additional terms,
reflecting the fact that Heun’s method performs two evaluations of b̂(t, x) per step. It is worth noting
that Assumption 5.3 utilizes ε22,k instead of ε2,k, which is slightly different with Assumption 5.3.

With the preceding assumptions established, we now present our main theorem for Heun’s method.

Theorem 5.4. Under Assumptions 5.1, 5.2, 5.3 and 4.4, if the equation is solved using Heun’s
method with an initial condition X̂t0 ∼ ρ̂(t0), and provided that the step sizes satisfy hk ≤
min

{
1
4L ,E[∥x0 − x1∥6]−1/3, d−1γ̄2

k

}
, then the TV error is bounded as:

TV(ρ(tN ), ρ̂(tN )) ≲ TV(ρ(t0), ρ̂(t0)) + εdiv + εdrift

(
d1/2S(γ, t0, tN )1/2 + L1/2

)
+

N−1∑
k=0

h3
k

[
γ̄−6
k d3 + γ̄−4

k M3
]

︸ ︷︷ ︸
Discretization Error

.

Here, we have defined γ̄k := inft∈[tk,tk+1] γ(t), S(γ, t0, tN ) :=
∫ tN
t0

γ−2(t)dt, and M :=

max
{
d, L,Eν

[
∥x0 − x1∥6

]1/3}
.

Similar to Theorem 4.5, Theorem 5.4 bounds the TV error to the target distribution. The primary
distinction lies in the discretization error term, where the order of the step sizes is enhanced from h2

k
to h3

k, reflecting the higher-order accuracy. The O(h3
k) error for each step aligns with prior analyses

on diffusion models (see, e.g., Huang et al. 2025).

Main Ideas of the Proof The proof of Theorem 5.4 (see Appendix E) shares similar ideas as
the first-order case. A central novelty lies in the following construction of the continuous-time
interpolation for the discrete Heun updates:

X̂t = Gtk→t(X̂tk)

:= X̂tk +

[
(t− tk)−

(t− tk)
2

2(tk+1 − tk)

]
b̂(tk, X̂tk) +

(t− tk)
2

2(tk+1 − tk)
b̂(tk+1, Ftk→tk+1

(X̂tk)).

This interpolation yields a velocity d
dtX̂t =

tk+1−t
tk+1−tk

b̂(tk, X̂tk) +
t−tk

tk+1−tk
b̂(tk+1, Ftk→tk+1

(X̂tk)),
which linearly interpolates between the two drift estimates and achieves higher-order accuracy. Unlike
some alternatives (e.g., Huang et al. 2025), our method only requires b̂(t, x) at discrete timesteps.

For small hk, the mapping Gtk→t is similarly a diffeomorphism, enabling the representation d
dtX̂t =

b̃(t, X̂t) := ∂tGtk→t(G
−1
tk→t(X̂t)). As in the first-order case, we establish that b̃(t, x) and its

divergence closely approximate their ground-truth counterparts, ultimately enabling controlling the
TV error. The linear velocity interpolation yields an O(h2

k) approximation error, improving the
previous O(hk) error for Euler’s method. The detailed decomposition is omitted here for brevity.

5.2 COMPLEXITY OF HEUN’S METHOD

Similar to the forward Euler case, Theorem 5.4 can be applied to all stochastic interpolants satisfying
necessary assumptions. Below, we analyze the complexity for the same stochastic interpolants
discussed in Section 4.2, with the second-order Heun’s method replacing the forward Euler method.

Stochastic Interpolants with γ(t) =
√

at(1− t) The discretization error in Theorem 5.4 is pro-
portional to h3

kγ̄
−6
k . Hence, balancing the error suggests hk ∝ γ̄2

k again, leading to the exponentially
decaying schedule (1). Let δ = min{t0, 1 − tN}. Applying Theorem 5.4 shows that achieving
an ε-TV error requires N = O

(
1√
ε

[
d3/2 log3/2(1/δ) +M3/2 log(1/δ)

])
steps. This represents a

reduction in complexity from O(1/ε) (for forward Euler) to O(1/
√
ε).
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(a) 2D density transforms, labeled
as task A/B/C, respectively. (b) TV v.s. step size h. (c) TV v.s. squared step size h2.

Figure 1: Empirical verification of convergence rates for numerical methods.

(a) Empirical TV error v.s. h. (b) Error growth w.r.t. d (Euler). (c) Error growth w.r.t. d (Heun).

Figure 2: Empirical TV error for d-dimensional Gaussian mixtures.

Variance-Preserving Diffusion Models Recall that the interpolant xt = tx1+
√
1− t2z shares the

same marginal distributions as variance-preserving diffusion models. Using our proposed schedule (2),
we derive a complexity of N = O

(
ε−1/2

[
d3/2 log3/2(1/δ) +M3/2 log(1/δ)

])
, where δ = 1− tN

is the early-stopping time and M = max{d, L,E[∥x1∥6]1/3}. When the data support is bounded in
each dimension, which is a common scenario in practice, M is typically O(d), which simplifies the
complexity to N = O

(
ε−1/2d3/2 log3/2(1/δ)

)
. This O(ε−1/2) convergence rate is consistent with

prior works (Li et al., 2024a; Huang et al., 2025). Notably, our dependence on the dimension d is
lower than the Õ(ε−1/2d2) complexity reported by Li et al. (2025a) for a second-order method.

While Huang et al. (2025) also achieve a comparable Õ(ε−1/2d3/2) complexity, their analysis relies
on stricter assumptions. Specifically, they require uniform boundedness of the third-order derivatives
of the score estimator ŝ(t, x) with respect to both t and x, whereas we only assume bounded second-
order derivatives of b̂(t, x) with respect to x. This is a significant distinction, especially since the true
drift function’s t-derivative can be unbounded. Additionally, their analysis considers errors over the
entire continuous interval, while ours focuses on the discrete time steps used by Heun’s method. See
Appendix B for further comparison.

6 NUMERICAL EXPERIMENTS

This section presents experimental validation of our theories. Using the interpolant xt = (1− t)x0 +

tx1 +
√

2at(1− t)z and schedule (1), we evaluate both forward Euler and Heun’s methods on 2D
datasets and d-dimensional Gaussian mixtures. Our experiments characterize the TV error growth
w.r.t.: (i) step size scale h and (ii) dimension d.

We evaluate our framework on three 2D dataset pairs from Grathwohl et al. (2019). We have designed
three different generation tasks, as shown in Figure 1a. Using a neural network to estimate b(t, x),
we compare the forward Euler and Heun’s methods initialized at ρ(t0). Figures 1b and 1c show the
empirical TV distances between ρ(tN ) and ρ̂(tN ), confirming our theoretical complexity analysis:
the discretization error bounds are O(h) (Euler) and O(h2) (Heun).
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For d-dimensional Gaussian mixtures where b(t, x) admits analytical solutions (see Albergo et al.
2023), we evaluate the empirical TV error without model training. Figure 2a demonstrates the error
growth rate versus step size h, confirming our theoretical convergence rates. Figure 2b and 2c further
examines the dimensional dependence at fixed h. While our theory establishes O(hd2) (Euler) and
O(h2d3) (Heun) error bounds, empirical observations suggest linear growth in both cases. This
theory-experiment gap indicate that the current bound could be further improved, warranting future
investigation.

In addition, to further demonstrate the applicability of our theory, we evaluate both Euler’s and Heun’s
methods on real-world image generation tasks, as detailed in Appendix C.

7 CONCLUSIONS

This paper presented a finite-time analysis of discrete-time numerical implementations for ODEs
derived within the stochastic interpolants framework. We established total variation distance error
bounds for both the first-order forward Euler and second-order Heun’s methods, quantifying the
discrepancy between true and approximated target distributions. Furthermore, we analyzed the
iteration complexity for both methods, elucidating their convergence rates. Numerical experiments
corroborated our theoretical convergence findings.
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USE OF LARGE LANGUAGE MODELS

Parts of this manuscript, including sections of the main text and appendix, were polished and refined
using a large language model (LLM). The LLM was exclusively used for editing and proofreading to
improve clarity, grammar, and flow. All research ideas, technical content, results, and analyses were
generated solely by the authors. This specific statement was also generated with the assistance of an
LLM.

NOTATIONS

Unless otherwise specified, we use the following notations throughout the paper:

• For a vector x ∈ Rd, ∥x∥ denotes its ℓ2 norm.
• For a matrix A, ∥A∥ denotes the operator norm induced by the ℓ2 norm, and ∥A∥F represents

the Frobenius norm.
• The notations d

dt , ∂
∂t and ∂t all refers to the (partial) derivative with respect to t.

• For two vectors x, y ∈ Rd, x · y denotes their inner product, and x⊗ y denotes their tensor
product.

• The notation ∇ denotes the the gradient operator. For a scalar-valued function f , ∇f is the
gradient vector. For a vector-valued function f , ∇f is the Jacobian matrix. Unless specified,
the gradient is always taken with respect to the spatial variable x, not the temporal variable
t.

• The divergence of a function f is written as ∇ · f =
∑d

k=1
∂f
∂xk

.

• The Laplacian of a function f is denoted by ∆f =
∑d

k=1
∂2f
∂x2

k
.

• We use the notation f ≲ g to indicate that f = O(g).

A MORE DETAILS ON STOCHASTIC INTERPOLANTS

Recall that the stochastic interpolant is a stochastic process defined by

xt = I(t, x0, x1) + γ(t)z.

Although xt establishes a connection between the two distributions, its computation depends on
both x0 and x1, making it unsuitable as a generative model yet. To solve this problem, Albergo
et al. (2023) demonstrated that the marginal density ρ(t, x) satisfies the following transport equation
(where the notation ∇ represents the gradient operator):

∂tρ(t, x) +∇ · (ρ(t, x)b(t, x)) = 0,

where the velocity field b(t, x) is given by

b(t, x) = E[ẋt|xt = x] = E[∂tI(t, x0, x1) + γ̇tz|xt = x].

This transport equation reveals that any process (Xt)t∈[0,1] satisfying the initial condition X0 ∼ ρ0
and solving the ODE

dXt = b(t,Xt)dt,
will share identical marginal distributions with the stochastic interpolant (xt)t∈[0,1], i.e., Xt ∼ ρ(t)
for all t ∈ [0, 1]. Crucially, the temporal derivative of Xt depends only on the current time t and
position Xt. Consequently, when initialized with a sample x0 ∼ ρ0, solving (∗) yields X1 ∼ ρ1.

Furthermore, for any non-negative function ϵ(t) ≥ 0, Albergo et al. (2023) shows that the solution to
the SDE

dXt = [b(t,Xt) + ϵ(t)s(t,Xt)]dt+
√
2ϵ(t)dWt

also transforms samples from ρ0 into ρ1, where Wt denotes the standard Wiener process and
s(t, x) = ∇ log ρ(t, x) = E[γ−1z|xt = x] represents the well-known score function. Notably, the
ODE in (∗) emerges as a special case of this SDE when ϵ(t) ≡ 0.
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In practice, an estimator b̂(t, x) of the expected velocity field b(t, x) can be obtained by minimizing
the quadratic loss:

L[b̂] =
∫ 1

0

E
[
1

2
∥b̂(t, xt)∥2 − b(t, xt) · ẋt

]
dt,

where xt ∼ ρ(t) denotes the stochastic interpolant process. This loss differs from the mean squared
error

MSE =

∫ 1

0

E
[
1

2
∥b̂(t, xt)− b(t, xt)∥2

]
dt

by a constant that is independent of b̂, as seen by expanding the quadratic term. The resulting
estimator b̂(t, x), when used in (∗), yields a generative model that transports ρ0 to ρ1.

Table 1: Comparison with Previous Results

Reference Order Smoothness Support Complexity
Li et al. (2024b)
Theorem 1 1 No Requirements Bounded Õ

(
d2

ε + d3
√
ε

)
Li et al. (2024c)
Theorem 1 1 No Requirements Bounded Õ

(
d
ε

)
Li et al. (2025b)
Theorem 5.5 1 L-Lipschitz Bounded Õ

(
LR4d2

ε

)
Li et al. (2024a)
Theorem 1 2 No Requirements Bounded Õ

(
d3
√
ε

)
Huang et al. (2025)
Theorem 3.10 p

Bounded Derivatives
up to (p+ 1)-th Ordera Bounded Õ

(
(LDd)1+1/p

ε1/p

)
Li et al. (2025a)
Theorem 1 K No Requirements Bounded Õ

(
d1+2/K

ε1/K

)
This paper
Theorem 4.5
(Data-to-Data)

1
Bounded Derivatives
up to 2nd Order
(Assumption 4.4)

- O
(

M2

ε

)
This paper
Theorem 4.5
(Data-to-Data)

2
Bounded Derivatives
up to 2nd Order
(Assumption 4.4)

- O
(

M3/2
√
ε

)
aThey assume that |∂k

t ∂
α
x s

(j)
t (x)| ≤ L for 1 ≤ k + |α| ≤ p + 1, where st denotes the estimated score

function.

B COMPARISON WITH PREVIOUS WORKS

In this section, we present a comparison between our results and prior convergence analyses of
ODE-based diffusion models, as summarized in Table 1. The table reports the iteration complexities
of existing methods alongside their respective assumptions on the data distribution.

For Theorem 4.5 and 5.4, the value M = max{d, L,Eν [∥x0 − x1∥6]1/3} is typically of order O(d)
in practical settings, such as when the data support is bounded. Under this assumption, the iteration
complexity simplifies to O

(
d2

ε

)
and O

(
d3/2
√
ε

)
, respectively. Compared to the complexity established

by Li et al. (2024a; 2025a), this bound exhibits improved dependence on the dimension d when
we apply second-order methods. Furthermore, relative to the result of Huang et al. (2025), when
restricted to second-order solvers, our analysis relaxes the smoothness assumptions: specifically, we
reduce the requirement of third-order smoothness in both x and t to second-order smoothness in x
alone (Assumption 4.4).

B.1 MORE TECHNICAL COMPARISON WITH LI ET AL. (2025B) AND HUANG ET AL. (2025)

Our technical approach shares similarities with the works by Li et al. (2025b) and Huang et al.
(2025), which also employ interpolations to reformulate discrete-time iterations into continuous-time
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processes. In this section, we highlight the key technical distinctions between our analysis and prior
works.

Comparison with Li et al. (2025b) Although our analysis relies on Lemma 3.2 from Li et al.
(2025b) (see Lemma D.2) to bound the total variation distance between the target and estimated
distributions, there exist significant technical distinctions in our proofs.

First, rather than controlling the density ratio as in Li et al. (2025b) to extract the estimation
error, we directly decompose the drift and divergence errors via the triangle inequality in a more
intuitive manner, where estimation error and discretization error are considered in a more unified
approach. Furthermore, when bounding the discretization error via time derivatives, we derive
bounds in expectation rather than uniform bounds. Through a careful analysis, this leads to improved
dependence on the dimension d and Lipschitz constant L.

Second, while the general framework of Li et al. (2025b) (Theorem 4.3) can estimate distribution
errors for a variety of deterministic samplers, it is primarily tailored to first-order algorithms, as
their discretization error analysis only considers first-order approximations. In contrast, our error
decomposition framework readily extends to the second-order Heun’s method, by replacing the
first-order approximation with a second-order one.

Comparison with Huang et al. (2025) Huang et al. (2025) analyze general Runge–Kutta methods
for probability flow ODEs in diffusion models, which include Heun’s method as a special case.
Compared to their results for Heun’s method, our analysis offers two key improvements: (1) we
reduce the smoothness requirement in x from third-order to second-order, and (2) we eliminate the
smoothness requirement in t.

For the first advantage, this advantage comes from Lemma 3.2 by Li et al. (2025b), see Lemma D.2.
Huang et al. applied Gagliardo-Nirenberg inequality, which requires that a higher-order derivative is
bounded, while a direct partition into drift error and divergence error has less requirements on the
smoothness.

Regarding the first improvement, our approach leverages Lemma 3.2 from Li et al. (2025b) (Lemma
D.2). While Huang et al. (2025) rely on the Gagliardo–Nirenberg inequality, which demands
bounded higher-order derivatives, our direct decomposition into drift and divergence errors relaxes
the smoothness assumptions.

As for the second improvement, we avoid explicit time-smoothness assumptions for estimator b̂(t, x)
by implicitly utilizing the smoothness of the true drift function b(t, x). This is achieved through a
different interpolation scheme for the discrete-time iterates. Let Ftk→t(x) := x+ (t− tk)b̂(tk, x)
denote the interpolated forward Euler update. In Huang et al. (2025), Heun’s method is interpolated
as

X̂t = X̂tk +
t− tk
2

(
b̂(tk, X̂tk) + b̂(t, Ftk→t(X̂tk))

)
,

whereas our analysis uses the alternative choice:

X̂t = X̂tk +

[
(t− tk)−

(t− tk)
2

2(tk+1 − tk)

]
b̂(tk, X̂tk) +

(t− tk)
2

2(tk+1 − tk)
b̂(tk+1, Ftk→tk+1

(X̂tk)).

Both interpolations are valid representations of Heun’s method, but they differ in motivation. The
interpolation in Huang et al. (2025) ensures that the Taylor expansion around t = tk closely
approximates the true dynamics, requiring control over time derivatives of b̂(t, x). In contrast, our
method approximates the intermediate drift d

dtXt = b(t,Xt) using a linear interpolation:

d
dt
X̂t =

tk+1 − t

tk+1 − tk
b̂(tk, X̂tk) +

t− tk
tk+1 − tk

b̂(tk+1, X̃tk+1
).

This form does not involve time derivatives of b̂(t, x). As long as the estimator is accurate at t = tk
and t = tk+1, our bounds only rely on the smoothness of the underlying drift b(t, x), which is already
established without further assumptions.
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C ADDITIONAL VERIFICATION ON GAUSSIAN-TO-IMAGE GENERATION

This section presents additional experiments on image generation from Gaussian noise, employing
the same definition of the stochastic interpolant introduced in the main text.

Recall that in VP diffusion models, the noisy data at step s is given by

xs =
√
ᾱsxdata +

√
1− ᾱsz,

where z ∼ N (0, Id) is the Gaussian noise. To align this with the stochastic interpolant framework,
we define the time variable as t =

√
ᾱs and construct the stochastic interpolant as

xt = tx1 +
√
1− t2z

with x1 ∼ ρdata and z ∼ N (0, Id). The corresponding drift term can then be expressed as

b(t, x) = E[ẋt|xt = x] = − t√
1− t2

E[z|xt] + E[x1|xt] =
x

t
+

(
t+

1− t2

t

)
s(t, x).

In our experiments, we leverage pre-trained score functions from Huggingface (von Platen et al.,
2022) and compare the performance of the forward Euler method and Heun’s method using the drift
b(t, x) defined above. The resulting generated images are displayed in Figure 3 and Figure 4. As
illustrated, although both methods exhibit converging errors as the number of steps increases, Heun’s
second-order method achieves faster convergence, consistent with our theoretical predictions.

Figure 3: Comparison of Euler’s and Heun’s method on LSUN-Churches dataset.

(a) LSUN-Churches. (b) LSUN-Bedroom.

Figure 4: More comparison between Euler’s and Heun’s method on image datasets.

D PROOF OF THEOREM 4.5

D.1 INTERPOLATION OF THE DISCRETE-TIME PROCESS

First, for the forward Euler solver, we apply the following interpolation to reformulate the process as
a continuous-time process:

X̂t = Ftk→t(X̂tk) := X̂tk + (t− tk)b̂(tk, X̂tk), ∀t ∈ [tk, tk+1).
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That is,
dX̂t = b̂(tk, X̂tk)dt = ∂tFtk→t(X̂tk)dt.

To write b̂(tk, X̂tk) as a function of (t, X̂t), we need to show that Ftk→t is a diffeomorphism from
Rd to itself.
Lemma D.1. Under Assumption 4.4, suppose that the step size hk ≤ 1

2L , then Ftk→t is a diffeomor-
phism, and

∀x ∈ Rd, ∥∇Ftk→t(x)∥ ≤ 2, ∥∇F−1
tk→t(x)∥ ≤ 2.

Proof of Lemma D.1.
∇Ftk→t(x) = Id + (t− tk)∇b̂(tk, x).

So,

∥∇Ftk→t(x)− Id∥ = (t− tk)∥∇b̂(tk, x)∥ ≤ hkL ≤ 1

2
< 1.

The above inequality shows that the Jacobi matrix ∇Ftk→t(x) is invertible, so Ftk→t is a local
diffeomprhism. At the same time, note that ∥Ftk→t(x)−Ftk→t(y)∥ ≥ 1

2∥x− y∥, so by Hadamard’s
global inverse function theorem, it is a global diffeomorphism on Rd. Moreover, the matrix norm of
the inverse of its Jacobi matrix satisfies ∥∇Ftk→t(x)

−1∥ ≤ 2.

By Lemma D.1, we know that X̂t satisfies the ODE

dX̂t = b̃(t, X̂t)dt = b̂(tk, F
−1
tk→t(X̂t))dt.

Now, we introduce an existing result by Li et al. (2025b) to control the overall TV distance.

Lemma D.2. (Lemma 3.2 by Li et al. 2025b) For two processes Xt and X̂t solving dXt = b(t,Xt)dt
and dX̂t = b̂(t, X̂t)dt, respectively. Let ρ(t) and ˆρ(t) be their corresponding laws. Then:

d
dt

TV(ρ(t), ρ̂(t)) =

∫
Ωt

(∇ · b(t, x)−∇ · b̂(t, x))ρ(t, x)dx

−
∫
Ωt

(b(t, x)− b̂(t, x))∇ log ρ(t, x)ρ(t, x)dx,

where Ωt = {x ∈ Rd : ρ̂(t, x) > ρ(t, x)}.

So according to Lemma D.2,
TV(ρ(tN ), ρ̂(tN )) ≤ TV(ρ(t0), ρ̂(t0))

+

∫ tN

t0

EXt∼ρ(t)

[
|∇ · b̃(t,Xt)−∇ · b(t,Xt)|

]
dt

+

∫ tN

t0

EXt∼ρ(t)

[
∥b̃(t,Xt)− b(t,Xt)∥ · ∥∇ ln ρ(t,Xt)∥

]
dt.

In the following sections, we denote by (Xt)t∈[t0,tN ] the true solution of the original ODE. When
t ∈ [tk, tk+1) are given, we denote z = F−1

tk→t(Xt) for simplicity. The rest of the problem is to
control the drift error b̃(t,Xt)− b(t,Xt) and the divergence error ∇ · b̃(t,Xt)−∇ · b(t,Xt).

D.2 CONTROLLING THE DRIFT ERROR

By a simple triangle inequality,

∥b̃(t,Xt)− b(t,Xt)∥ ≤ ∥b̂(tk, z)− b̂(tk, Xtk)∥︸ ︷︷ ︸
A

+ ∥b̂(tk, Xtk)− b(tk, Xtk)∥︸ ︷︷ ︸
B

+ ∥b(tk, Xtk)− b(t,Xt)∥︸ ︷︷ ︸
C

.
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Below we discuss the above terms respectively. For simplicity, we use the notation ε1,k(x) =

∥b̂(tk, x)− b(tk, x)∥ to denote the error of b̂(t, x) at (tk, x).

For the term A, by Assumption 4.4,

∥b̂(tk, z)− b̂(tk, Xtk)∥ ≤ L∥z −Xtk∥
= L∥F−1

tk→t(Xt)− F−1
tk→t(Ftk→t(Xtk))∥

≤ 2L∥Xt − Ftk→t(Xtk)∥,

where the last inequality uses Lemma D.1 and the assumption that hk ≤ 1
2L . For the term C, we

introduce the following lemma:

Lemma D.3.

∥Xt − Ftk→t(Xtk)∥ ≤ (t− tk)

∫ t

tk

∥∥∥∥ d
ds

(b(s,Xs))

∥∥∥∥ ds+ (t− tk)ε1,k(Xtk)

Proof of Lemma D.3. Consider taking derivatives and then integrate, we obtain that

∥Xt − Ftk→t(Xtk)∥ =

∥∥∥∥∫ t

tk

(
d
ds

Xs −
d
ds

Ftk→s(Xtk)

)
ds
∥∥∥∥

=

∥∥∥∥∫ t

tk

(
b(s,Xs)− b̂(tk, Xtk)

)
ds
∥∥∥∥

≤
∫ t

tk

∥b(s,Xs)− b(tk, Xtk)∥ ds+ (t− tk)ε1,k(Xtk)

≤
∫ t

tk

∫ s

tk

∥∥∥∥ d
du

(b(u,Xu))

∥∥∥∥ du+ (t− tk)ε1,k(Xtk)

≤ (t− tk)

∫ t

tk

∥∥∥∥ d
ds

(b(s,Xs))

∥∥∥∥ ds+ (t− tk)ε1,k(Xtk).

Then, by Lemma D.3, term A can be bounded below:

∥b̂(tk, z)− b̂(tk, Xtk)∥ ≤ 2L(t− tk)

∫ t

tk

∥∥∥∥ d
ds

(b(s,Xs))

∥∥∥∥ ds+ ε1,k(Xtk)

≤
∫ t

tk

∥∥∥∥ d
ds

(b(s,Xs))

∥∥∥∥ ds+ ε1,k(Xtk),

where the last inequality uses hk ≤ 1
2L .

For the term B, it is just ε1,k(Xtk).

For the term C, apply the similar method as term A:

∥b(tk, Xtk)− b(t,Xt)∥ ≤
∫ t

tk

∥∥∥∥ d
ds

b(s,Xs)

∥∥∥∥ ds.
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Hence, by summing up the above results, we obtain

EXt∼ρ(t)

[
∥b̃(t,Xt)− b(t,Xt)∥ · ∥∇ ln ρ(t,Xt)∥

]
(a)
≤ EXt∼ρ(t)

[
∥b̃(t,Xt)− b(t,Xt)∥4/3

]3/4
· EXt∼ρ(t)

[
∥s(t,Xt)∥4

]1/4
(b)
≲ γ(t)−1d1/2EXt∼ρ(t)

[(∫ t

tk

∥∥∥∥ d
ds

b(s,Xs)

∥∥∥∥ ds+ ε1,k(Xtk)

)4/3
]3/4

(c)
≲ γ(t)−1d1/2EXt∼ρ(t)

[
(t− tk)

1/3

∫ t

tk

∥∥∥∥ d
ds

b(s,Xs)

∥∥∥∥4/3 ds+ ε1,k(Xtk)
4/3

]3/4

≲ γ(t)−1d1/2

[
(t− tk)

1/3

∫ t

tk

E

[∥∥∥∥ d
ds

b(s,Xs)

∥∥∥∥4/3
]
+ E

[
ε1,k(Xtk)

4/3
]]3/4

(d)
≲ γ(t)−1d1/2E

[
ε1,k(Xtk)

2
]1/2

+ γ(t)−1d1/2(t− tk)
[
E
[
∥x0 − x1∥4

]1/2
γ̄−1
k d1/2 + γ̄−3

k d3/2
]

≲ γ(t)−1d1/2E
[
ε1,k(Xtk)

2
]1/2

+ hkγ̄
−2
k dE

[
∥x0 − x1∥4

]1/2
+ hkγ̄

−4
k d2.

Here, (a) applies Hölder’s inequality with power 4 and 4/3; (b) plugs in the results for terms A, B
and C; (c) applies the Jensen’s inequality to the integral; and (d) uses Lemma F.13 to obtain the
bound.

Therefore, ∫ tN

t0

EXt∼ρ(t)

[
∥b̃(t,Xt)− b(t,Xt)∥ · ∥∇ ln ρ(t,Xt)∥

]
dt

≲ d1/2
∫ tN

t0

γ(t)−1E
[
ε1,k(Xtk)

2
]1/2

dt

+

N−1∑
k=0

h2
k

[
γ̄−2
k dE

[
∥x0 − x1∥4

]1/2
+ γ̄−4

k d2
]

(a)
≲ d1/2

√∫ tN

t0

γ(t)−2dt

√∫ tN

t0

E [ε1,k(Xtk)
2]

1/2 dt

+

N−1∑
k=0

h2
k

[
γ̄−2
k dE

[
∥x0 − x1∥4

]1/2
+ γ̄−4

k d2
]

(b)
≤ d1/2εdriftS(γ, t0, tN )1/2 +

N−1∑
k=0

h2
k

[
γ̄−2
k dE

[
∥x0 − x1∥4

]1/2
+ γ̄−4

k d2
]
,

where

S(γ, t0, tN ) =

∫ tN

t0

γ(t)−2dt. (3)

For the above derivation, the inequality (a) applies Cauchy-Schwarz inequality, while the inequality
(b) uses Assumption 4.2.

D.3 CONTROLLING THE DIVERGENCE ERROR

First, according to the chain rule of derivatives,

∇b̃(t,Xt) = ∇b̂(tk, z) · ∇Ftk→t(z)
−1.
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Therefore, by applying triangle inequality,∣∣∣∇ · b̃(t,Xt)−∇ · b(t,Xt)
∣∣∣ ≤ ∣∣∣tr [[∇b̂(tk, z)−∇b̂(tk, Xtk)

]
· ∇Ftk→t(z)

−1
]∣∣∣︸ ︷︷ ︸

A

+
∣∣∣tr [[∇b̂(tk, Xtk)−∇b(tk, Xtk)

]
· ∇Ftk→t(z)

−1
]∣∣∣︸ ︷︷ ︸

B

+
∣∣tr [∇b(tk, Xtk) ·

(
∇Ftk→t(z)

−1 − Id
)]∣∣︸ ︷︷ ︸

C

+ |∇ · b(tk, Xtk)−∇ · b(t,Xt)|︸ ︷︷ ︸
D

.

Now, we deal with the above terms respectively. Similarly to the velocity error, we use the notation
ε2,k(x) = ∥∇b̂(tk, x)−∇b(tk, x)∥F .

First, since ∥∇Ftk→t(z)− Id∥F ≤ Lhk ≤ 1
2 ,

∥∇Ftk→t(z)
−1 − Id∥F = ∥(Id + Ftk→t(z)− Id)

−1 − Id∥F

≤ ∥Id +
∞∑
i=1

(Id − Ftk→t(z))
i − Id∥F

≤
∞∑
i=1

(Lhk)
i ≤ 2Lhk.

So for the term A,∣∣∣tr [[∇b̂(tk, z)−∇b̂(tk, Xtk)
]
· ∇Ftk→t(z)

−1
]∣∣∣

≤ |∇ · b̂(tk, z)−∇ · b̂(tk, Xtk)|+ 2Lhk∥∇b̂(tk, z)−∇b̂(tk, Xtk)∥F
≤ 2L3/2∥z −Xtk∥ ≤ 4L3/2∥Xt − Ftk→t(Xtk)∥

≤ 2L1/2

∫ t

tk

∥∥∥∥ d
ds

(b(s,Xs))

∥∥∥∥ ds+ 2L1/2ε1,k(Xtk),

where the last inequality applies Lemma D.3.

For the term B, ∣∣∣tr [[∇b̂(tk, Xtk)−∇b(tk, Xtk)
]
· ∇Ftk→t(z)

−1
]∣∣∣

≤ 2
∥∥∥∇b̂(tk, Xtk)−∇b(tk, Xtk)

∥∥∥
F

≤ 2ε2,k(Xtk).

For the term C,∣∣tr [∇b(tk, Xtk) ·
(
∇Ftk→t(z)

−1 − Id
)]∣∣ ≤ 2Lhk∥∇b(tk, Xtk)∥F .

For the term D, consider taking derivatives w.r.t. t:

|∇ · b(tk, Xtk)−∇ · b(t,Xt)| ≤
∫ t

tk

∣∣∣∣ d
ds

(∇ · b(s,Xs))

∣∣∣∣ ds.
Therefore, combining Lemmas F.14, F.13 and F.1, we can get

. E
[∣∣∣∇ · b̃(t,Xt)−∇ · b(t,Xt)

∣∣∣]
≲ hk

[
E
[
∥x0 − x1∥3

]2/3
(γ̄−2

k d+ γ̄−1
k d1/2L1/2) + γ̄−4

k d2

+ Lγ̄−1
k d1/2

√
E∥x0 − x1∥2 + Lγ̄−2

k d
]

+ L1/2E [ε1,k(Xtk)] + E [ε2,k(Xtk)] .
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Then, taking the integral and applying Assumption 4.2 and 4.3:∫ tN

t0

EXt∼ρ(t)

[
|∇ · b̃(t,Xt)−∇ · b(t,Xt)|

]
dt

≲
N−1∑
k=0

h2
k

[
E
[
∥x0 − x1∥3

]2/3
γ̄−2
k d+ γ̄−4

k d2

+ Lγ̄−1
k d1/2

√
E∥x0 − x1∥2 + Lγ̄−2

k d

]
+

∫ tN

t0

E [ε2,k(Xtk)] dt+
∫ tN

t0

E [ε1,k(Xtk)] dt

≲ εdiv + L1/2εdrift +

N−1∑
k=0

h2
k

[
E
[
∥x0 − x1∥3

]2/3
γ̄−2
k d+ γ̄−4

k d2

+ Lγ̄−1
k d1/2

√
E∥x0 − x1∥2 + Lγ̄−2

k d

]
.

Combining Lemma D.2, the bound on velocity error and the bound on divergence error, we can obtain
the error bound given in Theorem 4.5.

E PROOF OF THEOREM 5.4

E.1 INTERPOLATION OF THE DISCRETE-TIME PROCESS

The proof of Theorem 5.4 shares the same basic ideas as Theorem 4.5. In order to compare the
discrete-time iterations with the true process, we first apply an interpolation on the Heun’s method:
X̂t = Gtk→t(X̂tk). The interpolation is defined as follows:

Gtk→t(x) := x+

∫ t

tk

[
b̂(tk, x) +

s− tk
tk+1 − tk

(
b̂(tk+1, Ftk→tk+1

(x))− b̂(tk, x)
)]

ds

= x+

[
(t− tk)−

(t− tk)
2

2(tk+1 − tk)

]
b̂(tk, x) +

(t− tk)
2

2(tk+1 − tk)
b̂(tk+1, Ftk→tk+1

(x)),

where recall that Ftk→t(x) := x+ (t− tk)b̂(tk, x) is the interpolation for the Euler’s method.

Similarly, we want to show that X̂t admits the same ODE form as the true process, which relies on
the following Lemma.

Lemma E.1. Suppose Assumption 4.4 holds, then if hk ≤ 1
4L , Gtk→t is a diffeomprhism, and for all

x ∈ Rd,
∥∇Gtk→t(x)∥ ≤ 2, ∥∇Gtk→t(x)

−1∥ ≤ 2.

Proof. Similarly to the proof of Lemma D.1, we only need to show that ∥∇Gtk→t(x)− Id∥ ≤ 1
2 .

∇Gtk→t(x) = Id +

[
(t− tk)−

(t− tk)
2

2(tk+1 − tk)

]
∇b̂(tk, x)

+
(t− tk)

2

2(tk+1 − tk)
∇b̂(tk+1, Ftk→tk+1

(x))∇Ftk→tk+1
(x)

= Id +

[
(t− tk)−

(t− tk)
2

2(tk+1 − tk)

]
∇b̂(tk, x)

+
(t− tk)

2

2(tk+1 − tk)
∇b̂(tk+1, Ftk→tk+1

(x))
(
Id + hk∇b̂(tk, x))

)
.
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So,

∥∇Gtk→t(x)− Id∥ ≤ hkL+
1

2
hkL (1 + hkL) <

1

2
,

which completes the proof.

By Lemma E.1, if we write z = G−1
tk→t(Xt), then

d
dt
X̂t = b̃(t, X̂t) :=

tk+1 − t

tk+1 − tk
b̂(tk, z) +

t− tk
tk+1 − tk

b̂(tk+1, Ftk→tk+1
(z)).

Then by Lemma D.2,

TV(ρ(tN ), ρ̂(tN )) ≤ TV(ρ(t0), ρ̂(t0))

+

∫ tN

t0

EXt∼ρ(t)

[
|∇ · b̃(t,Xt)−∇ · b(t,Xt)|

]
dt

+

∫ tN

t0

EXt∼ρ(t)

[
∥b̃(t,Xt)− b(t,Xt)∥ · ∥∇ ln ρ(t,Xt)∥

]
dt.

E.2 CONTROLLING THE DRIFT ERROR

Still, use the notation ε1,k(x) = ∥b̂(tk, x) − b(tk, x)∥, then we can control b̃(t, x) − b(t, x) in the
following way:

b̃(t,Xt)− b(t,Xt)

= b̂(tk, z) +
t− tk

tk+1 − tk

(
b̂(tk+1, Ftk→tk+1

(z))− b̂(tk, z)
)
− b(t,Xt)

=
tk+1 − t

tk+1 − tk

[
b̂(tk, z)− b̂(tk, Xtk)

]
+

t− tk
tk+1 − tk

[
b̂(tk+1, Ftk→tk+1

(z))− b̂(tk+1, Xtk+1
)
]

︸ ︷︷ ︸
A:bias error

+
tk+1 − t

tk+1 − tk

[
b̂(tk, Xtk)− b(tk, Xtk)

]
+

t− tk
tk+1 − tk

[
b̂(tk+1, Xtk+1

)− b(tk+1, Xtk+1
)
]

︸ ︷︷ ︸
B:estimation error

+ b(tk, Xtk) +
t− tk

tk+1 − tk

(
b(tk+1, Xtk+1

)− b(tk, Xtk)
)
− b(t,Xt)︸ ︷︷ ︸

C:discretization error

.

Below we bound the terms respectively. First, for the bias error A,

A ≤ tk+1 − t

tk+1 − tk
L∥z −Xtk∥+

t− tk
tk+1 − tk

L∥Ftk→tk+1
(z)−Xtk+1

∥

≤ tk+1 − t

tk+1 − tk
L∥z −Xtk∥

+
t− tk

tk+1 − tk
L
(
∥Ftk→tk+1

(z)− Ftk→tk+1
(Xtk)∥+ ∥Ftk→tk+1

(Xtk)−Xtk+1
∥
)

≤ 2L∥z −Xtk∥+ L(t− tk)

∫ tk+1

tk

∥∥∥∥ d
ds

b(s,Xs)

∥∥∥∥ ds+ L(t− tk)ε1,k(Xtk).

The last step uses Lemma D.3.

For ∥z −Xtk∥, we can observe that

∥z −Xtk∥ ≤ ∥G−1
tk→t(Xt)−G−1

tk→t(Gtk→t(Xtk))∥ ≤ 2∥Xt −Gtk→t(Xtk)∥.

Now, we introduce the following lemma:
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Lemma E.2. When hk ≤ 1
L , suppose Assumption 4.4 holds,

∥Xt −Gtk→t(Xtk)∥ ≲ (t− tk)ε1,k(Xtk) + (t− tk)ε1,k+1(Xtk+1
)

+ (t− tk)
2L

∫ tk+1

tk

∥∥∥∥ d
ds

b(s,Xs)

∥∥∥∥ ds

+ (t− tk)(tk+1 − tk)

∫ tk+1

tk

∥∥∥∥ d2

ds2
b(s,Xs)

∥∥∥∥ ds.

Proof of Lemma E.2. First partition the error into several parts.

∥Ft(Xtk)−Xt∥
≤ ∥Ft(Xtk)−Xtk − (Xt −Xtk)∥

≤
[
(t− tk)−

(t− tk)
2

2(tk+1 − tk)

]
·
∥∥∥b̂(tk, Xtk)− b(tk, Xtk)

∥∥∥︸ ︷︷ ︸
(i)

+
(t− tk)

2

2(tk+1 − tk)
·
∥∥∥b̂(tk+1, Xtk+1

)− b(tk+1, Xtk+1
)
∥∥∥︸ ︷︷ ︸

(ii)

+
(t− tk)

2

2(tk+1 − tk)
·
∥∥∥b̂(tk+1, Ftk→tk+1

(Xtk))− b̂(tk+1, Xtk+1
)
∥∥∥︸ ︷︷ ︸

(iii)

+

∥∥∥∥∫ t

tk

[
b(tk, Xtk) +

s− tk
tk+1 − tk

(b(tk+1, Xtk+1
)− b(tk, Xtk))− b(s,Xs)

]
ds
∥∥∥∥︸ ︷︷ ︸

(iv)

.

We then need to provide upper bounds for the parts. First,

(i) + (ii) ≤ 2(t− tk)ε1,k(Xtk) + (t− tk)ε1,k+1(Xtk+1
).

For the third term, apply Lemma D.3,

(iii) ≤ (t− tk)
2

(tk+1 − tk)
L∥Ftk→tk+1

(Xtk)−Xtk+1
∥

≤ (t− tk)
2L

∫ tk+1

tk

∥∥∥∥ d
ds

b(s,Xs)

∥∥∥∥ ds+ (t− tk)
2Lε1,k(Xtk).

For the last term, note that

t− tk
tk+1 − tk

[
b(tk+1, Xtk+1

)− b(tk, Xtk)
]
− [b(t,Xt)− b(tk, Xtk)]

=
t− tk

tk+1 − tk

∫ tk+1

tk

d
ds

b(s,Xs)ds−
∫ t

tk

d
ds

b(s,Xs)ds

=
t− tk

tk+1 − tk

∫ tk+1

tk

[
d
ds

b(s,Xs)−
d
dt
b(t,Xt)

]
ds−

∫ t

tk

[
d
ds

b(s,Xs)−
d
dt
b(t,Xt)

]
ds

=
t− tk

tk+1 − tk

∫ tk+1

t

ds
∫ s

t

d2

du2
b(u,Xu)du+

tk+1 − t

tk+1 − tk

∫ t

tk

ds
∫ t

s

d2

du2
b(u,Xu)du.

So,

(iv) ≤ (t− tk)(tk+1 − tk)

∫ tk+1

tk

∥∥∥∥ d2

ds2
b(s,Xs)

∥∥∥∥ ds.

The proof is finished by directly combining the four parts.
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By Lemma E.2, the bias error

A ≲ L(t− tk)ε1,k(Xtk) + L(t− tk)ε1,k+1(Xtk+1
)

+ L(t− tk)

∫ tk+1

tk

∥∥∥∥ d
ds

b(s,Xs)

∥∥∥∥ ds

+ (t− tk)Lhk

∫ tk+1

tk

∥∥∥∥ d2

ds2
b(s,Xs)

∥∥∥∥ ds.

For the estimation error B, clearly,

∥B∥ ≤ tk+1 − t

tk+1 − tk
ε1,k(Xtk) +

t− tk
tk+1 − tk

ε1,k+1(Xtk+1
).

For the discretization error C, according to the proof of Lemma E.2, we obtain that

∥C∥ ≲ (tk+1 − tk)

∫ tk+1

tk

∥∥∥∥ d2

ds2
b(s,Xs)

∥∥∥∥ ds.

Combine the above three terms, and apply Lemmas F.13 and F.15. Then, we get:

EXt∼ρ(t)

[
∥b̃(t,Xt)− b(t,Xt)∥ · ∥∇ ln ρ(t,Xt)∥

]
≲ EXt∼ρ(t)

[
∥b̃(t,Xt)∥6/5

]5/6
· EXt∼ρ(t)

[
∥s(t,Xt)∥6

]1/6
≲ γ(t)−1d1/2

[
E
[
∥ε1,k(Xtk)∥2

]1/2
+ E

[
∥ε1,k(Xtk+1

)∥2
]1/2]

+ γ(t)−1d1/2Lhk

[
(t− tk)

1/5

∫ t

tk

∥∥∥∥ d
ds

b(s,Xs)

∥∥∥∥6/5 ds

]5/6

+ γ(t)−1d1/2hk

[
(t− tk)

1/5

∫ t

tk

∥∥∥∥ d2

ds2
b(s,Xs)

∥∥∥∥6/5 ds

]5/6
≲ γ(t)−1d1/2

[
E
[
ε1,k(Xtk)

2
]1/2

+ E
[
ε1,k(Xtk+1

)2
]1/2]

+ γ̄−3
k d3/2h2

kE
[
∥x0 − x1∥6

]1/2
+ d3γ̄−6

k

+ Lγ̄−2
k dE

[
∥x0 − x1∥6

]1/3
+ Ld2γ̄−4

k .

Integrate and write M = max{E
[
∥x0 − x1∥6

]1/3
, L, d}, then∫ tN

t0

EXt∼ρ(t)

[
∥b̃(t,Xt)− b(t,Xt)∥ · ∥∇ ln ρ(t,Xt)∥

]
dt

≲ d1/2εdriftS(γ, t0, tN )1/2 +

N−1∑
k=0

h3
k

[
γ̄−6
k d3 +M3γ̄−4

k

]
.

E.3 CONTROLLING THE DIVERGENCE ERROR

Use the notation ε2,k(x) = ∥∇b̂(tk, x)−∇b(tk, x)∥F . First,

∇ · b̃(t,Xt)−∇ · b(t,Xt) = tr
[
tk+1 − t

tk+1 − tk
∇b̂(tk, z)∇Gtk→t(z)

−1

+
t− tk

tk+1 − tk
∇b̂(tk+1, Ftk→tk+1

(z))∇Ftk→tk+1
(z)∇Gtk→t(z)

−1

−∇b(t,Xt)∇Gtk→t(z)∇Gtk→t(z)
−1

]
.
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Then, by Lemma E.1,

∣∣∣∇ · b̃(t,Xt)−∇ · b(t,Xt)
∣∣∣ ≲ ∣∣∣∣tr[ tk+1 − t

tk+1 − tk
∇b̂(tk, z)

+
t− tk

tk+1 − tk
∇b̂(tk+1, Ftk→tk+1

(z))∇Ftk→tk+1
(z)

−∇b(t,Xt)∇Gtk→t(z)

]∣∣∣∣
= |tr [Dbias +Dest +Ddis]| ,

where the terms are defined as:

Dbias =
tk+1 − t

tk+1 − tk

[
∇b̂(tk, z)−∇b̂(tk, Xtk)

]
+

t− tk
tk+1 − tk

[
∇b̂(tk+1, Ftk→tk+1

(z))∇Ftk→tk+1
(z)−∇b̂(tk+1, Xtk+1

)∇Gtk→tk+1
(Xtk)

]
− [∇b(t,Xt)∇Gtk→t(z)−∇b(t,Xt)∇Gtk→t(Xtk)] ,

Dest =
tk+1 − t

tk+1 − tk

[
∇b̂(tk, Xtk)−∇b(tk, Xtk)

]
+

t− tk
tk+1 − tk

[
∇b̂(tk+1, Xtk+1

)∇Gtk→tk+1
(Xtk)−∇b(tk+1, Xtk+1

)∇Gtk→tk+1
(Xtk)

]
,

Ddis =
tk+1 − t

tk+1 − tk
∇b(tk, Xtk)∇Gtk→tk(Xtk) +

t− tk
tk+1 − tk

∇b(tk+1, Xtk+1
)∇Gtk→tk+1

(Xtk)

−∇b(t,Xt)∇Gtk→t(Xtk).

Bias Error For Dbias, with Assumption 4.4,

|tr[Dbias]| ≤
tk+1 − t

tk+1 − tk
L3/2∥z −Xtk∥

+
t− tk

tk+1 − tk

∥∥∥∇b̂(tk+1, Ftk→tk+1
(z))−∇b̂(tk+1, Xtk+1

)
∥∥∥
F
· ∥∇Ftk→tk+1

(z)∥F

+
t− tk

tk+1 − tk
∥∇b̂(tk+1, Xtk+1

)∥F ·
∥∥∇Ftk→tk+1

(z)−∇Gtk→tk+1
(Xtk)

∥∥
F

+ ∥∇b(t,Xt)∥F · ∥∇Gtk→t(Xtk)−∇Gtk→t(z)∥F
(a)
≲

tk+1 − t

tk+1 − tk
L3/2∥z −Xtk∥+

t− tk
tk+1 − tk

L3/2
∥∥Ftk→tk+1

(z)−Xtk+1

∥∥
+

t− tk
tk+1 − tk

L

∥∥∥∥hk∇b̂(tk, z)−
1

2
hk∇b̂(tk, Xtk)

− 1

2
hk∇b̂(tk+1, Ftk→tk+1

(Xtk))∇Ftk→tk+1
(Xtk)

∥∥∥∥
F

+ ∥∇b(t,Xt)∥F · L3/2hk∥Xtk − z∥
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(b)
≲ ∥z −Xtk∥L3/2 (1 + hk∥∇b(t,Xt)∥F ) + L3/2∥Ftk→tk+1

(Xtk)−Xtk+1
∥

+ Lhk∥∇Ftk→tk+1
(Xtk)− Id∥ · ∥∇b̂(tk+1, Xtk+1

)∥F

+ Lhk

∥∥∥∇b̂(tk, Xtk)−∇b̂(tk+1, Xtk+1
)
∥∥∥
F

(c)
≲ L3/2(1 + hk∥∇b(t,Xt)∥F )

[
hkε1,k(Xtk) + hkε1,k+1(Xtk+1

)

+ h2
kL

∫ tk+1

tk

∥∥∥∥ d
ds

b(s,Xs)

∥∥∥∥ ds+ h2
k

∫ tk+1

tk

∥∥∥∥ d2

ds2
b(s,Xs)

∥∥∥∥ ds
]

+ L3/2hk

∫ tk+1

tk

∥∥∥∥ d
ds

b(s,Xs)

∥∥∥∥ ds

+ Lhk

(
ε2,k(Xtk) + ε2,k+1(Xtk+1

)
)

+ Lhk

∫ tk+1

tk

∥∥∥∥ d
ds

(∇b(s,Xs))

∥∥∥∥
F

ds.

The inequality (a) applies Assumption 4.4; the inequality (b) rearranges the terms and applies
triangle inequalities; the inequality (c) expands the differences into the form of integrals by
Lemma D.3, E.2, and we control the difference

∥∥∥∇b̂(tk, Xtk)−∇b̂(tk+1, Xtk+1
)
∥∥∥
F

by control-

ling
∥∥∇b(tk, Xtk)−∇b(tk+1, Xtk+1

)
∥∥
F

.

Notably, in the first term, when dhkγ̄
−2
k ≲ 1 and hkd

1/2γ̄−1
k E [∥x0 − x1∥p]1/p ≲ 1 (p > 1 is a small

constant), we have hkE ∥∇b(t,Xt)∥p]1/p ≲ 1, so based on the assumptions on hk, Lemmas F.13,
F.15, F.14 and Hölder’s inequality,

E [|tr[Dbias]|] ≲ L3/2h2
k

(
E
[
∥x0 − x1∥6

]1/3
γ̄−1
k d1/2 + γ̄−3d2

)
+ L3/2h3

k

[
E
[
∥x0 − x1∥6

]1/2
dγ̄−2

k + d5/2γ̄−5
k

]
+ Lh2

k

[
E
[
∥x0 − x1∥6

]1/3
dγ̄−2

k + d2γ̄−4
k

]
+ L3/2hk

(
E[ε1,k(Xtk)] + E[ε1,k+1(Xtk+1

)]
)

+ Lhk

(
E[ε2,k(Xtk)] + E[ε2,k+1(Xtk+1

)]
)
.

Estimation Error For Dest,

|tr[Destimate]| ≤
tk+1 − t

tk+1 − tk
ε2,k(Xtk) +

t− tk
tk+1 − tk

ε2,k+1(Xtk+1
) · ∥∇Gtk→tk+1

(Xtk)∥

≲ ε2,k(Xtk) + ε2,k+1(Xtk+1
).

Discretization Error For Ddis, note that ∥∇Gtk→t(Xtk)− Id∥ is of order O(h), we cannot use
this approximation because we are expecting the error of order O(h2). Thus we use a different
approach to deal with this term. By taking the second-order derivative,

|tr[Ddis]| ≤ (tk+1 − tk)

∫ tk+1

tk

∣∣∣∣ d2

ds2
tr [∇b(s,Xs)∇Gtk→s(Xtk)]

∣∣∣∣ ds.
We now explicitly write the derivatives of ∇Gtk→s below for further discussion:

∇Gtk→t(x) = Id +

[
(t− tk)−

(t− tk)
2

2hk

]
∇b̂(tk, x)

+
(t− tk)

2

2hk
∇b̂(tk+1, Ftk→tk+1

(x)) · (Id + hk∇b̂(tk, x)),
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d
dt
∇Gtk→t(x) =

tk+1 − t

hk
∇b̂(tk, x)

+
t− tk
hk

∇b̂(tk+1, Ftk→tk+1
(x)) · (Id + hk∇b̂(tk, x)),

d2

dt2
∇Gtk→t(x) =

1

hk

[
∇b̂(tk+1, Ftk→tk+1

(x)) · (Id + hk∇b̂(tk, x))−∇b̂(tk, x)
]
.

So, by our assumption that hkL ≲ 1,

∥∇Gtk→t(x)∥F ≲ 1,

∥∥∥∥ d
dt
∇Gtk→t(x)

∥∥∥∥
F

≲ L,∥∥∥∥ d2

dt2
∇Gtk→t(Xtk)

∥∥∥∥
F

≲ L
(
ε2,k(Xtk) + ∥∇b(tk, Xtk)∥F

)
+

L3/2

hk
∥Ftk→tk+1

(Xtk)−Xtk+1
∥F

+
1

hk

∫ tk+1

tk

∥∥∥∥ d
ds

∇b(s,Xs)

∥∥∥∥
F

ds

+
1

hk
ε2,k(Xtk) +

1

hk
ε2,k+1(Xtk+1

),

The constants omitted by the notation “≲” above is uniform for all x (or Xtk ) and t. So,

E [tr[Ddis]] ≲ hk

∫ tk+1

tk

{
E
[∥∥∥∥ d2

ds2
∇b(s,Xs)

∥∥∥∥
F

]
+ LE

[∥∥∥∥ d
ds

∇b(s,Xs)

∥∥∥∥
F

]
+ E

[
∥∇b(s,Xs)∥F ·

∥∥∥∥ d2

ds2
∇Gtk→s(Xtk)

∥∥∥∥
F

]}
ds

≲ hk

(
E
[
ε2,k(Xtk)

2
]1/2

+ E
[
ε2,k+1(Xtk+1

)2
]1/2

+ L3/2hkE[ε1,k(Xtk)
2]1/2

)
·
(
dγ(t)−2 + d1/2γ(t)−1E

[
∥x0 − x1∥2

]1/2)
+ h2

k

[
E
[
∥x0 − x1∥6

]1/2
d3/2γ̄−3

k + d3γ̄−6
k

+ (L+ dγ̄−2
k )

(
E
[
∥x0 − x1∥6

]1/3
dγ̄−2

k + γ̄−4
k d2

)]
Therefore, by adding Dbias, Dest and Ddis together and integrating with respect to t, we can obtain
that ∫ tN

t0

EXt∼ρ(t)

[
|∇ · b̃(t,Xt)−∇ · b(t,Xt)|

]
dt

≲
N−1∑
k=0

hk

(
E
[
ε2,k(Xtk)

2
]1/2

+ E
[
ε2,k(Xtk+1

)2
]1/2)

+

N−1∑
k=0

hkL
1/2
(
E
[
ε1,k(Xtk)

2
]1/2

+ E
[
ε1,k(Xtk+1

)
])

+

N−1∑
k=0

h3
k

(
d3γ̄−6 +M3γ̄−4

)
,

where we denote M = max
{
E
[
∥x0 − x1∥6

]1/3
, L, d

}
.

Combining the above discussions, we can get the bounds given in Theorem 5.4.
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F TECHNICAL LEMMAS

In this section, we use the notation xt to denote the stochastic process

xt = I(t, x0, x1) + γ(t)z

defined in the stochastic interpolant, and use the notation Xt to denote the process that solves the
equation

d
dt
Xt = b(t,Xt)

and satisfies Xt ∼ ρ(t).

Recall that in stochastic interpolants, we have defined b(t, x) = E[∂tI(t, x0, x1) + γ̇z|xt = x]
and s(t, x) = ∇ log ρ(t, x) = −γ−1(t)E[z|xt = x]. For convenience, we define v(t, x) =
E[∂tI(t, x0, x1)|xt = x].

F.1 THE CONCRETE FORM OF DERIVATIVES OF s(t, x) AND v(t, x)

Before introducing the lemmas, we first define the notation ft = −∥x−I(t,x0,x1)∥2

2γ(t)2 , so that the
conditional density p(xt|x0, x1) ∝ exp(ft). The first lemma shows that how the jacobian matrices
of v and s can be expressed.

Lemma F.1.
∇xv(t, x) = Cov(∂tI,∇xft|xt = x),

∇xs(t, x) = Cov(∇xft,∇xft|xt = x)− γ−2Id.

Proof.

∇xv(t, x) = ∇x

∫
exp(ft)∂tIdν∫
exp(ft)dν

.

The conditions for Lebesgue dominated convergence theorem can be easily checked, so the order of
differential and integral can be alternated. Then

∇xv(t, x) =

∫
exp(ft)(∇x∂tI)dν∫

exp(ft)dν
+

∫
exp(ft)∂tI ⊗∇xftdν∫

exp(ft)dν

−
∫
exp(ft)∂tIdν ⊗

∫
exp(ft)∇xftdν[∫

exp(ft)dν
]2

= Cov(∂tI,∇xft|xt = x).

Here the notation ⊗ represents the tensor product. Similarly,

∇xs(t, x) =

∫
exp(ft)(∇2

xft)dν∫
exp(ft)dν

+

∫
exp(ft)∇xft ⊗∇xftdν∫

exp(ft)dν

−
∫
exp(ft)∇xftdν ⊗

∫
exp(ft)∇xftdν[∫

exp(ft)dν
]2

= Cov(∇xft,∇xft|xt = x) +∇2
x

(
−∥x− I∥2

2γ2

)
,

= Cov(∇xft,∇xft|xt = x)− γ−2Id.

In the above calculations, the key is to change the order of taking differential and integral, and
rearrange the final formula into the form of conditional expectations. The higher order derivatives can
be obtained similarly, but since the calculation is too long, we will give the results without showing
the detailed proof. Lemmas F.2 and F.3 are similar as Lemma F.1, while we consider the second-order
and third-order derivatives.
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Lemma F.2.
∇2

xv(t, x) = E[(∂tI − v(t, x))⊗ (∇xft − s(t, x))⊗ (∇xft − s(t, x))|xt = x],

∇2
xs(t, x) = E[(∇xft − s(t, x))⊗ (∇xft − s(t, x))⊗ (∇xft − s(t, x))|xt = x],

Note that v(t, x) and s(t, x) are the conditional expectations of ∂tI and ∇xft, respectively.
Lemma F.3.

∇3
xv(t, x) = E[(∂tI − v(t, x))⊗ (∇xft − s(t, x))⊗3|xt = x]

− T (Cov(∂tI,∇xft|xt = x)⊗ Cov(∇xft,∇xft|xt = x)),

∇3
xs(t, x) = E[(∇xft − s(t, x))⊗4|xt = x]

− T (Cov(∇xft,∇xft|xt = x)⊗2).

Here, the notation A⊗n represents the tensor product of n tensors A. The operator T is defined as

T : Rd×d×d×d → Rd×d×d×d, T (X) = T1234(X) + T1324(X) + T1423(X),

where
[Tp1p2p3p4

(X)]i1i2i3i4 = Xip1 ip2 ip3 ip4
.

Similarly to the derivatives with respect to x, the following lemmas (Lemmas F.4, F.5 and F.6)
calculates the derivatives of v, s and their Jacobian matrices with respect to the time t.
Lemma F.4.

∂tv(t, x) = Cov[∂tI, ∂tft|xt = x] + E[∂2
t I|xt = x],

∂ts(t, x) = Cov[∇xft, ∂tft|xt = x] + E[∂t∇xft|xt = x],

∂t∇xv(t, x) = Cov(∂2
t I,∇xft|xt = x) + Cov(∂tI, ∂t∇xft|xt = x)

+ E[(∂tI − v(t, x))⊗ (∇xft − s(t, x))⊗ (∂tft −m∂tft)|xt = x],

∂t∇xs(t, x) = Cov(∂t∇xft,∇xft|xt = x) + Cov(∇xft, ∂t∇xft|xt = x)

+ E[(∇xft − s(t, x))⊗ (∇xft − s(t, x))⊗ (∂tft −m∂tft)|xt = x].

In the above formula, we use the notation mV = E[V |xt = x] for simplicity.
Lemma F.5.

∂2
t v(t, x) = E[∂3

t I|xt = x] + 2Cov[∂2
t I, ∂tft|xt = x] + Cov[∂tI, ∂2

t ft|xt = x]

+ E[(∂tI − v(t, x))⊗ (∂tft −m∂tft)⊗ (∂tft −m∂tft)|xt = x],

∂2
t s(t, x) = E[∂2

t∇xft|xt = x] + 2Cov[∂t∇xft, ∂tft|xt = x] + Cov[∇xft, ∂
2
t ft|xt = x]

+ E[(∇xft − s(t, x))⊗ (∂tft −m∂tft)⊗ (∂tft −m∂tft)|xt = x],

Lemma F.6.
∂2
t∇xv(t, x) = Cov(∂3

t I,∇xft|xt = x) + 2Cov(∂2
t I, ∂t∇xft|xt = x)

+ Cov(∂tI, ∂2
t∇xft|xt = x)

+ 2E[(∂2
t I −m∂2

t I
)⊗ (∇xft − s(t, x))⊗ (∂tft −m∂tft)|xt = x]

+ 2E[(∂tI − v(t, x))⊗ (∂t∇xft −m∂t∇xft)⊗ (∂tft −m∂tft)|xt = x]

+ E[(∂tI − v(t, x))⊗ (∇xft −m∇xft)⊗ (∂2
t ft −m∂2

t ft
)|xt = x]

+ E[(∂tI − v(t, x))⊗ (∂tft −m∂tft)
⊗3|xt = x]

− T (Cov(∂tI, ∂tft|xt = x)⊗ Cov(∂tft, ∂tft|xt = x))

∂2
t∇xs(t, x) = Cov(∂2

t∇xft,∇xft|xt = x) + 2Cov(∂t∇xft, ∂t∇xft|xt = x)

+ Cov(∇xft, ∂
2
t∇xft|xt = x)

+ 2E[(∂t∇xft −m∂t∇xft)⊗ (∇xft − s(t, x))⊗ (∂tft −m∂tft)|xt = x]

+ 2E[(∇xft − s(t, x))⊗ (∂t∇xft −m∂t∇xft)⊗ (∂tft −m∂tft)|xt = x]

+ E[(∇xft − s(t, x))⊗ (∇xft −m∇xft)⊗ (∂2
t ft −m∂2

t ft
)|xt = x]

+ E[(∇xft − s(t, x))⊗ (∂tft −m∂tft)
⊗3|xt = x]

− T (Cov(∇xft, ∂tft|xt = x)⊗ Cov(∂tft, ∂tft|xt = x)).
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F.2 UPPER BOUNDS ON THE DERIVATIVES

We first provide a uniform upper bound to explain why Assumption 4.4 is reasonable.

Lemma F.7. Suppose that for all t ∈ [0, 1], P (∥I(t, x0, x1)∥ ≤ R) = 1, i.e. the data is bounded.
Then under Assumption 1,

∥∇b(t, x)∥F ≲ γ(t)−4R2,

∥∇2b(t, x)∥F ≲ γ(t)−6R3,

∥∇(∇ · b(t, x))∥ ≲ γ(t)−6R3.

Proof. According to Lemma F.1, since γγ̇ = O(1), for any u ∈ Rd, by noticing that ∥x ⊗ y∥F =
∥x∥ · ∥y∥,

∥∇b(t, x)∥F = ∥∇v(t, x) + γ(t)γ̇(t)∇s(t, x)∥
≲ E[(∥(∂tI − v(t, x))∥+ ∥∇xft − s(t, x)∥) · ∥∇xft − s(t, x)∥|xt = x].

Since ∥∂tI∥ ≲ R, ∇xft − s(t, x) = − x−I
γ(t)2 − E[− x−I

γ(t)2 |xt = x] = γ(t)−2(I − E[I|xt = x]) ≲

γ(t)−2R, we have
∥∇b(t, x)∥ ≲ γ(t)−4R2.

Similarly,
∥∇2b(t, x)∥F ≲ (γ(t)−2R)2(1 + γ(t)−2)R ≲ γ(t)−6R3.

∥∇(∇ · b(t, x))∥ ≲ (γ(t)−2R)2(1 + γ(t)−2)R ≲ γ(t)−6R3.

Lemma F.7 justifies the choice of Lipschitz constants in Assumption 4.4, where we set L and L3/2

as the Lipschitz constants for b̂(t, x) and its spatial derivative, respectively. When R = O(
√
d), as

occurs when data are bounded in each dimension, it follows that L = O(d).

The rest of this section analyzes expectation-based upper bounds, rather than uniform bounds with
respect to x and t.

Lemma F.8. For a Gaussian random variable z ∼ N (0, Id), for any constant p ≥ 2,

E [∥z∥p] ≤ C(p)dp/2,

where the constant C(p) > 0 only depends on p.

Proof. First, by Jensen’s inequality,

∥z∥p = (∥z∥2)p/2 =

(
d∑

k=1

|zi|2
)p/2

≤ dp/2
d∑

k=1

1

p
|zi|p,

so
E [∥z∥p] ≤ dp/2E|z1|p.

Here, C(p) = E|z1|p < ∞ is a constant that only depends on p since z1 ∼ N(0, 1) is a standard
1-dimensional Gaussian variable.

The following lemmas (Lemma F.9 to Lemma F.12) provide upper bounds on the moments of the
time and spatial derivatives of v and s. Notably, for these lemmas, the expectation is taken over
xt ∼ ρ(t), where recall that xt is the stochastic interpolant.

Lemma F.9. Under Assumption 4.1, for p ≥ 2,

E [∥v(t, xt)∥p] ≲ E [∥x0 − x1∥p] ,
E [∥s(t, xt)∥p] ≲ γ(t)−pdp/2.
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Proof. By law of total probability and Jensen’s inequality,

E [∥v(t, xt)∥p] ≤ E [∥∂tI∥p] ≲ E [∥x0 − x1∥p] ,
E [∥s(t, xt)∥p] ≤ γ(t)−pE [∥z∥p] ≲ γ(t)−pdp/2.

Lemma F.10. Under Assumption 4.1, for any p ≥ 1, we have

E [∥∇xv(t, xt)∥pF ] ≲ γ(t)−pdp/2
√

E [∥x0 − x1∥2p],
E [∥∇xs(t, xt)∥pF ] ≲ γ(t)−2pdp.

Proof.
∥Cov(∂tI,∇xft|xt = x)∥F ≤

√
E [∥∂tI∥2|xt = x]E [∥∇xft∥2|xt = x].

Then, by Jensen’s inequalty and Cauchy-Schwarz inequality,

E [∥∇xv(t, xt)∥pF ] ≲
√

E [∥∂tI∥2p]
√
E [∥∇xft∥2p]

≲ γ(t)−pdp/2
√

E [∥x0 − x1∥2p].

Similarly,
E [∥∇xs(t, xt)∥pF ] ≲ γ(t)−2pdp/2 + E

[
∥∇xft∥2p

]
≲ γ(t)−2pdp.

Lemma F.11. Under Assumption 4.1, for any p ≥ 1,

E [∥∂tv(t, xt)∥p] ≲ E
[
∥x0 − x1∥2p

]
γ−pdp/2 + E

[
∥x0 − x1∥2p

]1/2
γ−2pdp,

E [∥∂ts(t, xt)∥p] ≲ γ−3pd3p/2 + E
[
∥x0 − x1∥2p

]1/2
γ−2pdp.

Lemma F.12. Under Assumption 4.1, for any p ≥ 1,

E [|∂t∇ · v(t, xt)|p] ≲ γ−3pd3p/2E
[
∥x0 − x1∥3p

]1/3
+ γ−2pdpE

[
∥x0 − x1∥3p

]2/3
,

E [|∂t∇ · s(t, xt)|p] ≲ γ−4pd2p + γ−3pd3p/2E
[
∥x0 − x1∥3p

]1/3
.

The proofs for the above two lemmas are omitted as they almost repeat the proof of Lemma F.10.

Now, with the previous lemmas, we are ready to provide upper bounds on the time-derivatives of
b(t,Xt) (Lemmas F.13 and F.15) and its divergence ∇ · b(t,Xt) (Lemmas F.14 and F.16), where Xt

is the true solution of the ODE dXt = b(t,Xt) that satisfies Xt ∼ ρ(t). These results are later used
to control the discretization error of numerical methods.

Lemma F.13. Under Assumption 4.1, for p ≥ 1,

E
[∥∥∥∥ d

dt
b(t,Xt)

∥∥∥∥p] ≲ E
[
∥x0 − x1∥3p

]2/3
γ(t)−pdp/2 + γ(t)−3pd3p/2.

Proof.

d
dt
b(t,Xt) = ∂tb(t,Xt) +∇xb(t,Xt) · b(t,Xt)

= ∂tv(t,Xt) + ∂t [γ̇γs(t,Xt)] + [∇xv(t,Xt) + γ̇γ∇xs(t,Xt)] · b(t,Xt).
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By Jensen’s inequality, (
∑n

k=1 ai)
p ≤ np−1

∑n
k=1 |ai|p, so

E
[∥∥∥∥ d

dt
b(t,Xt)

∥∥∥∥p] ≲ E [∥∂tv(t,Xt)∥p]

+ E [∥∂ts(t,Xt)∥p] + E [∥s(t,Xt)∥p]
+ E [∥∇xv(t,Xt) +∇xs(t,Xt)∥p · ∥b(t,Xt)∥p]

(a)
≲ E [∥∂tv(t,Xt)∥p]
+ E [∥∂ts(t,Xt)∥p] + E [∥s(t,Xt)∥p]

+ E
[
∥∇xv(t,Xt) +∇xs(t,Xt)∥3p/2

]2/3
· E
[
∥b(t,Xt)∥3p

]1/3
(b)
≲ E

[
∥x0 − x1∥3p

]2/3
γ(t)−pdp/2 + γ(t)−3pd3p/2.

The inquality (a) uses Hölder’s inequality, while the inequality (b) uses the results of previous
lemmas.

Lemma F.14. Under Assumption 4.1, for p ≥ 1,

E
[∣∣∣∣ d

dt
(∇ · b(t,Xt))

∣∣∣∣p] ≲ E
[
∥x0 − x1∥3p

]2/3
γ−2pdp + γ−4pd2p,

E
[∥∥∥∥ d

dt
∇b(t,Xt)

∥∥∥∥p] ≲ E
[
∥x0 − x1∥3p

]2/3
γ−2pdp + γ−4pd2p.

Proof. Similarly to the proof of Lemma F.13,

E
[∣∣∣∣ d

dt
(∇ · b(t,Xt))

∣∣∣∣p] ≲ E [|tr (∂t∇xb(t, x))|p]

+ E
[∣∣tr (∇2b(t,Xt)[b(t,Xt)]

)∣∣p] .
For the first term on the right hand side, we can use Lemma F.12. For the second term, note that for
any four vectors x, y, z, w, we have

|tr [(x⊗ y ⊗ z)[w]]| = |tr [(x⊗ y) · (z · w)]| ≤ ∥x∥ · ∥y∥ · ∥z∥ · ∥w∥.
Hence, by the conditional expectation form in Lemma F.2,

E
[∣∣tr (∇2b(t,Xt)[b(t,Xt)]

)∣∣p] ≲ E
[
∥x0 − x1∥3p

]2/3
γ−2pdp + γ−4pd2p.

So,

E
[∣∣∣∣ d

dt
(∇ · b(t,Xt))

∣∣∣∣p] ≲ E
[
∥x0 − x1∥3p

]2/3
γ−2pdp + γ−4pd2p.

The case for the Jacobian matrix is the same except where we use ∥x⊗ y∥F = ∥x∥ · ∥y∥ instead of
the inequality for the trace.

Lemma F.15. Under Assumption 5.1, for p ≥ 1,

E

[∥∥∥∥ d2

dt2
b(t,Xt)

∥∥∥∥p
]
≲ E

[
∥x0 − x1∥5p

]3/5
dpγ(t)−2p + d5p/2γ(t)−5p.

Proof.

d2

dt2
b(t,Xt) = ∂2

t b(t,Xt) + 2∂t∇b(t,Xt) · b(t,Xt) +∇b(t,Xt) · ∂tb(t,Xt)

+∇2b(t,Xt)
[
b(t,Xt)

⊗2
]
+ [∇b(t,Xt)]

2
b(t,Xt)

Consider Lemma F.1 to F.5 where the conditional expectation forms of the above terms are given,
then use Hölder’s inequality and Jensen’s inequality to obtain the upper bound in the Lemma.
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Lemma F.16. Under Assumption 5.1,

E
[∣∣∣∣ d2

dt2
(∇ · b(t,Xt))

∣∣∣∣] ≲ E
[
∥x0 − x1∥6

]1/2
d3/2γ(t)−3 + d3γ(t)−6,

E
[∥∥∥∥ d2

dt2
∇b(t,Xt)

∥∥∥∥
F

]
≲ E

[
∥x0 − x1∥6

]1/2
d3/2γ(t)−3 + d3γ(t)−6.

Proof.

d2

dt2
∇b(t,Xt) = ∂2

t∇b(t,Xt) + 2∂t∇2b(t,Xt)[b(t,Xt)] +∇2b(t,Xt)[∂tb(t,Xt)]

+∇3b(t,Xt)
[
b(t,Xt)

⊗2
]
+∇2b(t,Xt) · ∇b(t,Xt) · b(t,Xt).

The rest is similar to the previous lemma.
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