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Abstract

Effective trajectory stitching for long-horizon planning is a significant challenge in
robotic decision-making. While diffusion models have shown promise in planning,
they are limited to solving tasks similar to those seen in their training data. We
propose CompDiffuser, a novel generative approach that can solve new tasks by
learning to compositionally stitch together shorter trajectory chunks from pre-
viously seen tasks. Our key insight is modeling the trajectory distribution by
subdividing it into overlapping chunks and learning their conditional relation-
ships through a single bidirectional diffusion model. This allows information to
propagate between segments during generation, ensuring physically consistent
connections. We conduct experiments on benchmark tasks of various difficulties,
covering different environment sizes, agent state dimension, trajectory types, train-
ing data quality, and show that CompDiffuser significantly outperforms existing
methods. Project website at https://comp-diffuser.github.io/.

1 Introduction

Generative models have demonstrated remarkable capabilities in modeling complex distributions
across domains like images, videos, and 3D shapes. In robot planning, these models offer a promising
approach by modeling distributions over plan sequences, which allows amortizing the computational
cost of traditional search and optimization methods. This effectively transforms planning into
sampling likely solutions given start and goal conditions. Recent works like Diffuser [26] and
Decision Diffuser [1] have shown how diffusion models can learn to generate entire plans for long-
horizon robotics tasks. However, exhaustively modeling joint distributions over entire plan sequences
for all possible start and goal states remains extremely sample-inefficient, as it requires collecting
long-horizon plan data covering all possible combinations of initial states and goals.

The concept of trajectory stitching [88] from Reinforcement Learning literature [62] presents a
potential solution by combining chunks of different trajectories to create new, potentially better
policies. The methods work by identifying high-reward trajectory chunks and stitching them together
at states where they overlap or are similar enough, creating composite trajectories that can inform
better policy learning. This effectively enables compositional generalization since collecting long
consecutive trajectories is costly, and these short chunks can be flexibly assembled to complete
new tasks. The key challenge lies in finding appropriate stitching points where trajectories can be
combined while maintaining dynamic consistency and feasibility. Our goal is to enable generative
planners to solve long-horizon tasks without requiring long-horizon training data, while retaining
their ability to generate physically feasible, goal-directed plans.

We propose a novel diffusion-based approach, Compositional Diffuser (CompDiffuser), that
enables effective trajectory stitching through goal-conditioned causal trajectory generation.
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Our key insight is that we can model the trajec-
tory distribution compositionally by subdividing
it into distributions of overlapping chunks and
learning their conditional relationships. Rather
than learning separate models for each chunk,
we train a single diffusion model that can gen-
erate trajectory chunks conditioned on neighbor-
ing chunks’ states (Figure l) This allows infor- Monolithic Model (Prior Methods) ! Compositional (Our Method)
mation to propagate bidirectionally during the | odel { = .
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reverse diffusion process as illustrated in Fig- M — .
ure 2: each chunk’s generation is influenced

by both past and future chunks. This architec-  gigyre 1; Compositional Trajectory Generation. Com-
ture naturally enables both parallel generation  pDiffuser enables generative trajectory stitching through
of chunks and causal autoregressive generation, diffusion composition. Left: Monolithic generative plan-
each with different trade-offs in computational ner fails to generalize to tasks of longer horizon and
cost and planning quality. collapses to the maze center. Right: Our method suc-

. . cessfully navigates the ant agent from start to goal by
We conduct extensive experiments across bench-  ompositionally stitching together shorter trajectories.
mark tasks of varying difficulty levels, including

different environment sizes (from simple U-mazes to complex giant mazes), agent state dimensions
(from 2D point agents to 50D humanoid robots), trajectory types (from maze navigation trajectories
to ball dribbling trajectories), and training data quality (from clean demonstrations to noisy explo-
ration data). Our results demonstrate that CompDiffuser significantly outperforms multiple imitation
learning and offline reinforcement learning baselines across all settings. We show that our approach
can effectively solve long-horizon tasks while maintaining plan feasibility and goal-reaching behavior.
We validate the importance of our key technical components including the bidirectional conditioning
mechanism, the autoregressive sampling process, and the flexible replanning capability.

In summary, the key contributions of this work are:

* A noisy-sample conditioned diffusion planning framework that enables learning compositional
trajectory distributions by decomposing the trajectory generation procedure into a sequence of
segments each generated by a separate diffusion denoising process.

* A compositional goal-conditioned trajectory planning method that uses bidirectional information
propagation during denoising to maintain physical consistency between trajectory chunks.

* A set of empirical results showing significant improvements over existing methods across multi-
ple trajectory stitching benchmarks, with detailed analysis of model capabilities and limitations.

2 Related Work

Diffusion Models For Planning. Many works have studied the applications of diffusion models [58,
24] for generative planning [26, 1, 54, 72, 22, 64, 42, 86, 7]. Diffusion planning has been widely
applied in various fields, such as motion planning [5, 43], procedure planning [67], task planning [76,
16], autonomous driving [75, 37, 68], reasoning [79], and reward learning [49]. Many techniques have
also been combined with diffusion planning, including hierarchical planning [35, 8, 45], self-evolving
planner [36], preference alignment [10], tree branch-pruning [17], refining [31], replanning [84],
uncertainty-aware planning [60], equivariance [4]. However, these works are usually constrained to
plan within similar horizons as training data. Our work instead proposes a compositional diffusion
planning approach that generalizes to much longer horizon via generative trajectory stitching.

Trajectory Stitching. A flurry of works have explored the trajectory stitching problem given
offline data. One typical category of solution is based on data augmentation or goal relabeling
along with various techniques, such as generative models [33, 41, 28, 30, 34, 40], model-based
approaches [6, 32, 85, 23], and clustering [21]. Other supervised learning based methods, such as
sequence modeling [9, 25, 73, 87, 71], latent space learning [80, 66, 83], and learning with dynamic
programming [18, 27, 74], have also demonstrated some extent of stitching capability. In this work,
we propose a different trajectory stitching approach based on generative modeling, where the model
only learns from plain short trajectory segments while is able to directly perform goal-conditioned
trajectory stitching through test-time compositional generation.
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Figure 2: Illustrating the Trajectory Stitching Process. Given an unseen start (blue circle) and goal (green

star), CompDiffuser generates a long-horizon plan by progressively denoising three trajectory chunks in parallel,
with each chunk conditioning on its neighbors to ensure smooth transitions.

Compositional Generative Models. Compositional Generative Models [13, 11, 19, 12, 46, 3, 50, 63]
are widely studied in various domains, including visual content generation [39, 11, 77, 82, 59, 57],
human motion generation [56, 61, 81], traffic generation [38], robotic planning [78, 2, 43], and policy
learning [69, 53]. Most existing work on compositionality focuses on sampling under the conjunction
of several given conditions. While several studies [48, 47] have explored sequential compositional
models, they are restricted to planning within a given skeleton and hence unable to generalize to
longer sequences or new tasks. In contrast, we propose a compositional planning framework that
scales to generating much longer sequences and completing new tasks via directly stitching short
trajectory segments, without relying on pre-defined task-dependent skeletons.

3 Planning through Compositional Trajectory Generation

We aim to develop a generative planning framework that can generate long-horizon trajectories by
composing multiple modular generative models. Our method, Compositional Diffuser (CompDif-
fuser), trains a single diffusion model on short-horizon trajectories. At inference time, given a start
and goal, CompDiffuser runs parallel instances of this model to generate a sequence of overlapping
trajectory segments, coordinating their denoising processes to ensure they smoothly connect into a
coherent long-horizon plan. This approach enables us to stitch together short-horizon subsequences
of training trajectories to form novel long-horizon trajectory plans.

3.1 Compositional Trajectory Modeling

Given a planning problem, consisting of a start state g, and a goal state g4, we formulate planning as
sampling a trajectory 7 from the probability distribution

[slzT 1:T]

ca ]~ po(Tgs, gq)- )

where s'7 corresponds to future states to reach the goal state qg and a*T corresponds to a set of

future actions. To implement this sampling procedure, prior work [1, 26] learns a generative model
p(7) directly over previous trajectories 7 in the environment. However, since the generative model is
trained to model the density of previously seen trajectories, it is restricted to generating plans with
start and goal that are similar to those seen in the past.

In this paper, we propose to model the generative model over trajectories py(7|gs, ¢g) composition-
ally [12], where we subdivide trajectory 7 into a set of K overlapping sub-chunks 7, (Figure 1). We
then represent the trajectory distribution as

K—1
Po(lgs, qg) < pr(7ilgs, 72) pic(TicITi—1,09) ] oo (7alTimr, Tsn)- ()

k=2
In the above expression, each trajectory chunk 7 is only dependent on nearby trajectory chunks
Ti—1 and Ty4+1. This allows pg(7T]|gs, g4) to generate trajectory plans that significantly depart from

previously seen trajectories, as long as intermediate trajectory chunks 73 have been seen. Overall, the
goal of our method is to enable long-horizon planning without long-horizon training data.

3.2 Training Compositional Trajectory Models

One approach to represent the composed probability distribution in Equation 2 is to directly learn
separate generative models to represent each conditional probability distribution. However, sampling
from the composed distribution is challenging, as each individual trajectory chunk depends on the
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Figure 3: Compositional Trajectory Planning: Parallel Sampling and Autoregressive Sampling. We present
an illustrative example of sampling three trajectories 71.3 with the proposed compositional sampling methods.
Dashed lines represent cross trajectory information exchange between adjacent trajectories and black lines
represent the denoising flow of each trajectory. In parallel sampling, 71.3 can be denoised concurrently; while in
autoregressive sampling, denoising 75 depends on the previous trajectory 7,_1, €.g., the denoising of 72 depends
on 71 (as shown in the blue horizontal dashed arrows). Additionally, start state gs and goal state g, conditioning
are applied to the trajectories in the two ends, 71 and 73, which enables goal-conditioned planning. Trajectories
71:3 will be merged to form a longer plan 7comp after the full diffusion denoising process.

values of neighboring chunks. As a result, to sample from the composed distribution, one would
need a blocked Gibbs sampling procedure, where the value of each individual trajectory chunk is
iteratively sampled given decoded values of neighboring trajectory chunks. This sampling procedure
is slow, and passing information across chunks to form a consistent plan is challenging.

Information Propagation Through Noisy-Sample Conditioning. We propose a more efficient
approach that addresses these challenges by leveraging the progressive denoising process of diffusion
models. The key challenge in composing trajectories is ensuring feasible transitions between each pair
of neighboring chunks, i.e., maintaining physical constraints and dynamic consistency at connection
points where segments overlap. Our key insight is that we can achieve this by having trajectory
segments guide each other’s generation during the diffusion process: as one segment takes shape
through denoising, it helps shape its neighbors into compatible configurations.

We implement this insight using a diffusion model that generates trajectory chunks conditioning on
their neighbors’ noisy samples. Given a dataset D of trajectories 7, we train a denoising network eg
to learn the trajectory distribution pg (7% |Tk—1, Tk-+1) With the training objective

Loor = Ereptk [||€ - 69(712;75 ‘ Tlﬁ—laﬂi—&-l)”ﬂ ) 3

where k identifies a trajectory segment, ¢ is the noise level, and 7}, represents segment k corrupted
with noise level t. Crucially, when denoising each segment, the network conditions on noisy versions
of neighboring segments 7/ _,, 7} 1 at the same noise level. This allows each segment to influence
its neighbors’ denoising process, ensuring their final configurations are dynamically compatible. In
addition, further training the network to condition on T,’éj can enable autoregressive compositional
sampling, which we will discuss in Section 3.3. In practice, we only need to condition on the small
overlapping regions between consecutive trajectories, making the generation process efficient while
maintaining consistency across connection points.

Representing Initial States and Goals. In addition, we further train the same denoising network
to represent the distributions pg (71 |gs, 72) and pg(7x [Tk —1,q,). This corresponds to the training
objective

Ltare = ]ETGD,t,k “|6 - 69(7—1671E | q877—2t)H2} ) )

with an analogous objective for the conditioned goal state g,. We train the same denoising network eg
with both conditioning. Please see Appendix E for implementation details. We provide an overview
of our proposed training strategy in Algorithm 1.

3.3 Compositional Trajectory Planning

Our compositional framework enables flexible sampling strategies for generating long-horizon plans
with Equation 2. The basic sampling process starts by initializing each trajectory chunk 7, with
Gaussian noise. Then, through iterative denoising, each chunk is denoised while being conditioned



Algorithm 1 Training CompDiffuser Algorithm 2 Autoregressive Trajectory Sampling

1: Require: train dataset D, diffusion denoiser model 1: Models: trained diffusion denoiser model

eg(tt,t | st_cond,end_cond), number of training €o(,t | st_cond, g_cond)
steps N, diffusion timestep T 2: Input: start state gs, goal state gz, number of
2 for i=1 —= N do composed trajectories K
3: 19 ~ D, sample clean trajectory from dataset i ;nltliliZE’TlitrfJ?torles . ~ N(0,1)
4: 704 < divide 7° to K overlapping chunks lor =1 o ;
i . 0 . 5: # Denoise 7; conditioned on g5 and 75
5: 7.k < add noise to 77. -, t ~ T, following DDPM 6 Tl = ep(rht | gs, 7)
6:  # Objective for noisy chunk condition 7. #Denois oLt ds )
; . . : 2 enoise intermediate trajectories 7o to Tx 1
7. £nbr:”6_66(Tk7t‘7-k7177k+1)” sk~ 2, K-1] 8: for k=2 —+ K —1 do
. ‘ective for start / end state iti ) t—1 _ t—1
8: # Objective for st ltlt / end \ttltuzcondltlono 9: il = eg(rf, ¢ | LY, 7'1€+1)
90 Lo = |le — €o(1,t | g5, 3)|1%, g5 = 77[0] 10:  end for
10: Lena = le —eo(th, t | Th_1,a9)|1% 99 = T%[—1] 11:  # Denoise 74 conditioned on T;;jl and ¢,
11: £all = Enbr+£star{+£end ] 12: T;{_l = EQ(T;{,t ‘ T;{_ll,qg)
12:  Backprop to update €g(.) using Ly 13: end for
13: end for 14: Teomp = Merge the denoised trajectories TR K
14: return €y(.) 15: return Teomp

on its neighbors. This structure allows for different ways of coordinating the denoising process
across trajectory chunks, each offering different tradeoffs between information propagation and
computational efficiency. We present two sampling schemes (illustrated in Figure 3):

Parallel Sampling. Our first sampling approach conditions denoising on the values of the noisy
adjacent trajectory chunks from the previous denoising timestep, where the update rule is

it = = eo(Tilmio1 i) + 8%), €~ N(0,1), &)
where o and 3? are diffusion specific hyperparameters. This approach allows us to run denoising on
each trajectory chunk in parallel, as each denoising update only requires the values of the adjacent
trajectory chunks at a previous noise level. However, information propagation between the values of
adjacent trajectory chunks is limited at each denoising timestep, as each trajectory chunk is denoised
independently of the denoising updates of other trajectory chunks.

Autoregressive Sampling. To better couple the values of adjacent trajectory chunks, we propose to
denoise each trajectory chunk autoregressively dependent on the values of neighboring chunks at
each denoising timestep. In particular, we iteratively denoise each trajectory 7¢ ;. starting from the

74, and condition the denoising of 7/ on the previously decoded chunk T,ij at the current noise level
t — 1 and the future chunk 7} 1 at the previous noise level ¢, giving us the sampling equation

T L=l (7 = eo(TkIT 1 o) + BY), €~ N(0,1), ©)
This sequential generation process enables stronger coordination among the chunks since each chunk
is conditioned on the less noisy version of its previous chunk. However, it requires generating
chunks one at a time rather than simultaneously, making it computationally less efficient than parallel
sampling. We compare the two sampling schemes in Table 6, where we empirically find autoregressive
sampling leads to improved performance. Additionally, we provide sampling time comparison in
Table 10. We use this autoregressive sampling procedure throughout the experiments in the paper and
illustrate pseudocode for sampling in Algorithm 2. Given such final set of generated chunks 7.5, we
then merge the chunks together to construct a final trajectory 7eomp by applying exponential trajectory
blending to areas where subchunks 75 overlap (See Appendix E.2 for implementation details).

4 Experiments

In this section, our objective is to (1) validate that our method enforces coherent trajectory stitching on
multiple benchmarks, with varying state space dimensions, task design, and training data collection
policies (2) understand how planning with higher state dimensions, varying numbers of composed
trajectories, different sampling schemes, and replanning affect the performance of the proposed
method. Additional results are provided in Appendix B and C with failure analysis in Appendix D.

Baselines. We compare CompDiffuser with three categories of existing methods: (1) for genera-
tive planning methods, we include Decision Diffuser (DD) [1] for monolithic trajectory sampling



Env Size RvS RvS(SA) RvS(GA) DT DT (SA) DT (GA) DD GSC Ours

PointMaze U-Maze 17+7 9745 76+5 17+5 65+4 5444 0+o 100+0 100+o0
1] Medium 1+2 55+3 2143 20+2 5543 6242 30+1 93+1 100+o0
- Large 3+4 3845 31+s 22+2 3542 39+5 0+o 99+2 100z+o0
Env Type Size GCBC GCIVL GCIQL QRL CRL HIQL GSC Ours
. Medium 23 +18 70 +14 21 49 80 +12 0+1 7446 100+0 100+o0
PointMaze

stitch Large 745 12 +6 31 +2 84 +15 0+o0 13+6 100+0 100+o0

(51] Giant O+o Ozo  O+o  50+s O+0o 040 29+3  68+3

Table 1: Quantitative Results on PointMaze Stitching Datasets in Ghugare et al. [21] and
OGBench [51]. We compare CompDiffuser to baselines of multiple categories, including diffusion,
data augmentation, and offline reinforcement learning. SA and GA stand for state augmentation and
goal augmentation respectively, as described in Ghugare et al. [21]. Our results are averaged over 5
seeds and standard deviations are shown after the + sign.

and Generative Skill Chaining (GSC) [48] for compositional sampling; (2) for data augmentation
based methods, we include stitching specific data augmentation [21] with RvS [14] and Decision
Transformer (DT) [9]; (3) for offline reinforcement learning methods, we include goal-conditioned
behavioral cloning (GCBC) [44, 20], goal-conditioned implicit V-learning (GCIVL) and Q-learning
(GCIQL) [29], Quasimetric RL (QRL) [70], Contrastive RL (CRL) [15], and Hierarchical implicit
Q-learning (HIQL) [52]. See Appendix F for more details of baselines.

Evaluation Setup. For each environment, we report the success rate over all evaluation episodes,
where the success criterion is that the agent or target object is close to the goal within a small threshold.
We evaluate all methods with 5 random seeds for each experiment and report the mean and standard
deviation. Specifically, in Ghugare et al. [21] datasets, we evaluate on 2 tasks in U-Maze, 6 tasks in
Medium, and 7 tasks in Large with 10 episodes per task; in OGBench [51], we evaluate on 5 tasks in
each environment with 20 episodes per task. Each task is introduced in the respective papers and is
defined by a base start and goal state that require trajectory stitching to complete. A random noise is
added to the base start and goal state for each evaluation episode.

4.1 PointMaze

We present experiment results on two types of trajectory-stitching datasets in point maze environments,
which features different dataset collection strategies. Our method is trained on short trajectories of x-y
positions of the point agent and is able to directly generate much longer trajectories from start and goal
by composing multiple trajectories (detailed numbers of the composed trajectories in each experiment
are provided in Appendix Table 13). Note that our method only requires training one model and we
can use the proposed compositional inference method to construct coherent long-horizon trajectories.

PointMaze [21]. Following the original framework, the training data are curated by dividing each
environment (here, maze) into several small regions, and feasible trajectories constrained within
their respective regions are sampled. Possible stitching between segments is facilitated by a small
overlap (one block) between different regions, which can be used to join trajectories across regions.
More dataset details are provided in Appendix A.1. We present the quantitative results on these
datasets in Table 1, where we compare to goal-conditioned behavior cloning methods trained with
data augmentation, Decision Diffuser, and GSC. Most baselines perform suboptimally, likely because
they are unable to autonomously identify the small overlapping regions needed for trajectory stitching.
In contrast, CompDiffuser successfully resolves all tasks across various maze sizes, demonstrating its
ability to stitch trajectories even when the connecting regions are small.

PointMaze in OGBench [51]. In this particular setup, each trajectory in the training dataset is
constrained to navigate no more than four blocks in the environment. The start and goal of each
trajectory can be sampled from the entire environment provided that the travel distance between the
start and goal is within four blocks. These trajectories are much shorter than the ones required for
a feasible plan between a given start and goal at inference. More details about these datasets are
provided in Appendix A.2. We present the quantitative results in Table 1, where we compared our
method to GSC and multiple offline RL baselines following the benchmark established in [51]. We
observe that while GSC is able to perform on par with CompDiffuser in Medium and Large mazes, it
struggles as the planning horizon further increases, as illustrated in the qualitative results in Figure 4.



Env Type Size GCBC GCIVL GCIQL QRL CRL HIQL GSC Ours

Medium 45 +11 44 +6 29 +6 59 +7 53 +6 94 +1  9T+2 9642

stitch Large 343 18 +2 7 +2 18 +2 11 +2 6745 66+2 86+2

antmaze Giant 0o 0 +o 0 +o 0+0 Oz+o0 21+2 20+1 65+3
explore Medium 2 +1 19 +3 13 +2 1+1  3+2 37410 90+2 8l+2

P Large 0o 10 +3 0 +o 0O+o0 Ozxo 445 2143 27+1

humanoid Medium 29 +5 1242 12 +3 18 +2 7143 96 +4 92+1 9141
naze stitch Large 6 +3 1+1 0 +o 341 6+1  31+3 7043 T2+3
Giant 0 z+o 0 +o 0 +o 0+o0 Oxo 1242 541 67+4

Table 2: Quantitative Results on AntMaze and HumanoidMaze in OGBench. We benchmark
our method on the 5 test-time tasks defined in OGBench with 20 episodes per task. Our results are
averaged over 5 seeds and standard deviations are shown after the + sign.
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Figure 4: Qualitative Comparison of DD, GSC and Comp- Figure 5: Qualitative Results of Planning in
Diffuser on OGBench PointMaze Giant. Effective bidi- High Dimension on OGBench AntMaze Large.
rection information propagation enables CompDiffuser to Original plan is sub-sampled for clearer view. Our
successfully synthesize trajectories from start (bottom left) method is able to synthesize plans of valid dynam-
to goal (upper right), while other methods generate o.0.d tra- ics while reaching the goal position (bottom right).
jectories that are disconnected with the start/goal or passing Note that our method is only trained on trajectory
through walls. See Figure 10 for per-segment visualization. segments of much shorter length.
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CompDiffuser significantly outperforms all baselines in Giant maze, demonstrating its efficacy in
complex environments. Additional results are provided in Appendix C.1, C.2, and C.3.

4.2 High Dimension Tasks

We present the evaluation results of our method on various trajectory stitching tasks involving
higher-dimensional state spaces within OGBench: AntMaze, HumanoidMaze, and AntSoccer.

AntMaze and HumanoidMaze. We conduct maze navigation experiments of multiple agents, ant
and humanoid, using the pre-collected Stitch datasets provided in OGBench. The data collection
strategy is identical to OGBench PointMaze, where each episode is constrained to travel at most 4
blocks, while at inference, a successful plan requires the agent to travel up to 30 blocks. We com-
pare our method with the offline RL benchmark established in [51] along with the best-performing
diffusion-based compositional stitching baseline GSC, as shown in Table 2. Both GSC and CompDif-
fuser generate plans in a planar x-y space while the agent follows the plans with a learned inverse
dynamics model. We observe a pattern similar to the results in PointMaze, where CompDiffuser
can consistently give high success rates as the planning horizon and complexity increase while other
baselines start to collapse. To complete the study, we also conduct experiments where the full agent
state is used for planning instead of the x-y space and provide the results in Section 4.3.

AntMaze with Low-Quality Data. We evaluate CompDiffuser on OGBench AntMaze with a
different data collection strategy, Explore. These datasets consist of extremely low-quality yet
high-coverage data, where the data collection policy contains a large amount of action noise and
will randomly re-sample a new moving direction after every 10 steps (see Figure 9 in Appendix for
qualitative examples). Hence, each demonstration episode typically oscillates within only 2-3 blocks.
Our planner needs to learn from these clustered trajectories to construct coherent plans that reach
goals in large spatial distances. We present the success rate of each method in Table 2.

AntSoccer. The AntSoccer environment in OGBench requires the ant agent to move a soccer ball
to a designated goal in the environment, different from maze tasks that require the agent itself to



GSC Ours GSC Ours

Env Size GCBC GCIVL GCIQL QRL CRL HIQL (4D) (4D) (17D) (17D)
antsoccer arena 34 +4 21 43 5 +2 2+1 2+1 2342 41+4 bbte 65+3 69+3
stitch medium 2 +1 1 +o0 0 +o 0+0 O+0 842 542 1341 12+2 1743

Table 3: Quantitative Results on OGBench AntSoccer Stitch. We evaluate two generative planners
with different planning state dimensions: a 4D planner that operates on the x-y positions of the ant
and the ball, and a 17D planner that additionally generates the 13 joint positions of the ant agent.

Figure 6: Qualitative Plan generated by CompDiffuser in OGBench AntSoccer Medium Stitch. The initial
position of the ant is shown by the blue circle and the goal is to move the ball to the pink circle. We plot each
individual trajectory 71.¢ separately (as shown from left to right) and mark the ball with a yellow circle for
clearer view. These generated trajectories will be merged to form a long-horizon plan Teomp. Note that our model
is only trained on two different types of short trajectories: 1) the ant moves without dribbling the ball; 2) the
ant moves while dribbling the ball. At test time, the proposed compositional sampling method can stitch these
two types of trajectories and construct end-to-end plans of longer horizon to solve the more difficult task — first
navigate to the ball from the far side and then dribble the ball to the goal position.

reach the goal. OGBench provides two categories of trajectories in AntSoccer Stitch datasets: (1)
ant navigates in the maze without the ball and (2) ant moves and dribbles the ball in the maze. The
planner must stitch trajectories of these two skills to complete the goal-reaching objective, because the
ant must reach the ball first and then dribble it to the given goal location (see Figure 6 and Figure 14).

We present experimental results in two distinct maze configurations, Arena and Medium, in Table 3
relative to the benchmarking provided in OGBench. Specifically, as an ablation study, we evaluate
with two planner state space configurations: (1) a 4D planner consisting of the x-y location of the ant
and the ball; (2) a 17D planner consisting of the x-y location of the ant and the ball along with all the
joint positions of the ant. We observe that our compositional method outperforms all the baselines in
both configurations. Notably, the 17D variant demonstrates slightly higher success rates, likely due
to the ability of joint positions to provide more fine-grained information for ball dribbling.

4.3 Ablation Studies

Planning in High Dimension Space. We report experiment results where CompDiffuser synthesizes
trajectories in state space of higher dimension. We compare the success rates of our method planning
in dimension of 2D, 15D, and 29D in Table 4, and present qualitative plans in Figure 5 and Figure 13.
Specifically, the planner operates in the x-y space for 2D, x-y with the joint positions for 15D, x-y
with both the joint positions and velocities for 29D. Similar to Section 4.2, we train an MLP inverse
dynamics model that takes in the current observation and a goal of the planner dimension to predict
an action for the agent to execute.

Our method performs consistently and achieves near-optimal success rates across all planning
dimensions in AntMaze Medium. In AntMaze Large and Giant, the success rates decrease when
planning in 15D and 29D, which is probably due to the increasing complexity of the trajectory
modeling, since the joint positions and velocities of a moving ant are highly dynamic and the tasks
require planning hundreds of consecutive future states to reach the goal.

Different Numbers of Composed Trajectories. We study the effect of varying the numbers of
trajectories to be composed K. To better study the planning performance with respect to K, we use
the challenging PointMaze-Giant-Stitch in OGBench as the testbed. As shown in Figure 7, our
method obtains consistent performance when composing 7 to 12 trajectories. We observe that the
optimal K is around 9 and 10, which also corresponds to a natural path length to reach the goal.
Qualitatively, decreasing K will result in a sparser trajectory while increasing K will cause the final
trajectory traveling back and forth to consume the redundant states (See Figure 10).



PointMaze Giant Stitch AntMaze Giant Stitch
Size HIQL Ours Ours Ours GSC CompDiffuser 70 CompDiffuser

2D) (15D) (29D) 60
Medium 94+1 96+2 95+0 9T+2 40 60
Large 67+5 86+2 66+5 6645
Giant 2142  65+3 4143 2844

20 50

7 8 9 10 11 12 8 12 16 20 24 28
Table 4: Quantitative Results of Different # of Composed Trajectories Inverse Dyanmics Model Horizon

Planning Dimensions on AntMaze Stitch
Datasets in OGBench. Our method compo-
sitionally constructs feasible plans that reach
long-distance goals while modeling complex en-
vironment dynamics, such as the positions and
velocities of the agent’s joints.

Figure 7: Quantitative Results of Different Setup. Left:
success rate versus different numbers of composed trajecto-
ries K in OGBench PointMaze Giant (w/o replan). Right:
success rate versus different inverse dynamics model horizons
in OGBench AntMaze Giant.

. Ours w/o Ours w/ .
Env Size QRL HIQL Replan  Replan Env Size Replan Parallel AR
Medium 80+12 7446 100+0 100+0 Large v 100+0 100+o0
PointMaze Large 84+15 13+6 100+0 100z+o0 PointMaze Giant X 45+1 53+6
Giant 50+s8 0Oxo 53+6 68+3 Giant v 6642 68+3
Medium 59+7 94+1 9242 96+2 Large v 84+5 86+2
AntMaze Large 18+2 6745 76+2 86+2 AntMaze Giant X 18+4 27+4
Giant O+o0 2142 27+4 65+3 Giant v 48+1 65+3

Table 5: Quantitative Results of CompDiffuser with Taple 6: Quantitative Comparison of two Sampling
and without Replanning. We report the success rates on - Schemes: Parallel and Autoregressive (AR). Paral-
OGBench PointMaze and AntMaze Stitch datasets. le] sampling performs on par with AR sampling in the
For w/o replan, CompDiffuser only synthesizes one tra- easier Large maze, while AR sampling can generate
jectory and executes the trajectory in a close-loop man- trajectories of higher quality when constructing longer

ner; for w/ replan, CompDiffuser will synthesize anew  plans (i.e., composing more trajectories), likely due to
trajectory if the agent loses track of the current plan. its causal denoising strategy.

Replanning with CompDiffuser. Our method can also flexibly replan during a rollout, which
enables the agent to recover from failure, such as when the agent fails to track the planned trajectory
due to sub-optimal inverse dynamic actions. In practice, we replan if the distance between the agent’s
current observation and the synthesized subgoal is larger than a threshold. Please see Appendix E.3
for details. In Table 5, we present ablation studies of CompDiffuser with and without replanning
in PointMaze and AntMaze Stitch datasets in OGBench. CompDiffuser outperforms the best
performing baselines QRL and HIQL even without replanning in 5 out of 6 tasks. We also observe
that w/ and w/o replanning yield similar performance in maze size Medium and Large, while offering
significant performance boost in the more complex Giant maze.

Parallel vs. Autoregressive Sampling. We compare the performance of the two proposed com-
positional sampling schemes, parallel and autoregressive, as presented in Table 6. Autoregressive
sampling consistently outperforms the parallel sampling across various tasks in plan quality, showing
that the causal information flow, where each trajectory chunk is conditioned on the already-denoised
(less noisy) version of previous chunk, leads to more coherent and physically consistent transitions
between chunks. We include additional discussion and sampling time comparison in Appendix B.3.

5 Discussion and Conclusion

Limitations. Stitching short trajectories to solve for unseen longer-horizon plans is a challenging
problem. While our method excels in our empirical evaluation, there still remain a number of future
venues of research. When composing a large sequence of trajectories, the error accumulation in the
long chain of bidirectional information propagation might lead to infeasible plans. This issue can
be potentially mitigated by using domain/task specific rejection sampling techniques to select from
multiple candidate plans or leveraging more expensive MCMC sampling. Moreover, the optimal
number of the test-time composed chunks K is task-dependent. Our future research will explore ways
to automatically identify a suitable number of chunks K, potentially by incrementally increasing the
number of chunks dependent on the quality of the generated plan.



Conclusion. We introduce CompDiffuser, a generative trajectory stitching method that leverages the
compositionality of diffusion models. We introduce a noise-conditioned score function formulation
that helps in performing autoregressive sampling of multiple short-horizon trajectory diffusion models
and eventually stitching them to form a longer-horizon goal-conditioned trajectory. Our method
demonstrates effective trajectory stitching capabilities as evident from the extensive experiments on
tasks of various difficulty, including different environment sizes, planning state dimensions, trajectory
types, and training data quality.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We clearly and accurately outlined our scope and contribution in the Abstract
and the Introduction Section.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We provided description of limitations of the work in Section 5. We also
provide additional analysis to the proposed method, such as the factors that might influence
the performance of our method (Appendix D) and computation efficiency (Appendix B.3).

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Justification: This paper does not include theoretical results.
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* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have described our experiment settings in Section 4 and Appendix E. In
addition, we will release our code upon acceptance.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will release our code implementation and corresponding instructions upon
acceptance.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The training and evaluation details are included in Section 4 and Appendix E.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: As shown in our quantitative results, we report the mean and standard deviation
based on 5 random seeds for each of our experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide description of the computation platform of our experiments along
with resource requirements in Appendix E.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This paper conforms with the NeurIPS Code of Ethics in every respect.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We believe the societal impact of this work should be similar to a generic
machine learning paper. No other issues we feel must be specifically highlighted.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The assets used in our paper are properly cited and related URLs are also
provided.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new assets in our paper will be the corresponding code implementation of
the proposed method. We will release the code along with documentation upon acceptance.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This research does not involve LLMs as any important, original, or non-
standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

In this appendix, we first introduce the evaluation environments and stitching datasets in Section A.
Next, we provide additional quantitative results in Appendix B and additional qualitative results in
Appendix C. We provide failure mode analysis in Section D. Following this, we provide implemen-
tation details in Section E, including model architecture, training and evaluation setups, trajectory
merging, and replanning. Lastly, we introduce notable baselines in Section F.

A Environment and Stitching Datasets

In this paper, we directly evaluate our method on public stitching datasets introduced in two recent
papers Ghugare et al. [21] and OGBench [51]. In this section, we provide detailed descriptions of
each dataset along with qualitative examples of trajectories in these datasets.

A.1 Stitching Datasets in Ghugare et al. [21]

This paper [21] divides each evaluation environment into several small regions and each demonstration
trajectory in the training datasets can only navigate within a specific region. There is a small overlap
(one block) between each region, which can be used to stitch trajectories across regions. Therefore, to
complete test-time goals, the agent needs to conduct effective reasoning based on the given start state
and goal state and identify the corresponding overlap joints. The division of regions is visualized
in the original paper [21]. We use the environments and datasets from their official implementation
release at https://github.com/RajGhugare19/stitching-is-combinatorial-generalisation.

A.2 OGBench Datasets

OGBench is a comprehensive benchmark designed for offline goal-conditioned RL. Since our focus is
to evaluate the trajectory stitching ability of CompDiffuser, we use the Stitch and Explore dataset
types in OGBench.

In Stitch datasets, trajectories are constrained to navigate no more than 4 blocks in the environment.
The start and goal state of each trajectory can be sampled from the entire environment provided
that the travel distance between the start and goal is within 4 blocks. Qualitative examples of the
trajectories in the Stitch dataset are shown in Figure 8.
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AntMaze Medium Stitch AntMaze Large Stitch AntMaze Giant Stitch

Figure §: Trajectory Examples in OGBench AntMaze Stitch Datasets. Each Trajectory is limited to travel at
most 4 blocks for dataset type Stitch, while at inference, the distance between the start and goal can be up to
30 in the Giant Maze.

In Explore datasets, trajectories are of extremely low-quality though high-coverage. The data
collection policy contains a large amount of action noise and will randomly re-sample a new moving
direction after every 10 steps. Hence, each demonstration trajectory in the training dataset typically
moves within only 2-3 blocks due to the random moving direction. These datasets might be even
more challenging due to the large noisy and cluster-like trajectory pattern. Qualitative examples of
the trajectories in the Explore dataset are shown in Figure 9.
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Figure 9: Trajectory Examples in OGBench AntMaze Explore Datasets. Trajectories in Explore datasets
are of extremely low-quality though high-coverage. The data collection policy contains a large amount of action
noise and will randomly re-sample a new moving direction after every 10 steps.

We show the environment names, corresponding datasets, and the maximum environment steps
for each evaluation episode in Table 7. All methods are trained on the OGBench public re-
lease datasets. We slightly increase the environment steps for some environments due to the
task difficulty (e.g., Giant Maze). For these environments, we follow the implementation in
https://github.com/seohongpark/ogbench. and rerun all baselines with the increased maximum
environment steps; for other environments, we directly adopt the reported success rates in the original

paper.

Environment Type Size Dataset Name Env Steps
Medium pointmaze-medium-stitch-v0 1000
pointmaze stitch Large pointmaze-large-stitch-v0 1000
Giant pointmaze-giant-stitch-v0 1000
Medium antmaze-medium-stitch-v0 1000
AntMaze Stitch Large antmaze-large-stitch-v0 2000
Giant antmaze-giant-stitch-v0 2000
AntSoccer stitch Arena antsoccer-arena-stitch-v0 5000
Medium antsoccer-medium-stitch-v0 5000
Medium humanoid-medium-stitch-v0 5000
HumanoidMaze Stitch Large humanoid-large-stitch-v0 5000
Giant humanoid-giant-stitch-v0 8000

Table 7: Our Evaluation Environments and Datasets in OGBench.
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B Additional Quantitative Results

In this section, we provide additional quantitative experiment results. In Section B.1, we study how
varying the number of composed trajectories K affects the performance of our method. In Section
B.2, we investigate the effect of inverse dynamic models of different horizons. Next, we provide a
sampling time comparison of Decision Diffuser and the proposed parallel and autoregressive sampling
schemes in Section B.3. Following this, in Section B.4, we analyze how the proposed autoregressive
sampling scheme performs when using different denoising starting directions.

B.1 Number of Composed Trajectories

In Table 8, we compare CompDiffuser with GSC over composing different numbers of trajectories
(results are also shown in Figure 7). Our method performs steadily when composing different numbers
of trajectories while GSC collapses.

PointMaze Giant Stitch
# Comp 7 8 9 10 11 12

GSC 21+ 2143 15+2 241 0+o 0+o
CompDiffuser 51+7 53+6 55+4 56+2 50+6 50+3

Table 8: Quantitative Results over Different Numbers of Composed Trajectories. We report
success rates (w/o replanning) of composing 7 to 12 trajectories in the OGBench PointMaze Giant
Stitch dataset. CompDiffuser can consistently construct feasible trajectories over various numbers
of composed trajectories while GSC gradually collapses.

B.2 Inverse Dynamics Model

In this section, we evaluate our planner with inverse dynamics models of different horizons (results
are also shown in Figure 7). Specifically, we use an MLP to implement the inverse dynamics model,
which takes as input the start and goal state and outputs an action. We use the same training dataset
(as to train the planner) to train the corresponding inverse dynamics model. As shown in Table 9,
our method performs steadily across different inverse dynamics model horizons, showing that the
subgoals generated by our planners are of high feasibility and are robust to various inverse dynamics
models’ configurations.

Env Type Size 8 12 16 20 24 28

Large 77+4 8642 80+2 85+3 76+2 7743
Giant 61l+5 65+3 68+4 63+3 60+2 63+3

AntMaze Stitch

Table 9: Quantitative Results of CompDiffuser with Inverse Dynamics Models of Different
Horizons. We present the success rates of CompDiffuser with 6 different inverse dynamics model
horizons. In both environments, Large and Giant, our method performs consistently across all
configurations, showing that the synthesized plans adhere to the transition dynamics and are easy to
follow.

B.3 Sampling Time Comparison: Parallel vs. Autoregressive

In Table 10, we compare the diffusion denoising sampling time of three methods: (1) monolithic
model method, Decision Diffuser (DD), where we directly sample a long trajectory with the same
horizon as the proposed compositional sampling method; (2) parallel compositional sampling, as
shown in the left of Figure 3, where we denoise all trajectories 7. in one batch; (3) autoregressive
compositional sampling, as shown in the right of Figure 3, where we sequentially denoise each 7.

We observe that both parallel and AR sampling methods require more sampling time than DD
probably due to (1) the the simpler and smaller denoiser network of DD; (2) time for condition
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encoding (our method will first encode the noisy adjacent trajectories 7,1 and 7,41 and feed the
resulting latents to the denoiser €g) and (3) the overhead of trajectory merging.

In addition, in our parallel sampling scheme, we stack all trajectories 7. to one batch and feed it to
the denoiser network eg. While it indeed requires only one model forward, the batch size increases
implicitly, which is probably the major reason that the sampling time of Ours (Parallel) does not
proportionally decrease as the number of composed trajectories K, in comparison to Ours (AR).

Env Type Size DD (Monolithic) Ours (Parallel) Ours (AR)
Medium 0.23 1.02 1.54

PointMaze Stitch Large 0.23 1.67 3.39
Giant 0.23 2.73 5.00

Table 10: Quantitative Comparison of Sampling Time We report the time for sampling one (com-
positional) trajectory in three different PointMaze environments using one Nvidia L40S GPU (unit:
second). The reported results are averaged over 20 sampling. In Parallel and AR (Autoregressive)
mode, we use the proposed compositional sampling scheme as shown in Figure 3. Specifically, we
compose 3, 6, and 9 trajectories in Maze Medium, Large, and Giant, respectively. In Decision Dif-
fuser (DD), we directly sample one trajectory with identical length as the compositional counterparts.

B.4 Starting Direction of Autoregressive Compositional Sampling

In the proposed autoregressive sampling scheme described in Figure 3, inside each diffusion denoising
timestep, the denoising starts from 7, and sequentially proceeds to 7x (from left to right), which we
denote as forward passing. Another implementation variant is to denoise in the reverse order, that is,
first denoise 7x and sequentially proceed to 7; (from right to left), which we denote as backward
passing.

We provide a quantitative comparison of these two starting directions in Table 11. We observe that
these two methods yield similar performance, demonstrating that either autoregressive sampling
direction can enable effective information propagation and exchange.

Env Type Size Ours (Forward) Ours (Backward)
Medium 1000 10040

PointMaze Stitch Large 1000 100=+0
Giant 5D+4 56+2

Table 11: Quantitative Comparison of Forward and Backward Information Propagation. We
study the effect of the starting direction of the autoregressive sampling, from 7 vs. from 7x. To
directly study the trajectory quality, we report the results w/o replanning for both methods. Either
Forward or Backward achieves similar performance, suggesting that our sampling method is robust
to different sampling configurations.
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C Additional Qualitative Results

In this section, we present additional qualitative results of CompDiffuser. Videos and interactive
demos are provided at our project website (see Abstract section for the link).

C.1 Composing Different Numbers of Trajectories

We present qualitative results of composing 8 to 11 trajectories in OGBench PointMaze Giant
Stitch environments in Figure 10. We compositionally sample multiple trajectories to construct
a long-horizon plan where the given start is at the bottom-left corner and the given goal is at the
top-right corner. For clearer view, we present the results before applying trajectory merging (i.e., we
show each individual trajectory of 7.x) and use different colors to highlight different trajectories.
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Figure 10: Composing Different Numbers of Trajectories at Inference. Our method is only trained on
short trajectory segments that travel at most 4 blocks, while is able to compositionally generate coherent long
trajectories given the start (circle) and goal (star). When K is smaller and barely sufficient to reach the goal
(e.g., 8), the length of the overlapping part between segments decreases so as to extend the travel distance of
the overall compositional plan. In contrast, if given a larger K (e.g., 11), some parts of the compositional plan
might travel back and forth to consume the extra length.

C.2 Diverse Trajectory Morphology

The proposed compositional sampling method allows direct generalization to long-horizon planning
tasks at test time through its noisy-sample conditioning and bidirectional information propagation
design. Meanwhile, this sampling approach also preserves the multi-modal nature of the diffusion
model, enabling a diverse range of trajectory morphology. As shown in Figure 11, given a similar
start and goal pair, our method can construct trajectories that reach the goal via various possible paths.
With such multi-modal flexibility, the proposed sampling process can be further customized with
specific preferences by integrating additional test-time steering techniques.
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Figure 11: Diverse Trajectory Morphology. We present four trajectories with similar start and goal in
OGBench PointMaze Giant Stitch. All trajectories are generated by CompDiffuser, composing 9 trajectories.
CompDiffuser preserves the multi-modal nature of diffusion models and is able to flexibly sample trajectories of
diverse morphology.
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C.3 Planning Results on Different Tasks.

In Section C.2 above, we present multiple trajectories of Task 1 in OGBench PointMaze Giant. In
this section, we present qualitative results of the following Task 2 to Task 5, as in Figure 12. We set
the number of composed trajectories K to 9 in all tasks. The state state is shown by the black circle
and the goal state is shown by the black star. Our method successfully constructs feasible plans for
various start-goal configurations across different spatial distances.
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Figure 12: Different Tasks in OGBench PointMaze Giant Stitch. We present qualitative plans by CompDif-
fuser on OGBench Task 2-5 (See Figure 11 for results of Task 1). We set the number of composed trajectories to
9 for all the tasks above. The black circle denotes the start state and the black star denotes the goal state. In task
2 and 3, our method effectively constructs long horizon plans that reach the goals on the opposite side of the
environment (despite being trained only on trajectories that travel at most 4 blocks). In comparison, Task 4 and
5 feature a relatively smaller spatial gap between the start and goal, thus requiring a shorter planning horizon.
Our method still generalizes to these tasks by generating plans that traverse additional distance or leveraging
back-and-forth movements to consume the extra plan length.

C.4 Compositional Planning in High Dimensional Space

In this section, we present additional high dimensional trajectories generated by CompDiffuser in
OGBench AntMaze Large Stitch environment. Similar to other experiments in the paper, the
models are trained on the corresponding OGBench public release datasets.

AntMaze Large Stitch 29D. We train CompDiffuser on the state space of x-y position along with the
ant’s joint positions and velocities, resulting in a 29D planning task. Note that CompDiffuser is only
trained on short trajectory segments (we set its horizon to 160), while at test time, we compose 5
trajectories to directly construct trajectory plans of horizon 584. We present additional qualitative
results in Figure 13. Note that we uniformly sub-sample the length of the trajectory to 50 for clearer
view. Corresponding quantitative results are reported in Table 4.

Figure 13: Compositional Planning in 29D on OGBench AntMaze Large Stitch Tasks. Original trajectory
plans are much denser and we uniformly sub-sample 50 states from the original generated trajectories for better
view. Five trajectories are composed as shown by different colors: the blue one indicates the first trajectory 71
and the purple one indicates the fifth trajectory 7s.
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C.5 Compositional Planning in AntSoccer Arena

We provide additional qualitative results in OGBench AntSoccer Arena Stitch environment in
Figure 14. In this task, the ant is initialized to the location of the blue circle and is tasked to move the
ball to the goal location indicated by the pink circle. Hence, the ant needs to first reach the ball from
the far side of the environment and dribble the ball to the goal.

However, such long-horizon trajectories (the ant reaches the ball and then dribbles the ball to the
goal) do not exist in the training dataset. The training dataset only contains two distinct types of
trajectories: (1) the ant moves in the environment without the ball, (2) the ant moves while dribbling
the ball. Therefore, the planner needs to generalize and stitch in a zero-shot manner — constructing an
end-to-end trajectory that first approaches the ball and then dribbles the ball to the goal.

We train CompDiffuser on the state space of the ant’s x-y position and joint positions along with
the x-y position of the ball, resulting in a 17D planning task. Similar to Figure 6, we present each
individual trajectory 7y.x in Figure 14 for clearer view. Corresponding quantitative results are
provided in Table 3.

Init State T3 T4

Figure 14: Compositional Planning on OGBench AntSoccer Arena Stitch. We present the initial state for
planning and each individual trajectories 71.4 above. The start position of the ant is shown by the blue circle
(bottom right) and the goal is to move the ball to the pink circle (upper right). We compositionally sample 4
trajectories (as shown from left to right), which will then be merged to form a long-horizon plan. The ball is
highlighted with a small yellow circle. Our compositional sampling method effectively stitches two different
types of trajectories and generalizes to more difficult tasks unseen in the training data.

D Failure Mode Analysis

In this section, we present several failure cases of our method along with analyses and qualitative
examples of these failure modes. Our proposed framework consists of two components: a generative
planner and an inverse dynamics model. We outline and discuss several failure modes below.

D.1 Infeasible Generated Plan

As the number of composed trajectories K increases, our method may show inconsistencies in the
trajectory plan, especially when planning in high dimensional state space. We observe that although
the start and goal conditioning can consistently ensure that the composed plan begins at the initial
state and terminates at the provided goal, the intermediate trajectories may include implausible
transitions, such as trajectories that jump over walls, making the overall plan infeasible. However,
empirically these failures usually occur at considerably higher K as compared to baseline methods
(e.g., GSC, see Table 1 and Table 2).

In Figure 15, we present a qualitative example of infeasible plan in OGBench AntMaze Giant
Stitch when planning in 29D space (ant’s x-y position, joint positions, and joint velocity) and
composing 9 trajectories. The original white walls are rendered transparent for better view of
infeasible states. Though the generated compositional plan is mostly valid, the second trajectory 7o,
as shown in yellow, is infeasible as it passes through walls. This is probably due to the suboptimal
coordination among trajectories in the compositional sampling process.

As illustrated in the figure, certain trajectories (e.g., the neighboring blue, green, and red ones)
barely proceeds, moving only 2-3 blocks. To bridge the resulting spatial gap, the intermediate yellow
trajectory must span a much longer distance. However, the training data does not contain such
long-horizon trajectories, making it difficult for a single trajectory to extend to such length, which
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finally results in an o0.0.d sample that goes through walls. We could potentially mitigate this issue
with rejection or guided sampling techniques to select feasible candidate plans.

D.2 Suboptimal Inverse Dynamics Model

In our experiments, we observe that even if CompDiffuser synthesizes a feasible trajectory for the
agent to follow, the agent might not successfully reach the goal due to the error by the inverse
dynamics model. For example, the agent might bump into walls due to unstable locomotion or get
stuck in some local region, yet the synthesized plan is collision-free and coherent.

In implementation, we use a simple MLP to parameterize the inverse dynamics model and train it
with a regression MSE loss. We believe that more optimized model architecture or specific finetuning
might further boost the performance of the inverse dynamics model, hence boosting the overall
performance of our method. We deem that out of the scope of this work.

In Figure 16, we present a qualitative example of failure due to the inverse dynamics model in
OGBench AntMaze Giant Stitch. The planning is in 15D space (ant’s x-y position and joint
positions) and composes 3 trajectories. While we observe that the synthesized plan is feasible and
successfully reaches the goal, the environment execution rollout fails during the yellow trajectory.
In this instance, the ant agent fails to execute the right turn, loses track of subsequent subgoals, and
becomes trapped in a local region. To address this issue, incorporating effective replanning strategies
could help the agent recover (since the new plan will start from the current trapped state). In addition,
we deem that employing more robust or specialized inverse dynamics models may further mitigate
such failure scenarios.

Infeasible Plan: Passing through Walls

Feasible Plan

Rollout: Suboptimal Actions

Figure 15: Failure Mode: Infeasible Plan.
We increase the transparency of the original
white walls for better view of infeasible states.
The start state is at the top left corner and the
goal state is at the bottom right corner. Nine
trajectories are composed, highlighted by dif-
ferent colors. The second trajectory T2 (shown
in yellow) is infeasible and passes through
walls. This is probably due to the suboptimal
coordination between trajectories in the com-
positional sampling process: the neighboring
blue and green trajectories barely progress,
leaving a long 0.0.d gap for the yellow trajec-
tory to fill.

Figure 16: Failure Mode: Suboptimal Inverse Dynamics
Actions. We present a failure case of planning in 15D space
(ant’s x-y position and joint positions) in AntMaze Medium
Stitch. Left: the compositional plan where three trajectories
(represented in blue, yellow, and green) are composed. We
sub-sample the plan to 36 states for visualization (the original
plan is dense with over 300 states). Right: the correspond-
ing environment execution rollout of the compositional plan.
Though the synthesized plan is valid and successfully reaches
the goal, the inverse dynamics model may fail, as illustrated
on the right which gets stuck in a right turn and is unable
to proceed. Further incorporating some effective replanning
strategies or employing more robust inverse dynamics models
could potentially mitigate these failure scenarios.

D.3 Suboptimal Number of Composed Trajectories KX

In our current implementation, the number of composed trajectories /' needs to be manually specified
at test time. As shown by the quantitative results Table 8 and qualitative results Figure 10, a relatively
larger K does not significantly affect the model performance as the extra plan length will be consumed
by staying or circulating within certain valid regions in the environment. However, an aggressively
smaller K might lead to failure plans — since the overall planning horizon becomes insufficient to
cover the substantial spatial gap between the start and the goal.
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In this section, we provide qualitative examples of infeasible plans due to impractical K. In Figure 17,
we show each individual trajectory 7, generated by our compositional sampling method when K
ranges from 3 to 6. Note that a feasible horizon to reach the goal from the start (bottom left) to the
goal (upper right) requires composing at least 8 trajectories, i.e., K = 8.

Therefore, while the generated trajectories can begin at the start state and terminate at the goal state,
the intermediate segments become disconnected since there are too few trajectories to bridge the
significant spatial gap (given that the training data contains only short trajectories). Nonetheless, we
observe that the overall flow of the trajectories is directed toward the goal, and as K increases, the

plan’s structure gradually becomes more feasible.
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Figure 17: Failure Model: Suboptimal Number of Composed Trajectories . Our method may generate
infeasible plans if K, the number of composed trajectories, is set significantly below the required minimum. For
example, in the planning task illustrated above, the start state is located in the bottom left corner while the goal
state is at the upper right corner. A feasible plan for this task typically requires composing at least 8 trajectories
(i.e., K = 8). We present qualitative examples of plans when K is smaller than the minimum threshold. Though
the first and last trajectory segments correctly attach to the start and goal states, the intermediate trajectories

are disconnected due to the insufficient plan length. However, the overall plan still progresses towards the goal,
which may provide useful guidance signals to the agent.

E Implementation Details

Software: The computation platform is installed with Ubuntu 20.04.6, Python 3.9.20, PyTorch 2.5.0.

Hardware: We use 1 NVIDIA GPU for each experiment. A GPU with 24GB memory is sufficient to
train our models and it takes 1-2 days to train a model using a recent mid-level NVIDIA GPU.

E.1 Our Conditional Diffusion Model

In this section, we introduce detailed implementation of our conditional diffusion model
eg(Tt,t | st_cond, end_cond).

Model Inputs and Outputs. Our diffusion model takes as input the noisy trajectory 7¢, diffusion
noise timestep t, and the start condition st_cond and end condition end_cond for 7t. st_cond can
be either noisy chunk or start state g5 and end_cond can be either noisy chunk or goal state g;. We
use the predicting 70 formulation to implement this network, i.e., the network directly predicts the
clean sample 7°.

Implementation of Noisy Chunk Conditioning. As described in Section 3, we only train one
diffusion model € that is able to condition on both the start state g, goal state g4, and noisy chunk
Ty, Tk 41> such that in test time we can use the proposed compositional sampling approach to
construct long-horizon plans. This unified one model design eliminate the need for manual task
subdivision (across multiple models) or reliance on predefined planning skeleton, thereby enabling
holistic end-to-end planning.

In practice, we can implement the noisy neighbor conditioning L, simply using the overlapping part
between the two chunks instead of a full chunk 7,1 /7x+1 conditioning, because the overlapping
part is sufficient to ensure the connectivity between two adjacent trajectories. Such design further
simplifies the training procedure: instead of dividing a training trajectory 7 to K chunks, we only
need to sample a noisy sub-chunk from 7 itself.
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Specifically, assume 7¢ is the noisy trajectory to be denoised and 7 is another independent noisy
version of 7 also at noisy timestep ¢t. We denote the length of 7 as h and the length of the overlapped
part as h,, then we can use 7¢[0 : ho| and 7*[h — h, : h] as the noisy sub-chunks for st_cond and
end_cond during training, respectively. Hence, when inference, the end_cond for 7, can be set to
750 : he] (the front chunk of the second trajectory 7>) and the st_cond for 72 can be set to 74[0 : hy)
(the tail chunk of the first trajectory 77).

Model Architecture. For planning in 2D x-y space, we follow Decision Diffuser [I]
(https://github.com/anuragajay/decision-diffuser/) and use a conditional U-Net as the denoiser net-
work. For planning in high dimension state space, we use a DiT [55] based transformer [65] as the
denoiser network (https://github.com/facebookresearch/DiT/).

Training Pipeline. We provide detailed hyperparameters for training our model on PointMaze
Giant Stitch environment in Table 12. We do not apply any hyperparameter search or learning rate
scheduler. Please refer to our codebase for more implementation details.

Hyperparameters Value
Horizon 160
Diffusion Time Step 512
Probability of Condition Dropout 0.2
Iterations 1.2M
Batch Size 128

Optimizer Adam

Learning Rate 2e-4
U-Net Base Dim 128

U-Net Encoder Dims (128, 256, 512, 1024)

Table 12: Hyperparameters for Training on PointMaze Giant Stitch environment.

Inference Pipeline. In Table 13, we present the single model horizon (length of individual 7;,) and the
inference-time number of composed trajectories K corresponding to the reported results in Table 1,
Table 2 and Table 3.

For each evaluation problem, we generate B samples in a batch and we use a simple heuristic to select
one sample as the output plan. Specifically, we compute the L2-distance of each overlapping parts in
the generated trajectory segments 71. . The one with the smallest average distance will be adopted as
the output plan, in the sense that a small distance in the overlapping parts indicates better coherency
between adjacent trajectories. we deem that developing some more advanced inference-time methods
with CompDiffuser may be an interesting future research direction, such as probability or density
based plan selection methods or compositional sampling with flexible preference steering.

E.2 Trajectory Merging

As introduced in Method Section 3 and Algorithm 2, the generated trajectories 7.k are mutually
overlapped and we merge these K trajectories to form a long-horizon compositional trajectory Teomp.
In this section, we describe the implementation of the exponential trajectory blending technique
which we use for merging.

We directly leverage the classic exponential trajectory blending formulation. For simplicity, let 74
and 7o denote the trajectories to blend, 71 [t] denote the ¢-th state in 71, s and tenq denote the start
and end index of the region to apply blending. Note that, in practice, we only blend the overlapped
part between two adjacent trajectories. We provide the equation for exponential blending below,

_ t— tstart
=) R
1—e b

Teomplt] = w(t) * T1[t] + (1 — w(t)) * 72[t], where w(t) = @)

We set 3 = 2 across all our experiments. In practice, various other trajectory blending techniques can
also be directly applied, such as cosine blending and linear blending.
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Environment Type Size Single Model Horizon # of Composed Trajectories

. U-maze 40 5
E"l‘?tMaze - Medium 144 5
Large 192 5

Medium 160 3

pointmaze Stitch  Large 160 5
Giant 160 8

Medium 160 3

AntMaze Stitch  Large 160 6
Giant 160 9

Medium 192 5

AntMaze Explore Large 192 6
. Arena 160 5

AntSoccer Stitch Medium 160 6
Medium 336 4

HumanoidMaze Stitch  Large 336 6
Giant 336 11

Table 13: Number of Composed Trajectories for Each Evaluation Environment. Our diffusion
models are trained with a short horizon as listed in the Single Model Horizon column. In test time, we
compositionally generate multiple such short trajectories to enable trajectory stitching and construct
plans of much longer horizon.

E.3 Replanning

In this section, we describe the detailed implementation of replanning. While our method is designed
to directly generate an end-to-end trajectory from the given start state to the goal state, replanning
can be performed at any given timesteps during a rollout. Specifically, we initiate replanning if the
agent loses track of the current subgoal, i.e., the L2 distance between the agent and the subgoal is
larger than a threshold.

In a larger maze, the required number of composed trajectories, denoted as K, is usually large due
to the distance between the start state and the goal state. However, if we keep replanning with a
similar large K even when the agent is already close to the goal, the generated trajectory might travel
back and forth to consume the unnecessary intermediate length (see (2) and (3) in Figure 12), thus
delaying the agent’s progress toward the goal.

To address this, we use a receding scheme for K to encourage faster convergence to the goal. Let K
denote the number of composed trajectories of the current plan (the plan that the agent is following),
heomp denote the length of the current plan, hey. denote the length of the current plan that the agent
already executes in the environment. The number of composed trajectories used for replanning Keplan
is given by

max(hexe — 0, 0)

Kreplan = ceil( (1-
hcomp

)*K) ®)

where ¢ is a hyper-parameter that controls the convergence speed to the goal, for example, Kiepian
will decrease faster if d is set to a small (or negative) number while Kcplan Will decrease very slowly
if § is a large positive number.
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F Baselines

We compare our approach with a wide variety of baselines, including diffusion-based trajectory
planning algorithms, data augmentation based stitching algorithms, and goal-conditioned offline RL
algorithms.

Particularly, we include the following methods:

* For generative planning methods, we include Decision Diffuser (DD) [1] for monolithic trajec-
tory sampling and Generative Skill Chaining (GSC) [48] for trajectory stitching;

* For data augmentation based methods, we include stitching specific data augmentation [21]
with RvS [14] and Decision Transformer (DT) [9]. Since the evaluation setting is identical, we
directly adopt the reported numbers in the original paper [21].

* For offline reinforcement learning methods, we include goal-conditioned behavioral cloning
(GCBC) [44, 20], goal-conditioned implicit V-learning (GCIVL) and Q-learning (GCIQL) [29],
Quasimetric RL (QRL) [70], Contrastive RL (CRL) [15], and Hierarchical implicit Q-learning
(HIQL) [52]. For these baselines, we follow the implementation setup established by OG-
Bench [51] throughout our experiments.

We describe the implementation details of a few notable ones below.

Generative SKkill Chaining (GSC) [48]. GSC is a recent diffusion model-based skill stitching
method. We directly adopt its original score-averaging based stitching algorithm and apply it in our
tasks. Specifically, when composing K trajectories 7.5, GSC averages the scores of the overlapping
segments between adjacent trajectories (in total K — 1 overlapping segments in this case) prior to
each denoising timestep. For a fair comparison, we re-use the same diffusion denoiser networks in
CompDiffuser for every GSC experiment.

Hierarchical Implicit Q-Learning (HIQL) [52]. HIQL is a recently proposed Q-learning based
method that employs a hierarchical framework for training goal-conditioned RL agents. It learns a
goal conditioned value function and uses it to learn feature representations, high-level policy, and
low-level policy. We follow the original implementation of the method in OGBench [51].

Goal-Conditioned Behavioral Cloning (GCBC) [44]. GCBC is a classic imitation learning-based
method. In our experiments, GCBC trains an MLP that takes as input the observation state and a
future goal state from the same offline trajectory and outputs a corresponding action for the agent.
We use the same implementation as in OGBench [51].
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