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ABSTRACT

Diffusion large language models (dLLMs) offer faster generation than autore-
gressive models while maintaining comparable quality, but existing watermark-
ing methods fail on them due to their non-sequential decoding. Unlike autore-
gressive models that generate tokens left-to-right, dLLMs can finalize tokens in
arbitrary order, breaking the causal design underlying traditional watermarks.
We present DMark, the first watermarking framework designed specifically for
dLLMs. DMark introduces three complementary strategies to restore watermark
detectability: predictive watermarking uses model-predicted tokens when actual
context is unavailable; bidirectional watermarking exploits both forward and back-
ward dependencies unique to diffusion decoding; and predictive-bidirectional wa-
termarking combines both approaches to maximize detection strength. Experi-
ments across multiple dLLMs show that DMark achieves 92.0− 99.5% detection
rates at 1% false positive rate while maintaining text quality, compared to only
49.6−71.2% for naive adaptations of existing methods. DMark also demonstrates
robustness against text manipulations, establishing that effective watermarking is
feasible for non-autoregressive language models.

1 INTRODUCTION

Large language models (LLMs) (OpenAI et al., 2024; Comanici et al., 2025) have become indis-
pensable infrastructure across education, media, and software development, fundamentally reshap-
ing how we create and interact with text. While autoregressive (AR) LLMs currently dominate
the landscape, diffusion-based LLMs (dLLMs) have emerged as a compelling alternative, offering
more than 10× faster inference speed while maintaining comparable generation quality (Inception
Labs, 2025). This new paradigm has gained significant traction, with commercial systems like
Mercury Coder (Inception Labs, 2025), Gemini Diffusion (Google Deepmind, 2025), and Seed Dif-
fusion (Song et al., 2025) demonstrating production-ready capabilities, alongside open-source im-
plementations including LLaDA (Nie et al., 2025), LLaDA 1.5 (Zhu et al., 2025), and DREAM (Ye
et al., 2025).

As dLLMs rapidly gain adoption, establishing text provenance mechanisms becomes critical for
detecting AI-generated content, deterring plagiarism, and ensuring responsible disclosure (Liu et al.,
2024; Zhao et al., 2025). Watermarking, which embeds statistically detectable signals in generated
text, has proven effective for traditional autoregressive (AR) LLMs (Qu et al., 2025; Zhao et al.,
2023). However, these methods fail catastrophically on dLLMs due to their fundamentally different
generation process.

The core challenge lies in how existing methods assume sequential generation. KGW (Kirchenbauer
et al., 2023), the most widely adopted watermarking approach, uses preceding tokens to determine
how to watermark the current token. This works for AR models but breaks in dLLMs, which gen-
erate through iterative denoising: starting from fully masked sequences, they compute logits for
all positions simultaneously and update tokens in arbitrary order. Positions can be filled out-of-
sequence and refined across multiple steps, violating the sequential dependency and stable prefix
assumptions that AR watermarks require.

To address this fundamental incompatibility, we present DMark, the first watermarking framework
designed for dLLMs, built on two key observations about their generation process. First, since
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dLLMs compute logits for all positions simultaneously, we can predict missing context tokens di-
rectly from their logit distributions, even when actual tokens are unavailable. Second, since dLLMs
finalize tokens in arbitrary order rather than left-to-right, we can exploit bidirectional dependencies:
not only can preceding tokens determine watermarking, but subsequent tokens can also constrain
their predecessors.

These observations directly motivate three watermarking strategies: Predictive watermarking
leverages parallel logit computation to infer missing context, ensuring watermark injection even
without neighboring tokens; Bidirectional watermarking exploits arbitrary generation order by
using both forward green lists (based on preceding tokens) and backward green lists (based on
subsequent tokens); Predictive-bidirectional watermarking combines both strategies, predicting
unavailable context while applying bidirectional constraints to maximize watermark signal strength.

In summary, our contributions are three-fold:

• First watermarking formalization for dLLMs. We formalize watermarking for diffusion
language models and demonstrate why existing AR methods fail catastrophically, achieving
only 49.6 − 71.2% detection rates at 1% FPR due to out-of-order generation and iterative
refinement that violate sequential dependencies.

• Novel bidirectional and predictive watermarking methods. We introduce three strate-
gies exploiting dLLM properties: predictive watermarking leveraging parallel logits to infer
missing context, bidirectional watermarking using both forward and backward dependen-
cies unique to dLLMs, and their synergistic combination achieving 92.0−99.5% detection
rates while preserving generation quality.

• Comprehensive evaluation across models and attacks. We evaluate DMark on multiple
dLLMs and datasets, demonstrating robustness against text manipulations while establish-
ing optimal parameter configurations for different security-quality trade-offs.

2 PRELIMINARIES

2.1 DIFFUSION LARGE LANGUAGE MODELS (DLLMS)

Unlike autoregressive models that generate tokens sequentially as p(xi|x<i), dLLMs generate text
through iterative denoising over T steps. Starting from a fully masked sequence x(T ) = [MASK]n,
the model progressively refines tokens:

x(t−1) ∼ pθ(x
(t−1)|x(t)), t = T, T − 1, . . . , 1 (1)

At each step t, the model computes logits for all positions simultaneously:

L(t) = fθ(x
(t)) (2)

Crucially, positions can be updated in arbitrary order based on confidence scores c(t)i = maxv L
(t)
i,v ,

or any other remasking strategies, enabling parallel generation (Nie et al., 2025; Ye et al., 2025).

In the low-confidence remasking strategy, the generation process generally involves: (1) selecting
positions to unmask based on confidence, (2) sampling tokens for selected positions, and (3) poten-
tially remasking low-confidence tokens for refinement. This out-of-order generation means position
i may be filled before position i− 1, and any token can be overwritten across multiple steps, funda-
mentally breaking the sequential assumptions of AR watermarking.

2.2 WATERMARKING FOR AUTOREGRESSIVE MODELS

To understand why existing watermarking fails on dLLMs, we examine the KGW method (Kirchen-
bauer et al., 2023), the most widely adopted watermarking approach for AR LLMs.

Given vocabulary V , KGW partitions tokens into green and red lists based on preceding context.
KGW embeds the watermark signal into generated text by increasing the generation likelihood of
several pseudo-randomly chosen tokens. When generating the token at the i-th position, KGW uses
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a hash function h seeded with key s and preceding context x<i = (xi−w, . . . , xi−1) where w ≥ 1 is
the context window size, to partition the vocabulary V into a green token list Gi and a red token list
Ri:

hi = h(s, x<i)

Gi = {v ∈ V : p(hi, v) < γ}, Ri = V \ Gi
(3)

where γ ∈ (0, 1) controls the green list ratio, and p is a pseudo-random function that maps each
token v to [0, 1). During generation, KGW biases the logits by adding δ > 0 to green tokens:

L̃i,v =

{
Li,v + δ if v ∈ Gi
Li,v if v ∈ Ri

(4)

In watermark detection, it computes a z-score based on the proportion of green tokens:

z =
|{i : xi ∈ Gi}| − γn√

γ(1− γ)n
(5)

This method crucially depends on sequential generation where preceding context x<i is always
available when generating xi, which is an assumption violated in dLLMs. The algorithm for KGW
watermarking is detailed in Appendix A.1.

3 METHODS

We develop four watermarking methods with increasing sophistication for dLLMs’ non-sequential
generation. Direct adaptation (§3.1) naively applies KGW when preceding context exists, achiev-
ing limited watermark signals as out-of-order generation leaves many positions unwatermarked.
Predictive watermarking (§3.2) leverages parallel logit computation to predict missing context, en-
abling watermarking at all positions despite prediction errors. Bidirectional watermarking (§3.3)
shifts from sequential to bidirectional paradigm, exploiting both forward and backward dependen-
cies to generate green lists in both directions. Predictive-bidirectional watermarking (§3.4) syner-
gizes prediction with bidirectional constraints, maximizing detection strength across all generation
orders.

X

I want to

(a) KGW

weather

?

I want to

(b) Predictive Watermarking

the youI want to

(c) Bidirectional Watermarking

the weather you

?

I want to

(d) Predictive-Bidirectional Watermarking

Figure 1: Illustration of four watermarking methods for dLLMs. Gray rectangles represent final-
ized tokens, purple rectangles represent unfinalized tokens, yellow rectangles represent unfinalized
but predicted tokens, and blue rectangles represent tokens to be generated. (a) KGW watermarking
applies watermarks only when preceding context exists. (b) Predictive watermarking uses predicted
preceding tokens as context when actual tokens are unavailable. (c) Bidirectional watermarking
leverages both forward green lists and backward green lists. (d) Predictive-bidirectional watermark-
ing combines prediction with bidirectional green lists for maximum watermark signals.

3.1 DIRECT ADAPTATION OF KGW

We first consider a straightforward adaptation of KGW to dLLMs, which simply applies KGW
conditionally: when preceding context xi−1 exists, we watermark using the green list Gi; otherwise,
we generate without watermarking. We focus on single-token context (xi−1 only) as longer contexts
are rarely available in dLLMs’ out-of-order generation. In Appendix A.2 we detail this approach.
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This approach suffers from context availability: watermarks can only be applied when preceding
context xi−1 exists. Since dLLMs generate positions out of order, position i often lacks its prede-
cessor xi−1, preventing watermark injection. Our experiments with LLaDA (Nie et al., 2025) on
ELI5 (Fan et al., 2019) confirm this limitation, where only 67% of tokens had available preceding
context, resulting in weak watermark signals.

3.2 PREDICTIVE WATERMARKING

Our key insight for overcoming missing context is to leverage dLLMs’ unique parallel logit com-
putation. Unlike AR models, dLLMs compute logits L(t) for all positions simultaneously at each
denoising step, including unfilled positions. We propose to exploit this property by predicting miss-
ing context tokens directly from their logit distributions:

x̂
(t)
i−1 = argmax

v
L
(t)
i−1,v (6)

We then construct the green list Gi using this predicted token x̂
(t)
i−1, enabling watermark injection

even when actual context is unavailable. While incorrect predictions yield weaker watermark sig-
nals, accurate predictions enable proper watermark embedding. This novel strategy ensures water-
mark injection at every position regardless of generation order, substantially improving upon direct
adaptation. The complete algorithm is detailed in Appendix A.3.

3.3 BIDIRECTIONAL WATERMARKING

While predictive watermarking ensures watermarking signals will be embedded regardless of gen-
eration order, its effectiveness is limited by prediction accuracy. During diffusion, logit distributions
shift substantially as context solidifies. For example, with noisy context ”[MASK] [MASK] net-
work”, the foremost token might initially predict ”the” (a common pattern), but as denoising reveals
”deep [MASK] network”, the actual token becomes ”neural”, causing us to watermark using the
wrong green list Gi(the) instead of Gi(deep).

To address this drawback, we take a different approach: instead of relying solely on forward con-
text, we exploit dLLMs’ unique bidirectional conditioning capability. We begin by examining the
traditional forward detection objective:

max
∑
i∈[n]

1[xi ∈ Gi] (7)

where Gi = {v ∈ V : p(h(xi−1, s), v) ≤ γ}.
This forward-only approach uses preceding context xi−1 to generate the green list Gi, indicating
that watermark detectability depends solely on prior tokens. While natural for autoregressive mod-
els, this constraint is unnecessarily restrictive for dLLMs, which can condition on tokens in both
forward and backward direction. The key insight is that dLLMs’ bidirectional nature enables a com-
plementary backward watermarking process: instead of asking that whether xi is in the green list of
xi−1, we can equally ask that whether xi is in a set that makes xi+1 green-listed.

Formally, according to the definition of green list, which will be referred to as forward green list
Gi, we define the backward green list G′i as the set of tokens at position i that would cause the
subsequent token xi+1 to be in its forward green list:

G′i = {v ∈ V : xi+1 ∈ Gi+1(v)} (8)

R′
i = {v ∈ V : xi+1 ∈ Ri+1(v)} (9)

The backward green list enables an equivalent detection objective, which will be referred to as
backward detection objective:

max
∑
i∈[n]

1[xi ∈ G′i] (10)

This dual perspective ensures effective watermarking across all generation scenarios: we apply for-
ward constraints when xi−1 exists, backward constraints when xi+1 exists, or both when surrounded
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by context, adapting dynamically to available neighbors. We formalize this bidirectional watermark-
ing as follows:

z̃i,v = zi,v + δ ·B(v, x
(t)
i−1, x

(t)
i+1), (11)

where the bias term B(v, x
(t)
i−1, x

(t)
i+1) is defined as:

B(v, x
(t)
i−1, x

(t)
i+1) =


1[v ∈ Gi] if x(t)

i−1 exists, x(t)
i+1 does not exist

1[v ∈ Gi] + 1[v ∈ G′i] if both x
(t)
i−1 and x

(t)
i+1 exist

1[v ∈ G′i] if x(t)
i−1 does not exist, x(t)

i+1 exists
0 if neither x(t)

i−1 nor x(t)
i+1 exists

(12)

This formulation adapts to any generation order: forward bias for left-to-right, backward bias
for right-to-left, and bidirectional bias when both neighbors exist, accommodating dLLMs’ non-
sequential generation patterns. The algorithm is detailed in Appendix A.4.

3.4 PREDICTIVE-BIDIRECTIONAL WATERMARKING

The bidirectional and predictive strategies are orthogonal and can be naturally combined. While
bidirectional watermarking exploits both forward and backward context, predictive watermarking
uses predicted tokens when actual ones are unavailable. Predictive-bidirectional watermarking ap-
plies both techniques simultaneously: it uses predictions for missing neighbors, applying bidirec-
tional constraints by using both forward and backward green lists. This combination maximizes
watermark coverage across all generation scenarios, achieving the highest detection rates by lever-
aging every available signal source.

Formally, we define the forward and backward green lists with prediction as:

Ĝi =

{
{v ∈ V : p(h(s, x

(t)
i−1), v) ≤ γ} if x(t)

i−1 exists
{v ∈ V : p(h(s, x̂i−1), v) ≤ γ} otherwise, where x̂i−1 = argmaxv zi−1,v

(13)

Ĝ′i =

{
{v ∈ V : p(h(s, v), x

(t)
i+1) ≤ γ} if x(t)

i+1 exists
{v ∈ V : p(h(s, v), x̂i+1) ≤ γ} otherwise, where x̂i+1 = argmaxv zi+1,v

(14)

The watermark bias for predictive-bidirectional is formalized as:

z̃i,v = zi,v + δ ·Bpred(v, x
(t)
i−1, x

(t)
i+1) (15)

where the predictive-bidirectional bias term is:

Bpred(v, x
(t)
i−1, x

(t)
i+1) = 1[v ∈ Ĝi] + 1[v ∈ Ĝ′i] (16)

Note that unlike pure bidirectional watermarking which may have no bias when neighbors are absent,
predictive-bidirectional always applies bias by using predicted tokens to construct both Ĝi and Ĝ′i,
ensuring watermark injection at every position. We demonstrate it in Algorithm 1.

4 EXPERIMENTS

4.1 SETUPS

Models and Datasets We evaluate DMark on three open-source dLLMs: LLaDA-Instruct-
8B (Nie et al., 2025), LLaDA-1.5-8B (Zhu et al., 2025), and Dream-v0-Instruct-7B (Ye et al.,
2025). Following previous watermarking studies (Zhao et al., 2023; Pan et al., 2024), we use two
complementary benchmarks: ELI5 (Fan et al., 2019) for question-answering tasks and C4 (Raffel
et al., 2023) for text completion with 30-token prefixes. We generate 500 samples per dataset, filter-
ing for sequences with at least 200 tokens as in (Kirchenbauer et al., 2023) and excluding instances
with abnormal repetition patterns in baseline.
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Algorithm 1 Predictive-Bidirectional Watermarking for dLLMs

Require: Token sequence x(t), position i, secret seed s, green ratio γ, bias strength δ

Ensure: Watermarked token x
(t+1)
i

1: if x(t)
i−1 exists then ▷ Determine forward green list

2: Gi ← {v ∈ V : p(h(s, x
(t)
i−1), v) ≤ γ}

3: else
4: x̂i−1 ← argmaxv Model(x(t), i− 1)v
5: Gi ← {v ∈ V : p(h(s, x̂i−1), v) ≤ γ}
6: if x(t)

i+1 exists then ▷ Determine backward green list

7: G′i ← {v ∈ V : p(h(s, v), x
(t)
i+1) ≤ γ}

8: else if i < n then
9: x̂i+1 ← argmaxv Model(x(t), i+ 1)v

10: G′i ← {v ∈ V : p(h(s, v), x̂i+1) ≤ γ}
11: else
12: G′i ← V ▷ No constraint at sequence end
13: zi ← Model(x(t), i)
14: z̃i,v ← zi,v + δ · (1[v ∈ Gi] + 1[v ∈ G′i]) for all v ∈ V
15: return x

(t+1)
i ∼ Softmax(z̃i)

Implementation For LLaDA inference, we use 256 denoising steps with 32-token blocks to gen-
erate 256-token sequences, with temperature set to 0.0 for deterministic evaluation. For Dream
inference, we also use 256 denoising steps to generate 256-token sequences, with all other hyperpa-
rameters set to the default values. It’s worth noting that Dream doesn’t support block generation. To
enable efficient bidirectional watermarking, we precompute a bit matrixM ∈ {0, 1}|V|×|V| encod-
ing green list relationships. Row i stores the forward green list of token i (whereMij = 1 if token
j is green given i), while column j stores the backward green list for token j (whereMij = 1 if
token i makes j green). This dual encoding enables O(1) green list retrieval via simple row/column
lookups, avoiding costly vocabulary iterations during generation. Detection uses the z-score from
Equation 5 with a predefined threshold. Texts that exceed this threshold are classified as water-
marked. To ensure fair comparison, all baseline methods and our method use identical hyperparam-
eters and detection thresholds computed from the non-watermarked instances.

4.2 WATERMARK METHODS PERFORMANCE

Detection Effectiveness Across Methods. We evaluate detection effectiveness using true positive
rate (TPR) at three critical false positive rate (FPR) thresholds: 0.5%, 1%, and 5%. These low FPR
values ensure minimal false accusations against human-written text, which is essential for practical
deployment where incorrectly flagging legitimate content poses serious concerns. We compare four
watermarking methods (KGW, Predictive, Bidirectional, and Predictive Bidirectional) across three
dLLMs and two datasets to assess performance under diverse generation conditions.

Table 1 reveals that traditional watermarking fails on diffusion models: KGW achieves only
49.6−71.2% TPR at 1% FPR across settings, while Predictive marginally improves to 54.2−79.3%.
Bidirectional methods outperform unidirectional approaches, reaching 74.2 − 88.0% TPR. Mean-
while, Predictive-Bidirectional achieves near-perfect 92.0-99.5% TPR, demonstrating that lever-
aging both forward and backward context is essential for reliable watermark detection in non-
sequential generation.

Impact of Generation Length. Watermark detection fundamentally relies on statistical accumu-
lation of biased token choices, making generation length a critical factor for real-world viability.
Short texts like social media posts offer limited statistical evidence, while longer documents like
articles provide more detection opportunities—yet both scenarios demand reliable watermarking.
We empirically examine how detection strength scales with text length to establish minimum length
requirements.
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Table 1: Detection performance comparison of watermarking methods across different dLLMs.
Experiments with n = 200 tokens, γ = 0.5, δ = 2.0, and low confidence remasking method.

Method C4 TPR (%) ELI5 TPR (%)
@0.5% FPR @1% FPR @5% FPR @0.5% FPR @1% FPR @5% FPR

LLaDA-1.5-8B
KGW 30.4 71.2 88.0 45.8 63.6 88.4
Predictive 36.4 76.8 91.0 60.2 77.6 94.2
Bidirectional 53.4 87.6 95.4 79.2 86.2 97.2
Predictive Bidirectional 80.2 96.8 98.2 95.8 99.0 99.8
LLaDA-Instruct-8B
KGW 29.6 49.6 83.6 54.4 65.0 84.4
Predictive 36.4 54.2 89.2 63.8 76.0 92.6
Bidirectional 55.0 74.2 95.2 78.4 88.0 95.8
Predictive Bidirectional 80.0 92.0 98.4 97.8 99.2 99.8
Dream-v0-Instruct-7B
KGW 32.8 54.4 75.9 41.7 59.5 83.5
Predictive 45.2 70.3 89.3 63.2 79.3 92.1
Bidirectional 67.6 82.0 93.6 73.3 85.6 95.5
Predictive Bidirectional 93.6 97.2 98.1 98.8 99.5 100.0
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Figure 2: Impact of generation length on watermark detection strength (z-score) for different water-
mark parameters. Results shown for Predictive-Bidirectional watermarking on LLaDA-Instruct-8B
with ELI5 dataset and different green list ratios (γ). Higher z-scores indicate stronger watermark
detection, while lower PPL indicates better text quality.

Figure 2 demonstrates how watermark detection strength scales with text length. Short texts (L <
50) require stronger watermark parameters (δ ≥ 5.0) to achieve reliable detection due to limited
statistical evidence. Medium-length texts (50 ≤ L ≤ 150) achieve practical detection with moderate
settings, making them suitable for typical applications. Long texts (L > 150) enable robust detection
even with conservative parameters, achieving z-scores exceeding 20 under standard configurations.

Trade-off between Watermark Effectiveness and Text Quality. We then investigate how water-
mark detectability scales while maintaining text quality. We use Llama-3-8B-Instruct as our refer-
ence model for calculating perplexity (PPL). As demonstrated in Figure 3, low watermark strength
with δ ≤ 2.0 succeeds to achieve a balance between watermark detectability and text quality, which
is sufficient for low FPR detection while maintaining PPL. While high watermark strength δ ≥ 5.0
achieves perfect detection, it significantly degrades text quality, which is not practical for real-world
deployment.

4.3 WATERMARK ROBUSTNESS

Real-world deployment faces adversarial threats ranging from benign text corruptions to sophisti-
cated paraphrasing attacks. We evaluate DMark’s resilience across this threat spectrum to understand
its security boundaries and guide parameter selection for adversarial environments.

Table 2 evaluates watermarking methods’ resilience against adversarial attacks. Predictive-
Bidirectional consistently outperforms all baselines, achieving 95 − 97% TPR at 1% FPR against

7
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Figure 3: Quality-detectability trade-off for varying watermark configurations. Each point repre-
sents a different combination of bias strength δ and green list ratio γ.

Table 2: Robustness evaluation of watermarking strategies against various attacks. Values show
TPR (%) at different FPR thresholds. We detail the paraphrasing attack setup in Appendix B.

Attack Type Param. TPR @ 0.5% FPR TPR @ 1% FPR TPR @ 5% FPR
KGW Predict Bidir PBidir KGW Predict Bidir PBidir KGW Predict Bidir PBidir

Delete 10% 36.8 40.0 63.2 93.8 51.2 52.2 76.8 97.2 74.4 81.0 91.2 99.4
20% 21.0 25.2 45.8 78.8 35.4 39.2 62.2 88.4 68.4 68.0 84.6 98.2

Insert 10% 34.0 37.0 60.4 91.8 46.0 52.0 73.8 95.6 73.2 76.2 90.0 98.8
20% 22.0 25.6 41.0 79.4 34.4 35.4 54.8 86.8 59.4 64.0 82.0 96.6

Swap 10% 35.2 40.6 57.0 91.0 49.0 53.6 69.2 96.8 69.4 76.6 91.0 99.4
20% 19.4 24.0 34.8 75.4 30.8 37.4 47.8 84.2 59.8 64.4 76.8 95.8

Substitution 10% 31.8 37.8 57.2 91.2 45.0 52.2 69.6 95.0 71.4 77.4 88.4 99.4
20% 15.2 20.6 31.2 73.0 26.6 31.8 47.8 83.6 51.8 62.0 78.0 95.0

Paraphrase GPT 9.8 12.8 19.8 41.0 17.0 21.0 29.6 51.2 44.2 46.8 62.0 80.2
Dipper 20.2 23.2 34.6 61.6 29.6 32.4 45.8 72.6 54.4 60.0 70.2 89.2

10% token-level attacks, compared to only 45 − 53% for sequential baselines (KGW, Predictive).
Even under aggressive 20% token corruption, Predictive-Bidirectional maintains 83 − 88% TPR
while KGW drops to 26 − 35%. Vulnerability to paraphrasing attacks is a well-known limitation
across LLM watermarking methods (Zhang et al., 2024). Dipper (Krishna et al., 2023) paraphrasing
at 20% diversity reduces Predictive-Bidirectional to 72.6% TPR, while GPT-5-nano paraphrasing
yields only 51.2% TPR for our best approach.

4.4 PARAMETER SENSITIVITY

Practical deployment requires understanding how green list ratio γ and bias strength δ interact to
balance detection reliability with generation quality. We systematically evaluate these parameters
to identify optimal configurations for different use cases. Table 3 reveals critical trade-offs between
detection effectiveness and text quality. Weak watermarking with δ = 1.0 maintains excellent
text quality with PPL below 4.5 but fails to provide reliable detection across all green list ratios.
Moderate strength at δ = 2.0 shows that smaller green lists perform better: γ = 0.25 achieves 96.6%
TPR on C4 while γ = 0.75 drops to just 60.6%. Text quality remains acceptable at this strength
level, with PPL staying below 6.5 across all configurations. Strong watermarking with δ ≥ 5.0
guarantees near-perfect detection but at substantial quality cost—PPL exceeds 20 on ELI5 with
γ = 0.25. Based on these results, we recommend γ = 0.5 with δ = 2.0 for practical deployment,
achieving over 92% detection rates while preserving readable text quality.

5 RELATED WORK

5.1 DLLMS

Diffusion Large Language Models (dLLMs) (Yu et al., 2025) extend the diffusion framework (Ho
et al., 2020; Nichol & Dhariwal, 2021; Song et al., 2020) from traditional image and video genera-
tion (Podell et al., 2023) to natural language. Unlike autoregressive models that decode sequentially,

8
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Table 3: Parameter sensitivity analysis of DMark watermarking system. All experiments use
Predictive-Bidirectional watermarking on LLaDA-8B-Instruct with n = 200 tokens.

γ δ
C4 TPR (%) C4 ELI5 TPR (%) ELI5

@0.5% FPR @1% FPR @5% FPR PPL @0.5% FPR @1% FPR @5% FPR PPL

0.25

1.0 13.4 31.4 61.6 2.89 22.2 37.2 64.2 4.38
2.0 89.8 96.6 98.4 4.04 96.8 98.2 99.8 6.40
5.0 100.0 100.0 100.0 10.90 100.0 100.0 100.0 20.31

10.0 100.0 100.0 100.0 10.56 100.0 100.0 100.0 18.37

0.5

1.0 13.0 27.6 67.4 2.94 30.4 41.8 66.0 4.47
2.0 80.0 92.0 98.4 3.98 97.8 99.2 99.8 6.34
5.0 100.0 100.0 100.0 7.56 100.0 100.0 100.0 15.15

10.0 100.0 100.0 100.0 6.86 100.0 100.0 100.0 13.30

0.75

1.0 7.6 12.2 54.2 2.92 10.6 27.8 50.4 4.29
2.0 41.4 60.6 94.8 3.41 83.0 93.2 98.0 5.05
5.0 98.8 99.6 99.8 4.64 100.0 100.0 100.0 8.46

10.0 100.0 100.0 100.0 5.08 100.0 100.0 100.0 10.27

dLLMs generate text through iterative denoising, where a noisy sequence is progressively recon-
structed. Early studies on discrete diffusion, including D3PM (Austin et al., 2021), RDM (Zheng
et al., 2023), DiffusionBERT (Austin et al., 2021), MD4 (Shi et al., 2024) and MDLM (Sahoo et al.,
2024), explored different objectives, noise schedules, and parameterizations, largely at the billion-
parameter scale. These works established the feasibility of applying diffusion to text and multi-
modal tasks, setting the stage for larger systems. Recent progress has focused on scaling dLLMs,
with models that rival or even outperform autoregressive LLMs while often delivering faster in-
ference. Representative advances include LLaDA (Nie et al., 2025), the first large-scale DLLM,
and DIFFUSION-LLMs (Ye et al., 2023) with multi-stage training. DiffuGPT/DiffuLLaMA (Gong
et al., 2024) adapt pretrained autoregressive models into the diffusion paradigm, and DREAM (Ye
et al., 2025) further underscores DLLMs’ capability in reasoning-intensive tasks. More recent devel-
opments, such as LLaDA 1.5 (Zhu et al., 2025) with variance-reduced preference optimization and
TESS 2 (Tae et al., 2025) with autoregressive initialization and adaptive noise scheduling, continue
to enhance both efficiency and generation quality.

5.2 WATERMARKING FOR LLMS

Most text watermarking for LLMs follows the green/red-list method of Kirchenbauer et al. (2023):
a secret key slightly upweights a “green” subset during sampling, and detection checks for an over-
representation of green tokens. Follow-up work improves the quality–power trade-off with variance
reduction (Hu et al., 2023), adapts the bias to model uncertainty (Liu & Bu, 2024), and provides
finite-sample guarantees (Zhao et al., 2023), while other variants aim to stay hard for third-party
detectors yet verifiable by the key holder (Christ et al., 2024). SynthID-Text (Dathathri et al., 2024)
shows a production deployment at scale with calibrated thresholds and measured quality impact.
Attacks reveal practical limits: reverse engineering can recover keys or green lists (Jovanović et al.,
2024), and scrubbing can remove the signal while preserving utility (Chen et al., 2025).

6 CONCLUSION

We presented DMark, the first watermarking framework tailored for diffusion language models, ad-
dressing the urgent need for dLLM watermarking. By recognizing that dLLMs’ parallel generation
pattern enables bidirectional context exploitation and token predictions, we fundamentally shift wa-
termarking from sequential dependencies to predictive bidirectional forward-backward constraints.
Our Predictive-Bidirectional method achieves 92.0−99.5% detection rates at 1% FPR, substantially
outperforming traditional approaches (49.6 − 71.2%). Meanwhile, our framework shows strong
resilience against common text manipulations. This work not only provides practical tools for wa-
termarking dLLM-generated text but also establishes theoretical foundations for watermarking non-
sequential generative models, paving the way for responsible deployment of next-generation text
synthesis systems.
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ETHICS STATEMENT

This work does not involve human subjects, personal data, or sensitive information. All datasets used
in our experiments (C4 and ELI5) are publicly available benchmark datasets. We strictly adhered to
ethical research practices and did not conduct any data collection that could raise privacy, security,
or fairness concerns. Our work focuses on a new watermarking framework for dLLMs, without
introducing risks of harmful applications. To the best of our knowledge, this research complies with
the ICLR Code of Ethics and poses no foreseeable ethical concerns.

REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our work. Comprehensive imple-
mentation details are reported in Section 4.1 and the detailed algorithm for watermarking is provided
in Section 3 and Appendix A. Upon acceptance, we will release the code of our method to facilitate
replication and further research.
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APPENDIX

A ADDITIONAL ALGORITHMS FOR WATERMARKING

A.1 KGW WATERMARKING FOR AR MODELS

Algorithm 2 KGW Watermarking
Require: Context x<i = (xi−w, . . . , xi−1), secret seed s, green ratio γ, bias δ
Ensure: Watermarked token xi

1: Compute context hash: hi ← h(s,x<i)
2: Partition vocabulary: Gi ← {v ∈ V : p(hi, v) ≤ γ}
3: Get model logits: zi ← Model(x<i)
4: Apply bias: z̃i,v ← zi,v + δ · 1[v ∈ Gi] for all v ∈ V
5: Sample: xi ∼ Softmax(z̃i)
6: return xi

A.2 KGW WATERMARKING FOR DLLMS

Algorithm 3 Direct Adaptation of KGW for dLLMs

Require: Token sequence x(t) at timestep t, position i, secret seed s, green ratio γ, bias strength δ

Ensure: Watermarked token x
(t+1)
i

1: if position i− 1 has been generated then
2: Compute context hash: hi ← h(s, x

(t)
i−1)

3: Partition vocabulary: Gi ← {v ∈ V : p(hi, v) ≤ γ}
4: Get model logits: zi ← Model(x(t), i)
5: Apply watermark bias: z̃i,v ← zi,v + δ · 1[v ∈ Gi] for all v ∈ V
6: Sample token: x(t+1)

i ∼ Softmax(z̃i)
7: else // No adjacent context available, generate without watermark
8: Get model logits: zi ← Model(x(t), i)

9: Sample token: x(t+1)
i ∼ Softmax(zi)

10: return x
(t+1)
i

A.3 PREDICTIVE WATERMARKING

Algorithm 4 Predictive Watermarking for dLLMs

Require: Token sequence x(t) at timestep t, position i, secret seed s, green ratio γ, bias strength δ

Ensure: Watermarked token x
(t−1)
i

1: if position i− 1 has been generated then
2: x̂

(t)
i−1 ← x

(t)
i−1

3: else // Predict token using logits
4: Get logits for position i− 1: zi−1 ← Model(x(t), i− 1)
5: Predict most likely token: x̂i−1 ← argmaxv∈V zi−1,v

6: Partition vocabulary: Gi ← {v ∈ V : p(h(s, x̂i−1), v) ≤ γ}
7: Get model logits for position i: zi ← Model(x(t), i)
8: Apply watermark bias: z̃i,v ← zi,v + δ · 1[v ∈ Gi] for all v ∈ V
9: Sample watermarked token: x(t−1)

i ∼ Softmax(z̃i)
10: return x

(t−1)
i
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A.4 BIDIRECTIONAL WATERMARKING

Algorithm 5 Bidirectional Watermarking for dLLMs

Require: Token sequence x(t) at timestep t, position i, secret key s, green ratio γ, bias strength δ

Ensure: Watermarked token x
(t+1)
i

1: Initialize: Gi ← V , G′i ← V
2: if x(t)

i−1 exists then
3: Gi ← {v ∈ V : p(h(s, x

(t)
i−1), v) ≤ γ}

4: if x(t)
i+1 exists then

5: G′i ← {v ∈ V : p(h(s, v), x
(t)
i+1) ≤ γ}

6: Get model logits: zi ← Model(x(t), i)
7: Apply bias: z̃i,v ← zi,v + δ · 1[v ∈ Gi] + δ · 1[v ∈ G′i] for all v ∈ V
8: Sample: x(t−1)

i ∼ Softmax(z̃i)
9: return x

(t−1)
i

B PARAPHRASING ATTACK SETUP

To evaluate the robustness of our watermarking method against paraphrasing attacks, we employ
state-of-the-art language models, GPT-5-nano, to rewrite watermarked text while preserving seman-
tic content. The following prompt is used for all paraphrasing experiments:

Please paraphrase the following text while preserving its
meaning. Output only the rewritten text, nothing else:

[WATERMARKED TEXT]

Meanwhile, when using Dipper model to paraphrase, we use lexical diversity 20%, order diversity
0%, and sentence interval 3 to simulate the real world paraphrasing scenario.

C WATERMARK GENERATION EXAMPLES

This section presents concrete examples demonstrating DMark’s impact on text generation qual-
ity and watermark detection strength. Table 4 compares outputs from identical prompts with and
without watermarking, illustrating how our method maintains semantic coherence while embedding
detectable signals. The examples span both C4 text continuation and ELI5 question-answering tasks,
showcasing DMark’s effectiveness across different generation contexts.

Each example includes ground truth text for reference, along with z-scores quantifying watermark
strength and perplexity measuring text quality. Non-watermarked texts exhibit near-zero z-scores
as expected, while watermarked versions achieve z-scores between 6.37 and 9.33, well above typi-
cal detection thresholds. Despite this strong watermark signal, perplexity increases modestly from
2.32 − 3.75 to 3.43 − 6.01, confirming that watermarking preserves readable, coherent text while
enabling reliable detection.

D LLM USAGE

In this section, we clarify the role of large language models (LLMs) in preparing this work. The
model was used exclusively for language polishing, such as refining grammar, style, and readability,
without contributing to the research design, analysis, or conclusions.
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Table 4: Examples of watermarked and non-watermarked text generation from DMark. First two
examples come from C4 dataset, and the last two examples come from ELI5 dataset. Contents are
truncated for readability.

Prompt Ground Truth Non-Watermarked Watermarked Non-WM WM
z-score PPL z-score PPL

Students are shouting sev-
eral slogans to guarantee
the school’s autonomy in
front of Jogyesa Temple. On
April 15th, 2016,

the General Student Council
and Student Council of Post-
graduate held the 4.15 Jogye
rally. The rally was also held
in the last year with the same
objectives. [...truncated]

the students of Jogyesa High
School held a protest in front
of Jogyesa Temple in sup-
port of the school’s auton-
omy. The students shouted
several slogans to express
their demands, including
School’s autonomy is our
right and School’s autonomy
is our future. [...truncated]

the students and the teachers
of Jogyesa High School
gathered in front of Jogyesa
Temple to express their
demand for their school to
be independent. They de-
manded that the government
separates their school from
the Jogyesa High School
Management Committee.
[...truncated]

0.00 3.26 9.33 4.08

Locksmith Westington –
Putting in place the best of
locking and keying services
is just one part of the story.
However the challenge lies
in keeping

the locking and keying sys-
tems in good condition at
all points of time. With-
out proper maintenance it
is quite obvious that the
locks and keys would be-
come damaged and replac-
ing the same with new ones
could be a big drain on re-
sources and it would also
take lot of time. [...trun-
cated]

your property safe and se-
cure. That’s why we offer a
range of security services to
ensure your property is pro-
tected at all times. At Lock-
smith Westington, we under-
stand the importance of pro-
tecting your property from
theft and damage. That’s
why we offer a range of
security services to ensure
your property is protected at
all times. [...truncated]

up to date with the latest
trends and technology that
are affecting the world of
locks and keys. At lock-
smith Westington, it has al-
ways been a priority to en-
sure that the locks and keys
we provide are up to the lat-
est standards of quality and
performance. [...truncated]

-2.26 2.32 7.50 3.43

Why does metal react so vi-
olently when microwaved?

The way microwaves
work is through jiggling
charged/polar particles in
your food (the water primar-
ily). This jiggling increases
their temperature and that
heats up the rest of your
food. Thats why you cant
heat oil as easily as you can
water. However, metals like
iron are great conductors of
electrons. [...truncated]

Metal reacts violently when
microwaved because it is an
excellent conductor of heat.
When microwaves are ap-
plied to a food, they cause
the molecules in the food
to vibrate rapidly, generat-
ing heat. However, when
microwaves are applied to
a metal, the metal absorbs
the microwaves and heats up
quickly. The rapid heating
of the metal can cause it to
melt, spark, or even catch
fire. [...truncated]

Metal does not react vi-
olently when microwaved,
but it does absorb heat and
can burn or catch on fire.
When microwaves are emit-
ted by the microwave, they
vibrate and cause molecules
and atoms to vibrate and ab-
sorb energy, increasing heat.
The primary reason why
metal can cause problems
when microwaved is that it is
a good conductor of electric-
ity and heat, which means it
can absorb and transfer heat
quickly. [...truncated]

0.56 3.54 7.07 6.01

Why is it when oil prices go
up gas prices immediately
go up but when oil prices
come down the price of gas
never comes down as fast
as when the price of oil in-
creases?

On TV, when the price of gas
goes up, they say they have
no choice but to sell it higher
in gas stations too. But when
the price goes down, they
say that they had already
bought a lot of gas when
it was higher so they can-
not lower the prices imme-
diately or theyd lose money
on it. There is probably a
good explanation for it but
my guess is that its another
of these Heads I win, Tails,
you lose situation ;)

When oil prices go up,
gas prices immediately go
up because gas prices are
closely tied to oil prices.
Gasoline is typically derived
from crude oil, and the cost
of producing gasoline is di-
rectly related to the cost of
crude oil. When oil prices
rise, the cost of producing
gasoline increases, which in
turn drives up the price of
gasoline. However, when oil
prices come down, the price
of gas never comes down as
fast as when the price of oil
increases. [...truncated]

When oil prices go up, they
are considered to be an
indicator of an improving
economy. This leads to
an increase in demand for
oil. Gasoline, being a ma-
jor component of oil, also
sees increased demand. The
increased demand for gaso-
line causes the price of gas
to rise, creating a direct
correlation between oil and
gas prices. On the other
hand, when oil prices come
down, they are seen as a sign
of an improving economy.
[...truncated]

0.0 3.75 6.37 5.67
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