
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

M3C: A MULTI-DOMAIN MULTI-OBJECTIVE,
MIXED-MODALITY FRAMEWORK FOR COST-
EFFECTIVE, INDUSTRY SCALE RECOMMENDATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The ever-expanding landscape of products, surfaces, policies, and regulations poses
significant challenges for recommendation systems, leading to data fragmentation
and prohibitive hikes in infrastructure costs. To address these challenges, we
propose M3C, a holistic co-design of model, data and efficiency strategies. M3C
(1) partitions the recommendation space to allow better representation learning
and encourage knowledge sharing within a subspace; (2) covers each partition
using a hierarchy of foundational and vertical networks tailored to handle multi-
domain, multi-objective tasks with mixed-modal inputs; (3) forms a unified data
representation that utilizes heterogeneous signals across domains, objectives and
optimization goals to alleviate data fragmentation, label sparsity, and to enhance
knowledge sharing; (4) improves execution efficiency and lowers costs with a suite
of stability and throughput optimizations. We show that across a diverse set of tasks
on public and industry datasets, M3C delivers up to 1% lower LogLoss compared
to 10 state-of-the-art baselines, while improving system efficiency by up to 20%.
Furthermore, in a large-scale industry setting our deployment of M3C has resulted
in 7% top-line metrics improvement in online tests with 10% capacity savings.

1 INTRODUCTION

High quality recommendation plays a vital role in creating a better online experience. To date, most
research in recommendation focuses on improving quality of a single domain-objective pair (Zhang
et al., 2024a; Luo et al., 2024; Wang et al., 2021a; Naumov et al., 2019), with the assumption that
on-boarding better models for a pair in the pipeline translates to better overall metrics.

However, modern recommendation systems are highly complex, with thousands of domains and tasks,
and a typical user request can trigger hundreds of models in the pipeline. This makes the existing
upscaling approach cumbersome: the constant innovations in new products and services require
recommendation systems to quickly adapt to diverse and heterogeneous user behaviors and to cover
new domains and objectives, but given tight inference latency requirements, it becomes unmanageable
to introduce a new model for each domain-objective pair, because each model needs to be separately
trained, optimized, and served. Further, the changing expectation of users on the usage of their
data, the increasing variety of demands from advertisers, as well as rapidly-evolving regulations and
policies from the government (Voigt & Von dem Bussche, 2017) and industry unavoidably limit both
the amount, quality, and granularity of data available for models, resulting in fragmentation, sparsity
and ultimately quality loss for existing frameworks.

To ensure sustainable growth, we must break away from the traditional approach of per domain-
objective pair scaling and redesign our strategy around consolidating model, data sources to facilitate
knowledge sharing and lower infrastructure cost. However, several challenges stand in the way.

Unlike content understanding, where multi-modal foundational models (Ngiam et al., 2011; Bom-
masani et al., 2021) can learn inherent representations from diverse data sources using the next token
prediction task, data in recommendation is inherently sparse, fragmented, dynamic, and incoherent,
making self-supervision unsuitable. Furthermore, the mix of non-sequential (traditional sparse fea-
tures) and sequential data (user history behavior (Chen et al., 2019)) complicates the development of

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Ads Surface Disjoint Subspaces

Fragmented Data Attribution Windows

Consolidated
Dataset

Feature Set

Product Surfaces Ads Formats

Ads Conversion Objectives Policies

Optimized ModelsM3C Networks

M3C Zipper

M3C Filter

M3C Partitioner M3C Sketch

M3C Network
(Teacher)

Knowledge Distillation

M3C Network
(Student)

Nonsequence Inputs

Sequence Inputs

M3C Components

Figure 1: M3C consolidates fragmented data, partitions recommendation surface and construct
MDMO M3C Networks from which efficient user-facing vertical models are distilled and optimized.
a unified model architecture for all recommendation tasks. Even if an all-in-one model were feasible,
its computational costs would likely be prohibitive.

We propose M3C, a novel framework that addresses the challenges in recommendation scalability
through a holistic co-design of model, data, and training system. M3C consists of the following:

M3C Partitioner: partitions the recommendation surface based on domain, task, optimization goal,
and policy regulations, enabling knowledge sharing and better model and objective representations.

M3C Networks: a hierarchy of multi-domain, multi-objective (MDMO) models with a novel
architecture that handles mixed-modal inputs and reduces costs via knowledge distillation.

M3C Zipper and Filter: combine heterogeneous data sources to form a coherent feature set, balance
label freshness and cost, and select the optimal set of features given a M3C Network.

M3C Sketch: an automated tool that leverages scaling laws to optimize hyperparameters and
parallization strategies, improving model latency and throughput without compromising quality.

We evaluate M3C through extensive experiments on real-world recommendation scenarios, using
both public and industry-scale datasets. Our results show that M3C significantly outperforms 10 state-
of-the-art baselines in terms of model quality and hardware efficiency. Furthermore, our deployment
of M3C on a representative set of Ads model types has yielded a 7% increase of top-line metrics in
online A/B tests with and a 10% capacity saving.

2 RELATED WORK AND CHALLENGES

This section provides a review on the recent advancements and unsolved challenges for industry-scale
recommendation in the context of MDMO learning, data strategy and cost efficiency.

2.1 MDMO LEARNING

Status Quo Current state-of-the-art recommendation systems focus on optimizing a narrow set of
objectives (e.g., AUC and LogLoss of CTR) within specific domains (Zhang et al., 2024a; Naumov
et al., 2019; Wang et al., 2021a; Cheng et al., 2020; Mao et al., 2023). This traditional approach
becomes inefficient as the number of domains and objectives grows, and scaling up isolated models
overlooks opportunities for cross-domain knowledge sharing.

Building on top of multi-domain recommendation (Li & Tuzhilin, 2020; Yan et al., 2019; Ma et al.,
2018a; Sheng et al., 2021; Wang et al., 2022a; Yang et al., 2022; Tang et al., 2020) and multi-task
recommendation (Liu et al., 2022; Malhotra et al., 2022; Li et al., 2023; Yang et al., 2023; Wang
et al., 2021b; 2022b), progresses are made on the front of MDMO to mitigate this problem. In
particular, M2M (Zhang et al., 2022b) introduces a meta unit, an attention module and a tower
module to incorporate domain task knowledge, explicit inter-domain/task correlations and specialize
on the task-specific features. M3oE (Zhang et al., 2024b) learns common, cross-domain information,
domain-specific and task-specific information through a mixture of experts, then it leverages a two-
level mechanism to aid feature extraction and fusion across tasks. PEPNet (Chang et al., 2023) uses
embedding and personalized network to fuse features with different importance and to personalize
DNN parameters to balance targets with different sparsity through a novel gating mechanism that
incorporates a per-user prior. M3REC (Lan et al., 2023) proposes a meta-learning solution that uses a

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

meta-item-embedding generator and user preference transformer to unify embedding representation
and a task-specific aggregate gate for MDMO learning.

Challenges However, prior work does not address the following concerns: (1) scalability: its efficacy
on massive, industry-scale recommendation remains uncertain, as most evaluations are limited to a
set of domains and objectives; (2) practicality: using a single model to cover a large domain-objective
pair space is problematic, as competing domains and objectives can lead to subpar performance (He
et al., 2022) or even loss divergence (Tang et al., 2023b); and (3) deployability: consolidating multiple
domains and objectives into a single MDMO model can compromise serving latency.

2.2 DATA STRATEGY

Status Quo Most research on MDMO learning assumes a consolidated dataset available for model
training (Zhang et al., 2022b; Chang et al., 2023), this is usually done by partitioning a dataset and
designating a few features as prediction tasks to simulate an MDMO (Zhang et al., 2024b; Lan et al.,
2023) setting. However, real-world datasets from different domains are fragmented, misaligned,
incoherent, sparse, and mixed-modal.

Challenges The construction of datasets entails more complex operations than joins: (1) data from
multiple products and services, may not have overlapping ID spaces; (2) signals can be gathered
across different attribution windows, making it challenging to consolidate the data into a single,
unified pipeline without incurring significant costs or compromising on stability and freshness; and (3)
the absence of a common self-supervised task and the presense of both sequence and non-sequence
inputs adds to the difficulty of a unified representation1.

2.3 COST EFFICIENCY

Status Quo Recommendation systems have stringent serving budget and freshness requirements,
which entails highly-efficient training and serving. However, recommendation models are notoriously
hard to optimize due to large embedding tables (Lian et al., 2021) and many small irregular-shaped
kernels, resulting in poor efficiency on modern hardware whose scaling prioritizes compute over
network and memory bandwidth (Luo et al., 2018)

Existing work tackles the efficiency problem from multiple fronts. From the angle of creating
efficient, scalable architectures, Wukong (Zhang et al., 2024a) adopts compressed dot products and
efficient linear compression schemes as its core interaction mechanism; AutoInt (Song et al., 2019)
employs the heavily optimized transformer architecture; Mamba4Rec (Liu et al., 2024) uses state-
space (Hamilton, 1994) to model historical user behaviors with linear time complexity. Orthogonally,
adapting model architecture to datacenter topology proved useful. DMT (Luo et al., 2024) improves
distributed embedding lookup performance by adopting multi-rail AlltoAll communication and
tower-compressed embeddings to support extra-large embedding tables; NeuroShard (Zha et al.,
2023) optimizes for better load-balanced sharding of embedding tables across accelerators to achieve
better performance; DHEN (Zhang et al., 2022a) proposes a hybrid sharding strategy to leverage fast
NVLink connection in a single host for efficient parameter synchronization. Conversely, adaptation
of hardware to recommendation workloads is no longer uncommon (Tal et al., 2024).

On the other hand, training instability due to natural distribution shifts, data corruption (noisy data),
and multi-modal learning across a diverse set of tasks also affects cost efficiency. To that end,
methods including gradient clipping (Pascanu et al., 2013; Tang et al., 2023b; Wei et al., 2023;
Brock et al., 2021; Seetharaman et al., 2020; Menon et al., 2019; Zhang et al., 2019), better feature
interaction (Adnan et al., 2023), and more effective normalization techniques (Ba et al., 2016;
Santurkar et al., 2018) are proposed.

Challenges Despite these advances, improving model efficiency remains a challenge due to the time-
consuming optimization-validation cycle even with MDMO learning, as each model still requires
independent tuning. Therefore, there is a strong need for automated tooling that can efficiently reason
about quality and efficiency tradeoffs.

1Although orthogonal approaches in generative recommendation via user history modeling (e.g., (Zhai et al.,
2024; Sun et al., 2019)) are helping to mitigate this challenge, widespread industrial adoption of this paradigm is
likely to take time.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Sparse Inputs Dense Inputs Sequence Inputs

+ Residual and Mixing Network Dense Network Embedding Layer Event Model

+

WUKONG / DHEN FUSION BLOCK

To
w

er
 A

rc
h

B
ac

kb
on

e
A

rc
h

Tower 1 Tower 2 Tower N
…

LA
Y

ER
 1

LA
Y

ER
 N

…

Extended Context Storage

WUKONG / DHEN Fusion Block

Transformer Block

P
re

pr
oc

es
so

r

Multi-Head
Attention

Sequence Inputs

M3C NETWORK

RoPE Embedding

+

Untied
FFN

QK Norm

+

TRANSFORMER BLOCK

Prediction

Sequential
Embedding

+

Dense
Embedding

Sparse
Embedding

WUKONG

…

LA
YE

R
N

+

Other
Interaction

Norm

DHEN
Module

LA
YE

R
1

FMB LCB

+

+

+

Untied
FFN

Untied
FFN

…

LA
YE

R
N

LA
YE

R
1

Figure 2: Model architecture of M3C Networks.

3 M3C

This section details how M3C systematically tackles the challenges outlined in §2 through a compre-
hensive co-design of model strategy, data foundation, and cost efficiency optimizations.

3.1 MODEL STRATEGY

M3C approaches MDMO by first organizing the domain-objective space into a manageable number
of partitions with similar optimization goals to improve representation learning of underlying patterns,
then by constructing a hierarchy of a foundational and a vertical M3C Networks for each partition.

3.1.1 IMPROVING REPRESENTATION VIA M3C PARTITIONER

Squashing all domains and objective into a single model space with poorly designed objective function
leads to training instability (Tang et al., 2023a) and subpar performance (He et al., 2022).

Model Space Representation To create a better model space representation for MDMO training,
M3C Partitioner divides user engagement data into partitions by following these steps:

• First, it partitions domain-objective pairs by the surfaces (e.g., products) they belong. Different
surfaces can have distinct data characteristics, which can result in different ID spaces that do not
overlap significantly. Such subspaces are less likely to benefit from consolidation, as there is limited
knowledge to share between them. For example, it may not be useful to group surfaces that target
different age groups together, as they can differ significantly in terms of audience and item pool.

• Next, it groups domains and tasks based on their optimization goals. This considers two key factors:
signal staleness and signal density. Signal staleness refers to the time-sensitive nature of certain
tasks, such as modeling users’ real-time preferences (e.g., click, like, follow). Signal density, on the
other hand, refers to the frequency of different events. For example, liking, clicking, and following
happen more often than purchasing.

• Finally, policy requirements are taken into account to ensure compliance.

M3C Partitioner then allocates the global budget (e.g., FLOPs and storage) for each partition based
on estimated revenue growth potential or expected cost reduction.

Auxiliary Loss Representation When domains are merged together, we can merge similar objectives
across domains. To ensure the new label mixture correlate well with the original objective, we
incorporate an auxiliary loss during training: Loss(X,Y) = 1 − Cov(X,Y)

σXσY
, where X,Y are the

original labels and prediction labels respectively, Cov is the covariance and σ is the standard deviation.
To ensure the primary task is properly trained with the added auxiliary tasks (Ma et al., 2018b),
M3C needs to carefully balance its losses because some tasks can produce gradients of different
magnitudes. To address this, we adopt MetaBalance (He et al., 2022) to regulates the gradient scale
between the primary and auxiliary tasks.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.1.2 MDMO LEARNING VIA M3C NETWORKS

M3C Networks are MDMO models that cover one domain-objective partition. They take in three
modalities as inputs: traditional categorical inputs (Fc), dense inputs (Fd), and sequence inputs (Fs,
e.g., user history of past interactions) in a batch B then output one prediction for each task. To
unify M3C Network’s model architecture and to boost MDMO learning across a wide range of input
types, M3C Networks adopt a preprocessor-base-tower architecture (Figure 2) to first find common
representations for inputs, then perform cross domain interaction, followed by task specialization.

Feature Processors serve two purposes: they convert the inputs into dense representations for the
backbone, and they unify the representation and project the embeddings into a compatible space so
the backbone can efficiently mix and interact across modality. Precisely:

• Fc are processed through embedding tables, with the output Oc in the shape of (B, |Fc|, d).
• Fd are processed by a dense network, which outputs embeddings Od of shape (B, |Fd|, d).
• Sequence inputs are created by lightweight event models, which collects sequential items recorded

by different surfaces, align/reorders the events, and derives embeddings for the sequence. The
event model outputs a sequence embedding Os of shape (B, |Fs| ×K, d), where K is the number
of recent events to retrieve from each event source (e.g., Ads clicks, post views).

• Optionally, organic sequence data such as texts and image patches are either used as a dense
embedding produced by pretrained encoders, or as discretized token-based inputs (Team, 2024).

Now, Oc, Od, and Os share the same format and they are fed into a mixing network, which con-
catenates Oc and Od to form Ocd as a unified nonsequence data and applies nonlinearities and
normalization to it, while leaving sequence data Os intact, because sequence/non-sequence data are
best processed by different modules in the backbone network.

Backbone M3C Network Backbones are built with efficient dense scaling (Zhang et al., 2024a; Shin
et al., 2023; Zhang et al., 2023) in mind to better tap into modern hardware with superior compute than
memory and network capabilities (Luo et al., 2018; 2020). To that end, M3C Networks utilize three
components: a supporting structure called extended context storage (ECS), a transformer (Vaswani
et al., 2017) block, and a DHEN (Zhang et al., 2022a)/Wukong (Zhang et al., 2024a) fusion block
(DWFB). These blocks enable interleaved learning approach for Ocd and Os, which proves highly
effective for learning combined sequence and nonsequence data.

The ECS is a key-value store accessible globally to simplify implementation of advanced residual
connections (Huang et al., 2017) and to allow use of intermediate results in later layers. ECS also
provides a means to track statistics across a wide range of metrics for debugging purposes.

The transformer block has the standard architecture proposed by (Vaswani et al., 2017) for sequence
learning. Each transformer block corresponds to a stack of transformer layers, with RoPE embed-
ded (Su et al., 2024) input sequence Os, and a contextualized sequence O′

s as output. The current
setup of transformer blocks can be viewed as a form of early fusion (Team, 2024), where different user
history types are merged into a single event sequence at the event model. However, recent evidence
suggests that untying modality can be beneficial (Lin et al., 2024; Zhou et al., 2024). Inspired by
these, FFN layer in M3C Network’s transformer block can be conditioned on the input to better
capture the inherently different underlying patterns. For example, click event sequence and post view
sequence do not need to share the same FFN weights. To mitigate training instability issue arising
from competing modalities, we apply QK-norm (Henry et al., 2020) before attention.

DWFB is introduced to address deficiency of transformers in processing non-sequence data due to
the lack of bit-wise interaction (Wang et al., 2021a; Zhang et al., 2024a) for Ocd. DWFB flattens
O′

s , which can be viewed as user-side features, then it concatenates them with Ocd as an input
and produces a new version of O′

cd as the output. DWFB captures feature interactions in Ocd

in a hierarchical manner. Horizontally, each of the fusion block adopts an intra-layer interaction
ensemble of Factorization Machine Block (FMB), Linear Compression Blocks (LCB), and MLPs
used in (Zhang et al., 2024a), ensuring each DWFB layer captures both bit-wise and feature-wise
interactions. Vertically, DWFB stacks L interaction layers, and each DWFB captures up to 2L−1

degrees of interaction (Zhang et al., 2024a).

Tower Modules Task-specific adaptation in M3C Networks is achieved through tower modules, one
for each prediction objective. Tower modules are usually lightweight MLP layers that project the
common embeddings learned from the backbone into the task space.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Clicks

Attribution Window 0

𝟎𝒘𝟎 𝟏𝒘𝟎 𝟐𝒘𝟎 𝟏𝒘𝟎

𝒉

Attribution Window 2

𝟎𝒘𝟐 𝟏𝒘𝟐 𝟐𝒘𝟐 𝟏𝒘𝟐

a click event with attribution window id wi and hash value v.𝒗𝒘𝒊

𝒉 𝑣,𝑤! = 𝑣	%	3 + 𝑤! 	%	3
a converted/unconverted/undecided click event.

i dataset i

Attribution Window 1

𝟎𝒘𝟏 𝟏𝒘𝟏 𝟐𝒘𝟏 𝟏𝒘𝟏

Bucket 0

𝟎𝒘𝟎 𝟐𝒘𝟏
𝟏𝒘𝟐 𝟏𝒘𝟐 P

Primary

𝟏𝒘𝟎 𝟏𝒘𝟎
𝟎𝒘𝟏 𝟐𝒘𝟐
Bucket 1

S

Secondary

Bucket 2

𝟐𝒘𝟎𝟏𝒘𝟏
𝟏𝒘𝟏 𝟎𝒘𝟐

S

Secondary

Figure 3: Illustration of M3C Zipper with K = 3 for
4 CVR events across 3 attribution windows.

Denser color represents more recent explorations
Different colors represent different runs

Figure 4: M3C Sketch improves model
throughput by 20% on 128 A100 GPUs.

3.2 DATA FOUNDATION

Training MDMO M3C Networks requires a coherent feature set to be built from fragmented data
sources. This section introduces methods to create such datasets and select optimal features.

3.2.1 CONSOLIDATING DATASOURCES VIA M3C ZIPPER

With similar domains and objectives grouped by M3C Partitioner, we still need to cater to customer’s
specific needs in terms of different attribution windows. Thus, there presents a unique challenge in
balancing between data freshness and label completeness: when attribution window is smaller, the
data is fresher, but labels may be incomplete; in contrast, when a window is large, more labels are
available but they can be stale. An example of this is a CVR event: the advertiser may only let us
know whether the customer made a purchase after the attribution window.

However, with K attribution windows (wi, i ∈ [1,K]), each action e generates K pairs of events,
each corresponding to a label of li ∈ {0, 1}, i ∈ [1,K] within a window, we cannot simply include
all attribution windows in a dataset because it inflates training cost by K×. Since most events only
have a binary label, including multiple pairs for the same event brings no new information while
resulting in significant overfitting (Zhang et al., 2022c) or training stability issues (Zhou et al., 2018),
because (e, 0) or (e, 1) will appear multiple times across windows. Therefore, we require that (1)
each event must appear exactly once in the dataset, with the label associated with one of its attribution
windows; (2) the training set size should not increase; and (3) the dataset construction is efficient.

We give (e, li) a 1
K chance of being selected, with a sequence of (e, li) in the order of attribution

window w1...wK , then the probability of (e, wi) being chosen is
∏i

j=1(1−
1
K)j−1 1

K . Unfortunately,
implementing this naively requires us to sequentially process each (e, li) which is too slow.

We propose M3C Zipper, an optimized algorithm to create such a dataset in parallel. M3C Zipper
first assigns each (e, li) to the i-th worker, then it extracts a set of features Fe that uniquely identifies
e. Next, M3C Zipper introduces the same hash function h(Fe)→ Z across workers, which computes
the bucket ID that the pair (e, li) belongs to as (h(Fe) mod K + i) mod K.

M3C Zipper then picks bucket 0 as the dataset. To see how M3C Zipper implementation satisfies
the three requirements, first notice that h(Fe) is a constant w.r.t e, and with any i, j ∈ [1,K] we
have i ̸= k → i mod K ̸= j mod K, thus no two attribution of the same event will be assigned to
the same bucket; since each event appears K times across K windows and there are same number
of buckets as attribution windows, each bucket has exactly |e| items; further, each worker operates
independently on each (e, wi), we can parallel the construction without any synchronization.

It’s worth noting that Fe includes a timestamp, which is a good source for randomness, thus M3C
Zipper introduces no bias towards an attribution window for an event. Unlike previous methods for
multi-attribution consolidation that primarily focused on continuous training with negative samples
(Ktena et al., 2019; Wang et al., 2020) or label correction with reweighing (Chen et al., 2022), M3C
Zipper does not require multi-pass training, further boosting efficiency.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.2.2 PARETO-OPTIMAL FEATURE SELECTION VIA M3C FILTER

The dataset constructed by M3C Zipper can contain tens of thousands of features.

However, not all features are required in a subspace created by M3C Partitioner. Given a cost
budget and a M3C Network, M3C picks Pareto-optimal features (Mishan, 1967) via M3C Filter.
Pareto optimality is a condition in MDMO where no further improvement on one objective can
be made without hurting the other objectives. To illustrate how M3C Filter works, we first define
feature importance score vector for the i-th feature (in the feature set F) for N tasks as Fi =
(fi,1, . . . , fi,N), for i ∈ [1, |F|]. Each of the fi,j represents the importance score in j−th task
(j ∈ [1, N]) computed with the permutation importance algorithm (Breiman, 2001). We then define
a partial order relationship among all Fis, called dominated by (D,≼) as follows: Fi ≼ Fk ⇐⇒
∀j ∈ [1, N], fi,j ≤ fk,j .

Now, given a feature set F and target feature count T (a few thousands), M3C Filter iteratively finds
undominated features on the current pareto frontier of the remaining feature set. In each iteration, up
to T of such features are selected and removed from F . The algorithm returns when F is empty or
the target feature count T is reached. Appendix A.1 provides the outline of the algorithm.

M3C Filter can work with heterogeneous tasks thanks to its “unitless” property. Additional feature
selection criteria such as cost, coverage, and freshness can be incorporated easily, supporting the joint
optimization over MDMO learning and providing rich, compact, and generalizable feature sets.

Previous schemes that directly compute feature importance scores (e.g., using Shapley-Value (Roth,
1988)) then picking top-K features that result lowest loss value (Ma et al., 2018b; Xi et al., 2021;
Yasuda et al., 2022) are no longer optimal. Since the loss term is now a combination of losses from
different domains and objectives, simply using the global loss value as the surrogate for feature
selection unavoidably misses out the opportunity to leverage knowledge sharing across tasks and
leads to over-exploiting tasks that are easier to optimize.

3.3 EFFICIENCY OPTIMIZATIONS

This section details how M3C improves cost-efficiency of M3C Networks.

3.3.1 STABILIZING M3C NETWORK TRAINING

Instability issues in MDMO training can arise from various aspects. For example, on mixed-modal
datasets contention among different modalities cause each modality to increase its norm (Team, 2024).
To address this, we apply aggressive normalization techniques including QK-norm and layernorm in
the mixing network when the inputs are from different interaction modules. Additionally, we apply
adaptive gradient clipping (Tang et al., 2023a) for dense parameters to further stabilize training.

3.3.2 IMPROVING EXECUTION EFFICIENCY VIA M3C SKETCH

M3C Networks are trained via hybrid parallelism (Mudigere et al., 2021) on a GPU cluster, where
the embedding tables are sharded across different devices via TorchRec (Ivchenko et al., 2022), and
dense parameters are synchronized by Fully Sharded Data Parallel (FSDP) (Zhao et al., 2023).

To further improve model execution efficiency without affecting quality, we propose a search frame-
work, called M3C Sketch, that unifies the search for optimal model hyperparameter and parallelization
strategies given cost budgets without hurting model accuracy.

Search Space The M3C Sketch search space is defined by a model template with undecided hyperpa-
rameters, parallelization strategies, and their associated choices or ranges.

Objectives Quality-related signals are slow to obtain. To accelerate the search process, M3C Sketch
leverages established scaling laws (Shin et al., 2023) of Wukong and Transformers to approximate
model quality. In particular, given a FLOPs budget f , Wukong’s logloss improves linearly to
f0.00071 (Zhang et al., 2024a), and Transformer’s logloss scales linearly to f−0.05 (Kaplan et al.,
2020). In Wukong, we simultaneously scale output embedding count in its LCB, FMB and dot
interaction compression factor to hold the law; in transformer, Narang et al. (2021) has shown that
basic modifications to the architecture do not result in significant quality changes. Thus, M3C Sketch

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0.22 0.21

0.520.49 0.42

0.91

0.50 0.42

0.86

0.51 0.46

1.07

0.54 0.48

1.05

0.75 0.66

1.39

0.78 0.70

1.48

AutoInt MaskNet DLRM FinalMLP DCN Wukong This work

CTR CVR Window 1 CVR Window 2

Figure 5: Relative LogLoss Improvement (%) over AFN on an industry-scale dataset.

formulates the objective by incorporating throughput and quality proxy using scaling laws to find
optimal configurations. Appendix A.2.1 provides details.

Constraints To simplify search, M3C Sketch encodes constraints in the objectives. For unsatisfied
constraints, a reward of negative infinity is used. M3C Sketch constraints can include FLOPs input
and hyperparameter dependency.

Search Strategy M3C Sketch uses an alternating solving strategy to approximate the optimal solution
while significantly reducing search time via beam search of width K. M3C Sketch first fixes
parallelization strategies by randomly samples S configurations while searching for the best model
hyperparameters. The top K found best model hyperparameters are then selected for the next round,
which become the fixed parameters while parallelism strategy is mutated. This process repeats until
either search quota is depleted or the results no longer improve.

M3C Sketch uses parallel Bayesian optimizers (Snoek et al., 2012) that periodically merges the
search trajectories during the search steps. To further guide the search process, M3C Sketch adopts
the performance model used in Srifty Luo et al. (2022) and uses a dynamic programming algorithm
(Appendix A.2.2) for bootstrapping.

4 EVALUATION

We demonstrate the effectiveness of M3C then ablate contribution of each component. We include
detailed setups for each experiment in the Appendix section to improve reproducibility.

4.1 EVALUATION SETUP

We evaluate M3C on one public and two internal datasets and compare with 10 state-of-the-art base-
lines including AFN+ (Cheng et al., 2020), AutoInt+ (Song et al., 2019), DLRM (Naumov et al., 2019),
DCNv2 (Wang et al., 2021a), FinalMLP (Mao et al., 2023), MaskNet (Wang et al., 2021c), xDeepFM
(Lian et al., 2018), BST (Chen et al., 2019), APG (Yan et al., 2022) and Wukong (Zhang et al., 2024a).
The public dataset is an representative competition dataset released by Kuaishou (Kuaishou) as used
in (Zhang et al., 2024a; Li et al., 2019; Zhu et al., 2023). The two internal datasets are with and
without sequence data, with 3K and 1K features respectively to assess multi-modality performance.
We report AUC and LogLoss for public dataset and LogLoss improvement for internal datasets over
a baseline as quality metrics. To ensure fair comparison, we turn off distillation for all models. See
Appendix A.3.1 for detailed experimental setup.

4.2 MODEL PERFORMANCE GAINS

Open Source Dataset: KuaiVideo We evaluate baselines and M3C Networks on the KuaiVideo
dataset for MDMO performance, predicting the labels for like, follow, and click. We report final test
performance in Table 1. We highlight best and second-performing models using bolds and underlines.
Our expert-tuned M3C Network matches or outperforms baseline performance in AUC and LogLoss
with comparable complexity. See Appendix A.4.1 for model details.

Industry-Scale Dataset: Uni-modality We scale up selected models to 30-40 GFlops (about 1000×
compared to those used in the KuaiVideo) and evaluate them on our industry-scale dataset with 100B
data. We focus on three tasks: one CTR task and two CVR tasks across two attribution windows.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Model AUC LogLoss Complexity
Click Follow Like AVG Click Follow Like AVG MFLOPs MParams

AFN+ 0.7172 0.7703 0.8466 0.7780 0.4572 0.0074 0.8466 0.1604 10.96 79.60
AutoInt+ 0.7181 0.7882 0.8725 0.7929 0.4607 0.0075 0.0156 0.1617 79.27 41.75
DLRM 0.7088 0.6743 0.7734 0.7188 0.4874 0.0081 0.0175 0.1710 1.996 39.24
DCNv2 0.7225 0.7954 0.8804 0.7995 0.4534 0.0073 0.0152 0.1586 9.159 40.44

FinalMLP 0.7176 0.7627 0.8624 0.7809 0.4690 0.0080 0.0163 0.1645 12.22 571.4
MaskNet 0.7133 0.7143 0.8599 0.7625 0.4650 0.0077 0.0156 0.1627 4.299 39.63
xDeepFM 0.7189 0.7704 0.8706 0.7866 0.4642 0.0079 0.0156 0.1626 6.810 51.60

APG (DeepFM) 0.7066 0.7464 0.8515 0.7682 0.4915 0.0080 0.0166 0.1720 11.74 52.40
BST 0.7217 0.7664 0.8707 0.7863 0.4512 0.0076 0.0153 0.1581 326.1 40.63

Wukong 0.7251 0.7947 0.8842 0.8014 0.4580 0.0075 0.0155 0.1603 22.62 42.59
M3C Network (*) 0.7281 0.7997 0.8793 0.8024 0.4513 0.0073 0.0154 0.1580 25.54 43.08
M3C Network (+) 0.7249 0.7984 0.8861 0.8031 0.4529 0.0073 0.0151 0.1584 1.575 39.17

Table 1: Test performance on KuaiVideo across 3 tasks. M3C models are tuned to maximize AVG
AUC on the validation dataset with 3 tasks. *: tuned by expert; +: autotuned by M3C Sketch.

The result is summarized in Figure 5. Evidently, M3C Networks continue to significantly outperform
other state-of-the-arts. Appendix A.4.3 provides details on these models.

Figure 6: Relative LogLoss Improvement
(%) of M3C Network over Wukong on an
industry-scale, mixed-modal dataset.

Figure 7: Relative LogLoss Improvement
(%) of M3C Zipper across various dates in a
month, compared to an ideal upperbound.

Industry-Scale Dataset: Mixed-modality With a mixed-modal dataset (50B samples), we focus
on comparing M3C Network with scaled-up Wukong. We use the same event models in M3C
Network to construct sequence digests, and feed these as user-side features into Wukong so it
can reason about sequences. We evaluate both M3C Network and Wukong on 10 tasks spanning
CTR, CVR, lead generation, quality, and engagement. We summarize the outcome in Figure 6.
While M3C architecture incorporates Wukong as its interaction block, it significantly outperforms
Wukong in every category with comparable complexity, signaling the effectiveness of interleaved
sequence/nonsequence learning. See Appendix A.4.4 for details on the model specifications.

4.3 DATA STRATEGY EFFECTIVENESS

M3C Zipper We evaluate M3C Zipper on a CVR-focused model with 90-min/1-day (short/long)
attribution window separately, on a Wukong-based model (See Appendix A.4.5 for specs). We
estimate the limit of improvement by modeling an ideal case where all labels are available immediately
as “Upperbound”. For all experiments, we use 1:12 sampling ratio for short/long join window pipeline.
We evaluate the model on different date ranges under daily incremental recurring training to provide
long-term signal. Figure 7 shows the consistent improvements of M3C Zipper across multiple
evaluation dates in a month. Since existing approaches for delayed feedback modeling (Wang et al.,
2020; Chen et al., 2022) cause severe training diverge or loss regression, we exclude them from
comparison.

M3C Filter We implement M3C Filter on top of pre-generated per-task feature importance result to
get about 2K candidates out of 12K features. We use default weighted loss feature selection logic as
the baseline and evaluate the relative LogLoss improvements on the same dataset using 10 models
spanning 4 optimization targets. We summarize the metric wins and generalizability of M3C Filter in
Table 2. Appendix A.4.6 provides a description for the setups.

2We observe only minor improvements by further tuning this ratio.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

CTR CVR CTR+CVR Consolidation CTR+Quality Consolidation
Relative LogLoss Improvement (%) 0.2 ∼ 0.5 0.12∼0.17 0.1 ∼ 0.5 0.06

Table 2: M3C Filter evaluation on CTR/CVR Tasks

4.4 COST EFFICIENCY IMPROVEMENTS

M3C Sketch on KuaiVideo for Quality Improvements We setup a search space for M3C Sketch of
4 trillion choices and apply it to M3C Network on the KuaiVideo dataset. We set the objective to
maximize OVM = max(AUC

f0.003) on the validation set. We use 8 parallel M3C Sketch solvers with a
budget of 1200 steps. We pick the best configuration and present results in Table 1. The resulting
model achieves state-of-the-art results in 4 out of 8 metrics, outperforming the expert tunings with
17× fewer FLOPs. Appendix A.4.2 provides details.

M3C Sketch for Throughput Improvements Finally, we evaluate M3C Sketch on an 8-layer M3C
Network with the objective to maximize throughput by simultaneously adjusting the batch size and
FSDP parallelization strategy for each DWFB on 128 Nvidia A100 GPUs. The search space is around
300B. We summarize the exploration trajectory of M3C Sketch in Figure 4. While batch size has
larger implication on the throughput than tuning sharding strategies alone, combining both in the
search space leads to the most significant gain: M3C Sketch finds the best hyperparameters that
improves throughput by 20% compared to the best expert-tuned baseline, and by 10% when tuning
paralleization strategies only. Appendix A.4.7 details the search space and model specifications.

5 INDUSTRY-SCALE DEPLOYMENT AND SUSTAINABILITY IMPACT

As recommendation model sizes increasing by 20× in recent years in real world deployments (Wu
et al., 2022; Zhai et al., 2024), surging demand has made it the single largest AI application in terms
of infrastructure demand in the datacenters of major Internet companies (Mudigere et al., 2021;
Park et al., 2018). To reduce energy footprint and improve serving quality, we deployed M3C on a
representative set of Ads model types in a large-scale industry setting.

Model Space and Data Source Consolidation M3C is applied to a representative set of domain-
objective pairs formed with thousands of domains and tens of objectives from our own services and
advertiser goals into a very small set of M3C groups via M3C Partitioner, supported by unified data
sources constructed by M3C Zipper and M3C Filter. This drastically reduced the amount of models
required from hundreds to a small, manageable number, thereby significantly reducing the compute
demand to support the entire space without losing quality.

Reducing Model Footprint via Knowledge Distillation To meet stringent serving latency require-
ments, M3C constructs a hierarchy of teacher and lighter-weight, user-facing student M3C Networks
to transfer knowledge from teacher to student via label-based distillation(Hinton et al., 2015). Distil-
lation converts the serving latency problem into a bandwidth problem: the teacher throughput only
needs to match the data volume during the refresh interval of a student in online training, which can be
satisfied by adjusting the training scale. Label based distillation requires minimal storage overheads,
however, M3C Networks use more aggressive distillation via feature-based distillation (Romero et al.,
2014; Heo et al., 2019) for critical tasks to improve distillation effectiveness at a higher storage cost.

Results M3C has delivered a 7% top-line metric gain in online A/B tests and 10% capacity savings
at the same time. We anticipate greater benefits as we continue to roll out M3C to fully unleash its
power to accelerate technology incubation, enable faster product growth, offer agility in shifting
market landscapes, deliver improved user satisfaction, all with a greener approach.

6 CONCLUSION

M3C co-designs novel network, data and efficiency strategies to consolidate recommendation surface,
model space and data sources to attain state-of-the-art MDMO quality gains as well as cost and
resource reductions. In particular, the evaluation on public KuaiVideo as well as industry uni- and
mixed-modality datasets has shown that M3C delivers up to 1% lower LogLoss while improving
system efficiency by up to 20%. Furthermore, our deployment of M3C in a large-scale industrial
environment has resulted in improvement of top-line metrics by 7% with 10% capacity savings.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Muhammad Adnan, Yassaman Ebrahimzadeh Maboud, Divya Mahajan, and Prashant J. Nair. Ad-rec:
Advanced feature interactions to address covariate-shifts in recommendation networks, 2023.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportuni-
ties and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

Andy Brock, Soham De, Samuel L Smith, and Karen Simonyan. High-performance large-scale
image recognition without normalization. In International Conference on Machine Learning, pp.
1059–1071. PMLR, 2021.

Jianxin Chang, Chenbin Zhang, Yiqun Hui, Dewei Leng, Yanan Niu, Yang Song, and Kun Gai.
Pepnet: Parameter and embedding personalized network for infusing with personalized prior
information. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, KDD ’23, pp. 3795–3804, New York, NY, USA, 2023. Association for Computing
Machinery. ISBN 9798400701030. doi: 10.1145/3580305.3599884. URL https://doi.org/
10.1145/3580305.3599884.

Qiwei Chen, Huan Zhao, Wei Li, Pipei Huang, and Wenwu Ou. Behavior sequence transformer
for e-commerce recommendation in alibaba, 2019. URL https://arxiv.org/abs/1905.
06874.

Yu Chen, Jiaqi Jin, Hui Zhao, Pengjie Wang, Guojun Liu, Jian Xu, and Bo Zheng. Asymptotically
unbiased estimation for delayed feedback modeling via label correction. In Proceedings of the
ACM Web Conference 2022, pp. 369–379, 2022.

Weiyu Cheng, Yanyan Shen, and Linpeng Huang. Adaptive factorization network: Learning adaptive-
order feature interactions. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pp. 3609–3616, 2020.

James D Hamilton. State-space models. Handbook of econometrics, 4:3039–3080, 1994.

Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yanxin Shi, Antoine Atallah, Ralf
Herbrich, Stuart Bowers, and Joaquin Quiñonero Candela. Practical lessons from predicting clicks
on ads at facebook. In Proceedings of the Eighth International Workshop on Data Mining for
Online Advertising, ADKDD’14, pp. 1–9, New York, NY, USA, 2014. Association for Computing
Machinery. ISBN 9781450329996. doi: 10.1145/2648584.2648589. URL https://doi.org/
10.1145/2648584.2648589.

Yun He, Xue Feng, Cheng Cheng, Geng Ji, Yunsong Guo, and James Caverlee. Metabalance:
improving multi-task recommendations via adapting gradient magnitudes of auxiliary tasks. In
Proceedings of the ACM Web Conference 2022, pp. 2205–2215, 2022.

Alex Henry, Prudhvi Raj Dachapally, Shubham Pawar, and Yuxuan Chen. Query-key normalization
for transformers, 2020. URL https://arxiv.org/abs/2010.04245.

Byeongho Heo, Jeesoo Kim, Sangdoo Yun, Hyojin Park, Nojun Kwak, and Jin Young Choi. A
comprehensive overhaul of feature distillation. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 1921–1930, 2019.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. Densely connected
convolutional networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 2261–2269, 2017. doi: 10.1109/CVPR.2017.243.

11

https://doi.org/10.1145/3580305.3599884
https://doi.org/10.1145/3580305.3599884
https://arxiv.org/abs/1905.06874
https://arxiv.org/abs/1905.06874
https://doi.org/10.1145/2648584.2648589
https://doi.org/10.1145/2648584.2648589
https://arxiv.org/abs/2010.04245

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Dmytro Ivchenko, Dennis Van Der Staay, Colin Taylor, Xing Liu, Will Feng, Rahul Kindi, Anirudh
Sudarshan, and Shahin Sefati. Torchrec: a pytorch domain library for recommendation systems. In
Proceedings of the 16th ACM Conference on Recommender Systems, pp. 482–483, 2022.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Sofia Ira Ktena, Alykhan Tejani, Lucas Theis, Pranay Kumar Myana, Deepak Dilipkumar, Ferenc
Huszár, Steven Yoo, and Wenzhe Shi. Addressing delayed feedback for continuous training with
neural networks in ctr prediction. In Proceedings of the 13th ACM conference on recommender
systems, pp. 187–195, 2019.

Kuaishou. URL https://www.kuaishou.com/activity/uimc.

Zerong Lan, Yingyi Zhang, and Xianneng Li. M3rec: A meta-based multi-scenario multi-task
recommendation framework. In Proceedings of the 17th ACM Conference on Recommender
Systems, RecSys ’23, pp. 771–776, New York, NY, USA, 2023. Association for Computing
Machinery. ISBN 9798400702419. doi: 10.1145/3604915.3608828. URL https://doi.org/
10.1145/3604915.3608828.

Danwei Li, Zhengyu Zhang, Siyang Yuan, Mingze Gao, Weilin Zhang, Chaofei Yang, Xi Liu, and
Jiyan Yang. Adatt: Adaptive task-to-task fusion network for multitask learning in recommendations.
In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pp. 4370–4379, 2023.

Pan Li and Alexander Tuzhilin. Ddtcdr: Deep dual transfer cross domain recommendation. In
Proceedings of the 13th International Conference on Web Search and Data Mining, pp. 331–339,
2020.

Yongqi Li, Meng Liu, Jianhua Yin, Chaoran Cui, Xin-Shun Xu, and Liqiang Nie. Routing micro-
videos via a temporal graph-guided recommendation system. In Proceedings of the 27th ACM
International Conference on Multimedia, MM ’19, pp. 1464–1472, New York, NY, USA, 2019.
Association for Computing Machinery. ISBN 9781450368896. doi: 10.1145/3343031.3350950.
URL https://doi.org/10.1145/3343031.3350950.

Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and Guangzhong Sun.
xdeepfm: Combining explicit and implicit feature interactions for recommender systems. In
Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data
mining, pp. 1754–1763, 2018.

Xiangru Lian, Binhang Yuan, Xuefeng Zhu, Yulong Wang, Yongjun He, Honghuan Wu, Lei Sun,
Haodong Lyu, Chengjun Liu, Xing Dong, Yiqiao Liao, Mingnan Luo, Congfei Zhang, Jingru Xie,
Haonan Li, Lei Chen, Renjie Huang, Jianying Lin, Chengchun Shu, Xuezhong Qiu, Zhishan Liu,
Dongying Kong, Lei Yuan, Hai Yu, Sen Yang, Ce Zhang, and Ji Liu. Persia: An open, hybrid
system scaling deep learning-based recommenders up to 100 trillion parameters. November 2021.

Xi Victoria Lin, Akshat Shrivastava, Liang Luo, Srinivasan Iyer, Mike Lewis, Gargi Gosh, Luke
Zettlemoyer, and Armen Aghajanyan. Moma: Efficient early-fusion pre-training with mixture of
modality-aware experts, 2024. URL https://arxiv.org/abs/2407.21770.

Chengkai Liu, Jianghao Lin, Jianling Wang, Hanzhou Liu, and James Caverlee. Mamba4rec:
Towards efficient sequential recommendation with selective state space models. arXiv preprint
arXiv:2403.03900, 2024.

Junning Liu, Xinjian Li, Bo An, Zijie Xia, and Xu Wang. Multi-faceted hierarchical multi-task
learning for recommender systems. In Proceedings of the 31st ACM International Conference on
Information & Knowledge Management, pp. 3332–3341, 2022.

Liang Luo, Jacob Nelson, Luis Ceze, Amar Phanishayee, and Arvind Krishnamurthy. Parameter hub:
a rack-scale parameter server for distributed deep neural network training. In Proceedings of the
ACM Symposium on Cloud Computing, pp. 41–54, 2018.

12

https://www.kuaishou.com/activity/uimc
https://doi.org/10.1145/3604915.3608828
https://doi.org/10.1145/3604915.3608828
https://doi.org/10.1145/3343031.3350950
https://arxiv.org/abs/2407.21770

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Liang Luo, Peter West, Jacob Nelson, Arvind Krishnamurthy, and Luis Ceze. Plink: Discovering and
exploiting locality for accelerated distributed training on the public cloud. Proceedings of Machine
Learning and Systems, 2:82–97, 2020.

Liang Luo, Peter West, Pratyush Patel, Arvind Krishnamurthy, and Luis Ceze. Srifty: Swift and
thrifty distributed neural network training on the cloud. Proceedings of Machine Learning and
Systems, 4:833–847, 2022.

Liang Luo, Buyun Zhang, Michael Tsang, Yinbin Ma, Ching-Hsiang Chu, Yuxin Chen, Shen
Li, Yuchen Hao, Yanli Zhao, Guna Lakshminarayanan, et al. Disaggregated multi-tower:
Topology-aware modeling technique for efficient large-scale recommendation. arXiv preprint
arXiv:2403.00877, 2024.

Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan Hong, and Ed H Chi. Modeling task relationships
in multi-task learning with multi-gate mixture-of-experts. In Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery & data mining, pp. 1930–1939, 2018a.

Xiao Ma, Liqin Zhao, Guan Huang, Zhi Wang, Zelin Hu, Xiaoqiang Zhu, and Kun Gai. Entire space
multi-task model: An effective approach for estimating post-click conversion rate. In The 41st
International ACM SIGIR Conference on Research & Development in Information Retrieval, pp.
1137–1140, 2018b.

Aakarsh Malhotra, Mayank Vatsa, and Richa Singh. Dropped scheduled task: Mitigating negative
transfer in multi-task learning using dynamic task dropping. Transactions on Machine Learning
Research, 2022.

Kelong Mao, Jieming Zhu, Liangcai Su, Guohao Cai, Yuru Li, and Zhenhua Dong. Finalmlp: An
enhanced two-stream mlp model for ctr prediction. arXiv preprint arXiv:2304.00902, 2023.

Aditya Krishna Menon, Ankit Singh Rawat, Sashank J Reddi, and Sanjiv Kumar. Can gradient
clipping mitigate label noise? In International Conference on Learning Representations, 2019.

Ezra J Mishan. Pareto optimality and the law. Oxford economic papers, 19(3):255–287, 1967.

Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Andrew Tulloch, Srinivas Sridharan, Xing Liu,
Mustafa Ozdal, Jade Nie, Jongsoo Park, Liang Luo, et al. High-performance, distributed training
of large-scale deep learning recommendation models. arXiv preprint arXiv:2104.05158, 2021.

Sharan Narang, Hyung Won Chung, Yi Tay, William Fedus, Thibault Fevry, Michael Matena, Kar-
ishma Malkan, Noah Fiedel, Noam Shazeer, Zhenzhong Lan, et al. Do transformer modifications
transfer across implementations and applications? arXiv preprint arXiv:2102.11972, 2021.

Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang, Narayanan Sundaraman,
Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu, Alisson G Azzolini, et al. Deep
learning recommendation model for personalization and recommendation systems. arXiv preprint
arXiv:1906.00091, 2019.

Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and Andrew Y Ng. Multi-
modal deep learning. In Proceedings of the 28th international conference on machine learning
(ICML-11), pp. 689–696, 2011.

Jongsoo Park, Maxim Naumov, Protonu Basu, Summer Deng, Aravind Kalaiah, Daya Khudia, James
Law, Parth Malani, Andrey Malevich, Satish Nadathur, Juan Pino, Martin Schatz, Alexander
Sidorov, Viswanath Sivakumar, Andrew Tulloch, Xiaodong Wang, Yiming Wu, Hector Yuen,
Utku Diril, Dmytro Dzhulgakov, Kim Hazelwood, Bill Jia, Yangqing Jia, Lin Qiao, Vijay Rao,
Nadav Rotem, Sungjoo Yoo, and Mikhail Smelyanskiy. Deep learning inference in facebook data
centers: Characterization, performance optimizations and hardware implications, 2018. URL
https://arxiv.org/abs/1811.09886.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. In International conference on machine learning, pp. 1310–1318. Pmlr, 2013.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550, 2014.

13

https://arxiv.org/abs/1811.09886

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Alvin E Roth. The Shapley value: essays in honor of Lloyd S. Shapley. Cambridge University Press,
1988.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch normal-
ization help optimization? Advances in neural information processing systems, 31, 2018.

Prem Seetharaman, Gordon Wichern, Bryan Pardo, and Jonathan Le Roux. Autoclip: Adaptive
gradient clipping for source separation networks. In 2020 IEEE 30th International Workshop on
Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE, 2020.

Xiang-Rong Sheng, Liqin Zhao, Guorui Zhou, Xinyao Ding, Binding Dai, Qiang Luo, Siran Yang,
Jingshan Lv, Chi Zhang, Hongbo Deng, et al. One model to serve all: Star topology adaptive
recommender for multi-domain ctr prediction. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, pp. 4104–4113, 2021.

Kyuyong Shin, Hanock Kwak, Su Young Kim, Max Nihlén Ramström, Jisu Jeong, Jung-Woo Ha,
and Kyung-Min Kim. Scaling law for recommendation models: Towards general-purpose user
representations. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp.
4596–4604, 2023.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. Advances in neural information processing systems, 25, 2012.

Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang, and Jian Tang.
Autoint: Automatic feature interaction learning via self-attentive neural networks. In Proceedings
of the 28th ACM international conference on information and knowledge management, pp. 1161–
1170, 2019.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec:
Sequential recommendation with bidirectional encoder representations from transformer. In
Proceedings of the 28th ACM International Conference on Information and Knowledge Man-
agement, CIKM ’19, pp. 1441–1450, New York, NY, USA, 2019. Association for Comput-
ing Machinery. ISBN 9781450369763. doi: 10.1145/3357384.3357895. URL https:
//doi.org/10.1145/3357384.3357895.

Eran Tal, Nicolaas Viljoen, Joel Coburn, Roman Levenstein, and Mahesh Maddury. Our next
generation meta training and inference accelerator. https://ai.meta.com/blog/
next-generation-meta-training-inference-accelerator-AI-MTIA/, 4
2024. (Accessed on 05/29/2024).

Hongyan Tang, Junning Liu, Ming Zhao, and Xudong Gong. Progressive layered extraction (ple): A
novel multi-task learning (mtl) model for personalized recommendations. In Proceedings of the
14th ACM Conference on Recommender Systems, pp. 269–278, 2020.

Jiaxi Tang, Yoel Drori, Daryl Chang, Maheswaran Sathiamoorthy, Justin Gilmer, Li Wei, Xinyang
Yi, Lichan Hong, and Ed H Chi. Improving training stability for multitask ranking models in
recommender systems. arXiv preprint arXiv:2302.09178, 2023a.

Jiaxi Tang, Yoel Drori, Daryl Chang, Maheswaran Sathiamoorthy, Justin Gilmer, Li Wei, Xinyang
Yi, Lichan Hong, and Ed H Chi. Improving training stability for multitask ranking models in
recommender systems. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 4882–4893, 2023b.

Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Paul Voigt and Axel Von dem Bussche. The eu general data protection regulation (gdpr). A Practical
Guide, 1st Ed., Cham: Springer International Publishing, 10(3152676):10–5555, 2017.

14

https://doi.org/10.1145/3357384.3357895
https://doi.org/10.1145/3357384.3357895
https://ai.meta.com/blog/next-generation-meta-training-inference-accelerator-AI-MTIA/
https://ai.meta.com/blog/next-generation-meta-training-inference-accelerator-AI-MTIA/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Ruoxi Wang, Rakesh Shivanna, Derek Cheng, Sagar Jain, Dong Lin, Lichan Hong, and Ed Chi. Dcn
v2: Improved deep & cross network and practical lessons for web-scale learning to rank systems.
In Proceedings of the web conference 2021, pp. 1785–1797, 2021a.

Yanshi Wang, Jie Zhang, Qing Da, and Anxiang Zeng. Delayed feedback modeling for the entire
space conversion rate prediction. arXiv preprint arXiv:2011.11826, 2020.

Yichao Wang, Huifeng Guo, Bo Chen, Weiwen Liu, Zhirong Liu, Qi Zhang, Zhicheng He, Hongkun
Zheng, Weiwei Yao, Muyu Zhang, et al. Causalint: Causal inspired intervention for multi-scenario
recommendation. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pp. 4090–4099, 2022a.

Yuyan Wang, Xuezhi Wang, Alex Beutel, Flavien Prost, Jilin Chen, and Ed H Chi. Understanding
and improving fairness-accuracy trade-offs in multi-task learning. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 1748–1757, 2021b.

Yuyan Wang, Zhe Zhao, Bo Dai, Christopher Fifty, Dong Lin, Lichan Hong, Li Wei, and Ed H Chi.
Can small heads help? understanding and improving multi-task generalization. In Proceedings of
the ACM Web Conference 2022, pp. 3009–3019, 2022b.

Zhiqiang Wang, Qingyun She, and Junlin Zhang. Masknet: Introducing feature-wise multiplication
to ctr ranking models by instance-guided mask. arXiv preprint arXiv:2102.07619, 2021c.

Hongxin Wei, Huiping Zhuang, Renchunzi Xie, Lei Feng, Gang Niu, Bo An, and Yixuan Li.
Mitigating memorization of noisy labels by clipping the model prediction, 2023.

Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng,
Gloria Chang, Fiona Aga, Jinshi Huang, Charles Bai, et al. Sustainable ai: Environmental
implications, challenges and opportunities. Proceedings of Machine Learning and Systems, 4:
795–813, 2022.

Dongbo Xi, Zhen Chen, Peng Yan, Yinger Zhang, Yongchun Zhu, Fuzhen Zhuang, and Yu Chen.
Modeling the sequential dependence among audience multi-step conversions with multi-task
learning in targeted display advertising. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, pp. 3745–3755, 2021.

Bencheng Yan, Pengjie Wang, Kai Zhang, Feng Li, Hongbo Deng, Jian Xu, and Bo Zheng.
Apg: Adaptive parameter generation network for click-through rate prediction. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neu-
ral Information Processing Systems, volume 35, pp. 24740–24752. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/9cd0c57170f48520749d5ae62838241f-Paper-Conference.pdf.

Huan Yan, Xiangning Chen, Chen Gao, Yong Li, and Depeng Jin. Deepapf: Deep attentive proba-
bilistic factorization for multi-site video recommendation. TC, 2(130):17–883, 2019.

Enneng Yang, Junwei Pan, Ximei Wang, Haibin Yu, Li Shen, Xihua Chen, Lei Xiao, Jie Jiang, and
Guibing Guo. Adatask: A task-aware adaptive learning rate approach to multi-task learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 10745–10753, 2023.

Xuanhua Yang, Xiaoyu Peng, Penghui Wei, Shaoguo Liu, Liang Wang, and Bo Zheng. Adasparse:
Learning adaptively sparse structures for multi-domain click-through rate prediction. In Proceed-
ings of the 31st ACM International Conference on Information & Knowledge Management, pp.
4635–4639, 2022.

Taisuke Yasuda, Mohammadhossein Bateni, Lin Chen, Matthew Fahrbach, Gang Fu, and Vahab
Mirrokni. Sequential attention for feature selection. In The Eleventh International Conference on
Learning Representations, 2022.

Daochen Zha, Louis Feng, Liang Luo, Bhargav Bhushanam, Zirui Liu, Yusuo Hu, Jade Nie, Yuzhen
Huang, Yuandong Tian, Arun Kejariwal, et al. Pre-train and search: Efficient embedding table
sharding with pre-trained neural cost models. Proceedings of Machine Learning and Systems, 5,
2023.

15

https://proceedings.neurips.cc/paper_files/paper/2022/file/9cd0c57170f48520749d5ae62838241f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9cd0c57170f48520749d5ae62838241f-Paper-Conference.pdf

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Jiaqi Zhai, Lucy Liao, Xing Liu, Yueming Wang, Rui Li, Xuan Cao, Leon Gao, Zhaojie Gong, Fangda
Gu, Michael He, et al. Actions speak louder than words: Trillion-parameter sequential transducers
for generative recommendations. arXiv preprint arXiv:2402.17152, 2024.

Buyun Zhang, Liang Luo, Xi Liu, Jay Li, Zeliang Chen, Weilin Zhang, Xiaohan Wei, Yuchen
Hao, Michael Tsang, Wenjun Wang, et al. Dhen: A deep and hierarchical ensemble network for
large-scale click-through rate prediction. arXiv preprint arXiv:2203.11014, 2022a.

Buyun Zhang, Liang Luo, Yuxin Chen, Jade Nie, Xi Liu, Daifeng Guo, Yanli Zhao, Shen Li, Yuchen
Hao, Yantao Yao, et al. Wukong: Towards a scaling law for large-scale recommendation. arXiv
preprint arXiv:2403.02545, 2024a.

Gaowei Zhang, Yupeng Hou, Hongyu Lu, Yu Chen, Wayne Xin Zhao, and Ji-Rong Wen. Scaling law
of large sequential recommendation models. arXiv preprint arXiv:2311.11351, 2023.

Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates
training: A theoretical justification for adaptivity. arXiv preprint arXiv:1905.11881, 2019.

Qianqian Zhang, Xinru Liao, Quan Liu, Jian Xu, and Bo Zheng. Leaving no one behind: A multi-
scenario multi-task meta learning approach for advertiser modeling. In Proceedings of the Fifteenth
ACM International Conference on Web Search and Data Mining, WSDM ’22, pp. 1368–1376,
New York, NY, USA, 2022b. Association for Computing Machinery. ISBN 9781450391320. doi:
10.1145/3488560.3498479. URL https://doi.org/10.1145/3488560.3498479.

Zhao-Yu Zhang, Xiang-Rong Sheng, Yujing Zhang, Biye Jiang, Shuguang Han, Hongbo Deng,
and Bo Zheng. Towards understanding the overfitting phenomenon of deep click-through rate
prediction models, 2022c.

Zijian Zhang, Shuchang Liu, Jiaao Yu, Qingpeng Cai, Xiangyu Zhao, Chunxu Zhang, Ziru Liu,
Qidong Liu, Hongwei Zhao, Lantao Hu, et al. M3oe: Multi-domain multi-task mixture-of experts
recommendation framework. arXiv preprint arXiv:2404.18465, 2024b.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright, Hamid
Shojanazeri, Myle Ott, Sam Shleifer, et al. Pytorch fsdp: experiences on scaling fully sharded data
parallel. arXiv preprint arXiv:2304.11277, 2023.

Chunting Zhou, Lili Yu, Arun Babu, Kushal Tirumala, Michihiro Yasunaga, Leonid Shamis, Jacob
Kahn, Xuezhe Ma, Luke Zettlemoyer, and Omer Levy. Transfusion: Predict the next token and
diffuse images with one multi-modal model, 2024. URL https://arxiv.org/abs/2408.
11039.

Guorui Zhou, Chengru Song, Xiaoqiang Zhu, Ying Fan, Han Zhu, Xiao Ma, Yanghui Yan, Junqi Jin,
Han Li, and Kun Gai. Deep interest network for click-through rate prediction, 2018.

Jieming Zhu, Jinyang Liu, Shuai Yang, Qi Zhang, and Xiuqiang He. Open benchmarking for
click-through rate prediction. In Proceedings of the 30th ACM International Conference on
Information & Knowledge Management, CIKM ’21, pp. 2759–2769, New York, NY, USA, 2021.
Association for Computing Machinery. ISBN 9781450384469. doi: 10.1145/3459637.3482486.
URL https://doi.org/10.1145/3459637.3482486.

Jieming Zhu, Quanyu Dai, Liangcai Su, Rong Ma, Jinyang Liu, Guohao Cai, Xi Xiao, and Rui
Zhang. Bars: Towards open benchmarking for recommender systems. In Proceedings of the 45th
International ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’22, pp. 2912–2923, New York, NY, USA, 2022. Association for Computing Machinery.
ISBN 9781450387323. doi: 10.1145/3477495.3531723. URL https://doi.org/10.1145/
3477495.3531723.

Jieming Zhu, Guohao Cai, Junjie Huang, Zhenhua Dong, Ruiming Tang, and Weinan Zhang. Reloop2:
Building self-adaptive recommendation models via responsive error compensation loop. In
Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
KDD ’23, pp. 5728–5738, New York, NY, USA, 2023. Association for Computing Machinery.
ISBN 9798400701030. doi: 10.1145/3580305.3599785. URL https://doi.org/10.1145/
3580305.3599785.

16

https://doi.org/10.1145/3488560.3498479
https://arxiv.org/abs/2408.11039
https://arxiv.org/abs/2408.11039
https://doi.org/10.1145/3459637.3482486
https://doi.org/10.1145/3477495.3531723
https://doi.org/10.1145/3477495.3531723
https://doi.org/10.1145/3580305.3599785
https://doi.org/10.1145/3580305.3599785

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 THE M3C FILTER ALGORITHM

Algorithm 1 summarizes the M3C Filter algorithm.

Algorithm 1 The M3C Filter Algorithm

1: function FEATURE FILTER(T,D)
2: counter← Dict()
3: dominates← Dict()
4: for fi, fj in D do
5: counter[fi]← counter[fi] + 1
6: dominates[fj]← dominates[fj] ∪{fi}
7: end for
8: ss = SortedSet((d count, f) for (f, d count) in counter.items())
9: selected = []

10: while T > 0 do
11: , f = ss.pop(0)
12: selected← selected ∪{f}
13: for f dominated in dominates[f] do
14: ss← ss \ {(counter[fdominated], fdominated)}
15: counter[fdominated]← counter[fdominated] - 1
16: ss← ss ∪ {(counter[fdominated], fdominated)}
17: end for
18: T← T - 1
19: end while
20: return selected
21: end function

A.2 M3C SKETCH

A.2.1 M3C SKETCH OBJECTIVES

For complex M3C Networks with a large FLOPs budget we can use compute complexity as a proxy
for model quality. However, since FLOPs budget is provided as a total sum between Transformer and
Wukong blocks, expert insight is required to determine the allocation ratio. For less complex models,
we continue to incorporate a quality term directly in the objectives.

Specifically, for complex models, M3C Sketch uses OM3CNetwork = max(ft) as the objective,
where f is the FLOPs complexity, t is the latency. Given a FLOPs target F and a maximum iteration
latency T derived by dividing the minimum throughput required for online training, we have the
constraints of M3C Network as αF ≤ f ≤ 1

αF (model quality control) and t ≤ T (minimum
throughput limit). We use α ∈ [0, 1] as a threshold hyperparameter to M3C Sketch which gives the
search more wiggle room. For less complex models, the objective becomes OVM = max(q

fβ), with
q being the model quality evaluated after fixed amount of training (e.g., 1B data) is done, and β being
the quality scaling ratio, and any hyperparameters resulting quality to scale superlinearly with respect
to FLOPs is more rewarded.

A.2.2 BOOTSTRAPING M3C SKETCH

We follow the same maximum batch size estimation strategy as used in Srifty Luo et al. (2022). For
bootstrapping the search process of FSDP configurations, given a collection of supported sharding
strategies X for each FSDP unit, and for a model with L layers training on W GPUs with K valid
batch sizes, and DW as the set of factors of W . We use dynamic programming to statically find
a reasonable starting point for the search: given a model, we first profile the execution latency
Tb(sl) and memory usage Rb(sl) of l-th layer given a batch size b and a FSDP sharding strategy
sl ∈ S = X × DW , which can be obtained in parallel across GPUs. We then estimate batch-

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

independent communication latency for l-th layer using data volume and network bandwidth C(sl).
Finally, we solve this problem using dynamic programming.

Let R be the GPU memory capacity, W be the number of GPUs in the fleet, ANSb[i, r] be the best
sharding strategies we find for when only considering layers up to i, with the maximum allowed
memory consumption of r, and OPTb[i, r] be the corresponding execution latency, then we have the
best configuration ANS∗

b derived by:

1. Border condition:

OPTb[l, r] =∞, ANSb[l, r] = 0,∀xx ≤ 0 ∨ r > R ∨ x > L

2. Recurrence:

s∗l+1,r = argmins∈SOPTb[l, r −Rb(s)] + Tb(s) + C(s)

OPTb[l + 1, r] = mins∈SOPTb[l, r −Rb(s)] + Tb(s) + C(s)

ANSb[l + 1, r] = ANSb[l, r −Rb(s
∗
l+1,r)]← s∗l+1,r

3. Final output:

ANS∗
b = ANSb[L− 1, argminrOPTb[L− 1, r]]

We can simply enumerate b to find the global minimum execution latency and its corresponding FSDP
configuration, and the overall complexity of this algorithm is bound by O(|K| × LR|S|). Since the
performance models are analytical, this seed is not necessarily optimal in practice Luo et al. (2022),
hence the M3C Sketch process continues, guided by the Bayesian optimizer.

A.3 DETAILED EXPERIMENTAL SETUP

A.3.1 DATASETS

We evaluate M3C on both public and internal datasets. The public dataset KuaiVideo is an repre-
sentative competition dataset released by Kuaishou Kuaishou as used in Zhang et al. (2024a); Li
et al. (2019); Zhu et al. (2023). This dataset has 13M entries with 8 features. We use this dataset as a
standard benchmark for recent state-of-the-art models in multi-objective recommendation. We use
the train/test split provided by the BARS Zhu et al. (2022) benchmark suite, and we further perform
9 to 1 train and validation split. We use and extend the FuxiCTR framework Zhu et al. (2021) for
experimentation on public dataset. We use two internal datasets, with and without sequence features
to evaluate model performance. The dataset without event feature has about 1K features. The dataset
with event features contains roughly 2K features and 9 event sources. For evaluating data strategy,
we use an internal dataset with about 2K nonsequence features, selected from a pool of 12K features.

A.3.2 METRICS AND OBJECTIVES

For KuaiVideo, we report AUC and logloss; for internal datasets, we report improved normalized
entropy (NE) He et al. (2014) over a baseline, following prior arts.

Due to lack of a common fundamental task across all recommendation tasks, we use a collection of
representative tasks to approximate a foundational task from which all downstream tasks can benefit.
For the Kuaishou dataset, we predict three tasks: is like, is follow and is click and use the average
loss as the final loss. For internal dataset, we create 3 tasks derived from a combination of click and
conversion rate prediction across various attribution windows, and we train each model sufficiently
long enough to draw conclusions and report metrics.

A.3.3 BASELINES

We focus on comparing with recent state-of-the-art recommendation models including AFN+ Cheng
et al. (2020), AutoInt+ Song et al. (2019), DLRM Naumov et al. (2019), DCNv2 Wang et al. (2021a),
FinalMLP Mao et al. (2023), MaskNet Wang et al. (2021c), xDeepFM Lian et al. (2018), BST Chen
et al. (2019), APG Yan et al. (2022) and Wukong Zhang et al. (2024a). For public dataset, we use
the best-tuned config from BARS if available, otherwise we use the configuration used by Zhang
et al. (2024a). For internal dataset, we use the model tunings adopted by Zhang et al. (2024a). We

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Template Choices
Layers 1,2,4,8,16,2x2,2x3,2x5,2x7,3x1,3x2,3x3,4x2,4x3
Each Activation Function RELU, GELU, SILU, TANH
Each Dropout 0, 0.01, 0.05, 0.1
Batch Norm True, False
Each Projection Dimension 128, 256, 512, 1024, 64, 32, 16, 8, 4
Each Projection Layers 1,2,3
k 8, 16, 32, 64, 4, 2, 1
Embedding Regularizer 0.0001,0.0002,0.00005,0,0.00001,0.0005,0.001,0.1,0.5,1
Total 4.1 Trillion Choices

Table 3: M3C Sketch template and associated search space.

Model Hyperparameters Valid AUC
M3C (Expert Tuned) l=2 (3 + 1 Wukong), nL=6, nF=1, k=16, MLP=256 0.8020
M3C (M3C Sketch) l=1, nL=3, nF=4, k=4, MLP=512 0.8045

Table 4: Best model configuration for KuaiVideo found by experts and M3C Sketch.

Model Hyperparameters GFLOPs Parameters
(B)

AFN+ DNN=4x8192, afn=4x8192, nlog=4096 43.40 633.95
AutoInt+ Attention=3x512, nhead=8, DNN=3x8192 42.53 631.49
DCN l=2, rank=512, MLP=4x32768 43.88 634.46
DLRM TopMLP=4x16384 31.07 632.39
FinalMLP MLP1=4x16384, MLP2=2x4096, output dim=64 36.26 633.27
MaskNet MLP=3x2048, nblock=4, dim=128, reduction=0.05 32.36 632.67
Wukong l=8, nL=32, nF=32, k=24, MLP=3x16384 35.16 633.08
M3C l=12, nL=96, nF=96, k=96, MLP=8192-4096-8192 32.16 632.46

Table 5: Detailed hyperparameters, compute complexity and model size for each run used in the
evaluation of different models on a uni-modal internal dataset.

report model complexity and parameter count for fair comparison. Note that we may use different
model configurations to highlight the effectiveness of different components, which we detail in their
respective sections.

A.4 MODEL SPECIFICATIONS

A.4.1 MODEL SPECIFICATION FOR KUAIVIDEO DATASETS

For all baselines, we use the hyperparameters tuned by FuxiCTR and Wukong. We use the same
batch size of 64K and the same learning rate for all models. We turn on FuxiCTR’s learning rate
schedule and set patience to 5 for tuning on the validation set.

A.4.2 M3C SKETCH ON KUAIVIDEO FOR QUALITY IMPROVEMENTS

See Table 4 for details on the best found model by M3C Sketch on the KuaiVideo dataset and the
search space employed by M3C Sketch.

A.4.3 MODEL SPECIFICATIONS FOR A UNI-MODAL INTERNAL DATASETS

See Table 5 for details on the models used in internal dataset experiments.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Model Hyperparameters GFLOPs Parameters
(B)

Wukong l=5, nL=128, nF=128, k=64, MLP=6144-3072-6144 26.93 ≈ 934.14

M3C l=2, Wukong=2/layer, nL=128, nF=128, k=64, MLP=6144-3072-6144
Transformer=1/layer, MHA.head=2, FFN=256 23.43 ≈ 934.44

Table 6: Detailed hyperparameters, compute complexity and parameter count for models used in the
evaluation on a mixed-modal internal dataset.

Model Hyperparameters GFLOPs Parameters Features
(B)

Wukong l=2, nL=32, nF=32, k=32, MLP=2048-512-2048-1024-2048 0.726 998.60 ≈ 1800

Table 7: Model specification for M3C Zipper experiments.

A.4.4 MODEL SPECIFICATIONS FOR MIX-MODAL INTERNAL DATASETS

See Table 6 for specifications of the M3C and Wukong models used in the experiment.

A.4.5 MODEL SPECIFICATIONS FOR M3C ZIPPER EXPERIMENTS

See Table 7 for details on the models used in internal dataset experiments.

A.4.6 MODEL SUMMARY FOR M3C FILTER EXPERIMENTS

We evaluated M3C Filter on 10 models spanning 4 optimization targets (4 models for CTR, 4
models for CVR and 1 model each for CTR+CVR and CTR+Quality consolidation) to obtain the
generalizability and effectiveness of M3C Filter across a wide range of models and tasks. Each model
is configured similarly to those used in Appendix A.4.5.

A.4.7 M3C SKETCH ON WUKONG FOR THROUGHPUT IMPROVEMENT

See Table 9 for details on the best configuration by M3C Sketch and search space employed in the
throughput improvement experiments.

Syntactical Blank Choices

Each FSDP Wrapping Z3 (ZERO3), Z2 (ZERO2)
Each FSDP Wrapping Replication Group 1, 2, 4, 8, 16
Batch Size 1024-4096
Total 307.2 Billion Choices

Table 8: M3C Sketch Syntactical blanks and associated search space.
Model Hyperparameters Dense

FSDP Wrapping Strategies GFLOPs Parameters
B

M3C (Expert Tuning) l=8, nL=96, nF=96, k=32, MLP=4096-2048-4096-2048-4096 (Fixed)

34.80 3.99

L1-8: Z3@128; Batch: 1024

M3C (M3C Sketch) 1 l=8, nL=96, nF=96, k=32, MLP=4096-2048-4096-2048-4096 (Fixed)
L1,3,6,8: Z2@128; L4,5: Z3@128; Batch: 1280

M3C (M3C Sketch) 2 l=8, nL=96, nF=96, k=32, MLP=4096-2048-4096-2048-4096 (Fixed)
L1,2,7,8: Z2@4; L3,6: Z2@128; L4,5: Z3@128; Batch: 1024

Table 9: Best parallelization strategy for the internal model found by M3C Sketch.

20

	Introduction
	Related Work and Challenges
	MDMO Learning
	Data Strategy
	Cost Efficiency

	M3C
	Model Strategy
	Improving Representation via M3C Partitioner
	MDMO Learning via M3C Networks

	Data Foundation
	Consolidating Datasources via M3C Zipper
	Pareto-Optimal Feature Selection via M3C Filter

	Efficiency Optimizations
	Stabilizing M3C Network Training
	Improving Execution Efficiency via M3C Sketch

	Evaluation
	Evaluation Setup
	Model Performance Gains
	Data Strategy Effectiveness
	Cost Efficiency Improvements

	Industry-scale Deployment and Sustainability Impact
	Conclusion
	Appendix
	The M3C Filter algorithm
	M3C Sketch
	M3C Sketch Objectives
	Bootstraping M3C Sketch

	Detailed Experimental Setup
	Datasets
	Metrics and Objectives
	Baselines

	Model Specifications
	Model Specification for KuaiVideo Datasets
	M3C Sketch on KuaiVideo for Quality Improvements
	Model Specifications for a Uni-modal Internal Datasets
	Model Specifications for Mix-modal Internal Datasets
	Model Specifications for M3C Zipper Experiments
	Model Summary for M3C Filter Experiments
	M3C Sketch on Wukong for Throughput Improvement

