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Abstract001

Despite their strong performance, Dense Pas-002
sage Retrieval (DPR) models suffer from a lack003
of interpretability. In this work, we propose a004
novel interpretability framework that leverages005
Sparse Autoencoders (SAEs) to decompose pre-006
viously uninterpretable dense embeddings from007
DPR models into distinct, interpretable latent008
concepts. We generate natural language de-009
scriptions for each latent concept, enabling hu-010
man interpretations of both the dense embed-011
dings and the query-document similarity scores012
of DPR models. We further introduce Concept-013
Level Sparse Retrieval (CL-SR), a retrieval014
framework that directly utilizes the extracted015
latent concepts as indexing units. CL-SR effec-016
tively combines the semantic expressiveness of017
dense embeddings with the transparency and018
efficiency of sparse representations. We show019
that CL-SR achieves high computational and020
storage efficiency while maintaining robust per-021
formance across vocabulary and semantic mis-022
matches.023

1 Introduction024

Traditional information retrieval methods have re-025

lied on exact lexical matching between query and026

document terms to determine document relevance027

(Craswell et al., 2018). Despite their efficiency and028

transparency, these sparse retrieval techniques suf-029

fer from vocabulary mismatch, where a query and030

the relevant documents use different terms (e.g., cat031

vs. kitty), and semantic mismatch, where the same032

term can refer to different concepts (e.g., bank of033

river vs. bank in finance) (Gao et al., 2021).034

The advent of Pre-trained Language Models035

(PLMs) have led to the emergence of dense retrieval036

approaches as promising alternatives for overcom-037

ing the limitations of sparse methods (Zhao et al.,038

2024). Dense retrieval methods embed queries and039

documents onto a continuous vector space by utiliz-040

ing dense embeddings to represent contextualized041

semantics and enabling similarity computations042

beyond simple keyword matches. Consequently, 043

dense retrieval effectively addresses the vocabulary 044

and semantic mismatch issues inherent in sparse 045

retrieval, achieving state-of-the-art (SOTA) perfor- 046

mance across various information retrieval (IR) 047

benchmarks (Huang and Chen, 2024; Xu et al., 048

2024). However, dense retrieval suffers from a fun- 049

damental limitation: the difficulty of interpreting 050

the dense embeddings and the ranking results. This 051

lack of interpretability poses a significant challenge 052

in applications where transparency and user trust 053

in search results are critical, leading to various at- 054

tempts to interpret dense retrieval models (Anand 055

et al., 2022). Recently, sparse autoencoders (SAEs) 056

have garnered significant attention as a method 057

to disentangle the complex semantic structures in- 058

herent in the dense embeddings of decoder-only 059

transformer models, into distinct and interpretable 060

conceptual units (i.e., latent concepts) (Bricken 061

et al., 2023; Templeton et al., 2024; Huben et al., 062

2024). 063

In this work, we propose a novel explainable AI 064

(XAI) framework that extends SAEs to the field of 065

information retrieval by applying them to the em- 066

beddings of Dense Passage Retrieval (DPR) mod- 067

els. Our method is summarised in Figure 1. 068

First, we train SAEs and present qualitative mea- 069

sures to evaluate SAEs’ ability at decomposing 070

the semantic information embedded in the origi- 071

nal dense embeddings into linear combinations of 072

latent concepts. Furthermore, we qualitatively anal- 073

yse if each extracted individual latent concept holds 074

distinct semantic meanings (Section 3). 075

We then generate natural language descriptions 076

for each latent concept, enabling interpretation of 077

both the semantic content of dense embeddings 078

and the similarity computation between queries and 079

documents. We qualitatively evaluate our frame- 080

work by performing multiple human interpretabil- 081

ity tasks (Section 4). 082

Building on this, we further introduce Concept- 083
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Figure 1: Overview of our method. We first train a SAE to decompose dense embeddings into latent concepts
(§3). Given a query or a passage, the SAE encoder sparsely activates latent concepts, which are mapped to natural
language descriptions allowing human interpretability tasks (§4). In CL-SR, queries and passages are represented
as sets of activated latent concepts (§5). We also demonstrate its effectiveness on subsets where traditional sparse
retrieval methods struggle.

Level Sparse Retrieval (CL-SR), a retrieval frame-084

work that treats each latent concept as a fundamen-085

tal unit of retrieval. Unlike traditional term-based086

sparse methods, which are prone to vocabulary and087

semantic mismatches, CL-SR mitigates these limi-088

tations by leveraging semantically generalized la-089

tent concepts. CL-SR also achieves higher retrieval090

efficiency with fewer matching units compared to091

term-based retrieval (Section 5).092

2 Related Work093

2.1 Interpretability in Dense Passage094

Retrieval095

Dense passage retrieval employs PLM-based en-096

coders to embed queries and passages1 into dense097

vectors—typically obtained from the [CLS] token098

representation or mean pooling over token embed-099

dings—and measures relevance via dot product or100

cosine similarity between these embeddings, ex-101

hibiting superior performance across a variety of102

IR tasks. However, DPR inherently suffers from a103

lack of interpretability due to the implicit semantics104

encoded within the uninterpretable dense embed-105

ding space. To address this shortcoming, various at-106

tempts have been made to interpret the inner work-107

ings of DPR. Völske et al. (2021) analyzes the rank-108

ing determinants between document pairs based on109

axioms defined in traditional IR theory—e.g., term110

frequency, document length, semantic similarity,111

and term proximity—by formalizing each axiom112

for rank comparison and training a simple explana-113

tory model that approximates DPR’s ranking. A114

different approach, Llordes et al. (2023) generate115

an "equivalent query" through discrete state-space116

1In this paper, the terms “passage” and “document” are
used interchangeably.

search that reproduces DPR’s ranking results un- 117

der a sparse retrieval model, thereby explaining 118

the semantic information used by DPR at the term 119

level. However, while these approaches provide a 120

proxy-based interpretation that approximates neu- 121

ral behavior through input manipulation and exter- 122

nal alignment, the internal representational struc- 123

ture of the DPR model remains unexplored. 124

2.2 Sparse Autoencoders 125

The "superposition hypothesis" suggests that neu- 126

ral networks are able to encode more features than 127

their available dimensions, exploiting sparsity of 128

feature activation (Elhage et al., 2022). This results 129

in superposed representations that are difficult to 130

interpret directly due to polysemanticity. Recent 131

work applies a set of methods called sparse coding 132

or sparse dictionary learning to identify underly- 133

ing true features actually used by neural networks 134

(Sharkey et al., 2025). One of the simplest and 135

widely explored methods is SAE. SAE is a single- 136

layer feedforward autoencoder with a hidden layer 137

larger than the input dimension, incorporating a 138

sparsity constraint to ensure that only a small subset 139

of hidden neurons (i.e., latent concepts) activate for 140

any given input. Recent studies have empirically 141

demonstrated that SAEs can effectively extract in- 142

terpretable features from the activations of decoder- 143

only large language models(LLMs) (Huben et al., 144

2024; Marks et al., 2025). While there have been 145

attempts to apply SAEs to dense embeddings gen- 146

erated by encoder-based models (Ye et al., 2024; 147

Kang et al., 2025), these efforts have largely fo- 148

cused on the interpretation of the dense embed- 149

dings themselves, leaving the interpretability of 150

retrieval results and their implications in IR tasks 151
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Model NMSE MSMARCO Dev TREC DL 2019 TREC DL 2020

MRR@10 Recall@1k NDCG@10 Recall@1k Spearman NDCG@10 Recall@1k Spearman

Baseline (SimLM) – 0.411 0.986 0.714 0.767 – 0.697 0.772 –
Reconstructed (k=32) 0.1903 0.328 (×0.80) 0.964 (×0.98) 0.589 (×0.83) 0.666 (×0.87) 0.928 ±7.7E-3 0.582 (×0.84) 0.681 (×0.88) 0.927 ±8.1E-3

Reconstructed (k=48) 0.1643 0.338 (×0.83) 0.968 (×0.98) 0.624 (×0.87) 0.686 (×0.89) 0.936 ±6.7E-3 0.613 (×0.88) 0.704 (×0.92) 0.933 ±7.2E-3

Reconstructed (k=64) 0.1458 0.347 (×0.84) 0.973 (×0.98) 0.640 (×0.90) 0.692 (×0.90) 0.949 ±6.2E-3 0.608 (×0.87) 0.718 (×0.93) 0.948 ±6.8E-3

Reconstructed (k=128) 0.1069 0.371 (×0.90) 0.980 (×0.99) 0.664 (×0.93) 0.726 (×0.95) 0.959 ±5.2E-3 0.629 (×0.90) 0.734 (×0.95) 0.956 ±5.4E-3

Table 1: Quantitative evaluation of the reconstruction capability of SAEs trained on SimLM embeddings. Results
include normalized mean squared error (NMSE) and preservation of retrieval performance on MSMARCO Dev
and TREC DL 2019/2020. Spearman’s correlation is averaged across TREC DL 2019 and 2020, with variance also
reported (p < 0.05).

SAE k=32 SAE k=48 SAE k=64 SAE k=128

Accuracy 0.859 0.829 0.808 0.764

Table 2: Results of latent intrusion test using MS-
MARCO passages. We report accuracy over different
numbers of activated latents k.

underexplored.152

3 SAE Training and Evaluation for DPR153

Model Interpretation154

Interpreting a DPR model through SAE latent con-155

cepts requires both an effective training of the SAE156

and a verification that its reconstructed embeddings157

faithfully preserve the information from the orig-158

inal embeddings. Additionally, it is essential to159

evaluate whether each latent concept extracted by160

the SAE represents clear semantic concept. In this161

section, we outline the training and evaluation pro-162

cedures for achieving these objectives.163

3.1 Training Sparse Autoencoder164

A SAE is optimized to reconstruct the input vec-165

tor h ∈ Rd by learning a sparse latent representa-166

tion z ∈ Rm(m >> d) with sparsity constraint167

L0(z) = k(k << d). Formally, a SAE consists of168

Encoder: z(h) = σ(Wench+ benc) (1)169

Decoder: ĥ(z) = zWdec + bdec (2)170

where Wenc ∈ Rm∗d, benc ∈ Rm, Wdec ∈ Rd∗m,171

and bdec ∈ Rd are the parameters of encoder and172

decoder respectively and σ(·) is the activation func-173

tion. Although there are various SAE variants de-174

pending on the activation and sparsity mechanisms,175

we employ widely used BatchTopK SAE (Buss-176

mann et al., 2024), where the model is trained to177

minimize the following loss:178

L(h) =
∥∥∥h− ĥ(z(h))

∥∥∥2
2
+ λLaux, (3)179

z(h) = BatchTopK(Wench+ benc). (4)180

The BatchTopK activation function masks latents 181

whose activation values are not in the top n * k 182

to 0 across a batch of n samples, allowing flex- 183

ible allocation of the number of latents for each 184

sample in a single batch and Laux is an auxiliary 185

loss, used to prevent dead latents. At inference 186

time, latents with activation larger than mean of 187

top k-th activation over the whole datapoints are 188

considered "activated" and all other activations are 189

zeroed out resulting in a sparse m dimensional vec- 190

tor z(h). Training the SAE requires dense embed- 191

dings generated by a pretrained DPR model. In 192

this work, we adopt SimLM (Wang et al., 2023a) 193

as our target model to interpret and use it to embed 194

approximately 8.8 million passages and 0.5 mil- 195

lion train queries from the MSMARCO passage 196

retrieval dataset (Bajaj et al., 2018) into dense vec- 197

tors. The SAE is then trained to reconstruct these 198

dense embeddings2. We set the hyperparameter 199

m = 32 * d and experiments with k of 32, 48, 64, 200

128. We detail the training setup and dataset in 201

Appendix A. 202

3.2 Evaluating Sparse Autoencoder 203

Now we propose to quantitatively evaluate the SAE 204

based on following criteria. 205

1. Vector-level Reconstruction Fidelity: We 206

measure the normalized mean squared er- 207

ror (NMSE) between the original DPR em- 208

beddings and the reconstructed embeddings. 209

Specifically, NMSE is calculated by dividing 210

the raw MSE by the baseline reconstruction 211

error of always predicting the mean activation. 212

2. Preservation of IR Performance: Previous 213

works on SAEs have measured language mod- 214

eling performance change as a measure of 215

SAE reconstruction fidelity (Rajamanoharan 216

et al., 2024; Gao et al., 2025). We evalu- 217

2We show generalizability of our framework across target
DPR models and to unseen datasets in Appendix C.
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ate how much of the downstream dense re-218

trieval performance is maintained by conduct-219

ing dense retrieval with the reconstructed em-220

beddings instead.221

3. Ranking Result Reconstruction Fidelity:222

Beyond retrieval performance, we examine223

how faithfully the reconstructed embeddings224

retain the detailed ranking order of retrieved225

documents. We report Spearman’s correlation226

between the two ranked lists obtained from the227

target model and reconstructed embeddings.228

For evaluation, we used the MSMARCO Dev229

and TREC Deep Learning (DL) Track 2019/2020230

datasets (Craswell et al., 2020, 2021). Table 1231

shows a trade-off between the reconstruction qual-232

ity and the degree of sparsity of SAEs. This trend233

can be observed with all three criteria we adapted to234

measure reconstruction fidelity of SAEs in IR set-235

tings and is consistent with prior studies on sparse236

autoencoders on decoder models confirming sound-237

ness of our measures.238

Additionally, since our goal is to interpret the239

DPR model via individual latent concepts, we con-240

duct additional experiments to verify whether each241

latent indeed represents an interpretable seman-242

tic concept. Inspired by the “word intrusion test”243

(Chang et al., 2009), we perform a latent intrusion244

test, where we collect 9 passages from MSMARCO245

corpus that most strongly activate a given latent246

plus 1 randomly chosen “intruder” passage that247

does not activate the latent. We then use a powerful248

LLM (GPT-4.1 mini) to identify the outlier. Ta-249

ble 2 shows that, though individual latent’s quality250

degrades as sparsity decreases, SAEs are still ef-251

fective at disentangling semantic structures within252

dense embeddings of DPR models into latent con-253

cepts that retain distinct, meaningful information.254

4 Interpreting DPR Models Through255

Latent Descriptions256

Building on the latent concepts from the trained257

SAE, in the following sections, we first generate258

natural language description for each latent con-259

cept (§4.1) and then we demonstrate the utility of260

these descriptions in two downstream human in-261

terpretability tasks3: understanding the semantic262

structure of DPR’s dense embeddings (§4.2) and263

simulating the model’s ranking process between264

query and documents (§4.3).265

3We lay out detailed experimental settings in Appendix B.

Figure 2: Top-5 most activated latent concepts extracted
from the dense embedding of a passage discussing eco-
nomic benchmarks and cultural context in the 1960s.
Reported activation value is weighted by IDF.

4.1 Generating Automatic Descriptions for 266

Each Latent 267

We generate natural language descriptions enabling 268

humans to intuitively understand the semantic 269

meaning of each latent concept. Specifically, for 270

each latent concept in the SAE k=32 trained in 271

Section 3 (which showed the best performance on 272

latent intrusion test), we collect MSMARCO pas- 273

sages that most activate the corresponding latent 274

concept and instruct a LLM to summarize the com- 275

mon themes, concepts, or characteristics shared 276

across these passages. Figure 2 shows how a de- 277

composition of a document into generated latent 278

descriptions looks like. 279

4.2 Interpreting Dense Embeddings via 280

Latent Descriptions 281

In this section, we evaluate whether latent descrip- 282

tions can be used to interpret the semantic infor- 283

mation embedded within DPR model’s dense em- 284

beddings. To this end, we decompose a passage’s 285

dense embedding into latent components and as- 286

sess whether the corresponding latent descriptions 287

enable accurate identification of the original pas- 288

sage. Specifically, each human annotator is pre- 289

sented with one target passage, nine randomly sam- 290

pled distractor passages, and a set of latent con- 291

cepts extracted from the target with their activation 292

strengths. Annotators are then asked to identify the 293

target passage based on the provided descriptions 294

and activation strength. 295
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Task Accuracy

Embedding Interpretability

Passage identification 0.943

Ranking Interpretability

R@P vs R@P 0.903
R@P vs NR@P 0.938
R@N vs NR@P 0.921

Table 3: Human annotator accuracy on interpretability
tasks: Embedding Interpretability (§ 4.2) and Ranking
Interpretability (§ 4.3). (Note: R@P = Retrieved Posi-
tive; NR@P = Not Retrieved Positive; R@N = Retrieved
Negative.)

Since the latent concepts used in this study are296

obtained via unsupervised training of SAE recon-297

structing DPR model embeddings, their activation298

frequency across passages varies significantly (Fig-299

ure 5). In particular, high frequency latents tend300

to be abstract and less interpretable. To address301

this skewed distribution and to better capture the302

semantic importance of each latent, we adjust each303

latent’s activation strength with its Inverse Docu-304

ment Frequency (IDF), as defined in Eq. 6. We305

provide illustrative examples comparing latent de-306

scriptions with and without IDF weighting in Ap-307

pendix D.1.308

We randomly sampled 600 passages from the309

MSMARCO corpus and evaluated the embedding310

interpretability task and report the accuracy in Ta-311

ble 3. The high accuracy (0.943) confirms that312

latent descriptions effectively reveal the semantic313

content encoded in the DPR model’s dense repre-314

sentations.315

4.3 Interpreting Ranking Results via Latent316

Descriptions317

We evaluate the interpretability of the DPR model’s318

similarity scoring process through latent descrip-319

tions. Specifically, we assess whether humans can320

simulate the ranking behavior of the DPR model.321

We provide human annotators with two candidate322

passages for a given query, along with the latent323

descriptions and IDF-adjusted activation values ex-324

tracted from each passage and query. Then they are325

tasked to choose from which the two documents326

the DPR model would have ranked higher.327

We evaluate the model simulatability across328

three specific settings of interest:329

1. Retrieved Positive vs Retrieved Positive.330

2. Retrieved Positive vs Not Retrieved Positive.331

3. Retrieved Negative vs Not Retrieved Positive. 332

The experiments were conducted using queries 333

from the TREC-DL 2019 and 2020 datasets. We 334

define documents ranked within the top 1000 as "re- 335

trieved", and those ranked lower as "not retrieved". 336

For each query, the official gold document is con- 337

sidered "positive", while all others are considered 338

"negative" 339

As shown in Table 3, human annotators achieve 340

high accuracy in each setting of interest showing 341

accuracy higher than 0.9, confirming that expla- 342

nations from our framework indeed help human 343

annotators to simulate model predictions more ac- 344

curately. 345

5 Concept-Level Sparse Retrieval 346

Now we extend the sparse autoencoder framework 347

to the IR domain. We propose Concept-Level 348

Sparse Retrieval (CL-SR), a novel approach that 349

treats each latent concept as a fundamental unit 350

of retrieval. By replacing lexical terms with these 351

semantically coherent and generalized latent con- 352

cepts, CL-SR enables direct application of term- 353

weighted sparse retrieval algorithms. CL-SR of- 354

fers Semantic generalization and Computational 355

efficiency. We further analyse these qualities in 356

Section 5.1, 5.2. 357

In CL-SR, the scoring between a query and a pas- 358

sage is computed using the following formulation 359

(Eq. (5)). 360

s(q, d) =
∑
i∈q∩d

fq(q, i) · fd(d, i) · idf(i) (5) 361

where 362

idf(i) = log
|D|

1 +
∣∣∣{d ∈ D | z(h)d,i > 0

}∣∣∣ (6) 363

364

fq(q, i) =
z(h)q,i(1 + k2)

z(h)q,i + k2
, 365

fd(d, i) =
z(h)d,i(1+k1)

z(h)d,i+k1
(
1−b+b

∥z(h)d∥1∑
d∈D ∥z(h)d∥1/|D|

) . 366

This equation replaces the traditional BM25 term 367

frequency with latent activation values and rede- 368

fines document length normalization based on the 369

total activation in latent space. Here, z(h)q,i and 370

z(h)d,i denote the activation values of latent con- 371

cept i in the query and passage, respectively, and 372

D denotes the entire set of documents. 373
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Model MSMARCO dev TREC DL 2019 TREC DL 2020 Efficiency

MRR@10 Recall@1k NDCG@10 NDCG@10 FLOPs Avg. D Len Storage (GB) Vocab Size

(Unsupervised) Sparse Retrieval

BM25 0.183 0.853 0.506 0.478 0.13 39.41 0.67 2,660,824
RM3 0.165 0.870 0.522 0.489 – 39.41 0.67 2,660,824
docT5query 0.277 0.947 0.626 0.607 0.94 756.62 0.98 2,660,824

(Neural) Sparse Retrieval

query2doc 0.214 0.918 0.635 0.582 0.87 39.41 0.67 2,660,824
DeepImpact 0.327 0.947 0.657 0.603 – 71.61 1.40 3,514,102
uniCOIL 0.315 0.924 0.643 0.652 1.03 67.96 1.30 30,522
SPLADEv2 0.340 0.965 0.683 0.671 1.35 91.50 2.60 30,522

CL-SR (Efficient) 0.343 0.954 0.643 0.593 0.11 22.95 0.57 11,709
CL-SR (Max) 0.368 0.969 0.686 0.634 0.74 64.73 1.27 18,679

Table 4: Comparison of retrieval performance and efficiency across unsupervised, neural, and our CL-SR models on
MSMARCO dev, TREC DL 2019, and TREC DL 2020. FLOPs measured by following the settings of (Formal
et al., 2021b). query2doc performance copied from (Wang et al., 2023b). All other metrics measured using Pyserini
(Lin et al., 2021).

As discussed in Section 4.2, high-frequency374

latents tend to contribute less meaningfully to375

information retrieval. To mitigate their influence,376

we apply IDF weighting4.377

378

Implementation and evaluation setup379

We conducted retrieval experiments using SAEs380

trained in section 3.1. Among them, we utilize two381

configurations for comparison: k=32 (Efficient)382

and k=128 (Max). The Efficient model is opti-383

mized for computational efficiency whereas the384

Max model prioritizes retrieval accuracy by allow-385

ing a greater number of latent concepts to be used386

as document identifiers.387

Similar to traditional sparse retrieval methods,388

CL-SR allows for the construction of an inverted in-389

dex in advance, based on indices of latent concepts390

activated from each document in the collection.391

To reduce storage and retrieval overhead, we in-392

dex only a fixed number of highly activated latent393

concepts per passage by setting maximum num-394

ber of allowed latents for each passage rather than395

indexing all the activated latents. Detailed hyperpa-396

rameter settings and results for other SAE variants397

are provided in the Appendix E.398

At retrieval time, only the query embedding is399

projected into the latent space, and its sparse latent400

activations are directly used to compute document401

rankings using the Eq.(5). To assess retrieval402

efficiency, we measure: (1) FLOPs, defined as the403

expected number of floating-point operations per404

query–document pair; (2) the average number of405

activated latents per passage (analogous to number406

4The impact of IDF weighting on CL-SR is provided in
the Appendix D.2

of tokens in term-based retrieval); and (3) index 407

storage size. Specifically, FLOPs are computed 408

as Eq,d

[∑
j∈V p

(q)
j · p(d)j

]
, where V denotes the 409

vocabulary, and pj is the activation probabilities 410

for token j in document d and query q respectively. 411

Following prior work (Formal et al., 2021b) this 412

metric is computed over a set of approximately 413

100k queries, on the MSMARCO collection. 414

For evaluation, we use the same datasets as in 415

Section 3.2 416

417

Baselines 418

We categorize the baseline models into two 419

major groups: Unsupervised Sparse Retrieval and 420

Neural Sparse Retrieval. The Unsupervised group 421

includes classical term frequency–based methods 422

such as BM25, as well as its extensions via query 423

expansion (RM3) (Lavrenko and Croft, 2001) 424

and passage expansion (docT5query) (Nogueira 425

and Lin, 2019). These methods do not involve 426

any neural network at inference time. In contrast, 427

the Neural Sparse Retrieval group employs 428

neural networks—typically PLMs—at inference 429

time to dynamically reweight or expand query 430

and document terms. Specifically, we include 431

query2doc (Wang et al., 2023b), DeepImpact 432

(Mallia et al., 2021), uniCOIL (no expansion) (Lin 433

and Ma, 2021), and SPLADE v2 (max) (Formal 434

et al., 2021a) as representative neural approaches. 435

5.1 Retrieval Effectiveness and Efficiency 436

As shown in Table 4, the CL-SR framework demon- 437

strates retrieval accuracy on par with other neural 438

sparse retrieval baselines while achieving superior 439

computational efficiency. On MSMARCO Dev, 440
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Figure 3: Performance vs FLOPs for CL-SR with vary-
ing number of latent concepts used for each document
when indexing.

SAE-Max achieves the highest performance with441

MRR@10 of 0.368 and Recall@1k of 0.969. SAE-442

Efficient matches the performance of SPLADE v2443

with an MRR@10 of 0.343, but requires only 0.11444

FLOPs per query and 0.57 GB of index storage.445

We believe this efficiency arises from represent-446

ing documents with a compact set of semantically447

abstracted latent concepts, which substantially re-448

duces the cost of query-document matching.449

On TREC-DL 2019/2020, models based on ex-450

act lexical matching are more favourable since451

most queries are long-tailed and entity-centric452

(Wang et al., 2023b). Nevertheless, SAE-Max still453

achieves competitive performance with nDCG@10454

scores of 0.686 (2019) and 0.634 (2020).455

Figure 3 illustrates the trade-off between re-456

trieval effectiveness (MRR@10) and computational457

cost (FLOPs) on the MS MARCO Dev set. The458

performance of CL-SR shows diminishing returns459

as the maximum number of allowed latent concepts460

per passage increases. To balance efficiency and461

effectiveness, we configure CL-SR Efficient and462

CL-SR Max to index up to 24 and 65 latent con-463

cepts per passage, respectively, resulting in average464

document lengths (i.e., number of active latents) of465

22.95 and 64.73.466

5.2 Robustness Analysis467

CL-SR computes query–document similarity not at468

the lexical term level, but in a semantically gener-469

alized latent concept space. Each latent concept is470

a learned representation of baseline model that can471

cluster lexically diverse yet semantically related472

expressions into a single discrete unit. This design473

preserves the semantic expressiveness, allowing474

Models MRR@10 Retrieval Type

BM25 0.0 (-100%) UnsuperviseddocT5query 0.052 (-80.8%)

DeepImpact 0.094 (-71.2%)

Neural SparseSPLADEv2 0.106 (-68.9%)

CL-SR (Efficient) 0.124 (-63.7%)

CL-SR (Max) 0.143 (-61.1%)

SimLM (baseline) 0.185 (-55.0%) Dense

Table 5: MRR@10 performance on MSMARCO Dev
queries where BM25 fails to retrieve the gold passage
within the top-1000 results. Relative performance drops
are shown in parentheses.

CL-SR to remain robust to vocabulary mismatch 475

and semantic mismatch. 476

5.2.1 Robustness on Vocabulary/Semantic 477

Mismatch 478

To empirically verify this robustness, we construct 479

a Mismatch Set from the MS MARCO dataset by 480

selecting only the queries for which BM25 fails to 481

retrieve the gold passage within top-1000 results 482

among 8.84 million candidate passages. This sub- 483

set comprises 988 queries out of the total 6,980 484

Dev queries, representing failure cases where tra- 485

ditional term-based sparse retrieval is likely to fail 486

due to lexical or semantic discrepancies between 487

queries and relevant documents5. 488

Experimental results (Table 5) show that while 489

traditional sparse models exhibit a significant per- 490

formance drop on the Mismatch Set, CL-SR effec- 491

tiveness remains relatively stable. Notably, SAE- 492

Efficient demonstrates stronger robustness com- 493

pared to SPLADEv2, and SAE-Max achieves the 494

highest robustness among sparse models and is on 495

par with its target model (SimLM). These findings 496

suggest that latent concepts operate as a semanti- 497

cally rich and generalizable retrieval unit, capable 498

of bridging vocabulary and semantic gaps without 499

relying on query or document expansion mecha- 500

nisms. 501

5.2.2 Case study 502

To further investigate how CL-SR addresses mis- 503

match scenarios in practice, we conduct a qual- 504

itative analysis on the Mismatch Set. Figure 4 505

provides case-studies that illustrate how CL-SR ef- 506

fectively handles both vocabulary mismatch and 507

semantic mismatch conditions. 508

Vocabulary Mismatch. In Figure 4 left, the 509

query contains the term “womb”, while the corre- 510

5Additional evaluations based on failure cases defined at
top-10 and top-100 are reported in Appendix F.
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Figure 4: Qualitative case study illustrating CL-SR’s ability to handle vocabulary and semantic mismatch.

sponding gold passage uses “uterus”. Moreover,511

the term “rise” in the query is expressed metaphor-512

ically in the passage as “blowing up a balloon”.513

These lexical variations caused BM25 to fail due514

to the absence of exact term overlap. In contrast,515

CL-SR captures mutually activating concepts such516

as latent 14861 (Uterine anatomy and health sig-517

nificance), 11643 (Cervical changes), and 6106518

(Growth and development). These shared activa-519

tions enable CL-SR to retrieve the correct passage520

by aligning abstract concepts, rather than relying521

on lexical overlap or external term expansion.522

Semantic Mismatch. In Figure 4 right, the523

query involves the term “fall”, which can be prag-524

matically inferred to mean “autumn” from the525

query itself. However, BM25 assigns high rele-526

vance score to an unrelated document where “fall”527

appears multiple times but in the physical sense528

(i.e., to drop). CL-SR overcomes this by distribut-529

ing semantic meaning across multiple latent con-530

cepts, such as latent 11251 (Varied meanings of531

“fall”) and 3267 (Seasonal identity), thereby captur-532

ing the intended sense of the query and retrieving533

the correct document.534

These case studies highlight CL-SR’s ability to535

generalize beyond exact lexical term matching by536

leveraging contextual and conceptual representa-537

tions, overcoming structural limitations inherent in538

term-based retrieval frameworks.539

6 Conclusion540

This study proposes a novel interpretability frame-541

work for DPR models by leveraging SAEs to de-542

compose dense embeddings—previously consid-543

ered uninterpretable—into semantically distinct la-544

tent concepts. Through extensive experiments, we545

demonstrate that the latent concepts effectively pre-546

serve the information contained in the original em-547

beddings while functioning as interpretable seman- 548

tic units. Building on this, we empirically validate 549

the explainability of both the DPR models embed- 550

dings and the similarity scoring process. Addi- 551

tionally, we introduced CL-SR, a novel retrieval 552

paradigm that integrates the semantic expressive- 553

ness of dense retrieval with the efficiency and inter- 554

pretability of sparse retrieval. The proposed CL-SR 555

maintains retrieval accuracy comparable to tradi- 556

tional term-based sparse methods while achieving 557

superior efficiency in terms of both computational 558

cost and storage requirements. Notably, it exhibits 559

strong robustness in challenging scenarios involv- 560

ing vocabulary and semantic mismatches. We be- 561

lieve our framework provides a new method to gain 562

insights on dense passage retrieval process that can 563

be used to improve dense retrieval or be leveraged 564

to enhance neural sparse retrievals. 565

Limitations 566

Known issues of SAE Though SAEs are the 567

most popular unsupervised decomposition meth- 568

ods in interpretability, they pose substantial prac- 569

tical and conceptual limitations(Sharkey et al., 570

2025). Notably, features found by SAEs are known 571

to be incomplete(Leask et al., 2025; Templeton 572

et al., 2024; Robert_AIZI, 2024) and dataset depen- 573

dent(Connor Kissane, 2024) and we believe these 574

problems to be present in our SAE as well. Al- 575

though recent studies try to address these issues 576

by modifying SAE architectures, we stick to the 577

widely used BatchTopK SAE and leave application 578

of newer variants to future work. 579

Evaluation of XAI Due to the lack of estab- 580

lished baselines for explaining ranking models, we 581

primarily rely on LLMs for the evaluation of expla- 582

nations by instructing them to perform proxy tasks. 583

Though utilizing LLMs for evaluation is widely 584
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used in SAE literatures, their sensitivity to prompts585

and variability in reasoning limits the reliability of586

the evaluation. To compensate, we conduct a hu-587

man study designed to simulate the ranking model’s588

predictions. This evaluation method requires hu-589

man annotators and is therefore labor-intensive and590

difficult to scale, which limited us to evaluating a591

sampled subset of the data.592

License593

This work utilizes the Pyserini toolkit (Lin et al.,594

2021), an open-source Python framework for repro-595

ducible information retrieval research with sparse596

and dense representations, released under the597

Apache License 2.0.598

We also make use of the MS MARCO datasets,599

provided by Microsoft for non-commercial re-600

search purposes only. The dataset is distributed601

“as is” and subject to Microsoft’s Terms and Condi-602

tions.6603
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A SAE training Details831

We trained our SAE on the MSMARCO corpus and832

its training queries, which were preprocessed into833

input sequences of maximum 144 and 32 tokens834

each for input into our baseline model. Training835

was performed with a learning rate of 5× 10−5, a836

batch size of 4096, and for 100 epochs. Training837

a single SAE model in this setup took about 350838

minutes on a single RTX 3090 GPU.839

All models were trained using the AdamW840

(Loshchilov and Hutter, 2019) optimizer with β1 =841

0.9, β2 = 0.999, and ϵ = 6× 10−10. At each train-842

ing step, the decoder weights are normalized to 1843

following Bricken et al. (2023).844

We follow Gao et al. (2025)’s method for the845

auxiliary loss. The total loss is defined as:846

Ltotal = L+ λLaux, where λ = 0.0625.847

We consider neurons inactive for 20 training steps848

as dead and use top 2*k dead neurons for the dead849

reconstruction.850

B Experimental Details851

In this appendix, we provide details about human852

evaluation, dataset, sampling, LLM prompts of our853

experiments.854

Figure 5: Frequency distribution of SAE latents across
documents.

Dataset R@P vs R@P R@P vs NR@P NR@P vs R@N

TREC DL 2019 104,529 196,110 1,004,471
TREC DL 2020 63,035 84,767 1,099,965

Table 6: Document pair statistics for ranking interpreta-
tion on TREC DL 2019 and 2020.

B.1 Description generation details 855

For BatchTopK SAE, at inference time, latents with 856

activation value larger than mean of top k-th acti- 857

vation over the whole dataset is considered “acti- 858

vated”. For each latent that has been activated at 859

least once over the whole MSMARCO corpus, we 860

provide top 30 most activating MSMARCO pas- 861

sage and instruct GPT4.1-mini to generate descrip- 862

tion for the latent. We use the prompt of Figure 6 863

[b] for the instruction. 864

B.2 Dense Embedding Interpretation Details 865

For each 600 randomly sampled documents of MS- 866

MARCO corpus, we make a set of feature descrip- 867

tions. Then, for each document, we additionally 868

sample 9 random documents to choose our target 869

document from. We instruct 6 graduate students 870

in machine learning (not authors of this paper) to 871

identify the target passage and report accuracy over 872

600 samples. We provide a concrete example of 873

the task in Figure 8 874

B.3 Ranking Interpretation Details 875

We run SimLM (target model of our SAEs) on 876

TREC 2019, 2020 yielding total combination of 877

document pairs as (Table 6). From each set, we 878

randomly sample 100 pairs, resulting in a total of 879

600 pairs. We then distribute 600 total prompts to 6 880

graduate students in machine learning (not authors 881

of this paper) to predict which of the two given 882

documents would have been ranked higher by the 883

target model given latent concepts extracted. We 884
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Model NMSE TREC DL 2019 TREC DL 2020

NDCG@10 Recall@1k Spearman NDCG@10 Recall@1k Spearman

Baseline (TAS-B) – 0.721 0.783 – 0.685 0.800 –
Reconstructed (k=32) 0.2106 0.573 (×0.80) 0.685 (×0.88) 0.865 ±3.4E − 2 0.517 (×0.76) 0.676 (×0.85) 0.861 ±3.6E − 2

Reconstructed (k=48) 0.2005 0.575 (×0.80) 0.690 (×0.88) 0.894 ±2.1E − 2 0.523 (×0.76) 0.700 (×0.88) 0.891 ±2.1E − 2

Reconstructed (k=64) 0.1610 0.593 (×0.82) 0.695 (×0.89) 0.928 ±1.8E − 2 0.565 (×0.83) 0.716 (×0.90) 0.925 ±1.7E − 2

Reconstructed (k=128) 0.1188 0.626 (×0.87) 0.735 (×0.94) 0.934 ±1.4E − 2 0.604 (×0.88) 0.753 (×0.94) 0.932 ±1.4E − 2

Baseline (GTR-T5) – 0.687 0.737 – 0.664 0.721 –
Reconstructed (k=32) 0.1976 0.527 (×0.77) 0.617 (×0.84) 0.907 ±1.4E − 2 0.469 (×0.71) 0.630 (×0.87) 0.908 ±1.2E − 2

Reconstructed (k=48) 0.1675 0.565 (×0.82) 0.631 (×0.86) 0.926 ±1.1E − 2 0.547 (×0.82) 0.650 (×0.90) 0.926 ±9.3E − 3

Reconstructed (k=64) 0.1474 0.592 (×0.86) 0.647 (×0.88) 0.937 ±1.0E − 2 0.568 (×0.85) 0.666 (×0.89) 0.937 ±8.3E − 3

Reconstructed (k=128) 0.1364 0.590 (×0.86) 0.687 (×0.93) 0.959 ±7.3E − 3 0.614 (×0.93) 0.685 (×0.95) 0.958 ±6.7E − 3

Table 7: Quantitative evaluation of the SAE trained on TAS-B and GTR-T5 embeddings with the same settings
(k=32,48,64,128) and training data as used for SimLM, demonstrating its generalization performance across different
DPR models. Stat. sig. difference w/ paired t-test (p < 0.05).

Model TREC-COVID NFCorpus

MRR@10 Recall@1k Spearman MRR@10 Recall@1k Spearman

Baseline (SimLM) 0.828 0.237 – 0.498 0.592 –
Reconstructed (k=32) 0.692 (×0.83) 0.188 (×0.79) 0.887 ±3.3E-2 0.444 (×0.89) 0.567 (×0.96) 0.806 ±2.7E-2

Reconstructed (k=48) 0.704 (×0.85) 0.190 (×0.80) 0.891 ±3.5E-2 0.446 (×0.89) 0.569 (×0.96) 0.809 ±2.9E-2

Reconstructed (k=64) 0.728 (×0.88) 0.193 (×0.82) 0.914 ±3.2E-2 0.457 (×0.92) 0.575 (×0.97) 0.851 ±6.8E-2

Reconstructed (k=128) 0.733 (×0.89) 0.216 (×0.92) 0.930 ±2.8E-2 0.467 (×0.94) 0.571 (×0.96) 0.896 ±2.0E-2

Table 8: Zero-shot evaluation of the SAE trained on MSMARCO SimLM embeddings, showing its generalization
performance on unseen datasets (TREC-COVID and NFCorpus). Stat. sig. difference w/ paired t-test (p < 0.05).

provide a concrete example of the task in Figure 9885

C Generalizability886

To evaluate the generalizability of the Sparse Au-887

toencoder (SAE) beyond the training distribution,888

we conduct two sets of transfer experiments, sum-889

marized in Table 7 and Table 8.890

SAE Generalization Across Baseline DPR Mod-891

els. Table 7 evaluates the robustness of the SAE892

when applied to different dense retrievers. Keeping893

the training settings and MSMARCO data fixed,894

we replace the SimLM encoder with two off-the-895

shelf DPR variants—TAS-B(Hofstätter et al., 2021)896

and GTR-T5(Ni et al., 2022)—and retrain the SAE.897

This allows us to test whether the proposed frame-898

work is model-agnostic.899

SAE Transfer to Unseen Datasets. In Table 8, We900

assess whether our SAE trained on MSMARCO901

passage embeddings from the SimLM model re-902

tains effectiveness on unseen datasets. Since com-903

puting Spearman’s correlation over the full ranking904

is costly, we restrict the evaluation to datasets of905

manageable size: TREC-COVID (50 queries, 171k906

passages) and NFCorpus (323 queries, 3.6k pas-907

sages).908

D Impact of IDF Weighting 909

Figure 5 shows that the SAE(k=32) latents follow 910

a heavy-tail distribution across documents: highly 911

frequent latent concepts are more abstract (and less 912

informative), whereas low-frequency latent con- 913

cepts capture specific semantics. 914

D.1 Interpretability Case Study 915

Figure 7 illustrates a case study on an MSMARCO 916

passage describing cost-of-living and inflation 917

benchmarks in the 1960s, showing a subset of la- 918

tent concepts extracted from the passage’s dense 919

embedding. When no IDF weighting is applied 920

(W/o IDF), high-frequency, semantically abstract 921

latents—e.g. latent 8033 (“Definitions and con- 922

cept distinctions in text”)—dominate the activation 923

ranking and obscure more discriminative features. 924

After applying IDF weighting (W/ IDF), these com- 925

mon latents are weakened and truly informative 926

concepts emerge: latent 8983 (“Historical financial 927

and social benchmarks circa 1960”) rises to the top, 928

and latents 21047 (“Income-related financial and 929

economic concepts”) and 20216 (“1960s–70s cul- 930

tural and fashion evolution”) receive substantially 931

higher activation ranks compared to the unweighted 932

case, thereby enhancing the interpretability of the 933

embedding. 934
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w/ IDF w/o IDF(Dot-product)

TREC-DL 2019 & 2020 NDCG@10

CL-SRefficient 0.643 / 0.593 0.530(-15.61%) / 0.494(-17.94%)

CL-SRmax 0.686 / 0.634 0.587(-13.29%) / 0.562(-10.94%)

MSMARCO Dev MRR@10 & Recall@1k

CL-SRefficient 0.343 / 0.954 0.274(-19.65%) / 0.908(-4.52%)

CL-SRmax 0.368 / 0.969 0.316(-14.13%) / 0.934(-3.61%)

Table 9: Retrieval performance comparison between
IDF-weighted activations and without IDF (Dot-
product) activations. Relative performance drops are
shown in parentheses.

# of Latents MSMARCO Dev TREC DL 2019 TREC DL 2020 Hyperparameters
MRR@10 NDCG@10 NDCG@10 (k1, b, k2)

32 0.343 0.643 0.594 0.6, 1.75, 2.5
48 0.353 0.646 0.621 0.6, 1.25, 2.0
64 0.359 0.662 0.603 0.4, 0.75, 2.5
128 0.368 0.686 0.634 0.2, 3.0, 0.5

Table 10: Performance of CL-SR with varying numbers
of latent concepts on MSMARCO Dev and TREC-DL
(Recall@1k column omitted).

D.2 CL-SR Performance935

To quantify the effect of applying Inverse Doc-936

ument Frequency (IDF) to latent activations, we937

compare two scoring variants:938

• w/ IDF: activations are scaled by their IDF939

(Eq. 5), and940

• w/o IDF (Dot-product): raw activation values941

are used without any weighting.942

Table 9 reports the relative performance drop of the943

dot-product variant (shown in gray) compared to944

CL-SR. The results show that applying IDF weight-945

ing consistently improves retrieval performance by946

reducing the influence of overly frequent latents.947

E Impact of Latent Count on CL-SR948

Performance949

We study how the number of latent concepts k950

affects both effectiveness and hyperparameter set-951

tings of Concept-Level Sparse Retrieval (CL-SR).952

We vary k over {32, 48, 64, 128}, tuning the BM25-953

style parameters (k1, b, k2) on the MSMARCO954

Dev set for each configuration.955

Table 10 reports MRR@10 and Recall@1k on956

MSMARCO Dev, as well as NDCG@10 on TREC-957

DL 2019/2020. As k increases from 32 to 128,958

we observe a steady improvement in all metrics:959

MRR@10 rises from 0.343 to 0.368, Recall@1k960

from 0.954 to 0.969, and NDCG@10 on TREC-DL961

Models Failures@10 Failures@100

BM25 0.0 (-100%) 0.0 (-100%)

docT5query 0.129 (-52.4%) 0.08 (-70.5%)

DeepImpact 0.192 (-41.2%) 0.123 (-62.4%)

SPLADE-Max 0.218 (-35.8%) 0.149 (-56.1%)

CL-SR (Efficient) 0.226 (-33.9%) 0.163 (-52.3%)

CL-SR (Max) 0.248 (-32.6%) 0.185 (-49.7%)

Table 11: MRR@10 performance on MSMARCO Dev
queries where BM25 fails to retrieve the gold passage
within the top-K candidates. Relative performance
drops are shown in parentheses.

from 0.643/0.593 to 0.686/0.634. These gains con- 962

firm that the number of latents used for reconstruc- 963

tion increases, the original embedding information 964

can be recovered more faithfully. 965

F Robustness Test on Mismatch Set 966

To complement the main analysis based on top- 967

1000 failures, we additionally evaluate retrieval 968

performance on subsets where BM25 fails to re- 969

trieve the gold passage at top-10 (4.3k queries) 970

and top-100 (2.3k queries) on MSMARCO DEV 971

queries. Table 11 reports the results. We observe 972

that CL-SR (Efficient) and CL-SR (Max) consis- 973

tently exhibit substantially smaller performance 974

drops. 975
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Prompt Template

You are an expert linguist analyzing pieces
of documents. Below, you will see a set of
documents that has some common features, but
one of them is an intruder (it does not have
that common feature in it).

Your task is to identify the intruder document
and explain why it does not fit.

The last line of your response must
be the formatted response, using
"[intruder]:Document#"

<\nDocument{i} : {passage}>

Which document is the intruder, and why?

[a] Prompt template for latent intrusion test.

Prompt Template

You are a meticulous AI researcher conducting
an important investigation into patterns found
in language. Your task is to analyze text
and provide an interpretation that thoroughly
encapsulates possible patterns found in it.

Guidelines:
You will be given a list of text examples on
which a certain common pattern might be present.
How important each text is for the pattern is
listed after each text.

- Try to produce a concise final description.
Simply describe the text latents that are
common in the examples, and what patterns you
found.
- If the examples are uninformative, you don’t
need to mention them. Don’t focus on giving
examples of important tokens, but try to
summarize the patterns found in the examples.
- Based on the found patterns, summarize your
interpretation in 1–8 words.
- Do not make lists of possible interpretations.
Keep your interpretations short and concise.
- The last line of your response must
be the formatted interpretation, using
[interpretation]:

<Example{i}: {passage} Activation: {act}>

[b] Prompt template for generating
natural-language descriptions of each latent

concept.

Figure 6: LLM prompt templates for our two tasks: (a)
latent intrusion test and (b) description generation.
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Figure 7: Impact of IDF reweighting on an MSMARCO passage—suppressing abstract latents (8033, 3486) and
elevating content-specific latents (8983, 21047, 20216).

Figure 8: Example of human evaluation for dense embeddding interpretability. The left column lists the top-activated
latent concepts extracted from a single document, along with their descriptions and activation scores. The right
column shows the candidate documents. List of documents are truncated in this figure.
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Figure 9: Example of human evaluation for ranking interpretability. The first column shows the query and its
extracted latent features, while the second and third columns list latent features extracted from two candidate
documents. Features activated by both the query and each document are highlighted. List of features are truncated
in this figure.
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