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ABSTRACT

Aligning to human preferences and/or intentions is an important requirement for
contemporary foundation models. To ensure alignment, popular approaches such
as reinforcement learning with human feedback (RLHF) break down the task into
three stages: (i) a model is computed with supervised fine-tuning (SFT) based
upon large demonstrations data, (ii) a reward model (RM) is estimated based upon
human feedback data, and (iii) reinforcement learning (RL) is used to further re-
fine the SFT model by optimizing the estimated reward model. Demonstrations
and human feedback data reflect human user preferences in different ways. As
a result, the reward model estimate obtained from only human feedback data is
likely not as accurate as a reward model estimate obtained from both demonstra-
tion and human feedback data. A policy model that optimizes the reward model
estimate obtained from both demonstration and human feedback data will likely
exhibit better alignment performance. We introduce a tractable algorithm for find-
ing the reward and policy models and provide a finite-time performance guaran-
tee. Additionally, we demonstrate the efficiency of the proposed solution with
extensive experiments including alignment problems in LLMs and robotic con-
trol problems in MuJoCo. We observe that the proposed solutions outperform the
existing alignment algorithm by large margins, especially when the amounts of
demonstration and preference data are unbalanced.

1 INTRODUCTION

As ChatGPT has taken the world by storm, it is clear that AI systems will soon become ubiquitous
in our lives. For instance, Large Language Models (LLMs) have been used to solve hard problems
including video gaming (Berner et al., 2019; Mnih et al., 2015), autonomous control (Bellemare
et al., 2020), and robotic manipulation (Kalashnikov et al., 2018; Kober & Peters, 2008). In this
context, the notion of alignment plays an increasingly important role in the design and training of
AI systems. Loosely speaking, alignment refers to the performance guarantee that the AI system
will generate outcomes that are intended or preferred by the human user without undesirable side
effects or behaviors such as deception (Park et al., 2023) or manipulation (Perez et al., 2022). As
human user intentions or preferences may vary under specific contexts, it is critical that the AI
system adapts to evolving user preferences and/or intentions (Leike et al., 2018).

The alignment problem is a learning problem with (at least) three types of input data: the demon-
stration data (consists of prompts and human-generated continuations), the preference data (con-
sists of prompts and pairs of human-ranked responses), as well as prompts without any responses.
Moreover, the process of aligning an LLM model is typically undertaken in successive stages. For
example, the well-known RLHF approach adopted by Ouyang et al. (2022) starts with a supervised
fine-tuning model (SFT) followed by reward model (RM) estimation based upon human-labeled
preference data. The process closes with a final alignment stage in which reinforcement learning
(RL) is used to optimize the estimated reward model. Similar strategies have been used in other
related works such as Rafailov et al. (2023); Li et al. (2023); Zhu et al. (2023); Liu et al. (2023). The
approach to alignment based on successive stages may facilitate computation, but it is at the expense
of inefficient exploitation of data. To illustrate, consider the three-stage RLHF approach proposed in
Ouyang et al. (2022), in the extreme case where the amount of high-quality preference data is quite
limited, the reward model trained cannot adequately reflect the preferences of the human, which
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may lead to unsatisfactory performance in the RL stage. Further, the reward model estimate ob-
tained from only the preference data fails to exploit the information about human users’ preferences
that are implicit in demonstration data. It is therefore reasonable to expect that a policy model that is
fine-tuned with the reward model estimate obtained from both demonstration and human feedback
may exhibit better alignment performance.

An alternative to the successive approach to alignment consists of jointly training the reward and
policy models by leveraging demonstration and preference data. In contrast to the successive ap-
proach adopted in most of the current alignment approaches, the joint approach to reward and policy
learning makes use of all available data, hence mitigating the risk of optimizing an inaccurate reward
model. However, a joint approach to learning reward and policy models may improve alignment at
the expense of potentially significant additional computational effort.

Contribution. We introduce an algorithm jointly learning reward and policy models named Align-
ment with Integrated Human Feedback (AIHF) with a finite-time performance guarantee. This ap-
proach leverages recent advances in Inverse Reinforcement Learning (IRL) (Arora & Doshi, 2021;
Zeng et al., 2022b), stochastic choice theory (Blavatskyy & Pogrebna, 2010) and bi-level optimiza-
tion (Hong et al., 2020; Ji et al., 2021; Khanduri et al., 2021). The proposed formulation integrates
SFT, RM, and RL into a single stage, so that reward modeling and policy optimization can fully
leverage all the available human feedback data. More specifically, in the proposed algorithm, the
policy is updated to improve alignment with the current reward model estimate and the reward
model is updated to improve the fit to demonstration and human feedback data. As a result, upon
convergence, the resulting reward and policy models are consistent in the sense that (i) the policy
model is optimal with respect to the reward model and (ii) the reward model maximizes the fit to
both demonstration and human feedback data. Several existing alignment schemes, such as RLHF
(Ouyang et al., 2022) and DPO (Rafailov et al., 2023) and some of their extensions can be seen
as particular instances of the proposed formulation. We provide ample empirical evidence that the
proposed AIHF solution outperforms the existing alignment algorithms by large margins, especially
when the data is unbalanced, where the quality and/or quantity of one data category is worse/smaller
than that of the other.

2 PRELIMINARIES AND RELATED WORK

2.1 NOTATION

The Finite-Horizon MDP Model. A Markov decision process (MDP) is the tuple (S,A, P, ρ, r, γ),
wherein S denotes the state space, A denotes the action space, P : S × A × S → [0, 1] denotes
the transition probabilities, ρ(·) is the initial state distribution, r : S × A → R denotes the reward
function and γ ∈ (0, 1) denotes the discount factor. For every st ∈ S , a randomized policy π(·|st)
is a probability distribution in ∆|A|, the unit simplex in R|A|. Define τ := {(st, at)}Tt=1 as a
(finite horizon T ) trajectory of state and action pairs. Let HT ⊂

∏T
t=1

(
S × A

)
denote all feasible

state/action sequence of length T .
MDP Model of LLM. The generation of text by a language model can be seen as sampling from
policies in an MDP model. Specifically, each state st = (x, y1:t−1) includes the prompt x and all
response tokens produced up to that point y1:t−1. Each action at = yt represents a token from
the vocabulary. The transition kernel P is deterministic, i.e. given tokens st = (x, y1:t−1) and
at = yt, the environment will transition to st+1 = (x, y1:t). An LLM can be seen as a policy
π(·|st) so that a response of length T > 0 to prompt x is obtained with probability:π(y1:T |x) :=∏T

i=1 π(yi|x, y1:i−1)

Human Feedback Data. Let τ := (y1:T , x) denote a finite text produced in response to prompt x.
For a pair of sequences (τl, τw) (which we assume of the same length T for ease of exposition) we
write τl ≺ τw to indicate the sequence τw is preferred over the sequence τl. Following the Bradley-
Terry-Luce (BTL) model (Bradley & Terry, 1952), the distribution of preferences over pairs (τl, τw)
can be modeled as follows:

P
(
τw ≻ τl

)
=

expR(τw; θ)

expR(τw; θ) + expR(τl; θ)
= σ

(
R(τw; θ)−R(τl; θ)

)
(1)

where σ is the sigmoid function and R(τ ; θ) :=
∑T

t≥1 γ
tr(st, at; θ) and r(st, at; θ) is a reward

model parametrized by θ ∈ Rd.
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Figure 1: Comparison of the RLHF (left) with the proposed AIHF (right).

2.2 THE RLHF PIPELINE

RLHF is a popular technique for fine-tuning AI systems to align with human preferences and val-
ues. The RLHF approach proposed in Stiennon et al. (2020); Ouyang et al. (2022) consists of the
following three-stage: 1) the supervised fine-tuning (SFT) stage, where the demonstration data is
used to fine-tune the model in a supervised manner; 2) the reward modeling (RM) stage, where the
preference data is used to train a reward model; 3) the reinforcement learning (RL) stage, where
the SFT model is further fine-tuned by running RL using the trained reward model. Specifically, the
RLHF pipeline can be formally described as follows:
Supervised Fine-Tuning (SFT): Given a demonstration dataset D consisting of sequences of the
form τ = {(st, at)}t≥0 the goal is the find the policy πSFT(·|st) that maximizes likelihood, i.e.:

πSFT = argmax
π

Eτ∼D

[
log
∏
t≥0

(
π(at|st)

)γt]
(2)

Reward Modeling (RM): Based upon a dataset P of preferences over pairs (τl, τw) the estimation
of a reward learning problem can be formulated as the following Bradley-Terry-Luce (BTL) model
(Bradley & Terry, 1952) (with β > 0 a hyper-parameter):

max
θ∈Rd

ℓRM(θ) := E(τw≻τl)∈P

[
log
(
σ
( 1
β

(
R(τw; θ)−R(τl; θ)

))]
. (3)

Reinforcement Learning (RL): Let θ̂P denote the solution to problem (3). The last stage in the
RLHF development pipeline consists of solving the problem:

πRLHF = argmax
π

Eτ∼π

[∑
t≥0

γt
[
r(st, at; θ̂P)− βDKL

(
π(·|st)∥πSFT(·|st)

)]
(4)

where DKL

(
π(·|st)∥πSFT(·|st)

)
:=
∑

a∈A π(a|st) log π(a|st)
πSFT(a|st) is the Kullback-Leibler (KL) di-

vergence, πSFT is the supervised fine-tuning model. Due to the space limit, we put the rest of the
literature review in the Appendix A.1.

3 ALIGNMENT WITH INTEGRATED HUMAN FEEDBACK (AIHF)
As mentioned before, the reward model obtained in (3) fails to exploit the information about human
users’ preferences that are implicit in demonstration data. As a result, the fine-tuned model obtained
with RLHF may exhibit unsatisfactory alignment performance (this phenomenon will be discussed
more concretely in Sec. 3.4). Below we introduce a new approach to jointly train reward and policy
models by simultaneously leveraging demonstration and human feedback data.

3.1 A META-FORMULATION

Towards developing an approach that can model the entire alignment process with a common
parametrization for both policy and reward models, consider the following meta-formulation, termed
Alignment with Integrated Human Feedback (AIHF):

(AIHF) max
θ

L(θ) := w1L1(πθ) + L2(R(·; θ)) (5a)

s.t. πθ := argmax
π

L3(π;R(·; θ)) (5b)

3
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where θ ∈ Rd is a parameter; L1(πθ) is a measure of fit of the parameterized policy πθ to demon-
stration data and L2(R(·; θ)) is a measure of fit of the parameterized reward model R(·; θ) to the
preference data and L3(π,R(·; θ)) is a measure of performance of policy π with respect to reward
model R(·; θ). w1 ≥ 0 is one balancing coefficient reflecting the relative size of demonstration
versus preference data. Note that in the lower level policy optimization, the optimal policy corre-
sponding to the the reward model R(·; θ) is actually determined by the reward parameter θ, where
we can denote the optimal policy under the the reward model R(·; θ) as π∗

Rθ
:= πθ. Therefore we

simply put πθ since the optimal policy under a certain reward model R(·; θ) is actually determined
by the reward parameters θ.

See Fig. 1 for an illustration of AIHF. The AIHF (5) is a meta-problem that models the alignment
problem. It has two levels: an upper-level problem in which the goal is to find policy and reward
models that jointly maximize a measure of fit to demonstrations and preference datasets; and a lower-
level problem which ensures that the policy model optimizes performance with respect to the reward
model. Its components can be customized to yield specific alignment formulations and algorithms.
Before diving into various customizations, let us discuss the advantages of this formulation.
Generality. One can specialize the loss functions and problem parameters to yield a number of
existing alignment formulations. Such generality implies that algorithms developed for (5) are easily
applicable to different special formulations it covers. For more details see Sec. 3.3.
Joint optimization. The formulation jointly optimizes the reward and the policy. One benefit here is
that it can strengthen the reward model through integrating both demonstrations and pairwise com-
parisons. Compared with the standard RLHF pipeline, through integrating additional data source
such as demonstrations to train the reward model, it can further boost the policy optimization sub-
routine to achieve better alignment performance. See Sec. 4 for a detailed discussion on how the
reward parameter θ is updated by leveraging such demonstration, and see Tab. 4 for the experimental
comparison between the reward model learned by RLHF and by our AIHF (5).
Dataset Integration. Clearly, the reward learning process leverages all the available data, there-
fore, we can expect that a high-quality reward model and its induced optimal policy can still be
obtained even under unfavorable situations where the preference data is not sufficient. See Sec. 5
for experimental evidences.

3.2 SPECIFICATION OF AIHF
In this section, we specify the formulation (5). Let us begin with the choice of L1. It can be directly
instantiated by using one objective similar to (2), which is the likelihood function over the collected
expert demonstrations. Note that we aim to optimize the reward parameter θ to align with human
feedback in (5a), thus the objective of L1 can be specialized as a maximum likelihood function over
expert demonstrations as below:

L1(πθ) := Eτ∼D

[
log
∏
t≥0

(
πθ(at|st)

)γt]
= Eτ∼D

[∑
t≥0

γt log πθ(at|st)
]
. (6)

Here πθ optimizes the measure of performance L3(π;R(·; θ)) for a reward model R(·; θ) as:

L3(π;R(·; θ)) := Es0∼ρ,τ∼π

[
R(τ ; θ)− β

∑
t≥0

γtDKL

(
π(·|st)∥π0(·|st)

)]
(7)

where π0 is some initial policy and β > 0 is temperature parameter.

Next, we specify L2. To ensure internal model consistency, we identify the likelihood function for
preference data so it is in accordance with the preferences implied by the reward model R(·; θ) used
in the definitions of L1 and L3. Thus, the optimal distribution µθ over the set of T -long sequence of
state-action pairs is defined as follows:

µθ := arg max
µ∈∆T

Eτ∼µ

[
R(τ ; θ)− βDKL(µ||µ0)

]
where ∆T denotes the simplex on HT and µ0 is a prior distribution on the trajectories. It can be
shown the solution of the above problem is of the form:

µθ(τ) =
µ0(τ) exp

(
R(τ ; θ)/β

)∑
τ ′∈HT

µ0(τ ′) exp
(
R(τ ′; θ)/β

)) .
4
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With this result, we can now obtain a model for the likelihood that sequence τj is preferred over
τj . By the independence of irrelevant alternatives property (Fudenberg et al., 2015) of the optimal
choice µθ, when the set of feasible choices is reduced from HT to just the the two-tuple {τl, τw},
the likelihood that sequence τw is preferred over τl is given by Pθ(τw ≻ τl) :=

µθ(τw)
µθ(τl)+µθ(τw) . This

motivates the choice of L2(θ) as the following likelihood function:

L2(R(·; θ)) = E(τw≻τl)∈P

[
log

µθ(τw)

µθ(τw) + µθ(τl)

]
= E(τw≻τl)∈P

[
log

µ0(τw) exp
(
R(τw; θ)

)
µ0(τw) exp

(
R(τw; θ)

)
+ µ0(τl) exp

(
R(τl; θ)

)].
With µ0 equal to the uniform distribution on HT , this model is equivalent to the BTL model (3):

LBTL
2 (θ) = ℓRM(θ) = E(τw≻τl)∈P

[
log
(
σ
(
R(τw; θ)−R(τl; θ)

))]
. (8)

3.3 SPECIAL CASES OF AIHF

Next, we discuss how formulation (5) can be specialized to some of the known alignment algorithms.
Specialization to RLHF-Type Approach. First, if we set the coefficient w1 = 0 in (5), we obtain:

max
θ

L2(θ) s.t. πθ := argmax
π

L3(π;R(·; θ)). (9)

Noticed that now the upper- and lower-level problems are completely decomposable, since the
upper-level problem solves for the reward parameterization θ, while the lower-level problem solves
for the policy (for the given reward), yielding two separate problems, which are exactly the RM and
the RL problems in the typical RLHF approach.
Specialization to DPO-Type Approach. Consider the relationship between formulation (5) with
the DPO-type approaches. Let us set the following objective function L1 = ℓSFT and L2 = ℓRM,
and assume that T = 1 for the generation process. Relaxing the constraint (5b) which ensures the
policy is optimal w.r.t. a certain parameterized model, we can obtain a DPO-type formulation:

maxπ L(π) := w1 · EτE∼πE

[
log π(aE|sE)

]
+ E(τj≻τi)∼πP

[
log

(
σ
(
β log

π(aj |sj)
π0(ai|sj) − β log π(ai|si)

π0(aj |si)
))]

.

(10)
The above formulation specializes to Liu et al. (2024), which is a slightly generalized version of
DPO when both demonstration and preference data are used. Setting w1 = 0 reduces to the problem
solved by DPO; see Rafailov et al. (2023, Eq. (2)).
Specialization to Self-Play Approach. Define ℓ(·) as a monotonic and convex loss function, con-
sider setting L1 := w1 ·EτE∈πE ,α∈π(.|sE)ℓ

(
R(τE ; θ)−R(τ ; θ)

)
, and setting L2 and L3 according

to (8) and (7), respectively. Note that the choice of L1 means that given demonstration data, we will
find a policy which generates trajectories that match the rewards of the demonstration data. Again
using DPO type of reformulation, by substituting the reward expression obtained from the optimal
policy (42) to L1 and selecting the σ(·) as ℓ(·), then the AIHF problem in this case becomes:

max
π

L(π) :=w1EτE∼πE,ã∼π(·|s)

[
log

(
σ

(
β log

π(aE|sE)
π0(aE|sE)

− β log
π(ã|sE)
π0(ã|sE)

))]
+ E(τj≻τi)∼πP

[
log

(
σ

(
β log

π(aj |sj)
π0(aj |sj)

− β log
π(ai|si)
π0(ai|si)

))]
. (11)

Note that the first part of the above formulation is similar to what has been proposed in SPIN (Chen
et al., 2024), which only utilizes the SFT data.

3.4 WHY AIHF CAN OUTPERFORM TWO-STAGE ALIGNMENT APPROACHES?
To understand the difference between the proposed approach and the successive stages approach
of the standard alignment pipeline, let us consider the a static setting with action set is A :=
{τ1, τ2, · · · τN}, reward function R(·) : A 7→ R, and demonstration D and preference dataset P .
In what follows, we compare the optimal solutions for policies obtained by different alignment ap-
proaches. Due to space limitation, all derivation in this section is relegated to Appendix A.3.
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Policy with Demonstration Data. It can be easily shown that when only the demonstration data D is
available, the probability of generating i-th data equals to its empirical probability, i.e., πSFT(τi) =
#{τi in D}

|D| . Assume that such a policy is parameterized by an implicit reward function RD, using the

following softmax choice model where τi ∈ A is selected with probability π∗
i (R) = exp(Ri/β)∑N

j=1 exp(Rj/β)

where Ri := R(τi). Assuming a reference value R̂D(τ1) = R̄1, then the optimal rewards satisfies
(See Sec. A.3.1):

#{τi ∈ D}
|D|

= π∗
i (R̂D) =

exp(R̂D(τi)/β)∑N
j=1 exp(R̂D(τj)/β)

i ∈ {2, . . . , N}. (12)

This implicit reward will be used shortly to characterize the RLHF policy.
Policy with Preference Only Data. Next, it can be shown that when only the preference data P is
available, the reward estimation problem is defined as:

R̂P = argmax
R

ℓRM (R) := E(τi≻τj)∼P

[
log

π∗
i (R)

π∗
i (R) + π∗

j (R)

]
. (13)

Again with a fixed reference value R̂P(τ1) = R̄1, the solution is (see Sec. A.3.1):

π∗
i (R̂P) =

∑
j:j ̸=i |Pi≻j |∑

j:j ̸=i |Pi,j |ρ−(i,j)(π∗(R̂P))
(14)

where |Pi≻j | := #{τi ≻ τj in P} and |Pi,j | := |Pi≻j | + |Pj≻i| and ρ−(i,j)(π) :=
(
1 −∑

k∈A\{i,j} πk

)−1

is the expected number of times an action other than τi or τj is selected when
sampling actions from π infinitely many times.
RLHF Policy. Based on the above results, in Sec. A.3.2 we show that the RLHF approach has the
optimal policy πRLHF(τi) = π∗

i

(
R̂D + R̂P

)
. That is, the RLHF policy can be seen as the softmax

policy for the sum of reward estimators obtained from demonstrations and preferences separately.
AIHF Policy. Finally, we also find that the AIHF policy is of the form:

πAIHF(τi) =
#{τi in D}+

∑
j ̸=i |Pi≻j |

|D|+
∑

j ̸=i |Pi,j |ρ−(i,j)

(
π∗(R̂AIHF)

) . (15)

Discussion. Let us summarize our findings. First, πRLHF takes the form of softmax of the sum of
two rewards, one learned from the SFT stage one learned from reward training stage provides some
interesting insight to this popular approach. Second, πAIHF is more robust than πRLHF. To see
this, suppose that |D| ≫ |P|, i.e. there is more demonstration than preference data. In this case,
the policy estimator in (15) will be largely defined by the demonstration data (which is reasonable)
whereas the RLHF policy can be noisy since it (soft) maximizes the sum of two reward estimators:
one that is more accurate (i.e. the one based on demonstrations, R̂D) and one that is less accurate
(i.e. the one based on preferences R̂P ). A similar observation can be made when |D| ≪ |P|; see
Sec. A.3.2 for more details. Third, πAIHF can have less variance as compared with πRLHF. Indeed,
πAIHF takes a form of a weighted average of the policies estimated separately with demonstration
and preference data, as by using (12) and (14), we can re-write (15) as:

π∗
i (R̂

AIHF) = |D|
|D|+

∑
j ̸=i |Pi,j |ρ−(i,j)

(
π∗(R̂AIHF)

)π∗
i (R̂D) +

∑
j ̸=i |Pi,j |ρ−(i,j)

(
π∗(R̂P)

)
|D|+

∑
j ̸=i |Pi,j |ρ−(i,j)

(
π∗(R̂AIHF)

)π∗
i (R̂P)

Such averaging entails reduced variance. We also include simple numerical examples in the Ap-
pendix A.3.3 to further illustrate this point.

4 PROPOSED ALGORITHM FOR AIHF TRAINING

We are now ready to design algorithms for the proposed AIHF formulation (5). To begin with,
first note that (5) takes a hierarchical form, and it belongs to the class of problem named bi-level
optimization, first developed in the 70s (Fiacco & McCormick, 1990), and recently found many

6
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applications in machine learning (Wang et al., 2021; Liu et al., 2021; 2022). Generically speaking,
bi-level problems are not easy to optimize; more specifically, in (5), the upper-level problem (5a)
is a function of both the lower-level optimal solution πθ and the true parameter θ. It follows that a
(stochastic) first-order algorithm for L(θ) involves some (potentially non-trivial) implicit gradient
computation which often involves computing the Hessian matrix for the lower-level objective func-
tion. Fortunately, as we will show shortly, with some special choices of L1, L2, L3, one can design
some simple and very efficient algorithms.

Before we go to details, we note that throughout this section, we assume that we are searching for a
good policy πθ and a reward estimate r(·, ·; θ) to align with human feedback, where the policy πθ is
an optimal solution w.r.t. the certain reward estimate r(·, ·; θ) according to the policy optimization
problem (5b). Due to such optimal policy constraint w.r.t. one explicit reward estimate, we design
an algorithm to solve such a single-stage, bi-level problem which is different from DPO (Rafailov
et al., 2023) that simply optimizes the fixed loss function (10) directly.

On a high level, the proposed algorithm alternates between a policy alignment step (which updates
π with a fixed reward r(·, ·; θ)), and a reward alignment step (which updates θ using a stochastic
gradient, a function of the demonstration and preference data). Next, we study these steps in detail.
Policy Alignment Step. One can adopt the standard approaches such as the well-known proximal
policy optimization (PPO) (Schulman et al., 2017) algorithm to obtain an approximate optimal pol-
icy which solves (7). It is worth noting that, when considering T = 1, our discussion leading to
(42) indicates the optimal policy takes a much simpler form. In this case, it is possible to consider
a simpler method than running PPO to obtain the optimal policy. One alternative way is to use a
baseline estimated reward value to perform variance reduction (Li et al., 2023), thus reducing the
computational complexity.

It is important to note that, the point of the above discussion is that these different choices for solving
the policy alignment problem can be incorporated into our overall approach.
Reward Alignment. In this step, we use a stochastic gradient-type algorithm to optimize L(θ).
Towards this end, first, observe that

∇L(θ) = w1∇L1(πθ) +∇L2(θ). (16)

Clearly, regardless of the choice of L2, ∇L2 is relatively easy to compute because the objective is
directly related to θ since L2(θ) can be regarded as one supervised learning loss and do not involve
the optimal policy πθ. In particular, we have the following expressions:

∇LBTL
2 (θ) = E(τw≻τl)∼πP

[
∇θ log

(
σ
(
R(τw; θ)−R(τl; θ)

))]
. (17a)

On the contrary, the computation of ∇L1(πθ) is more involved, since L1 depends on θ implicitly
through the corresponding optimal policy πθ. Fortunately, the following lemma indicates that this
gradient has a simple and intuitive form as well, and the proof can be found in Appendix A.4.2.
Lemma 4.1 Suppose that L1 takes the form of the objective (6) for reward learning from demon-
strations, and suppose that L3 takes the form (7) with c(·) being the KL-divergence w.r.t. some initial
policy π0. Then we have the following expression:

∇θL1(πθ) = Eτ∼πE,τ ′∼πθ
[∇θ

(
R(τ ; θ)−R(τ ′; θ)

)
] (18)

where πθ is the optimal policy given the reward model parameterized by θ, with the expression (40).

Intuitively, if the current policy πθ has not matched πE yet, then the reward should be improved
by going towards the direction suggested by the expert trajectories, while going away from those
generated by the current policy. Similar to the BTL model, from the gradient expression (18), it is
clear that the optimization is toward the direction of increasing the gap between the reward of the
real samples (demonstrations) and the synthetic ones (model generated continuations).

In practice, a few approximations need to be made to obtain a stochastic gradient of L1. First,
similarly, as before, the precise expectation cannot be obtained because the ground truth policy
πE is unknown. Denote an offline demonstration dataset as DE := {τ}, then one can replace the
expectations Eτ∼πE by Eτ∼DE . Second, in the second expectation in (18), the trajectories τ ′ are
sampled from πθ, the optimal policy for a fixed reward parameterization by θ. This means that the
policy alignment step has to identify the optimal policy πθ first, which, due to limitations such as
computational constraints, and non-linear parameterization, is generally not possible. Instead, we

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Algorithm 1: Alignment with Integrated Human Feedback (AIHF)

Input: Initialize reward parameter θ0 and policy model π0, the stepsize of reward update η. Let P , DE

denote the preference and the demonstration data, respectively.
for Iteration k = 0, 1, . . . ,K − 1 do

Policy Alignment: Optimizing L3 by RL subroutine, e.g. PPO, to obtain one improved policy πk+1

Data Sample I: Sample an expert trajectory τ ∼ DE and agent trajectory from τ ′ ∼ πk+1

Data Sample II: Sample preference pair (τw ≻ τl) ∼ P
Estimating Gradient: Calculate one gradient estimator gk := w1g

k
1 + gk2 of

∇θL(θ) = w1∇θL1(θ) +∇θL2(θ)
Reward Alignment: θk+1 := θk + ηgk

end for

propose to sample from the current policy πk+1 obtained from the previous policy optimization step,
where index k represents the iteration counter. Following the approximation steps mentioned above,
we construct a stochastic estimator gk to approximate the exact gradient ∇L(θk) in (16) as follows:

gk := w1g
k
1 + gk2 :=w1

(
∇θR(τEk , θk)−∇θR(τAk , θk)

)
+
(
1− σ(R(τWk , θk)−R(τLk , θk))

)
×
(
∇θR(τWk , θk)−∇θR(τLk , θk)

)
. (19)

The above two steps are summarized in Algorithm 1. let us remark on the computational complexity
of the proposed algorithm. Note that our algorithm is motivated by a class of popular algorithms in
bi-level optimization, where the upper-level and lower-level problems are updated alternatingly us-
ing stochastic optimization (Hong et al., 2023). We conclude the section by theoretically inspecting
the proposed algorithms.

Theorem 4.1 Suppose Assumptions 1 - 2 hold. Selecting stepsize α := α0

Kσ for the reward update
step (19) where α0 > 0 and σ ∈ (0, 1) are some fixed constants, and K is the total number of
iterations to be run by the algorithm. Then the following result holds:

1

K

K−1∑
k=0

E
[∥∥ log πk+1 − log πθk

∥∥
∞

]
= O(K−1) +O(K−σ) (20a)

1

K

K−1∑
k=0

E
[
∥∇L(θk)∥2

]
= O(K−σ) +O(K−1+σ) +O(K−1) (20b)

where ∥ log πk+1−log πθk∥∞ := maxs∈S,a∈A
∣∣ log πk+1(a|s)−log πθk(a|s)

∣∣. In particular, setting
σ = 1/2, then both quantities in (20a) and (20b) converge with the rate O(K−1/2).

The above theorem shows that Alg. 1 could converge to stationary point if we take a large loop
number K. Note that details and proofs of the result above are delegated to Appendix A.4.

5 EXPERIMENTS

In this section, we provide numerical evaluations of the proposed method (5) (Alg. 1) and its vari-
ants (10) and (11), and comparing them with state-of-the-art methods RLHF (Ouyang et al., 2022),
DPO (Rafailov et al., 2023), IPO (Calandriello et al., 2024) and SPIN (Chen et al., 2024). Our ex-
periments demonstrate the advantages of the proposed methods in the following aspects: (1) Reward
learning from demonstration and preference is the key to improving over standard RLHF. (2) Using
demonstration in reward learning could increase model improvement efficiency (w.r.t. the KL diver-
gence violation) (3) AIHF could reduce the effect of distribution mismatch caused by the sequential
alignment method, thus break the performance limits of the state-of-the-art methods.
Models and datasets. In the first setting, we test Alg. 1 on Anthropic-HH (Bai et al., 2022) dataset1
with (relatively small) Pythia (Biderman et al., 2023) models2 as policy models. Anthropic-HH is
a preference dataset collected from 52B LLMs that provide two continuations based on helpfulness
and harmlessness, and we pick 10k chosen/preferred continuation data to form the demonstration

1Dataset available at https://huggingface.co/datasets/Anthropic/hh-rlhf.
2Models available at https://huggingface.co/EleutherAI.
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0 2000 4000 6000 8000 10000 12000 14000
The Number of Policy Optimization Step

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Av
er

ag
e 

Sc
or

e

RLHF (start from demonstration-sft model)
AIHF (start from demonstration-sft model)
AIHF (start from full-sft model)
SFT on top 10k demonstration
SFT on full dataset

(c) Pythia-2.8B
Figure 2: Experiment results of Pythia-160M/1B/2.8B policy models, with the reward model trained
from Pythia-1.4B. We record the average scores (across three trials) of AIHF and RLHF on the
Anthropic-HH test dataset (See Tab. 5 in Appendix for more comparisons with other algorithms).

dataset, while others serve as preference dataset and RL prompt dataset. For the HH dataset, We
first fine-tune the language models (Pythia-160M/1B/2.8B) through supervised fine-tuning over all
chosen responses from the HH dataset for 1 epoch, we call it full-SFT model and use it as our base
model. Moreover, we also SFT the language model using the selected top 10k chosen responses
and name it as demonstration-SFT model. For each policy model, we use the exact same model
Pythia-1.4B as the reward model.

The other setting we test is on 7B models. We use Ultrafeedback3 as our preference dataset (61.1k
preference data) and Ultrachat200k4 as the demonstration dataset (208k demonstration data), with
mistral-7b-sft-beta 5 (Jiang et al., 2023) as our base model. We use the same mistral-7b-sft-beta
model as the initialization of the reward model.
Evaluation. For the Anthropic-HH dataset, we present the reward evaluated by the PKU-
Alignment/beaver-7b-v3.0-reward model(Ji et al., 2024). In our 7B model experiments, we adopt the
widely recognized HuggingFace Open LLM Leaderboard framework (Beeching et al., 2023). This
evaluation suite measures LLM performance across six tasks: commonsense reasoning (Arc (Clark
et al., 2018), HellaSwag (Zellers et al., 2019), Winogrande (Sakaguchi et al., 2021)), multi-task
language understanding (MMLU (Hendrycks et al., 2020)), mimicking human falsehoods (Truth-
fulQA (Lin et al., 2021)), and math problem-solving (GSM8K (Cobbe et al., 2021)). Additional
implementation details can be found in Appendix A.2.
Results of small model (1B and 2.8B) experiments. We observe that the proposed AIHF per-
forms effectively when initiated from both the demonstration-SFT model and the full-SFT model.
As shown in Fig. 2, utilizing the same data, AIHF algorithm can eventually outperform RLHF irre-
spective of the initial model. Furthermore, according to the numerical results as shown in Fig. 3(a),
we see that the proposed AIHF algorithm has smaller deviation from the base model compared with
the RLHF algorithm. This benefit of the AIHF approach is due to the fact that we incorporate the
maximum likelihood IRL objective for both reward learning and policy learning. In this case, both
reward model and policy model will be trained to align with the demonstrations, which are also used
in the training process of the SFT stage. We also conducted a study on the demonstration/preference
data ratio in Fig. 3(b) and 3(c). We observe that AIHF consistently outperforms RLHF across dif-
ferent demonstration/preference data ratio. Furthermore, we also record the performance of the two
variants, namely AIHF-DPO (10) and Self-Play-AIHF (11), also RLHF, DPO, IPO and SPIN in Tab.
5. Our proposed AIHF still outperforms all these methods in this experiment setting.
Results of large model (7B) experiments. We run AIHF, AIHF-DPO, Self-Play-AIHF along with
other methods on the 7B experiment setting. The results are presented in Fig. 4 (the numbers are
recorded in Tab. 3), where we can see that similar to the 1B setting, AIHF is consistently outper-
forming other methods. Additionally, both AIHF-DPO and Self-Play AIHF effectively outperform
RLHF model (zephyr-7b-beta). The success of AIHF, as well as Self-Play AIHF and AIHF-DPO
further suggests that joint learning from demonstration and preference is indeed beneficial for the
alignment. We also conduct ablation study with different choice of w1 in (10), as shown in Tab. 6,
the improvement of joint learning methods over baseline is robust. Furthermore,We also evaluate
the reward models estimated using different methods (DPO, standard preference learning and AIHF)

3Available at https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_
binarized.

4Available at https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k.
5Available at https://huggingface.co/HuggingFaceH4/mistral-7b-sft-beta.
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Figure 3: Experiment results on Pythia-1B policy models, where the reward model is trained from
Pythia-1.4B models. We record the average scores of AIHF and RLHF on the Anthropic-HH test
dataset, reporting the results across three different trials.
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Figure 4: Performance comparison between AIHF-DPO, Self-Play AIHF training across the six
benchmark datasets (See also Table 3 in the Appendix).

over the widely used RewardBench (Lambert et al., 2024). The results, illustrated in Tab. 4 in Ap-
pendix, show that the reward model trained through the AIHF can achieve significant improvement
(especially on reasoning tasks) compared to both standard BTL reward model in (3) and implicit
reward model in DPO.
Other Results. Due to the page limits, we leave two additional experiments in the appendix: 1)
movie review generation with positive sentiment on IMDb dataset (Maas et al., 2011), 2) experiment
on Robotics control tasks in MuJoCo (Todorov et al., 2012). For the result of MuJoCo Experiment
A.2.1, we observe that even though Behavior Cloning (BC)/SFT could provide a high-performing
initialization, RLHF still fails to improve policy quality in the following RL stage. In the contract,
AIHF can effectively integrate preferences and demonstrations, leading to a more robust reward
function and consequently, a high-quality policy. For the IMDB result (Fig. 6), We show that AIHF
is able to alleviate the distribution mismatch between the generated trajectories by the policy, and
the data that the learned reward model is able to rank.
6 CONCLUSION
In this work, we study the alignment problem when diverse data sources from human feedback are
available. Furthermore, we have developed an algorithmic framework that can integrate both expert
demonstration and pairwise comparison data from human feedback to learn the reward functions
for further guiding policy learning/model fine-tuning in the alignment pipeline. Through extensive
evaluations on robotic control tasks and large language model alignment tasks, we demonstrate that
our proposed method can outperform existing benchmarks on alignment tasks and is able to recover
a better reward model to guide policy learning.

Regarding the limitation, our framework only incorporates expert demonstrations and pairwise com-
parisons for reward learning. In fact, it is promising to extend the information sources from human
feedback/behaviors to further strengthen the reward learning/policy fine-tuning stages. For example,
one can utilize more fine-grained comparisons and demonstrations to train a powerful reward model
(such as token-level and process reward models) in order to support more complicated alignment
tasks and improve the reasoning capability.
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A APPENDIX

A.1 LITERATURE REVIEW

A.1.1 REWARD LEARNING USING DEMONSTRATION DATA

In the RL literature, a line of work referred to as Inverse Reinforcement Learning (IRL) proposes
to jointly learn the reward and policy from expert demonstration data. Specifically, the target is to
find the parameterized reward function r(s, a; θ) (resp. an optimal polity π∗(s, a)) that best explains
(resp. mimics) an expert policy πE given the demonstration data D. For example, the well-known
maximum entropy IRL (MaxEnt-IRL) framework (Ziebart, 2010; Ziebart et al., 2013; Bloem &
Bambos, 2014; Zhou et al., 2017) finds a policy maximizing entropy subject to the expected features
that match the empirical averages in the expert’s observation dataset. However, this approach can
only be used to model linear rewards.

Subsequent works such as Levine et al. (2011); Wulfmeier et al. (2015); Zeng et al. (2022b) further
improve the MaxEnt-IRL method so that nonlinear reward can be used. For example, Zeng et al.
(2022a) proposed a maximum likelihood IRL (ML-IRL) formulation based on the Dynamic Discrete
Choice (DDC) model, and a nonlinear reward function is utilized.

It is also shown that when the reward function is linearly parameterized, then the MaxEnt is the
Lagrangian dual of the ML-IRL problem (Zeng et al., 2022a). On the other hand, it is worth men-
tioning that to our best knowledge, almost all IRL-based methods can only utilize demonstration
data, which can be problematic because a large amount of high-quality demonstration data is typi-
cally hard to obtain. Further, it is well-known that using demonstration only cannot extract precise
human preference, especially in safety-related tasks where the boundaries between permissible and
impermissible actions need to be precisely determined; see, e.g., Fischer et al. (2021) which shows
that insufficient demonstration dataset could lead to high generalization error.

A.1.2 JOINT LEARNING FROM DEMONSTRATION AND PREFERENCE

Combining data from demonstrations and human feedback to achieve alignment has also been stud-
ied in the robotics literature. In Ibarz et al. (2018), the authors first combine two approaches to learn
from human feedback: expert demonstrations and trajectory preferences. The addition of demon-
strations to learning from preferences typically results in substantial performance gains compared
with using either demonstrations or preferences in isolation. In Palan et al. (2019) and Bıyık et al.
(2022), the authors integrate diverse sources of human feedback including demonstrations and pair-
wise comparisons in a Bayesian approach to learn reward functions that are assumed to be linear in
carefully selected features and evaluate their proposed method on robot learning platform. More-
over, their proposed methods need to actively generate preference queries, which are expensive to
collect in practical applications. In contrast, the approach proposed in this paper is not Bayesian and
does not include the requirement that the reward model is linear in pre-selected features.
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A.1.3 OTHER APPROACHES TO ALIGNMENT

Other approaches to alignment include Direct Preference optimization (DPO) (Rafailov et al., 2023)
and Inverse Preference Learning (IPL) (Hejna & Sadigh, 2023) both remove the need for explicit
reward modeling, and they directly extract the policy from preferences. This greatly reduced the
training complexity, but it has been observed that these algorithms can be unstable in the training
process (Azar et al., 2023; Xu et al., 2024). There is also a large number of works that aim to learn
reward functions from rating (Daniel et al., 2014) or ranking (Yuan et al., 2023; Myers et al., 2022).
Hong et al. (2024) proposed a single-stage supervised learning algorithm ORPO that can perform
supervised fine-tuning and preference alignment in one training session without maintaining. How-
ever, all of these works highly rely on high-quality human feedback, which is often more difficult
and expensive to obtain.

A.2 EXPERIMENT SETUP AND ADDITIONAL RESULT

A.2.1 MUJOCO TASKS

In MuJoCo, we consider several robotic control tasks with continuous action space. We evaluate the
performance of our proposed algorithm on aligning robot behaviors with provided demonstrations
and preference data. After the robot training stage, we leverage the ground-truth reward function
from the environment to evaluate the performance.

Data. Following the similar data generation pipeline in Brown et al. (2019), we generate the expert
demonstrations and preference dataset as follows. We first train an expert agent by leveraging the
ground-truth reward function and the popular Soft Actor-Critic (SAC) algorithm Haarnoja et al.
(2018), which is developed to solve policy optimization problems with continuous action space.
During the training process, we save the policy checkpoints and collect 30k samples from each
checkpoint. To achieve precise control of dataset quality, we categorize the data collected into three
different classes: low-, medium-, and high-quality datasets according to the performance of the
checkpoints. Then we combine the low- and medium-quality data as the preference dataset and use
high-quality as demonstration data.
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Figure 5: Top-Left: Hopper Environment; Top-Right: HalfCheetah Environment; Bottom:
Walker2d Environment; AIHF (orange) vs RLHF (blue) vs IPL (purple) (Hejna & Sadigh, 2024);
results are averaged over 3 independent runs. We use 10k demonstrations and 20k preferences.
The RLHF and IPL curve is initialized from a policy pre-trained by BC; the AIHF from a random
policy. The performance is compared against the # of SAC steps performed (for AIHF each policy
alignment performs 5k steps of SAC.)

Results. We show that AIHF is able to integrate (insufficient amount of) demonstration data and
(not-so-high-quality) preference data to generate high-quality policy, and it significantly outperforms
the RLHF and IPL. Note that IPL (Hejna & Sadigh, 2024) is actually the DPO-type algorithm
applied to multi-horizon MDP, therefore it is an ideal baseline for the MuJoCo setting (since it
the underlying problem is a multi-horizon MDP). In Figure 5, We can see that AIHF outperforms
both RLHF and IPL algorithms. We also observe that due to the limited number of demonstration
data, even BC could provide a high-performing initialization, RLHF still fails to improve policy
quality in the following RL stage Ross & Bagnell (2010); Zeng et al. (2022b). Moreover, since the
preference data quality is only of low-to-medium quality, the RL step based on the learned reward
model fails to significantly boost the fine-tuning performance. In contrast, clearly the proposed
AIHF can effectively integrate preferences and demonstrations, leading to a more robust reward
function and consequently, a high-quality policy.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

In SAC, both the policy network and Q network are (64, 64) MLPs with ReLU activation function,
and the step size is set to 3 ∗ 10−3, we parameterize the reward function by a (64, 64) MLPs with
ReLU activation function. For the reward network, we use Adam as the optimizer, and the step size
is set to be 1 ∗ 10−4.

The quality of the preference dataset and demonstration dataset are listed in Tab. 1.

Task
Dataset Non-prefer Data Prefer Data Demonstration Data

Hopper-v2 2345.20± 329.93 3024.63± 40.52 3559.61± 73.12
HalfCheetah-v2 7226.37± 126.88 9434.42± 1315.13 11635.42± 236.51

Walker2d-v2 3952.60± 444.45 5091.71± 291.73 5453.41± 71.07

Table 1: The quality of preference and demonstration.

A.2.2 SENTIMENT-CONTROLLED GENERATION

Dataset Generation: In the IMDb sentiment completion task, we generate the demonstrations and
preference datasets using the following procedure. Initially, we train a Language Model by em-
ploying the ground-truth reward function DISTILBERT-IMDB and the Proximal Policy Optimization
(PPO) algorithm on 30% of the training dataset for IMDb. Throughout the training process, we save
the policy checkpoint every 500 PPO steps. Subsequently, we select an additional 40% of the train-
ing dataset and generate a response for each prompt for each checkpoint. According to the evaluation
score of each generation, we categorize the data collected into different classes: low-, medium-, and
high-quality datasets, then we combine low-quality and medium-quality as preference datasets, and
use high-quality as demonstration datasets.

Training: After acquiring the preference and demonstration datasets, we train the proposed algo-
rithm AIHF and baselines on the remaining 30% of prompts from the training dataset. We evaluate
the performance of each algorithm using the test datasets for IMDb and HH, along with their corre-
sponding ground truth reward functions. For the GPU resources, we use 8× A100 40G for all the
experiments.

Results: Policy Quality. We find that the proposed approach works well when either preference or
demonstration data, or both, are limited. From the 7, we see that by using the same amount of data
(10k preference, 10k demonstration), AIHF-based algorithms achieve faster convergence than their
RLHF and DPO counterparts.

Results: Distribution Mismatch. We show that AIHF is able to alleviate the distribution mismatch
between the generated trajectories by the policy, and the data that the learned reward model is able
to rank. To evaluate the extend of such mismatch, we use the following three steps: (1) use 1k
preference, 1k demonstration to train policy and reward model for RLHF and AIHF ; (2) for a
given set of prompts from test dataset, use RLHF and AIHF to perform generation; (3) use the
trained reward models to rate the generation; (4) compare with the score generated by the ground
truth reward LVWERRA/DISTILBERT-IMDB. Fig. 6 illustrates that the reward score distribution
produced by AIHF aligns closely with that of the ground truth reward, whereas that generated by
RLHF exhibits a poor match. These results show that the reward model learned by AIHF is able to
correctly evaluate the generation produced by the final policy.

Figure 6: Comparison of the distribution of reward score generated by the trained reward models,
and the ground truth reward model. RLHF vs ground truth (left); AIHF vs ground truth (right).
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From Fig.7, our proposed algorithm AIHF could obtain higher rewards than baseline methods in
the IMDb setting for almost all KL values. Although AIHF might get a low score from the ground
truth reward model in the earlier step, AIHF would get a higher reward with more iteration and
optimization steps. This indicates that with the mix of demonstration data and preference data, we
could prevent the policy from known issues of reward hacking, especially when the policy learned
more human-aligned features beyond base models (high KL value). Moreover, AIHF is persistent
in the number of preference data, presenting that AIHF could still gain benefit from the limited
preference data in more optimization steps as long as the demonstration data is high quality enough.
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Figure 7: The frontier of expected reward vs KL to the reference policy in IMDB dataset. fix
the demonstration number to 3k Left: Using 1k preference; Middle: Using 2k preferences; Right:
Using 3k preference

A.2.3 THE RESULT OF 1B AND 2.8B EXPERIMENTS

Additional Results. We show here the distribution of the reward values of the continuation gener-
ated by the reward models trained by AIHF and RLHF. In Fig. 8, we can observe the distribution of
AIHF and RLHF have overlaps in low-quality continuation, however, AIHF can generate more high-
quality continuations compared to RLHF, which shows that joint optimization can more effectively
align the policy model with the demonstration distribution.
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Figure 8: The Reward Distribution of Helpfulness-controlled Generation. Left: Result on
160m model, Right: Results on 1B model, This figure reports the reward distribution of generation
evaluated by PKU-Alignment/beaver-7b-v3.0-reward for AIHF and RLHF.

We record the performance of the two variants, namely AIHF-DPO (10) and Self-Play-AIHF (11),
also RLHF, DPO, IPO and SPIN in Tab. 5. Our proposed AIHF still outperforms all these methods
in this experiment setting.

A.2.4 THE RESULT OF 7B EXPERIMENTS

We utilize DeepSpeed ZeRO-3 (Rajbhandari et al., 2020) to reduce the memory cost, and we use
VLLM (Kwon et al., 2023) for accelerate data generation/inference. We use eight NVIDIA A100-
40G to do the training with a per-device batch size of 1 for 7B model. We train all models with
bfloat16 precision. We set the learning rate to be 5e-7 for the 7B model with the cosine learning rate
scheduler, and the max sequence length is set to be 512.

Our device cannot conduct the implementation of the standard AIHF (5) using PPO. Therefore, we
employed an online DPO approach (Xiong et al., 2024) for the lower-level policy optimization: 1)
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at each policy optimization iteration, we first generate multiple continuations from the current pol-
icy model over the given prompt dataset, 2) then we utilize our estimated explicit reward models
to score each continuation, 3) over each prompt, choose the generated continuation with the high-
est reward score and the one with lowest reward score as a generated preference pair to run DPO
algorithm to fine-tune the policy model. For Self-Play AIHF (11) implementation, we adopt the
same strategy as Chen et al. (2024), at each epoch, we generate samples with picked 50k data and
generate continuation ã ∼ π(·|s) using the current model π, then optimize (11) with the sampled ã.

To evaluate the effectiveness of our approach, we assessed our fine-tuned models on the widely used
HuggingFace Open LLM Leaderboard (Beeching et al., 2023) in Table 2. We also list the metric and
number of shots used for LLM evaluation on each dataset in Table 3. Moreover, in Tab. 4, we also
utilize the Reward-Bench (Lambert et al., 2024) to evaluate the explicit reward models (estimated by
standard preference learning in (3) and AIHF) and the implicit reward model (extracted from DPO).
The implicit reward is calculated by the policy model similar to what the DPO paper Rafailov et al.
(2023) proposed, i.e. r(a|s) := log( π(a|s)

π0(a|s) ), the first explicit reward is estimated by BTL reward
model (3), and second explicit reward is estimated by AIHF. The evaluation results show that AIHF
can outperform the benchmark methods in terms of the performance for both policy models and
reward models. We also conduct ablation study with different choice of w1 in (10), as shown in Tab.
6, the improvement of joint learning methods over baseline is robust.

Dataset Arc Challenge TruthfulQA MC2 Winogrande GSM8K HellaSwag MMLU

Metric acc acc acc strict-match acc_norm acc
Num. of Shots 25 0 5 5 10 5

Table 2: A summarization of the benchmarks we use in this work. We list the metric and number of
shots used for LLM evaluation on each dataset.

Tasks Arc Challenge TruthfulQA MC2 Winogrande GSM8k HellaSwag MMLU Avg

mistral-7b-sft-beta 54.69% 42.96% 77.27% 39.88% 82.23% 59.72% 59.46%
zephyr-7b-beta 59.64% 55.18% 77.82% 33.51% 84.19% 59.76% 61.68%

SPIN 58.45% 43.66% 78.30% 39.50% 83.59% 58.60% 60.35%
DPO 62.80% 53.17% 79.40% 39.20% 85.13% 59.41% 63.19%
IPO 58.02% 48.29% 79.24% 42.91% 83.93% 60.07% 62.08%

AIHF-DPO 61.17% 60.03% 79.00% 39.80% 85.71% 60.02% 64.29%
Self-play AIHF 61.77% 58.29% 78.53% 44.20% 85.53% 58.66% 64.50%

AIHF 63.90% 58.38% 79.24% 40.56% 86.23% 60.18% 64.75%

Table 3: Test performance of AIHF-DPO and Self-Play AIHF based on mistral-7b-sft-beta across
HuggingFace Open LLM Leaderboard datasets.

Reward Model Chat Chat Hard Safety Reasoning Average
DPO Reward Model 37.43% 55.92% 64.14% 47.33% 51.21%
BTL Reward Model 95.11% 56.58% 63.69% 69.22% 71.15%
AIHF Reward Model 94.41% 55.37% 63.98% 76.75% 72.63%

Table 4: Evaluation of Reward Models in Reward-Bench.

A.3 WHY AIHF CAN OUTPERFORM TWO-STAGE ALIGNMENT APPROACHES

In this section, we provide detailed analysis for Sec. 3.4.

A.3.1 SFT AND RLHF POLICY

We revisit the RLHF pipeline in the context of a simple softmax choice model where τi ∈ A is
selected with probability

π∗
i (R) =

exp(Ri/β)∑N
j=1 exp(Rj/β)

. (21)
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Dataset DPO SPIN IPO RLHF AIHF-DPO Self-Play-AIHF AIHF
10k Demonstrations, 5k preferences 0.463± 0.093 0.625± 0.048 0.616± 0.076 0.710± 0.085 0.752± 0.036 0.640± 0.102 1.167± 0.157
10k Demonstrations, 10k preferences 0.474± 0.052 0.625± 0.048 0.650± 0.017 0.896± 0.095 0.798± 0.026 0.674± 0.096 1.190± 0.069

Table 5: Evaluated reward scores of fine-tuned 1B Pythia models in HH dataset, evaluated by PKU-
Alignment/beaver-7b-v3.0-reward.

Tasks Arc Challenge TruthfulQA MC2 Winogrande GSM8k HellaSwag MMLU Avg

AIHF-DPO(w1 = 0.01) 61.86% 57.55% 79.08% 36.61% 85.58% 60.09% 63.46%
AIHF-DPO(w1 = 0.001) 63.25% 58.73% 79.16% 36.84% 85.59% 59.26% 63.80%
AIHF-DPO(w1 = 0.0001) 61.17% 60.03% 79.00% 39.80% 85.71% 60.02% 64.28%

Table 6: Test performance of AIHF-DPO over different choices of the balancing coefficient across
HuggingFace Open LLM Leaderboard datasets.

For simplicity, we have defined Ri := R(τi). Using this policy model, below let us analyze different
policies according to different ways that the rewards are learned.

Supervised Fine-Tuning (SFT): Given a demonstration dataset D the goal is the find the policy
πSFT that maximizes likelihood, i.e.:

πSFT := argmax
π

N∑
ℓ=1

Eτℓ∼D [log π∗
ℓ (R)] , s.t.

N∑
ℓ=1

π∗
ℓ (R) = 1. (22)

Next let us identify the optimal reward and its corresponding policy in this case. First, let us find the
reward function. Write (22) in terms of reward optimization, we have:

R∗ = argmax
R

N∑
ℓ=1

Eτℓ∼D log
exp(Rℓ/β)∑N
j=1 exp(Rj/β)

=: L1(R) (23)

The partial derivative of the objective function w.r.t. a component Ri, i ∈ [1, · · · , N ] is given by:

∂L1(R)

∂Ri
=
∑
ℓ:ℓ ̸=i

Eτℓ∼D

[
− 1

β

exp(Ri/β)∑N
j=1 exp(Rj/β)

]
+ Eτi∼D

[
1

β
− 1

β

exp(Ri/β)∑N
j=1 exp(Rj/β)

]

=
1

β

(
#{τi ∈ D}

|P |
−
∑
ℓ

Eτℓ∈D

[
exp(Ri/β)∑N
j=1 exp(Rj/β)

])
, i ∈ [1 : N ]. (24)

Setting the above partial gradient to zero, we obtain

#{τi ∈ D}
|D|

=
exp(R̂D(τi)/β)∑N
j=1 exp(R̂D(τj)/β)

i ∈ [1 : N ], (25)

where we used R̂D(τi)’s to denote the optimal reward estimated from the set of SFT data D. Then
according to the definition of the policy given earlier, we obtain

π∗
i (R̂D) =

#{τi ∈ D}
|D|

, ∀ i ∈ [1, · · ·N ].

Note that the optimal reward learned from the SFT data R̂D should satisfy the system (25). It turns
out that there is a unique solution to the following system of equations:

#{τi ∈ D}
|D|

=
exp(R̂D(τi)/β)∑N
j=1 exp(R̂D(τj)/β)

i ∈ {2, . . . , N} (26)

with R̂D(τ1) = R̄1 a fixed reference value. A simple argument is provided below. The system (26)
can be re-written as:

log
#{τi ∈ D}

|D|
− log

#{τ1 ∈ D}
|D|

=
1

β

(
R̂D(τi)− R̄1

)
i ∈ {2, . . . , N}
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Hence, rewards are uniquely determined by demonstration data with a fixed reference value
R̂D(τ1) = R̄1.

It is important to note that, despite the fact that in the SFT we may not directly learn a reward
function, the above analysis says that we are implicitly learning a reward R̂D, assuming that the
policy is parameterized as (21). This implicit reward will be used later to analyze the RLHF policy.
Indeed, if we solve the following SFT policy optimization problem directly

max
∑
ℓ

Eτℓ∈D log(πℓ), s.t.
∑
i∈D

πi = 1, (27)

one can easily obtain that the optimal policy is given by π∗
i = #{τi∈D}

|D| , ∀ i ∈ [1, · · ·N ].

Reward Modeling with Preference Data: Now let us analyze the case where the reward is only
learned from a preference dataset. With preference data P := {(τi ≻ τj)}, the BTL model is:

P (τi ≻ τj) = σ
( 1
β

(
R(τi)−R(τj)

)
=

π∗
i (R)

π∗
i (R) + π∗

j (R)
.

The reward estimation problem is defined as:

R̂P = argmax
R

L2(R) :=
∑

ℓ,j:ℓ ̸=j

E(τℓ≻τj)∼P

[
log

π∗
ℓ (R)

π∗
ℓ (R) + π∗

j (R)

]
(28)

=
∑

ℓ,j:ℓ̸=j

E(τℓ≻τj)∼P

[
log

(
exp(Rℓ/β)

exp(Rℓ/β) + exp(Rj/β)

)]
(29)

Take the gradient w.r.t. Ri, we obtain

∂ℓRM (R)

∂Ri
=
∑
j:j ̸=i

E(τi≻τj)

(
1

β
− 1

β

(
exp(Rℓ/β)

exp(Rℓ/β) + exp(Rj/β)

))

+
∑
j:j ̸=i

E(τj≻τi)

[
− 1

β

(
exp(Rℓ/β)

exp(Rℓ/β) + exp(Rj/β)

)]

=
1

β

∑
j:j ̸=i

|Pi≻j |
|P|

(
1−

(
exp(Rℓ/β)

exp(Rℓ/β) + exp(Rj/β)

))

+
1

β

∑
j:j ̸=i

|Pj≻i|
|P|

(
−
(

exp(Rℓ/β)

exp(Rℓ/β) + exp(Rj/β)

))

=
1

β

∑
j:j ̸=i

|Pi≻j |
|P|

− |Pi,j |
|P|

exp(Rℓ/β)

exp(Rℓ/β) + exp(Rj/β)


=

1

β

∑
j:j ̸=i

( |Pi≻j |
|Pi,j |

− π∗
i (R)

π∗
i (R) + π∗

j (R)

) |Pi,j |
|P|

(30)

where in the above derivation we have defined |Pi≻j | := #{τi ≻ τj in P} and |Pi,j | := |Pi≻j | +
|Pj≻i|. Setting the gradient to zero, we obtain∑

j:j ̸=i

( |Pi≻j |
|Pi,j |

− π∗
i (R̂P )

π∗
i (R̂P ) + π∗

j (R̂P )

) |Pi,j |
|P|

= 0. (31)

We shall denote by R̂P as a solution to the above system of equations. The first-order condition (31)
can be written in implicit form as:

π∗
i (R̂P ) =

∑
j:j ̸=i |Pi≻j |∑

j:j ̸=i
|Pij |

π∗
i (R̂P )+π∗

j (R̂P )

=

∑
j:j ̸=i |Pi≻j |∑

j:j ̸=i
|Pij |

1−
∑

ℓ∈A\{i,j} π∗
ℓ (R̂P )

:=

∑
j:j ̸=i |Pi≻j |∑

j:j ̸=i |Pij |ρ−(i,j)(π∗(R̂P ))

(32)
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where we have defined ρ−(i,j)(π) :=
(
1 −

∑
ℓ∈A\{i,j} πℓ

)−1

as the expected number of times an
action other than τi or τj is selected when sampling actions from π infinitely many times.

RLHF Policy. Based on the above two analysis, we are ready to analyze the RLHF policy. The
RLHF policy is defined as follows:

πRLHF = arg max
π∈∆N

Eτi∼π

[
R̂P(τi)

]
− βKL(π||πSFT)

where R̂P is the estimator obtained from preference data, πSFT is the SFT model trained with
demonstration dataset D, and ∆N is the probability simplex.

It can be easily shown that the solution πRLHF is of the form:

πRLHF(τi) =
πSFT(τi) exp

(
1
β R̂P(τi)

)
∑N

j=1 π
SFT(τj) exp

(
1
β R̂P(τj)

)
=

exp
(

1
β R̂D(τi)

)
exp

(
1
β R̂P(τi)

)
∑N

j=1 exp
(

1
β R̂D(τj)

)
exp

(
1
β R̂P(τj)

) (using (26))

=
exp

(
1
β (R̂D(τi) + R̂P(τi))

)∑N
j=1 exp

(
1
β (R̂D(τj) + R̂P(τj))

)
= π∗

i

(
R̂D + R̂P

)
. (33)

A.3.2 THE AIHF POLICY

The AIHF Policy. The proposed AIHF estimation problem is

R̂AIHF = argmax
R

ℓD+P(R) := |D|L1(R) + |P|L2(R) (34)

where L1(R) := Eτi∼D[log π
∗
i (R)] and L2(R) := E(τj≺τi)∼P [log

π∗
i (R)

π∗
i (R)+π∗

j (R) ], and π∗
i (R) is

given by (21).

Similarly as before, taking gradient w.r.t. Ri, and leverage (24) and (30), we obtain

∂ℓD+P(R)

∂Ri
=

#{τi in D}
|D|

|D| − π∗
i (R)|D|+

∑
j:j ̸=i

|Pi≻j | −
∑
j ̸=i

π∗
i (R)

π∗
i (R) + π∗

j (R)
|Pi,j |

 (35)

Setting the above condition to zero, we obtain that the AIHF reward should satisfy the following

#{τi in D}+
∑
j:j ̸=i

|Pi≻j | = π∗
i (R̂

AIHF)
(
|D|+

∑
j:j ̸=i

|Pi,j |
π∗
i (R̂

AIHF) + π∗
j (R̂

AIHF)

)
= π∗

i (R̂
AIHF)

(
|D|+

∑
j:j ̸=i

|Pi,j |ρ−(i,j)

(
π∗(R̂AIHF)

))
Or equivalently,

π∗
i (R̂

AIHF) =
#{τi in D}+

∑
j ̸=i |Pi≻j |

|D|+
∑

j:j ̸=i |Pi,j |ρ−(i,j)

(
π∗(R̂AIHF)

) (36)

The system (36) has a unique solution R̂AIHF with a fixed reference value R̂AIHF(τ1) = R̄1.

Discussion. Now let us compare the RLHF policy (33) and AIHF policy (36). First, observe that
RLHF policy is a function of the sum of two reward functions, one learned from the demonstration
data and one learned from the preference data, while the AIHF policy takes a more complex form.
To have a better understanding about the two policies, let us consider the extreme cases where the
SFT and the preference datasets are unbalanced, where either |D| ≫ |P| or |P| ≫ |D|.
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• Case |D| ≫ |P|. In this case, π∗
i (R̂

AIHF) ≈ #{τi in D}
|D| = π∗

i (R̂D), so the AIHF policy
will ignore the preference dataset, while focusing on the SFT policy; however, for the
RLHF policy, one needs to first separately performs the reward estimation, but in this case
R̂P can be very noisy due to lack of data; Then the RLHF policy will also be noisy since it
will be influenced by the noisy reward function R̂P .

• Case |P| ≫ |D|. In this case, let’s further assume that
∑

j:j ̸=i |Pi≻j | ≫ #{τi in D}, ∀ i,
that is, for each trajectory τi, the number of times it appears in the preference data is much
larger than its appearance in the demonstration data. In this case, it is easy to see that
π∗
i (R̂

AIHF) ≈ π∗
i (R̂P), while the RLHF policy will still be noisy as in the first case.

A.3.3 NUMERICAL EXAMPLES

Example 1: With β = 1 and only two actions τ1 and τ2. Since ρ−(1,2)(π) = ρ−(2,1)(π) = 1, it
follows from equations (26), (32), (36) that:

πAIHF
1 := π∗

1(R̂
AIHF) =

#{τ1 in D}+#{τ2 ≺ τ1 in P}
|D|+ |P|

=
|D|

|D|+ |P|
π∗
1(R̂D) +

|P|
|D|+ |P|

π∗
1(R̂P).

Slightly abusing notations, let π∗
1 := π∗

1(R
∗) where R∗ is the ground-truth reward. It follows that

Var(π∗
1(R̂D)) =

π∗
1 (1−π∗

1 )
|D| , Var(π∗

1(R̂P)) =
π∗
1 (1−π∗

1 )
|P| and

Var(πAIHF
1 ) =

π∗
1(1− π∗

1)

|D|+ |P|
< min{Var(π∗

1(R̂D)),Var(π∗
1(R̂P))}

Hence, the AIHF policy estimate has less variance than either the policy estimated obtained from
only demonstrations or preferences.

To further illustrate, suppose the ground truth is R∗(τ1) = R∗(τ2) and in the dataset there are more
demonstrations than preferences, i.e. |D| ≫ |P|:

#{τ1 in D} = #{τ2 in D} = 50, #{τ1 ≻ τ2 in P} = 6, #{τ2 ≻ τ1 in P} = 4.

With the given data, πSFT
1 = π∗

1(R̂D) =
#{τ1 in D}

|D| = 50
100 and the solution to (32) yields

π∗
1(R̂P) =

exp R̂P(τ1)

exp R̂P(τ1) + exp R̂P(τ2)
=

6

10
.

Hence, πAIHF
1 = 100

10+100π
∗
1(R̂D) +

10
10+100π

∗
1(R̂P) =

56
110 . It follows from (33) that:

πRLHF
1 =

πSFT
1 exp R̂P(τ1)

πSFT
1 exp R̂P(τ1) + πSFT

2 exp r̂P(τ2)

=
exp R̂P(τ1)

exp R̂P(τ1) + exp R̂P(τ2)
=

6

10
.

In this example, the RLHF policy estimator is the furthest away from ground-truth, because it does
not correctly use the information provided by the demonstration data which in this case happens by
chance to be correct πSFT

1 = π∗
1(R̂P) =

1
2 .

As a second example, again suppose the ground truth is R∗(τ1) = R∗(τ2) and in the dataset there
are more preferences than demonstrations, |P| ≫ |D|:

{#τ1 in D} = 6, {#τ2 in D} = 4, {#τ1 ≻ τ2 in P} = {#τ2 ≻ τ1 in P} = 50. (37)

In this case, πSFT
1 = π∗

1(R̂D) =
6
10 and the solution to (32) yields

π∗
1(R̂P) =

exp R̂P(τ1)

exp R̂P(τ1) + exp R̂P(τ2)
=

50

100
.
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It follows from (33) that:

πRLHF
1 =

πSFT
1 exp R̂P(τ1)

πSFT
1 exp R̂P(τ1) + πSFT

2 exp R̂P(τ2)

=
πSFT
1

πSFT
1 + πSFT

2

=
6

10
.

Hence, πAIHF
1 = 10

10+100π
∗
1(R̂D) +

100
10+100π

∗
1(R̂P) = 56

110 . In this example, the RLHF policy
estimator is again farthest from ground-truth, because it does not correctly dismiss the information
provided by the demonstration data which is less informative than preference.

Example 2: Let us use an illustrative example to show that RLHF method will result in signif-
icant data under-utilization when the demonstration coverage is limited. With β = 1, assume
that there are 50 actions, i.e. A = {1, 2, . . . , 50} and each with a ground-truth reward defined

by R∗(τi) = 1
σ
√
2π

e−
( i
50

−µ)2

2σ2 , where µ = 0.5 and σ = 2. Assume we can sample demonstra-
tion and preference from the ground truth reward distribution: demonstrations are sampled from the
multinomial distribution, while preferences are sampled from the BTL model.

In an extreme scenario, let demonstrations only include actions 1 through 45, i.e. D ∩
{45, 46, . . . , 50} = ∅, while preferences have full coverage across all actions. In the subse-
quent experiment, we initially sample 2000 demonstrations using the multinomial distribution π∗

i =
expR∗

i∑j=45
j=1 expR∗

j

, and obtain 200 preferences for each preference pair with P (i ≻ j) =
expR∗

i

expR∗
j+expR∗

i
.

We then calculate the RLHF and AIHF policies as in in (33) and (36) to obtain the result depicted in
Figure 9:
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Figure 9: The optimal policy of RLHF, SFT, AIHF, and Ground-truth distribution. The left region of
the red dotted line is included in the demonstration, while the right region is uncovered. We report
the results with 100 random repeats.

From the result shown in Figure 9, we demonstrate that both SFT and RLHF transfer the weight
from uncovered action to covered actions when demonstration coverage is limited, as indicated by
πSFT (τi) = 0, τi ∈ {45, 46, . . . , 50}. Consequently, the weight of covered actions is significantly
higher than the ground truth. However, this issue does not occur when jointly optimizing the demon-
stration and preference in the AIHF method.

A.4 PROOFS

A.4.1 USEFUL LEMMAS

Assumption 1 (Ergodicity) For any policy π, assume the Markov chain with transition kernel P is
irreducible and aperiodic under policy π. Then there exist constants κ > 0 and ρ ∈ (0, 1) such that

sup
s∈S

∥P(st ∈ ·|s0 = s, π)− µπ(·)∥TV ≤ κρt, ∀ t ≥ 0

where ∥ · ∥TV is the total variation (TV) norm; µπ is the stationary state distribution under π.
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Assumption 1 assumes the Markov chain mixes at a geometric rate. It is a common assumption in
the literature of RL, which holds for any time-homogeneous Markov chain with finite-state space or
any uniformly ergodic Markov chain with general-state space.

Assumption 2 For any s ∈ S, a ∈ A and any reward parameter θ, the following holds:∥∥∇θr(s, a; θ)
∥∥ ≤ Lr, (38a)∥∥∇θr(s, a; θ1)−∇θr(s, a; θ2)
∥∥ ≤ Lg∥θ1 − θ2∥ (38b)

where Lr and Lg are positive constants.

2, we next provide the following Lipschitz properties:

Lemma A.1 Suppose Assumptions 1 - 2 hold. For any reward parameter θ1 and θ2, the following
results hold:

|Qsoft
rθ1 ,πθ1

(s, a)−Qsoft
rθ2 ,πθ2

(s, a)| ≤ Lq∥θ1 − θ2∥, ∀s ∈ S, a ∈ A (39a)

∥∇L(θ1)−∇L(θ2)∥ ≤ Lc∥θ1 − θ2∥ (39b)

where Qsoft
rθ,πθ

(·, ·) denotes the soft Q-function under the reward function r(·, ·; θ) and the policy πθ.
The positive constants Lq and Lc are defined in Appendix A.4.3.

A.4.2 PROOF OF LEMMA 4.1

Before we proceed to the proof of Lemma 4.1, we have the following remark.

Remark: The KL-regularized MDP problem described by (5b) and (7) has a closed-form solution:

πθ(a|s) =
π0(a|s) exp(Qθ(s, a)/β)∑
ã π

0(ã|s) exp(Qθ(s, a)/β)
, (40)

where the corresponding value function Vθ and the Q-function Qθ are defined as below:

Vθ(s) := Eτ∼πθ

[
R(τ ; θ)− β

∞∑
t=0

γtDKL

(
π(·|st)∥π0(·|st)

)∣∣∣∣s0 = s

]
(41a)

Qθ(s, a) := r(s, a; θ) + γEs′∼P (·|s,a)
[
Vθ(s

′)
]
. (41b)

Further, assuming that T = 1, i.e., τ = (s0, a0), and considering the LLM alignment problem as
a sequence-level training problem (this is a popular simplification in language models, see, e.g.,
Rafailov et al. (2023)), the closed-form expression of πθ in (40) can be reduced to:

πθ(a|s) =
π0(a|s) exp( 1β r(s, a; θ))∑

a∈A

(
π0(a|s) exp( 1β r(s, a; θ))

) . (42)

Here, under a reward parameter θ and the corresponding optimal policy πθ of (40).

Moreover, under a fixed reward parameter θ, we have defined the optimal policy πθ as below:

πθ := argmax
π

EτA∼π

[ ∞∑
t=0

γt

(
r(st, at; θ)− βDKL

(
π(·|st)||π0(·|st)

))]
.

According to Uehara et al. (2023), the optimal policy πθ of (7) has the closed form expression as
below:

πθ(a|s) =
π0(a|s) exp

(Qθ(s,a;θ)
β

)∑
ã∈A π0(ã|s) exp

(Qθ(s,ã;θ)
β

) , ∀s ∈ S, a ∈ A. (43)

Based on the closed form of πθ, we can also obtain the closed form of Vθ as following:

Vθ(s) := β log
(∑

a∈A
π0(a|s) exp

(Qθ(s, a)

β

))
. (44)
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Then we can re-write the demonstration loss L1(θ) as below:

L1(θ) = EτE∼πE

[ ∞∑
t=0

γt log πθ(at|st)
]

= EτE∼πE

[ ∞∑
t=0

γt log

(
π0(at|st) exp

(Qθ(st,at)
β

)∑
ã∈A π0(ã|st) exp

(Qθ(st,ã)
β

))]

= EτE∼πE

[ ∞∑
t=0

γt

(
log
(
π0(at|st) exp

(Qθ(st, at)

β

))
− log

(∑
ã∈A

π0(ã|st) exp
(Qθ(st, ã)

β

)))]

= EτE∼πE

[ ∞∑
t=0

γt

(
log π0(at|st) +

Qθ(st, at)

β
− log

(∑
ã∈A

π0(ã|st) exp
(Qθ(st, ã)

β

)))]

=
1

β
EτE∼πE

[ ∞∑
t=0

γt

(
β log π0(at|st) +Qθ(st, at)− β log

(∑
ã∈A

π0(ã|st) exp
(Qθ(st, ã)

β

)))]

=
1

β
EτE∼πE

[ ∞∑
t=0

γt

(
β log π0(at|st) +Qθ(st, at)− Vθ(st)

)]
(45)

Then we can take gradient of L1(θ) w.r.t. the reward parameter θ, we have the following expression:

∇L1(θ) :=
1

β
EτE∼πE

[ ∞∑
t=0

γt

(
∇θβ log π0(at|st) +∇θQθ(st, at)−∇θVθ(st)

)]

=
1

β
EτE∼πE

[ ∞∑
t=0

γt

(
∇θQθ(st, at)−∇θVθ(st)

)]

=
1

β
EτE∼πE

[ ∞∑
t=0

γt

(
∇θr(st, at; θ) + γ∇θVθ(st+1)−∇θVθ(st)

)]

=
1

β
EτE∼πE

[ ∞∑
t=0

γt∇θr(st, at; θ)

]
− 1

β
Es0∼ρ

[
∇θVθ(s0)

]
(46)

In order to calculate the expression of ∇L1(θ), we further derive the expression of ∇θVθ(s0):

∇θVθ(s0) = ∇θ

(
β log

(∑
a∈A

π0(a|s0) exp
(Qθ(s0, a)

β

)))

= β
∑
a∈A

π0(a|s0) exp
(Qθ(s0,a)

β

)∑
a∈A π0(a|s0) exp

(Qθ(s0,a)
β

)∇θQθ(s, a)

β

= Ea∼πθ(·|s0)

[
∇θQθ(s0, a)

]
= Ea0∼πθ(·|s0),s1∼P (·|s0,a0)

[
∇θr(s0, a0; θ) + γ∇θVθ(s1)

]
= EτA∼πθ

[ ∞∑
t=0

γt∇θr(st, at; θ) | s0
]

(47)

By plugging (47) into (46), we obtain the following expression:

∇L1(θ) =
1

β
EτE∼πE

[ ∞∑
t=0

γt∇θr(st, at; θ)

]
− 1

β
EτA∼πθ

[ ∞∑
t=0

γt∇θr(st, at; θ)

]
(48)
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A.4.3 PROOF OF LEMMA A.1

To prove Lemma A.1, we will prove the equality (39a) and the equality (39b) respectively. The
constants Lq and Lc in Lemma A.1 has the expression:

Lq :=
Lr

1− γ
, Lc :=

2LqLrCd

√
|S| · |A|

1− γ
+

2Lg

1− γ
.

A.4.4 PROOF OF INEQUALITY (39A)

In this subsection, we prove the inequality (39a) in Lemma A.1.

We show that Qsoft
rθ,πθ

has a bounded gradient with respect to any reward parameter θ, then the
inequality (39a) holds due to the mean value theorem. According to the soft Bellman equation,
we have shown the explicit expression of ∇θQ

soft
rθ,πθ

(s, a) for any s ∈ S and a ∈ A. Using this
expression, we have the following series of relations:

∥∇θQ
soft
rθ,πθ

(s, a)∥ =

∥∥∥∥Ea0∼πθ(·|s0),s1∼P (·|s0,a0)

[
∇θr(s0, a0; θ) + γ∇θVθ(s1)

]∥∥∥∥
(i)
=

∥∥∥∥Eτ∼πθ

[∑
t≥0

γt∇θr(st, at; θ)

∣∣∣∣(s0, a0) = (s, a)

]∥∥∥∥
(ii)

≤ Eτ∼πθ

[∑
t≥0

γt

∥∥∥∥∇θr(st, at; θ)

∥∥∥∥ ∣∣∣∣(s0, a0) = (s, a)

]
(iii)

≤ Eτ∼πθ

[∑
t≥0

γtLr

∣∣∣∣(s0, a0) = (s, a)

]
=

Lr

1− γ
(49)

where (i) is from the equality (47) in the proof of Lemma A.1, (ii) follows Jensen’s inequality and
(iii) follows the inequality (38a) in Assumption 2. To complete this proof, we use the mean value
theorem to show that

|Qsoft
rθ1 ,πθ1

(s, a)−Qsoft
rθ2 ,πθ2

(s, a)| ≤ ∥max
θ

∇θQ
soft
rθ,πθ

(s, a)∥ · ∥θ1 − θ2∥ ≤ Lq∥θ1 − θ2∥ (50)

where the last inequality follows (49) and we denote Lq := Lr

1−γ . Therefore, we have proved the
Lipschitz continuous inequality in (39a).

A.4.5 PROOF OF INEQUALITY (39B)

In this section, we prove the inequality (39b) in Lemma A.1.

According to Lemma A.1, the gradient ∇L1(θ) is expressed as:

∇L1(θ) = Eτ∼πE

[∑
t≥0

γt∇θr(st, at; θ)

]
− Eτ∼πθ

[∑
t≥0

γt∇θr(st, at; θ)

]
. (51)
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Using the above relation, we have

∥∇L1(θ1)−∇L1(θ2)∥
(i)
=

∥∥∥∥(Eτ∼πE

[∑
t≥0

γt∇θr(st, at; θ1)

]
− Eτ∼πθ1

[∑
t≥0

γt∇θr(st, at; θ1)

])
−

(
Eτ∼πE

[∑
t≥0

γt∇θr(st, at; θ2)

]
− Eτ∼πθ2

[∑
t≥0

γt∇θr(st, at; θ2)

])∥∥∥∥
≤
∥∥∥∥Eτ∼πE

[∑
t≥0

γt∇θr(st, at; θ1)

]
− Eτ∼πE

[∑
t≥0

γt∇θr(st, at; θ2)

]∥∥∥∥︸ ︷︷ ︸
:=term A

+

∥∥∥∥Eτ∼πθ1

[∑
t≥0

γt∇θr(st, at; θ1)

]
− Eτ∼πθ2

[∑
t≥0

γt∇θr(st, at; θ2)

]∥∥∥∥︸ ︷︷ ︸
:=term B

(52)

where (i) follows the exact gradient expression in equation (51). Then we separately analyze term
A and term B in (52).

For term A, it follows that∥∥∥∥Eτ∼πE

[∑
t≥0

γt∇θr(st, at; θ1)

]
− Eτ∼πE

[∑
t≥0

γt∇θr(st, at; θ2)

]∥∥∥∥
(i)

≤ Eτ∼πE

[∑
t≥0

γt
∥∥∇θr(st, at; θ1)−∇θr(st, at; θ2)

∥∥]
(ii)

≤ Eτ∼πE

[∑
t≥0

γtLg∥θ1 − θ2∥
]

=
Lg

1− γ
∥θ1 − θ2∥ (53)

where (i) follows Jensen’s inequality and (ii) is from (38b) in Assumption 2.

For the term B, it holds that∥∥∥∥Eτ∼πθ1

[∑
t≥0

γt∇θr(st, at; θ1)

]
− Eτ∼πθ2

[∑
t≥0

γt∇θr(st, at; θ2)

]∥∥∥∥
(i)

≤
∥∥∥∥Eτ∼πθ1

[∑
t≥0

γt∇θr(st, at; θ1)

]
− Eτ∼πθ2

[∑
t≥0

γt∇θr(st, at; θ1)

]∥∥∥∥
+

∥∥∥∥Eτ∼πθ2

[∑
t≥0

γt∇θr(st, at; θ1)

]
− Eτ∼πθ2

[∑
t≥0

γt∇θr(st, at; θ2)

]∥∥∥∥
(ii)

≤ 1

1− γ

∥∥∥∥E(s,a)∼d(·,·;πθ1
)

[
∇θr(st, at; θ1)

]
− E(s,a)∼d(·,·;πθ2

)

[
∇θr(st, at; θ1)

]∥∥∥∥
+ Eτ∼πθ2

[∑
t≥0

γt

∥∥∥∥∇θr(st, at; θ1)−∇θr(st, at; θ2)

∥∥∥∥]
(iii)

≤ 1

1− γ

∥∥∥∥ ∑
s∈S,a∈A

∇θr(st, at; θ1)

(
d(s, a;πθ1)− d(s, a;πθ2)

)∥∥∥∥+ Eτ∼πθ2

[∑
k≥0

γkLg∥θ1 − θ2∥
]

(iv)

≤ 2Lr

1− γ
∥d(·, ·;πθ1)− d(·, ·;πθ2)∥TV +

Lg

1− γ
∥θ1 − θ2∥ (54)

where (i) follows the triangle inequality, (ii) is from Jensen’s inequality and the definition of the
discounted state-action visitation measure d(s, a;π) := (1− γ)π(a|s)

∑
t≥0 γ

tPπ(st = s|s0 ∼ η);
(iii) is from (38b) in Assumption 2;(iv) is from (38a) and the definition of the total variation norm.
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Consider the L2 term:

L2(θ) := E(τi,τw)∼πP [log (σ (R(τw; θ)−R(τi; θ)))]

where σ(x) is sigmoid function defined by: σ(x) = 1
1+e−x . We have

∇θL2(θ) = E(τi,τw)∼πP [(1− σ(R(τw; θ)−R(τi; θ))) · (∇θR(τw; θ)−∇θR(τi; θ))] .

= E(τi,τw)∼πP

[
(∇θR(τw; θ)−∇θR(τi; θ))− σ(R(τw; θ)−R(τi; θ))(∇θR(τw; θ)−∇θR(τi; θ))

]

Using the triangle inequality, we obtain the following equation:

∥∇L2(τw, τl; θ1)−∇L2(τw, τl; θ2)∥

≤
∥∥∥∥E(τi,τw)∼πP

[
(∇θR(τw; θ1)−∇θR(τi; θ1))− (∇θR(τw; θ2)−∇θR(τi; θ2))

]∥∥∥∥︸ ︷︷ ︸
:=term A

+

∥∥∥∥E(τi,τw)∼πP

[
σ(R(τw; θ1)−R(τi; θ1))(∇θR(τw; θ1)−∇θR(τi; θ1))︸ ︷︷ ︸

−σ(R(τw; θ2)−R(τi; θ2))(∇θR(τw; θ2)−∇θR(τi; θ2))
]∥∥∥∥︸ ︷︷ ︸

:=term B

(55)

First we bound the term A of (55)

term A =

∥∥∥∥([∑
t≥0

γt∇θr(s
w
t , a

w
t ; θ1)− γt∇θr(s

l
t, a

l
t; θ1)

])
−
([∑

t≥0

γt∇θr(s
w
t , a

w
t ; θ2)− γt∇θr(s

l
t, a

l
t; θ2)

])∥∥∥∥
≤
∥∥∥∥∑

t≥0

γt∇θr(s
w
t , a

w
t ; θ1)− γt∇θr(s

w
t , a

w
t ; θ2)

∥∥∥∥+ ∥∥∥∥∑
t≥0

γt∇θr(s
l
t, a

l
t; θ1)− γt∇θr(s

l
t, a

l
t; θ2)

∥∥∥∥
≤ 2Lg

1− γ
∥θ1 − θ2∥ (56)
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Then we bounded term B of (55):

term B =

=

∥∥∥∥σ([∑
t≥0

γtr(swt , a
w
t ; θ1)− γtr(slt, a

l
t; θ1)

])([∑
t≥0

γt∇θr(s
w
t , a

w
t ; θ1)− γt∇θr(s

l
t, a

l
t; θ1)

])

− σ

([∑
t≥0

γtr(swt , a
w
t ; θ2)− γtr(slt, a

l
t; θ2)

])([∑
t≥0

γt∇θr(s
w
t , a

w
t ; θ2)− γt∇θr(s

l
t, a

l
t; θ2)

])∥∥∥∥
=

∥∥∥∥σ(∑
t≥0

γtr(swt , a
w
t ; θ1)− γtr(slt, a

l
t; θ1)

)(∑
t≥0

γt∇θr(s
w
t , a

w
t ; θ1)− γt∇θr(s

l
t, a

l
t; θ1)

)

− σ

(∑
t≥0

γtr(swt , a
w
t ; θ1)− γtr(slt, a

l
t; θ1)

)(∑
t≥0

γt∇θr(s
w
t , a

w
t ; θ2)− γt∇θr(s

l
t, a

l
t; θ2)

)

+ σ

(∑
t≥0

γtr(swt , a
w
t ; θ1)− γtr(slt, a

l
t; θ1)

)(∑
t≥0

γt∇θr(s
w
t , a

w
t ; θ2)− γt∇θr(s

l
t, a

l
t; θ2)

)

σ

(∑
t≥0

γtr(swt , a
w
t ; θ2)− γtr(slt, a

l
t; θ2)

)(∑
t≥0

γt∇θr(s
w
t , a

w
t ; θ2)− γt∇θr(s

l
t, a

l
t; θ2)

)∥∥∥∥
≤
∥∥∥∥σ(∑

t≥0

γtr(swt , a
w
t ; θ1)− γtr(slt, a

l
t; θ1)

)(∑
t≥0

γt∇θr(s
w
t , a

w
t ; θ1)− γt∇θr(s

l
t, a

l
t; θ1)

+
∑
t≥0

γt∇θr(s
w
t , a

w
t ; θ2)− γt∇θr(s

l
t, a

l
t; θ2)

)∥∥∥∥+ ∥∥∥∥(∑
t≥0

γt∇θr(s
w
t , a

w
t ; θ1)− γt∇θr(s

l
t, a

l
t; θ1)

)
[
σ

(∑
t≥0

γt∇θr(s
w
t , a

w
t ; θ1)− γt∇θr(s

l
t, a

l
t; θ1)

)
− σ

(∑
t≥0

γt∇θr(s
w
t , a

w
t ; θ1)− γt∇θr(s

l
t, a

l
t; θ1)

)]∥∥∥∥
≤ 2Lg

1− γ
∥θ1 − θ2∥+

Lg

1− γ
∥θ1 − θ2∥ =

3Lg

1− γ
∥θ1 − θ2∥ (57)

Plugging the inequalities (53), (54) to (52), it holds that

∥∇L(θ1)−∇L(θ2)∥

≤ 2Lr

1− γ
∥d(·, ·;πθ1)− d(·, ·;πθ2)∥TV +

6Lg

1− γ
∥θ1 − θ2∥

(i)

≤ 2LrCd

1− γ
∥Qsoft

rθ1 ,πθ1
−Qsoft

rθ2 ,πθ2
∥+ 6Lg

1− γ
∥θ1 − θ2∥

(ii)

≤
2LrCd

√
|S| · |A|

1− γ
∥Qsoft

rθ1 ,πθ1
−Qsoft

rθ2 ,πθ2
∥∞ +

6Lg

1− γ
∥θ1 − θ2∥

(iii)

≤
(
2LqLrCd

√
|S| · |A|

1− γ
+

6Lg

1− γ

)
∥θ1 − θ2∥. (58)

Define the constant Lc :=
2LqLrCd

√
|S|·|A|

1−γ +
5Lg

1−γ , we have the following inequality:

∥∇L(θ1)−∇L(θ2)∥ ≤ Lc∥θ1 − θ2∥.

Therefore, we complete the proof of the inequality (39b) in Lemma A.1.

A.5 PROOF OF THEOREM 4.1

In this section, we prove (20a) and (20b) respectively, to show the convergence of the lower-level
problem and the upper-level problem.
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A.5.1 PROOF OF (20A)

In this proof, we first show the convergence of the lower-level variable {πk}k≥0. Recall that we
approximate the optimal policy πθk by πk+1 at each iteration k. We first analyze the approximation
error between πθk and πk+1 as follows. For any s ∈ S and a ∈ A, we have the following relation:∣∣ log (πk+1(a|s)

)
− log

(
πθk(a|s)

)∣∣
(i)
=

∣∣∣∣ log( π0(a|s) exp
(
Qsoft

rθk ,πk
(s, a)

)∑
ã expπ

0(ã|s)
(
Qsoft

rθk ,πk
(s, ã)

))− log

( π0(a|s) exp
(
Qsoft

rθk ,πθk
(s, a)

)∑
ã π

0(ã|s) exp
(
Qsoft

rθk ,πθk
(s, ã)

))∣∣∣∣
(ii)

≤
∣∣Qsoft

rθk ,πk
(s, a)−Qsoft

rθk ,πθk
(s, a)

∣∣+ ∣∣∣∣ log(∑
ã

π0(ã|s) exp
(
Qsoft

rθk ,πk
(s, ã)

))
− log

(∑
ã

π0(ã|s) exp
(
Qsoft

rθk ,πθk
(s, ã)

))∣∣∣∣ (59)

where (i) follows (40); (ii) is by the triangle inequality. We further analyze the second term in (59).

We first denote the operator log(∥w exp(v)∥1) := log(∥
∑

ã∈A w exp(vã)∥1), where the vector
w, v ∈ R|A| and v = [v1, v2, · · · , v|A|], w = [w1, w2, · · · , w|A|]. Then for any v′, v′′ ∈ R|A|, we
have the following relation:∣∣ log (∥w′ exp(v′)∥1

)
− log

(
∥w′′ exp(v′′)∥1

) (i)
=
〈
v′ − v′′,∇v log

(
∥w exp(v)∥1

)
|v=vc

〉
≤ ∥v′ − v′′∥∞ · ∥∇v log

(
∥w exp(v)∥1

)
|v=vc∥1

(ii)
= ∥v′ − v′′∥∞ (60)

where (i) follows the mean value theorem and vc is a convex combination of v′ and v′′; (ii) follows
the following equalities:

[∇v log
(
∥w exp(v)∥1

)
]i =

wi exp(vi)∑
1≤a≤|A| wa exp(va)

, ∥∇v log
(
∥w exp(v)∥1

)
∥1 = 1, ∀v ∈ R|A|.

Through plugging (60) into (59), it holds that∣∣ log (πk+1(a|s)
)
− log

(
πθk(a|s)

)∣∣
≤
∣∣Qsoft

rθk ,πk
(s, a)−Qsoft

rθk ,πθk
(s, a)

∣∣+max
ã∈A

∣∣Qsoft
rθk ,πk

(s, ã)−Qsoft
rθk ,πθk

(s, ã)
∣∣ (61)

Taking the infinity norm over R|S|·|A|, the following result holds:

∥ log πk+1 − log πθk∥∞ ≤ 2∥Qsoft
rθk ,πk

−Qsoft
rθk ,πθk

∥∞ (62)

where ∥ log πk+1 − log πθk∥∞ = maxs∈S,a∈A | log πk+1(a|s) − log πθk(a|s)| and ∥Qsoft
rθk ,πk

−
Qsoft

rθk ,πθk
∥∞ = maxs∈S,a∈A |Qsoft

rθk ,πk
(s, a)−Qsoft

rθk ,πθk
(s, a)|.

Based on the inequality (62), we analyze ∥Qsoft
rθk ,πk

− Qsoft
rθk ,πθk

∥∞ to show the convergence of the
policy estimates. It leads to the following analysis:

∥Qsoft
rθk ,πk

−Qsoft
rθk ,πθk

∥∞
= ∥Qsoft

rθk ,πk
−Qsoft

rθk ,πθk
+Qsoft

rθk−1
,πθk−1

−Qsoft
rθk−1

,πθk−1
+Qsoft

rθk−1
,πk

−Qsoft
rθk−1

,πk
∥∞

≤ ∥Qsoft
rθk ,πθk

−Qsoft
rθk−1

,πθk−1
∥∞ + ∥Qsoft

rθk−1
,πk

−Qsoft
rθk−1

,πθk−1
∥∞ + ∥Qsoft

rθk ,πk
−Qsoft

rθk−1
,πk

∥∞
(i)

≤ Lq∥θk − θk−1∥+ ∥Qsoft
rθk−1

,πk
−Qsoft

rθk−1
,πθk−1

∥∞ + ∥Qsoft
rθk ,πk

−Qsoft
rθk−1

,πk
∥∞

(ii)

≤ ∥Qsoft
rθk−1

,πk
−Qsoft

rθk−1
,πθk−1

∥∞ + 2Lq∥θk − θk−1∥ (63)

where (i) is from (39a) in Lemma A.1; (ii) follows (39a). Based on (63), we further analyze the two
terms in (63) as below.
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Recall we have the “soft” Bellman operator expressed as below:

Tθ(Q)(s, a) = r(s, a; θ) + γEs′∼P (·|s′,a′)

[
log

(∑
a′

π0(a′|s′) exp
(
Q(s′, a′)

))]
(64)

According to the soft Bellman operator, it holds that

Qsoft
rθk ,πk+1

(s, a) = r(s, a; θk) + γEs′∼P(·|s,a)[V
soft
rθk ,πk+1

(s′)]

= r(s, a; θk) + γEs′∼P(·|s,a),a′∼πk+1(·|s′)[−
log πk+1(a

′|s′)
log π0(a′|s′)

+Qsoft
rθk ,πk+1

(s′, a′)]

(i)

≥ r(s, a; θk) + γEs′∼P(·|s,a),a′∼πk+1(·|s′)[−
log πk+1(a

′|s′)
log π0(a′|s′)

+Qsoft
rθk ,πk

(s′, a′)]

(ii)
= r(s, a; θk) + γEs′∼P(·|s,a)

[
log

(∑
a′

π0(a′|s′) exp
(
Qsoft

rθk ,πk
(s′, a′)

))]
(iii)
= Tθk(Qsoft

rθk ,πk
)(s, a) (65)

where (i) follows the policy improvement result(ii) follows the definition πk+1(a|s) :=
π0(a|s) exp

(
Qsoft

rθk
,πk

(s,a)
)

∑
ã π0(ã|s) exp

(
Qsoft

rθk
,πk

(s,ã)
) (iii) follows the definition of the soft Bellman operator in (64).

For any s ∈ S and a ∈ A, it holds that

0
(i)

≤ Qsoft
rθk ,πθk

(s, a)−Qsoft
rθk ,πk+1

(s, a)
(ii)

≤ Qsoft
rθk ,πθk

(s, a)− Tθk(Qsoft
rθk ,πk

)(s, a) (66)

where (i) is due to the fact that πθk is the optimal policy under reward parameter θk; (ii) is from (65).

Hence, it further leads to

∥Qsoft
rθk ,πθk

−Qsoft
rθk ,πk+1

∥∞
(i)

≤ ∥Qsoft
rθk ,πθk

− Tθk(Qsoft
rθk ,πk

)∥∞
(ii)
= ∥Tθk(Qsoft

rθk ,πθk
)− Tθk(Qsoft

rθk ,πk
)∥∞

(iii)

≤ γ∥Qsoft
rθk ,πθk

−Qsoft
rθk ,πk

∥∞ (67)

where (i) is from (66); (ii) is from the fixed-point property in (83); (iii) is from the contraction
property in (82). Therefore, we have the following result:

∥Qsoft
rθk ,πk

−Qsoft
rθk ,πθk

∥∞
(i)

≤ ∥Qsoft
rθk−1

,πk
−Qsoft

rθk−1
,πθk−1

∥∞ + 2Lq∥θk − θk−1∥
(ii)

≤ γ∥Qsoft
rθk−1

,πk−1
−Qsoft

rθk−1
,πθk−1

∥∞ + 2Lq∥θk − θk−1∥ (68)

where (i) is from (63); (ii) is from (67).

To show the convergence of the soft Q-function based on (68), we further analyze the error between
the reward parameters θk and θk−1. Recall in Alg.1, the updates in reward parameters (19):

θk = θk−1 + αgk−1

where we denote τ = {(st, at)}∞t=0, h(θ, τ) :=
∑

t≥0 γ
t∇θr(st, at; θ) and gk−1 is the stochastic

gradient estimator at iteration k − 1. Here, τEk−1 denotes the trajectory sampled from the expert’s
dataset D at iteration k − 1 and τAk−1 denotes the trajectory sampled from the agent’s policy πk at
time k − 1,τw, τi denote the trajectory sampled from the preference dataset. Then according to the
inequality (38a) in Assumption 2, we could show that

∥gk−1∥ ≤ ∥h(θk−1, τ
E
k−1)− h(θk−1, τ

A
k−1)∥+ ∥h(θk−1, τ

W
k−1)− h(θk−1, τ

L
k−1)∥

≤ 2Lr

1− γ
+

2Lr

1− γ
= 4Lq (69)
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where the last equality follows the fact that we have defined the constant Lq := Lr

1−γ . Then we could
further show that

∥Qsoft
rθk ,πk

−Qsoft
rθk ,πθk

∥∞
(i)

≤ γ∥Qsoft
rθk−1

,πk−1
−Qsoft

rθk−1
,πθk−1

∥∞ + 4Lq∥θk − θk−1∥
(ii)
= γ∥Qsoft

rθk−1
,πk−1

−Qsoft
rθk−1

,πθk−1
∥∞ + 4αLq∥gk−1∥

(iii)

≤ γ∥Qsoft
rθk−1

,πk−1
−Qsoft

rθk−1
,πθk−1

∥∞ + 8αL2
q (70)

where (i) is from (68); (ii) follows the reward update scheme; (iii) is from (69).

Summing the inequality (70) from k = 1 to k = K, it holds that

K∑
k=1

∥Qsoft
rθk ,πk

−Qsoft
rθk ,πθk

∥∞ ≤ γ

K−1∑
k=0

∥Qsoft
rθk ,πk

−Qsoft
rθk ,πθk

∥∞ + 8αKL2
q (71)

Rearranging the inequality (71) and divided (71) by K on both sides, it holds that

1− γ

K

K∑
k=1

∥Qsoft
rθk ,πk

−Qsoft
rθk ,πθk

∥∞ ≤ γ

K

(
∥Qsoft

rθ0 ,π0
−Qsoft

rθ0 ,πθ0
∥∞ − ∥Qsoft

rθK ,πK
−Qsoft

rθK ,πθK
∥∞
)
+ 8αL2

q

(72)

Dividing the constant 1− γ on both sides of (72), it holds that

1

K

K∑
k=1

∥Qsoft
rθk ,πk

−Qsoft
rθk ,πθk

∥∞ ≤ γC0

K(1− γ)
+

8L2
q

1− γ
α

where we denote C0 := ∥Qsoft
rθ0 ,π0

−Qsoft
rθ0 ,πθ0

∥∞. We could also write the inequality above as

1

K

K−1∑
k=0

∥Qsoft
rθk ,πk

−Qsoft
rθk ,πθk

∥∞

≤ γC0

K(1− γ)
+

C0

K
−

∥Qsoft
rθK ,πK

−Qsoft
rθK ,πθK

∥∞
K

+
8L2

q

1− γ
α

≤ C0

K(1− γ)
+

8L2
q

1− γ
α.

Recall the stepsize is defined as α = α0

Kσ where σ > 0. Then we have the following result:

1

K

K−1∑
k=0

∥Qsoft
rθk ,πk

−Qsoft
rθk ,πθk

∥∞ = O(K−1) +O(K−σ). (73)

With the inequality (62), it follows that

1

K

K−1∑
k=0

∥ log πk+1 − log πθk∥∞ ≤ 2

K

K−1∑
k=0

∥Qsoft
rθk ,πk

−Qsoft
rθk ,πθk

∥∞ = O(K−1) +O(K−σ).

Therefore, we complete the proof of (20a) in Theorem 4.1.

A.5.2 PROOF OF (20B)

In this part, we prove the convergence of reward parameters {θk}k≥0.
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We have the following result of the objective function L(θ):

L(θk+1)
(i)

≥ L(θk) + ⟨∇L(θk), θk+1 − θk⟩ −
Lc

2
∥θk+1 − θk∥2

(ii)
= L(θk) + α⟨∇L(θk), gk⟩ −

Lcα
2

2
∥gk∥2

= L(θk) + α⟨∇L(θk), gk −∇L(θk)⟩+ α∥∇L(θk)∥2 −
Lcα

2

2
∥gk∥2

(iii)

≥ L(θk) + α⟨∇L(θk), gk −∇L(θk)⟩+ α∥∇L(θk)∥2 − 8LcL
2
qα

2 (74)

where (i) is from the Lipschitz smooth property in (39b) of Lemma A.1; (ii) follows the update
scheme (19); (iii) is from constant bound in (69). Taking an expectation over the both sides of (74),
it holds that

E [L(θk+1)]

≥ E [L(θk)] + αE
[
⟨∇L(θk), gk −∇L(θk)⟩

]
+ αE

[
∥∇L(θk)∥2

]
− 8LcL

2
qα

2

= E [L(θk)] + αE
[
⟨∇L(θk),E

[
gk −∇L(θk)

∣∣θk]⟩]+ αE
[
∥∇L(θk)∥2

]
− 8LcL

2
qα

2

=E [L(θk)] + αE
[〈

∇L(θk),Eτ∼πθk

[∑
t≥0

γt∇θr(st, at; θk)

]
− Eτ∼πk+1

[∑
t≥0

γt∇θr(st, at; θk)

]

+ E(τl≺τw)∼πP

[∑
t≥0

(1− σ(γtr(swt , a
w
t ; θk)− γtr(slt, a

l
t; θk))(γ

t∇θr(s
w
t , a

w
t ; θk)− γt∇θr(s

l
t, a

l
t; θk))

]〉]

+ αE
[
∥∇L(θk)∥2

]
− 8LcL

2
qα

2

(i)

≥ E [L(θk)]− 4αLq E
[∥∥∥∥Eτ∼πθk

[∑
t≥0

γt∇θr(st, at; θk)

]
− Eτ∼πk+1

[∑
t≥0

γt∇θr(st, at; θk)︸ ︷︷ ︸
term A

]∥∥∥∥
+ αE

[
∥∇L(θk)∥2

]
− 8LcL

2
qα

2 (75)

(i) is due to the fact that ∥∇L(θ)∥ ≤ 4Lq and E[gk,2 −∇θL2(θk)|θk] = 0.
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Then we further analyze the term A as below:

E

∥∥∥∥Eτ∼πθk

[∑
t≥0

γt∇θr(st, at; θk)

]
− Eτ∼πk+1

[∑
t≥0

γt∇θr(st, at; θk)

]∥∥∥∥


(i)
= E

[∥∥∥∥ 1

1− γ
E(s,a)∼d(·,·;πθk

)

[
∇θr(s, a; θk)

]
− 1

1− γ
E(s,a)∼d(·,·;πk+1)

[
∇θr(s, a; θk)

]∥∥∥∥]
(ii)

≤ 2

1− γ
· max
s∈S,a∈A

∥∇θr(s, a; θk)∥ · E
[
∥d(·, ·;πθk)− d(·, ·;πk+1)∥TV

]
(iii)

≤ 2Lr

1− γ
E
[
∥d(·, ·;πθk)− d(·, ·;πk+1)∥TV

]
(iv)

≤ 2LqCdE

[
∥ log

π0(a|s) expQsoft
rθk ,πθk

(s, a)∑
ã π

0(ã|s) expQsoft
rθk ,πθk

(s, ã)
− log

π0(a|s) expQsoft
rθk ,πk+1

(s, a)∑
ã π

0(ã|s) expQsoft
rθk ,πk+1

(s, ã)
∥

]
(v)

≤ 2LqCdE

[
∥Qsoft

rθk ,πθk
−Qsoft

rθk ,πk
∥+ ∥ log

∑
a

π0(ã|s) expQsoft
rθk ,πθk

(s, ã)− log
∑
a

π0(ã|s) expQsoft
rθk ,πk+1

(s, ã)∥

]
(vi)

≤ 2LqCd

√
|S| · |A|E

[
∥Qsoft

rθk ,πθk
−Qsoft

rθk ,πk
∥∞ + ∥Qsoft

rθk ,πθk
−Qsoft

rθk ,πk
∥∞
]

= 4LqCd

√
|S| · |A|E

[
∥Qsoft

rθk ,πθk
−Qsoft

rθk ,πk
∥∞
]

(76)

where (i) follows the definition d(s, a;π) = (1 − γ)π(a|s)
∑

t≥0 γ
tPπ(st = s|s0 ∼ η);

(ii) is due to distribution mismatch between two visitation measures; (iii) follows the inequal-
ity (38a) in Assumption 2; the inequality (iv) follows Lemma A.2 and the fact that πθk(·|s) ∝
π0(·|s) exp

(
Qsoft

rθk ,πθk
(s, ·)

)
, πk+1(·|s) ∝ π0(·|s) exp

(
Qsoft

rθk ,πk
(s, ·)

)
and the constant Lq := Lr

1−γ ;
(v) follows the (60);(vi) follows the conversion between Frobenius norm and infinity norm.

Through plugging the inequality (76) into (75), it leads to

E [L(θk+1)]

≥ E [L(θk)]− 2αLqE

∥∥Eτ∼πθk

[∑
t≥0

γt∇θr(st, at; θk)
]
− Eτ∼πk+1

[∑
t≥0

γt∇θr(st, at; θk)
]∥∥

+ αE
[
∥∇L(θk)∥2

]
− 8LcL

2
qα

2

(i)

≥ E [L(θk)]− 8αCdL
2
q

√
|S| · |A|E

[
∥Qsoft

rθk ,πθk
−Qsoft

rθk ,πk
∥∞
]
+ αE

[
∥∇L(θk)∥2

]
− 8LcL

2
qα

2

where (i) follows the inequality (76).

Rearranging the inequality above and denote C1 := 8CdL
2
q

√
|S| · |A|, it holds that

αE
[
∥∇L(θk)∥2

]
≤ 8LcL

2
qα

2 + αC1E
[
∥Qsoft

rθk ,πθk
−Qsoft

rθk ,πk
∥∞
]
+ E

[
L(θk+1)− L(θk)

]
Summing the inequality above from k = 0 to K − 1 and dividing both sides by αK, it holds that

1

K

K−1∑
k=0

E
[
∥∇L(θk)∥2

]
≤ 8LcL

2
qα+

C1

K

K−1∑
k=0

E
[
∥Qsoft

rθk ,πθk
−Qsoft

rθk ,πk
∥∞
]
+ E

[
L(θK)− L(θ0)

Kα

]
(77)

Note that the log-likelihood function L(θK) is negative and L(θ0) is a bounded constant. Then we
could plug (73) into (77), it holds that

1

K

K−1∑
K=0

E
[
∥∇L(θK)∥2

]
= O(K−σ) +O(K−1) +O(K−1+σ) (78)

which completes the proof for the inequality (20b).
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A.6 AUXILIARY LEMMAS

Lemma A.2 ((Xu et al., 2020, Lemma 3)) Consider the initialization distribution η(·) and transition
kernel P(·|s, a). Under η(·) and P(·|s, a), denote dw(·, ·) as the state-action visitation distribution
of MDP with the Boltzman policy parameterized by parameter w. Suppose Assumption 1 holds, for
all policy parameter w and w′, we have

∥dw(·, ·)− dw′(·, ·)∥TV ≤ Cd∥w − w′∥ (79)

where Cd is a positive constant.

Next, to facilitate analysis for KL-regularized MDPs, we introduce a “soft” Bellman optimality
operator T : R|S|×|A| → R|S|×|A| as follows:

T (Q)(s, a) := r(s, a) + γEs′∼P(·|s,a)

[
max
π(·|s)

Ea′∼π(·|s′)

[
Q(s′, a′)− log π(a′|s′)

log π0(a′|s′)

]]
. (80)

In the following lemma, the properties of KL-regularized MDPs are characterized.

Lemma A.3 (The operator T as defined in (80) satisfies the properties below:

• T has the following closed-form expression:

T (Q)(s, a) = r(s, a) + γEs′∼P(·|s,a)

[
log

(∑
a′

π0(a′|s′) exp
(
Q(s′, a′)

))]
. (81)

• T is a γ-contraction in the ℓ∞ norm, namely, for any Q1, Q2 ∈ R|S|×|A|, it holds that

∥T (Q1)− T (Q2)∥∞ ≤ γ∥Q1 −Q2∥∞. (82)

• Under a given reward function r(·, ·), the corresponding optimal soft Q-function Qsoft
r,π∗ is

a unique fixed point of the operator T , namely,

T (Qsoft
r,π∗) = Qsoft

r,π∗ (83)

We refine its analysis as below.

We first show that

Ea∼π(·|s)

[
Q(s, a)− log π(a|s)

log π0(a|s)

]
=
∑
a

π(a|s) log
(
π0(a|s) exp(Q(s, a))

π(a|s)

)
(i)

≤ log

(∑
a

π0(a|s) exp
(
Q(s, a)

))
(84)

where (i) is from Jensen’s inequality. Moreover, the equality between both sides of (i) holds when
the policy π has the expression π(·|s) ∝ π0(a|s) exp(Q(s, ·)). Therefore, through applying the
inequality (84) to (80), it obtains that

T (Q)(s, a) = r(s, a) + γEs′∼P(·|s,a)

[
log

(∑
a′

π0(a|s) exp
(
Q(s′, a′)

))]
, (85)

which proves the equality (81).

We define ∥Q1 − Q2∥∞ := maxs∈S,a∈A |Q1(s, a) − Q2(s, a)| and ϵ = ∥Q1 − Q2∥∞. Then for
any s ∈ S and a ∈ A, it follows that

log

(∑
a

π0(a|s) exp
(
Q1(s, a)

))
≤ log

(∑
a

π0(a|s) exp
(
Q2(s, a) + ϵ

))

= log

(
exp(ϵ)

∑
a

π0(a|s) exp
(
Q2(s, a)

))

= ϵ+ log

(∑
a

π0(a|s) exp
(
Q2(s, a)

))
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Similarly, it is easy to obtain that log
(∑

a π
0(a|s) exp

(
Q1(s, a)

))
≥ −ϵ +

log
(∑

a π
0(a|s) exp

(
Q2(s, a)

))
. Hence, it leads to the contraction property that

∥T (Q1)− T (Q2)∥∞ ≤ γϵ = γ∥Q1 −Q2∥∞ (86)

which proves the contraction property (82). Moreover, we have

T (Qsoft
r,π∗)(s, a)

(i)
= r(s, a) + γEs′∼P(·|s,a)

[
log

(∑
a′

π0(a′|s′) exp
(
Qsoft

r,π∗(s′, a′)
))] (ii)

= Qsoft
r,π∗(s, a)

(87)

where (i) follows the equality (85). Based on the definition of the soft Q-function Qsoft
r,π∗ , we have

Qsoft
r,π∗(s, a) = r(s, a) + γEs′∼P(·|s,a)

[
Ea′∼π∗(·|s′)[−

log π∗(a′|s′)
log π0(a′|s′)

+Qsoft
r,π∗(s′, a′)]

]
. (88)

We prove the equality (ii) in (87) through combining (88) and the fact that the optimal soft policy
has the closed form π∗(·|s) ∝ π0(·|s′) exp

(
Qsoft

r,π∗(s, ·)
)
. Suppose two different fixed points of the

soft Bellman operator exist, then it contradicts with the contraction property in (86).

Hence, we proved the uniqueness of the optimal soft Q-function Qsoft
r,π∗ . Moreover, the optimal soft

Q-function Qsoft
r,π∗ is a fixed point to the soft Bellman operator T in (83).
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