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Abstract

In multi-GPU Mixture-of-Experts (MoE) networks, distributing experts across
GPUs leads to load imbalance as token assignments vary. Recent methods ad-
dress this by duplicating popular experts on additional GPUs, requiring accurate
prediction of token distributions before routing. This paper examines the trade-
offs between prediction strategy, accuracy, overhead, and system performance.
We introduce MoE-GPS, a framework that quantifies these impacts and identi-
fies optimal predictor designs for various system settings. Our results highlight
Distribution-Only Prediction, which predicts coarse token distribution with much
lower overhead than Token-to-Expert Prediction, achieving 23% faster inference
on the Mixtral 8x7B MMLU dataset.

1 Introduction

Mixture-of-Experts (MoE) [10} 12} 4}, 21]] mod-
els reduce the computation of Large Language

S MoE-GPS
Models (LLMs) by activating only a subset of Model
experts for each token, typically using Expert ~ Architecture (( )) = Best Prediction Strategy
Parallelism (EP) [[14] to distribute Feed Forward Coff’i'gsﬁ‘:;ion@
Network layers across GPUs. However, skewed Communication?

token-to-expert mappings often cause signifi-
cant load imbalance [20, 1], especially as mod-
ern LLMs incorporate increasing numbers of ex-
perts [15]. While training-time techniques such
as auxiliary losses [24] can proactively balance
loads, inference has fixed expert-to-token map-
pings and imbalance and underutilization are
unavoidable. Expert duplication [, 125} 16, 16] —
a common solution to balance loads — requires
accurate, timely predictions of token-to-expert
distributions, where increasing predictor complexity improves balance at the expense of overhead.
The optimal prediction strategy thus depends on factors like workload patterns, hardware topology,
and communication cost.

High Load
Imbalance?
Y N

Prediction Prediction
Figure 1: MoE-GPS guidelines for selecting op-
timal expert prediction strategies that minimizes
end-to-end inference latency based on model and
hardware characteristics.

Despite its importance, there is currently no systematic method to model the runtime implications
of MoE load imbalance, and to help choose the best predictor for different workload and system
setups. We present MoE-GPS, a framework that simulates end-to-end MoE inference performance
with imbalance, and guides the selection of expert prediction strategies that yield the shortest runtime.
Built on top of an architectural simulator, LLMCompass [27]], MOE-GPS models the runtime tradeoffs
among prediction strategies, accuracy, and overhead. Given an arbitrary model architecture and
hardware setup, MoE-GPS identifies the strategy that delivers the best system performance.
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With insights from MoE-GPS, we advocate for Distribution-Only Prediction strategy, which only
predicts the coarse-grained token distribution across experts instead of exact token-to-expert mappings
(Token-to-Expert Prediction). This lightweight approach is particularly effective when communication
is not a bottleneck, because it reduces prediction complexity and still improves compute load
balancing. Exact token-level prediction optimizes both computation and communication at the cost
of higher overhead, which becomes more favorable when communication cost dominates. In addition,
we observe that Distribution-Only Prediction performs better with more balanced workloads. Our
contribution can be summarized as follows:

* We propose MoE-GPS, a system performance simulation framework that selects the optimal
expert prediction strategy to minimize inference latency.

* We identify and validate the effectiveness of Distribution-Only Prediction as a lightweight
alternative to Token-to-Expert Prediction, offering better scalability and efficiency under
varying system bottlenecks.

2 Background

Load Imbalance in Inference Prefill Is Critical. In MoE networks, load imbalance occurs in both
training and inference, but while training can proactively distribute tokens to less-popular experts,
inference uses a fixed token-to-expert mapping. This work focuses on the inference prefill stage
without changing the routing. As decode involves much fewer tokens and is latency-critical, compute
imbalance is less of an issue here.

Expert Parallelism Leads to Imbalance. Our setup uses Tensor Parallelism for Attention layers and
Expert Parallelism (EP) for FFN layers. TP avoids duplicating KV cache, and Ring All Reduce [19] is
used for communication efficiency. EP for FFN provides lower communication latency and preserves
expert matrix structure but causes load imbalance since experts are tied to GPUs. Although hybrid
(TP+EP) schemes exist [17]], for simplicity, this work assumes TP-only for Attention and EP-only for
FFN, and the insights are generalizable.

Quantifying Imbalance. To measure GPU load imbalance, we define skewness as

# of tokens in the most popular expert . . . _
7 of average tokens perexperts + Skewness directly scales both FEN compute and communication bottle

necks since the busiest GPU determines overall layer latency.

Performance Impacts of Load Imbalance. For perfect balance (skewness = 1), each GPU transfers
(N —1)/N? of its tokens in a fully connected multi-GPU setup (N is the number of GPUs), but
skewed workloads cause longer runtimes for communication and compute on the busiest GPU. The
communication time for routing and shuffles after FFN scales with skewness as (N —1)-skewness /N2,

Current Solutions. To address runtime imbalance, industry approaches often duplicate popular
experts across multiple GPUs, guided by predicted token-to-expert distributions. Recent methods
include MoE-Prediction [[1], Prophet [25]], FlexMoE [16], SE-MoE [22]], and FasterMoE [6} 5], which
propose dynamic duplication and placement strategies. Other approaches mitigate imbalance during
training through auxiliary load balancing [24], expert biasing [[15]], or by adjusting expert allocation
for memory-limited scenarios [2]. Several alternative strategies, such as using expert buffers [9]] or
activation correlation models [26], are also proposed, but are outside the main focus of this paper.

3 Methodology

This section discusses our approach to modeling and analyzing expert prediction strategies in MoE
inference. We describe the two different prediction strategies (Distribution-Only and Token-to-
Expert). We also show normalized system performance obtained from a performance simulator,
LLMCompass [27], to illustrate high-level trends of the runtime implications of expert duplication.

Approach to Expert Duplication. We integrate dynamic expert duplication into the MoE model by
inserting a pre-trained predictor before Attention in each layer. For a chosen frequency, the predictor
does inference with current batched inputs to predict distribution and guide the expert placement.
Since dynamic duplication incurs extra inter-GPU communication for moving experts, existing works
propose different intervals for prediction and moving, from every single batch [5, 25]] to every 10
minutes [15]], to balance overhead and effectiveness.
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In this study, we assume single-batch prediction and placement frequency. Our simulator can be
configured to model different frequencies of prediction and placement, by averaging out the overhead
to multiple batches. In our example, Expert 1 has the most tokens, so it is replicated across multiple
GPUs to evenly distribute the load. In general, given arbitrary token-to-expert mappings, experts
can be duplicated to achieve per-GPU balance by iteratively shifting experts from overloaded to
underloaded devices: keep duplicating the experts on GPUs with > 1/N tokens to GPUs with < 1/N
tokens until all GPUs process the same amount of tokens.

Prediction Strategies and Tradeoffs. We explore two prediction strategies with distinct tradeoffs:
Distribution-Only Prediction, which estimates static, aggregate expert usage; and Token-to-Expert
Prediction, which targets exact token-level routing. The former has lower overhead and complexity
and targets at compute imbalance, while the latter can reduce both compute and communication costs
at the cost of high overhead.

Distribution-Only Prediction. Distribution-only prediction estimates per-expert token proportions
(e.g., Expert 1: 75%) without specifying which tokens. This balances compute across GPUs but does
not reduce communication, since tokens remain randomly scattered after ring all-reduce. We model
each layer’s expert-activation distribution as multinomial and estimate parameters via Maximum
Likelihood Estimation (MLE), which models counts over discrete classes (expert selections) and
chooses parameters maximizing the likelihood of the observed data. Formally, let p! denote the
probability of selecting expert ¢ in layer [. Assuming i.i.d. token selections from this multinomial, the

l
MLE is p! = %, where N is the total number of tokens and n! counts activations of expert i.

We evaluate Distribution-Only Prediction on MMLU [7]], Alpaca Eval [3], and SST2 [23]] using
Mixtral 8x7B [11]. For sequence length 512, average batchwise skewness is 1.388, 1.402, and
1.990, respectively. We report the layer-averaged error rate between train-set estimates and test-set

empirical probabilities, defined as =Pl \yhere higher values indicate less accurate estimation.
1/# of experts

For datasets without a dedicated test split, we randomly partition the train set 80/20.

We also simulate normalized end-to-end system performance for this setting (Mixtral 8x7B; batch size
= 1; sequence length = 512; four A100 GPUs with NVLINK) using an augmented LLMCompass [27].

Token-to-Expert Prediction. Token-to-Expert Prediction exactly routes each token to its expert’s
GPU. With a predicted mapping, tokens go directly to the GPU hosting their experts, skipping the
post-ring all-reduce scatter and saving both FFN compute and communication time . We cast expert
selection as classification: predict the activated expert for each token in the batch processed by the
MoE model. We study three model families: a simple probability model, a conditional probability
model, and neural predictors.

Probability Model. Assign the expert with the highest global frequency in the training data, treating
all tokens identically regardless of identity or position.

Conditional Probability Model. Condition on token index or position; for each token (or position),
select the most frequent expert for that specific index in the training data.

Neural Networks. Train on pairs of token embeddings and expert activations using cross-entropy and
Adam [13]], to convergence. All samples are padded to sequence length 512. We evaluate simple
FFNs and LSTMs [8§]].

4 Results

In this section, we determine the best predictor for overall system performance under different
systems, workload sizes and token skewnesses. Our goal is to identify when to use Distribution-
Only Prediction, which reduces FFN computation load imbalance without communication savings,
and when to use Token-to-Expert Prediction, which additionally reduces communication latency at
the cost of higher predictor complexity. For Token-to-Expert Prediction, we further seek the optimal
prediction accuracy to minimize runtime. We use an extended version of LLMCompass [27], a
block-level simulator for large language model inference, validated with silicon measurements.

Figure |2| prefill latency for a single layer Mixtral 8x7B, with four A100s on NVLink 3.0 [18].
Batch size is 1, sequence length is 512, matching the experimental setup in Section[3] Figures[2a]
shows baseline latencies with no prediction. Figure shows different prediction strategies at



139
140

141
142
143
144
145
146
147
148
149
150
151

152
153
154
155
156
157
158

159
160
161

162
163
164
165

166
167
168

3 Attn Layers 1 Attn Comm 3 FFN 3 FFN Comm 3 Overhead
Token-To-Expert

1.0 T—Prediction(Accuracyy =
[0 Attn Layers X FFN - ;95
0.9 A .
[ Attn Comm [ FFN Comm 2
— 9] —
1.0 ] So08{ ¢ oo T}
3 T 0.5 0.5 0.5 0.5
% 0.8 _§ 0.7 § 2 0.95
£ g ! S >
> 0.6 1 s E S .95
2 = 0.6 % M
2 0.4 Z 0 |-|
8 8.52= || = =
0.0 L= : T T 0.0 : - LD HHE
1.0 1.4 1.8 2.2 1.0 1.4 1.8 2.2
Skewness Skewness

(a) Baseline latency with no predic-  (b) Latency of different prediction strategies and accuracies (intercon-
tion (interconnect = NVLink). nect = NVLink).

Figure 2: Simulated prefill latency for a single layer of Mixtral 8x7B under different prediction strate-
gies and interconnect types. Latency is broken down by component (attention, FFN, communication,
overhead) and evaluated across skewness levels on 4 A100 GPUs using NVLink (top) and PCle
(bottom). (a, c) show baseline latencies without prediction; (b, d) show improvements from prediction
strategies at varying accuracies. Distribution-Only Prediction reduces FFN compute without overhead,
while Token-to-Expert Prediction introduces overhead that trades off with improved load balancing.
For each skewness, the best preditor has the minimum total latency across strategies and accuracies.

varying skewness and accuracies.Token-to-Expert Prediction uses a fitted curve to model overhead by
accuracy, with interpolation for unmeasured skewness.

For each skewness, the first bar is no predic-
tion, the second is Distribution-Only Predic-

tion - reducing only FFN compute time with Distribution-Only(D) vs Token-to-Expert(T)

Prediction Effectiveness

no overhead since distribution is estimated of- ~ 04

. . . . . . =) Interconnect Bandwidth
fline. As skewness increases, distribution esti- & s 034 600G(NVLINK)
mation becomes less accurate.Remaining curves 3% 02 320G
are Token-to-Expert Prediction at several accu- 7%~ traocie)
racies, showing a U-shape: higher accuracy im- 2o 0.11

. ()]

proves load balancing but adds overhead. The £ } 0.0+
best configuration is the one with the lowest e o1

latency, usually at moderate accuracy. 1.0 14 18 22

.. . .. Degree of Imbalance (Skewness)
Generally, Distribution-Only Prediction outper- 9

forms Token-to-Expert. For skewness = 1.4
(MMLU-like), it achieves 23% speedup than
Token-to-Expert’s optimal setting. Token-to-
Expert incurs more overhead, especially with
low skewnesss where it requires more complex
models. When skew is high or communication cost is a bottleneck, Token-to-Expert saves more.

Figure 3: Simulated effectiveness of two strategies’
best savings for Mixtral 8X7B on 4 fully-connected
A100 with different system interconnect settings.

FFN latency reductions from prediction are largely skewness-independent, since mispredictions are
measured relative to a perfectly balanced reference scenario. Only overhead varies with skew as
higher skewness makes prediction easier.

Figure [3] visualizes savings over baseline (no prediction) for each strategy and system. Differ-
ence in savings for the two strategies is calculated by Distribution-Only Prediction saving —
Token-to-Expert Prediction saving. Bars above zero mark Distribution-Only as better; below
zero marks Token-to-Expert as better. We also show impacts of different interconnects.

Key takeaways: Distribution-Only Prediction excels at low skewness or when communication isn’t a
bottleneck with its low complexity and zero overhead. Token-to-Expert Prediction is only preferable
under big skewness and low-bandwidth interconnects where communication savings dominate.
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A MLE for Multinomial Distribution

We seek to model the expert activation pattern in a Mixture-of-Experts (MoE) model using a proba-
bilistic approach. Specifically, we are interested in estimating the distribution over expert selections
for each MoE layer, based on observed activation frequencies in the training data. To this end, we
adopt a multinomial modeling framework and employ Maximum Likelihood Estimation (MLE) to
infer the activation probabilities.

Assumptions. We assume that each token independently selects an expert from a fixed pool of K

experts in a given layer. Let E = {ey, ..., ex } denote the set of experts in a particular MoE layer.
For each token routed through the layer, the expert selection is modeled as an i.i.d. draw from a
multinomial distribution with parameters p = (p1, . .., px ), Where p; is the probability that expert e;

is selected. Naturally, ZZK:1 p; = 1 and p; > 0 for all <.

Maximum Likelihood Estimation. Given N tokens routed through the layer, let n; denote the

number of tokens that selected expert e;, so that Zfil n; = N. The likelihood of the observed expert
assignments under the multinomial distribution is:

(p) = Px( | )—7]\” || i (1
= r = i
L(p Pr(nq, MK | P nl--m !i=1pz

To estimate p via MLE, we maximize the log-likelihood:

N! <
log L(p) = log <) + an log p;. 2)
i=1

Ignoring the constant term that does not depend on p, the optimization problem reduces to:

K

ma; n; log p; 3

ax ; gp 3)
K

st. Y pi=1, p;>0. ()
=1

This is a standard constrained optimization problem, and the solution is obtained via the method of
Lagrange multipliers. The resulting MLE estimator for each expert’s activation probability is:

pi:%, Vie{l,..., K} (5)

B Predictor Architectures

e formulate the expert selection problem in Mixture-of-Experts (MoE) as a multi-class classification
task, where the objective is to predict the activated expert for each token in a sequence. Let 7 denote
the set of input tokens, and let E' = {ey, ..., ek } denote the set of experts available in a given MoE
layer. For each token ¢ € T, the goal is to predict an expert label y; € {1,..., K} that will be used
by the MoE routing mechanism.

We explore three modeling paradigms for this task: a global frequency-based model, a conditional
frequency model, and neural network-based predictors.

Probability-Based Model. This baseline treats all tokens identically and assigns each token to the
expert that is most frequently activated in the training data. Let n; be the number of times expert
e; was selected across all tokens in the training corpus. The model estimates the global activation
probabilities using maximum likelihood as:
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pi= =, Vie{l,...,K}. (6)
Zj:l n;j

The predicted expert for any token is then:

i = arg max p. @

This approach ignores token-specific context, providing a static prediction rule that reflects global
expert utilization frequencies.

Conditional Probability Model. To improve over the static assignment, we consider a token-
or position-conditioned frequency model. Let I; be the token index or its absolute position in the
sequence. For each token index ¢, we count how many times each expert ej, was selected and compute:

A N,
Pkl = Kiz’ 3

Zj:l Nji

where n;, ; denotes the number of times token index 7 selected expert e,. The model then predicts:

Uy = arg m]?Xﬁk\I,,- )
This conditional model captures per-token or per-position biases in expert activation.

Neural Networks. To learn token-aware expert selection strategies, we train neural models that take
token embeddings as input and predict the corresponding expert activation for each MoE layer. Each
model is trained with cross-entropy loss and optimized using the Adam optimizer. Input sequences
are padded to a fixed length of 512 tokens during training, and separate classifiers are maintained for
each layer of the MoE model.

We experiment with the following two architectures:

* Feed-Forward Network (FFN). The FFN model is a lightweight two-layer MLP. Each
input token embedding (of dimension 4096 for Mixtral) is first passed through a linear
projection to a 128-dimensional hidden space, followed by a ReLU activation. This is then
followed by another linear layer of the same hidden size. Finally, for each target MoE layer,
a separate classifier head is implemented as a linear layer mapping from the 64-dimensional
hidden state to 8 expert logits. The FFN model is shared across tokens and layers, with
layer-specific output heads.

* LSTM with Sparse Attention. To capture temporal dependencies, we also design a re-
current model based on an LSTM encoder augmented with sparse attention. The input
token embeddings are first projected from dimension 4096 (Mixtral) to 128 using a linear
compression layer, followed by a ReLU activation. These projected embeddings are passed
through a 2-layer LSTM with hidden size 64, applied in a batch-first manner. To enhance
contextual modeling, we incorporate a sparse attention mechanism over the LSTM outputs
(i.e., attention is applied using the LSTM outputs as query, key, and value). A residual
connection is then added between the attention output and a separate feedforward transfor-
mation of the compressed input. Finally, for each MoE layer, a dedicated linear classifier
maps the resulting vector to expert logits (8 classes for Mixtral).

C Results on LlaMA-MoE and Switch Transformer

To generalize our claim, we evaluated the performance implications and ran our simulations on other
model architectures beyond Mixtral. We show results obtained from the Llama-MoE model [28] in
Figure E] and the Switch Transformer model [4] in Figure|C] We used the same datasets and the same
hardware configurations as for the Mixtral experiments (MMLU, Alpaca Eval, and SST2; 4 A100
GPUs connected by NVLink or PCle).
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Figure 4: Simulated prefill latency for a single layer of Llama-MoE model [28] under different
prediction strategies and interconnect types. Workload sizes and hardware configurations are the

same as Figure @ For illustration purposes, overhead > 0.5 of original latency is omitted.

Overall, the trends and the insights are similar to those we derived from the Mixtral model. We
observed that the datasets generally have higher skewness in both models compared to Mixtral
due to different routing decisions. We also noticed that it is more difficult to obtain very high
prediction accuracy, and the prediction complexity required when approaching perfect prediction
grows exponentially. For illustration purposes, we have omitted results where the overhead latency is
greater than half of the original latency (layer-wise latency without overhead).
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Figure 5: Simulated prefill latency for a single layer of Switch Transformer model [4]] under different
prediction strategies and interconnect types. Workload sizes and hardware configurations are the
same as FigureEl For illustration purposes, overhead > 0.5 of original latency is omitted.
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