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Abstract

In multi-GPU Mixture-of-Experts (MoE) networks, distributing experts across1

GPUs leads to load imbalance as token assignments vary. Recent methods ad-2

dress this by duplicating popular experts on additional GPUs, requiring accurate3

prediction of token distributions before routing. This paper examines the trade-4

offs between prediction strategy, accuracy, overhead, and system performance.5

We introduce MoE-GPS, a framework that quantifies these impacts and identi-6

fies optimal predictor designs for various system settings. Our results highlight7

Distribution-Only Prediction, which predicts coarse token distribution with much8

lower overhead than Token-to-Expert Prediction, achieving 23% faster inference9

on the Mixtral 8×7B MMLU dataset.10
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Figure 1: MoE-GPS guidelines for selecting op-
timal expert prediction strategies that minimizes
end-to-end inference latency based on model and
hardware characteristics.

Mixture-of-Experts (MoE) [10, 12, 4, 21] mod-12

els reduce the computation of Large Language13

Models (LLMs) by activating only a subset of14

experts for each token, typically using Expert15

Parallelism (EP) [14] to distribute Feed Forward16

Network layers across GPUs. However, skewed17

token-to-expert mappings often cause signifi-18

cant load imbalance [20, 1], especially as mod-19

ern LLMs incorporate increasing numbers of ex-20

perts [15]. While training-time techniques such21

as auxiliary losses [24] can proactively balance22

loads, inference has fixed expert-to-token map-23

pings and imbalance and underutilization are24

unavoidable. Expert duplication [1, 25, 6, 16] —25

a common solution to balance loads — requires26

accurate, timely predictions of token-to-expert27

distributions, where increasing predictor complexity improves balance at the expense of overhead.28

The optimal prediction strategy thus depends on factors like workload patterns, hardware topology,29

and communication cost.30

Despite its importance, there is currently no systematic method to model the runtime implications31

of MoE load imbalance, and to help choose the best predictor for different workload and system32

setups. We present MoE-GPS, a framework that simulates end-to-end MoE inference performance33

with imbalance, and guides the selection of expert prediction strategies that yield the shortest runtime.34

Built on top of an architectural simulator, LLMCompass [27], MoE-GPS models the runtime tradeoffs35

among prediction strategies, accuracy, and overhead. Given an arbitrary model architecture and36

hardware setup, MoE-GPS identifies the strategy that delivers the best system performance.37
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With insights from MoE-GPS, we advocate for Distribution-Only Prediction strategy, which only38

predicts the coarse-grained token distribution across experts instead of exact token-to-expert mappings39

(Token-to-Expert Prediction). This lightweight approach is particularly effective when communication40

is not a bottleneck, because it reduces prediction complexity and still improves compute load41

balancing. Exact token-level prediction optimizes both computation and communication at the cost42

of higher overhead, which becomes more favorable when communication cost dominates. In addition,43

we observe that Distribution-Only Prediction performs better with more balanced workloads. Our44

contribution can be summarized as follows:45

• We propose MoE-GPS, a system performance simulation framework that selects the optimal46

expert prediction strategy to minimize inference latency.47

• We identify and validate the effectiveness of Distribution-Only Prediction as a lightweight48

alternative to Token-to-Expert Prediction, offering better scalability and efficiency under49

varying system bottlenecks.50

2 Background51

Load Imbalance in Inference Prefill Is Critical. In MoE networks, load imbalance occurs in both52

training and inference, but while training can proactively distribute tokens to less-popular experts,53

inference uses a fixed token-to-expert mapping. This work focuses on the inference prefill stage54

without changing the routing. As decode involves much fewer tokens and is latency-critical, compute55

imbalance is less of an issue here.56

Expert Parallelism Leads to Imbalance. Our setup uses Tensor Parallelism for Attention layers and57

Expert Parallelism (EP) for FFN layers. TP avoids duplicating KV cache, and Ring All Reduce [19] is58

used for communication efficiency. EP for FFN provides lower communication latency and preserves59

expert matrix structure but causes load imbalance since experts are tied to GPUs. Although hybrid60

(TP+EP) schemes exist [17], for simplicity, this work assumes TP-only for Attention and EP-only for61

FFN, and the insights are generalizable.62

Quantifying Imbalance. To measure GPU load imbalance, we define skewness as63
# of tokens in the most popular expert

# of average tokens per experts . Skewness directly scales both FFN compute and communication bottle-64

necks since the busiest GPU determines overall layer latency.65

Performance Impacts of Load Imbalance. For perfect balance (skewness = 1), each GPU transfers66

(N − 1)/N2 of its tokens in a fully connected multi-GPU setup (N is the number of GPUs), but67

skewed workloads cause longer runtimes for communication and compute on the busiest GPU. The68

communication time for routing and shuffles after FFN scales with skewness as (N−1)·skewness/N2.69

Current Solutions. To address runtime imbalance, industry approaches often duplicate popular70

experts across multiple GPUs, guided by predicted token-to-expert distributions. Recent methods71

include MoE-Prediction [1], Prophet [25], FlexMoE [16], SE-MoE [22], and FasterMoE [6, 5], which72

propose dynamic duplication and placement strategies. Other approaches mitigate imbalance during73

training through auxiliary load balancing [24], expert biasing [15], or by adjusting expert allocation74

for memory-limited scenarios [2]. Several alternative strategies, such as using expert buffers [9] or75

activation correlation models [26], are also proposed, but are outside the main focus of this paper.76

3 Methodology77

This section discusses our approach to modeling and analyzing expert prediction strategies in MoE78

inference. We describe the two different prediction strategies (Distribution-Only and Token-to-79

Expert). We also show normalized system performance obtained from a performance simulator,80

LLMCompass [27], to illustrate high-level trends of the runtime implications of expert duplication.81

Approach to Expert Duplication. We integrate dynamic expert duplication into the MoE model by82

inserting a pre-trained predictor before Attention in each layer. For a chosen frequency, the predictor83

does inference with current batched inputs to predict distribution and guide the expert placement.84

Since dynamic duplication incurs extra inter-GPU communication for moving experts, existing works85

propose different intervals for prediction and moving, from every single batch [5, 25] to every 1086

minutes [15], to balance overhead and effectiveness.87
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In this study, we assume single-batch prediction and placement frequency. Our simulator can be88

configured to model different frequencies of prediction and placement, by averaging out the overhead89

to multiple batches. In our example, Expert 1 has the most tokens, so it is replicated across multiple90

GPUs to evenly distribute the load. In general, given arbitrary token-to-expert mappings, experts91

can be duplicated to achieve per-GPU balance by iteratively shifting experts from overloaded to92

underloaded devices: keep duplicating the experts on GPUs with > 1/N tokens to GPUs with < 1/N93

tokens until all GPUs process the same amount of tokens.94

Prediction Strategies and Tradeoffs. We explore two prediction strategies with distinct tradeoffs:95

Distribution-Only Prediction, which estimates static, aggregate expert usage; and Token-to-Expert96

Prediction, which targets exact token-level routing. The former has lower overhead and complexity97

and targets at compute imbalance, while the latter can reduce both compute and communication costs98

at the cost of high overhead.99

Distribution-Only Prediction. Distribution-only prediction estimates per-expert token proportions100

(e.g., Expert 1: 75%) without specifying which tokens. This balances compute across GPUs but does101

not reduce communication, since tokens remain randomly scattered after ring all-reduce. We model102

each layer’s expert-activation distribution as multinomial and estimate parameters via Maximum103

Likelihood Estimation (MLE), which models counts over discrete classes (expert selections) and104

chooses parameters maximizing the likelihood of the observed data. Formally, let pli denote the105

probability of selecting expert i in layer l. Assuming i.i.d. token selections from this multinomial, the106

MLE is p̂li =
nl
i

N , where N is the total number of tokens and nl
i counts activations of expert i.107

We evaluate Distribution-Only Prediction on MMLU [7], Alpaca Eval [3], and SST2 [23] using108

Mixtral 8×7B [11]. For sequence length 512, average batchwise skewness is 1.388, 1.402, and109

1.990, respectively. We report the layer-averaged error rate between train-set estimates and test-set110

empirical probabilities, defined as |p̂−p|
1/# of experts where higher values indicate less accurate estimation.111

For datasets without a dedicated test split, we randomly partition the train set 80/20.112

We also simulate normalized end-to-end system performance for this setting (Mixtral 8×7B; batch size113

= 1; sequence length = 512; four A100 GPUs with NVLINK) using an augmented LLMCompass [27].114

Token-to-Expert Prediction. Token-to-Expert Prediction exactly routes each token to its expert’s115

GPU. With a predicted mapping, tokens go directly to the GPU hosting their experts, skipping the116

post–ring all-reduce scatter and saving both FFN compute and communication time . We cast expert117

selection as classification: predict the activated expert for each token in the batch processed by the118

MoE model. We study three model families: a simple probability model, a conditional probability119

model, and neural predictors.120

Probability Model. Assign the expert with the highest global frequency in the training data, treating121

all tokens identically regardless of identity or position.122

Conditional Probability Model. Condition on token index or position; for each token (or position),123

select the most frequent expert for that specific index in the training data.124

Neural Networks. Train on pairs of token embeddings and expert activations using cross-entropy and125

Adam [13], to convergence. All samples are padded to sequence length 512. We evaluate simple126

FFNs and LSTMs [8].127

4 Results128

In this section, we determine the best predictor for overall system performance under different129

systems, workload sizes and token skewnesses. Our goal is to identify when to use Distribution-130

Only Prediction, which reduces FFN computation load imbalance without communication savings,131

and when to use Token-to-Expert Prediction, which additionally reduces communication latency at132

the cost of higher predictor complexity. For Token-to-Expert Prediction, we further seek the optimal133

prediction accuracy to minimize runtime. We use an extended version of LLMCompass [27], a134

block-level simulator for large language model inference, validated with silicon measurements.135

Figure 2 prefill latency for a single layer Mixtral 8×7B, with four A100s on NVLink 3.0 [18].136

Batch size is 1, sequence length is 512, matching the experimental setup in Section 3. Figures 2a137

shows baseline latencies with no prediction. Figure 2b shows different prediction strategies at138
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Figure 2: Simulated prefill latency for a single layer of Mixtral 8×7B under different prediction strate-
gies and interconnect types. Latency is broken down by component (attention, FFN, communication,
overhead) and evaluated across skewness levels on 4 A100 GPUs using NVLink (top) and PCIe
(bottom). (a, c) show baseline latencies without prediction; (b, d) show improvements from prediction
strategies at varying accuracies. Distribution-Only Prediction reduces FFN compute without overhead,
while Token-to-Expert Prediction introduces overhead that trades off with improved load balancing.
For each skewness, the best preditor has the minimum total latency across strategies and accuracies.

varying skewness and accuracies.Token-to-Expert Prediction uses a fitted curve to model overhead by139

accuracy, with interpolation for unmeasured skewness.140

Figure 3: Simulated effectiveness of two strategies’
best savings for Mixtral 8X7B on 4 fully-connected
A100 with different system interconnect settings.

For each skewness, the first bar is no predic-141

tion, the second is Distribution-Only Predic-142

tion - reducing only FFN compute time with143

no overhead since distribution is estimated of-144

fline. As skewness increases, distribution esti-145

mation becomes less accurate.Remaining curves146

are Token-to-Expert Prediction at several accu-147

racies, showing a U-shape: higher accuracy im-148

proves load balancing but adds overhead. The149

best configuration is the one with the lowest150

latency, usually at moderate accuracy.151

Generally, Distribution-Only Prediction outper-152

forms Token-to-Expert. For skewness = 1.4153

(MMLU-like), it achieves 23% speedup than154

Token-to-Expert’s optimal setting. Token-to-155

Expert incurs more overhead, especially with156

low skewnesss where it requires more complex157

models. When skew is high or communication cost is a bottleneck, Token-to-Expert saves more.158

FFN latency reductions from prediction are largely skewness-independent, since mispredictions are159

measured relative to a perfectly balanced reference scenario. Only overhead varies with skew as160

higher skewness makes prediction easier.161

Figure 3 visualizes savings over baseline (no prediction) for each strategy and system. Differ-162

ence in savings for the two strategies is calculated by Distribution-Only Prediction saving −163

Token-to-Expert Prediction saving. Bars above zero mark Distribution-Only as better; below164

zero marks Token-to-Expert as better. We also show impacts of different interconnects.165

Key takeaways: Distribution-Only Prediction excels at low skewness or when communication isn’t a166

bottleneck with its low complexity and zero overhead. Token-to-Expert Prediction is only preferable167

under big skewness and low-bandwidth interconnects where communication savings dominate.168
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A MLE for Multinomial Distribution254

We seek to model the expert activation pattern in a Mixture-of-Experts (MoE) model using a proba-255

bilistic approach. Specifically, we are interested in estimating the distribution over expert selections256

for each MoE layer, based on observed activation frequencies in the training data. To this end, we257

adopt a multinomial modeling framework and employ Maximum Likelihood Estimation (MLE) to258

infer the activation probabilities.259

Assumptions. We assume that each token independently selects an expert from a fixed pool of K260

experts in a given layer. Let E = {e1, . . . , eK} denote the set of experts in a particular MoE layer.261

For each token routed through the layer, the expert selection is modeled as an i.i.d. draw from a262

multinomial distribution with parameters p = (p1, . . . , pK), where pi is the probability that expert ei263

is selected. Naturally,
∑K

i=1 pi = 1 and pi ≥ 0 for all i.264

Maximum Likelihood Estimation. Given N tokens routed through the layer, let ni denote the265

number of tokens that selected expert ei, so that
∑K

i=1 ni = N . The likelihood of the observed expert266

assignments under the multinomial distribution is:267

L(p) = Pr(n1, . . . , nK | p) = N !

n1! · · ·nK !

K∏
i=1

pni
i . (1)

To estimate p via MLE, we maximize the log-likelihood:268

logL(p) = log

(
N !

n1! · · ·nK !

)
+

K∑
i=1

ni log pi. (2)

Ignoring the constant term that does not depend on p, the optimization problem reduces to:269

max
p

K∑
i=1

ni log pi (3)

s.t.
K∑
i=1

pi = 1, pi ≥ 0. (4)

This is a standard constrained optimization problem, and the solution is obtained via the method of270

Lagrange multipliers. The resulting MLE estimator for each expert’s activation probability is:271

p̂i =
ni

N
, ∀i ∈ {1, . . . ,K}. (5)

B Predictor Architectures272

e formulate the expert selection problem in Mixture-of-Experts (MoE) as a multi-class classification273

task, where the objective is to predict the activated expert for each token in a sequence. Let T denote274

the set of input tokens, and let E = {e1, . . . , eK} denote the set of experts available in a given MoE275

layer. For each token t ∈ T , the goal is to predict an expert label yt ∈ {1, . . . ,K} that will be used276

by the MoE routing mechanism.277

We explore three modeling paradigms for this task: a global frequency-based model, a conditional278

frequency model, and neural network-based predictors.279

Probability-Based Model. This baseline treats all tokens identically and assigns each token to the280

expert that is most frequently activated in the training data. Let ni be the number of times expert281

ei was selected across all tokens in the training corpus. The model estimates the global activation282

probabilities using maximum likelihood as:283
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p̂i =
ni∑K
j=1 nj

, ∀i ∈ {1, . . . ,K}. (6)

The predicted expert for any token is then:284

ŷt = argmax
i

p̂i. (7)

This approach ignores token-specific context, providing a static prediction rule that reflects global285

expert utilization frequencies.286

Conditional Probability Model. To improve over the static assignment, we consider a token-287

or position-conditioned frequency model. Let It be the token index or its absolute position in the288

sequence. For each token index i, we count how many times each expert ek was selected and compute:289

p̂k|i =
nk,i∑K
j=1 nj,i

, (8)

where nk,i denotes the number of times token index i selected expert ek. The model then predicts:290

ŷt = argmax
k

p̂k|It . (9)

This conditional model captures per-token or per-position biases in expert activation.291

Neural Networks. To learn token-aware expert selection strategies, we train neural models that take292

token embeddings as input and predict the corresponding expert activation for each MoE layer. Each293

model is trained with cross-entropy loss and optimized using the Adam optimizer. Input sequences294

are padded to a fixed length of 512 tokens during training, and separate classifiers are maintained for295

each layer of the MoE model.296

We experiment with the following two architectures:297

• Feed-Forward Network (FFN). The FFN model is a lightweight two-layer MLP. Each298

input token embedding (of dimension 4096 for Mixtral) is first passed through a linear299

projection to a 128-dimensional hidden space, followed by a ReLU activation. This is then300

followed by another linear layer of the same hidden size. Finally, for each target MoE layer,301

a separate classifier head is implemented as a linear layer mapping from the 64-dimensional302

hidden state to 8 expert logits. The FFN model is shared across tokens and layers, with303

layer-specific output heads.304

• LSTM with Sparse Attention. To capture temporal dependencies, we also design a re-305

current model based on an LSTM encoder augmented with sparse attention. The input306

token embeddings are first projected from dimension 4096 (Mixtral) to 128 using a linear307

compression layer, followed by a ReLU activation. These projected embeddings are passed308

through a 2-layer LSTM with hidden size 64, applied in a batch-first manner. To enhance309

contextual modeling, we incorporate a sparse attention mechanism over the LSTM outputs310

(i.e., attention is applied using the LSTM outputs as query, key, and value). A residual311

connection is then added between the attention output and a separate feedforward transfor-312

mation of the compressed input. Finally, for each MoE layer, a dedicated linear classifier313

maps the resulting vector to expert logits (8 classes for Mixtral).314

C Results on LlaMA-MoE and Switch Transformer315

To generalize our claim, we evaluated the performance implications and ran our simulations on other316

model architectures beyond Mixtral. We show results obtained from the Llama-MoE model [28] in317

Figure 4 and the Switch Transformer model [4] in Figure C. We used the same datasets and the same318

hardware configurations as for the Mixtral experiments (MMLU, Alpaca Eval, and SST2; 4 A100319

GPUs connected by NVLink or PCIe).320
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nect = NVLink).
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(d) Latency of different prediction strategies and accuracies (intercon-
nect = PCIe).

Figure 4: Simulated prefill latency for a single layer of Llama-MoE model [28] under different
prediction strategies and interconnect types. Workload sizes and hardware configurations are the
same as Figure 2. For illustration purposes, overhead > 0.5 of original latency is omitted.
Overall, the trends and the insights are similar to those we derived from the Mixtral model. We321

observed that the datasets generally have higher skewness in both models compared to Mixtral322

due to different routing decisions. We also noticed that it is more difficult to obtain very high323

prediction accuracy, and the prediction complexity required when approaching perfect prediction324

grows exponentially. For illustration purposes, we have omitted results where the overhead latency is325

greater than half of the original latency (layer-wise latency without overhead).326
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(b) Latency of different prediction strategies and accuracies (intercon-
nect = NVLink).
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(d) Latency of different prediction strategies and accuracies (intercon-
nect = PCIe).

Figure 5: Simulated prefill latency for a single layer of Switch Transformer model [4] under different
prediction strategies and interconnect types. Workload sizes and hardware configurations are the
same as Figure 2. For illustration purposes, overhead > 0.5 of original latency is omitted.
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