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Abstract

Recent large language models (LLMs) exhibit impressive reasoning but often over-
think, generating excessively long responses that hinder efficiency. We introduce
DIET (DIfficulty-AwarE Training), a framework that systematically cuts these
"token calories" by integrating on-the-fly problem difficulty into the reinforcement
learning (RL) process. DIET dynamically adapts token compression strategies by
modulating token penalty strength and conditioning target lengths on estimated task
difficulty, to optimize the performance-efficiency trade-off. We also theoretically
analyze the pitfalls of naive reward weighting in group-normalized RL algorithms
like GRPO, and propose Advantage Weighting technique, which enables stable and
effective implementation of these difficulty-aware objectives. Experimental results
demonstrate that DIET significantly reduces token counts while simultaneously im-
proving reasoning performance. Beyond raw token reduction, we show two crucial
benefits largely overlooked by prior work: (1) DIET leads to superior inference
scaling. By maintaining high per-sample quality with fewer tokens, it enables
better scaling performance via majority voting with more samples under fixed
computational budgets, an area where other methods falter. (2) DIET enhances
the natural positive correlation between response length and problem difficulty,
ensuring verbosity is appropriately allocated, unlike many existing compression
methods that disrupt this relationship. Our analyses provide a principled and ef-
fective framework for developing more efficient, practical, and high-performing
LLMs. Our code is available at https://github.com/thunlp/DIET.

1 Introduction

Recent breakthroughs in large language models (LLMs) have yielded remarkable reasoning ca-
pabilities, particularly when enhanced through reinforcement learning (RL) from outcome-based
rewards (OpenAI, 2024; DeepSeek-AI et al., 2025; Team, 2025). These models excel in complex
domains like mathematics and coding, often generating sophisticated reasoning chains (Gandhi et al.,
2025; Pan et al., 2025; Luo et al., 2025b). However, this enhanced reasoning frequently comes with a
significant side effect: a dramatic increase in response length compared to base or instruction-tuned
models. While some verbosity can facilitate complex thought, it often leads to overthinking: models
produce excessively long responses, sometimes thousands of tokens, even for simple queries (e.g.,
"2+3=?") (Chen et al., 2024; Chang et al., 2025; Luo et al., 2025a). This verbosity severely impacts
inference latency and computational costs, hindering the practical deployment of these powerful
reasoning models. Initial attempts to mitigate overthinking via supervised fine-tuning (SFT), direct
preference optimization (DPO), or simple length penalties in RL objectives (Team et al., 2025; Xia
et al., 2025; Aggarwal & Welleck, 2025) often struggle, leading to performance degradation, i.e.,
models that are concise but inaccurate.
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Ĉ(x, ⇡✓) = 0.75
<latexit sha1_base64="OAJXyvvGeRA4nOD4Wo41+a/NrSc=">AAACBHicbVDLSgNBEJz1GeMr6jGXwSBEkGU3GPUiBPTgMYJ5QDaE2clsMmR2dpnpFcOSgxd/xYsHRbz6Ed78GyePgyYWNBRV3XR3+bHgGhzn21paXlldW89sZDe3tnd2c3v7dR0lirIajUSkmj7RTHDJasBBsGasGAl9wRr+4GrsN+6Z0jySdzCMWTskPckDTgkYqZPLe30C6fWo+HCCvZh3POgzIMeXjl0qd3IFx3YmwIvEnZECmqHayX153YgmIZNABdG65ToxtFOigFPBRlkv0SwmdEB6rGWoJCHT7XTyxAgfGaWLg0iZkoAn6u+JlIRaD0PfdIYE+nreG4v/ea0Egot2ymWcAJN0uihIBIYIjxPBXa4YBTE0hFDFza2Y9okiFExuWROCO//yIqmXbPfMLt+eFirFWRwZlEeHqIhcdI4q6AZVUQ1R9Iie0St6s56sF+vd+pi2LlmzmQP0B9bnD3Sklps=</latexit>

D̂(x, ⇡✓) = 0.25

DIET: DIfficulty-AwarE Training

Objective:

Adaptive Weighting

Difficulty

<latexit sha1_base64="ISs77hA9i5ANj1CBZtWtVJ5dOvo=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFqPgKeyKr2PAi8cI5gHJEnons8mY2ZllZlYIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrTDjTxvO+ncLK6tr6RnGztLW9s7tX3j9oapkqQhtEcqnaIWrKmaANwwyn7URRjENOW+Hoduq3nqjSTIoHM05oEONAsIgRNFZqdpEnQ+yVK17Vm8FdJn5OKpCj3it/dfuSpDEVhnDUuuN7iQkyVIYRTielbqppgmSEA9qxVGBMdZDNrp24p1bpu5FUtoRxZ+rviQxjrcdxaDtjNEO96E3F/7xOaqKbIGMiSQ0VZL4oSrlrpDt93e0zRYnhY0uQKGZvdckQFRJjAyrZEPzFl5dJ87zqX1Uv7y8qtZM8jiIcwTGcgQ/XUIM7qEMDCDzCM7zCmyOdF+fd+Zi3Fpx85hD+wPn8AYW7jwQ=</latexit>↵

Harder questions
Lighter penalty

Adaptive Target

<latexit sha1_base64="NifsEr3ZUx0Z3KhMbuDocizEdaI=">AAAB/nicbVDLSsNAFJ3UV62vqLhyE6xCBSmJ+FoWdOGygn1AE8JkOmmHTiZh5kYsoeCvuHGhiFu/w51/47TNQlsPXDiccy/33hMknCmw7W+jsLC4tLxSXC2trW9sbpnbO00Vp5LQBol5LNsBVpQzQRvAgNN2IimOAk5bweB67LceqFQsFvcwTKgX4Z5gISMYtOSbe24fQ3YzqjyeuAnzXehTwMe+Wbar9gTWPHFyUkY56r755XZjkkZUAOFYqY5jJ+BlWAIjnI5KbqpogskA92hHU4Ejqrxscv7IOtJK1wpjqUuANVF/T2Q4UmoYBbozwtBXs95Y/M/rpBBeeRkTSQpUkOmiMOUWxNY4C6vLJCXAh5pgIpm+1SJ9LDEBnVhJh+DMvjxPmqdV56J6fndWrh3mcRTRPjpAFeSgS1RDt6iOGoigDD2jV/RmPBkvxrvxMW0tGPnMLvoD4/MHrdiVOQ==</latexit>

D̂
(x

,⇡
✓
)

Target Compressed Token

Harder questions
More Token Budget

<latexit sha1_base64="fbGCzMUZS81MKnfx5cG8+qwVEiM="></latexit>

⇡0
✓t

= arg max
⇡

Ex⇠D[P (⇡, x)] � c(t) · ↵ · Ex⇠D[L(⇡, x)]

Outcome: Efficient Model

Efficient Model   

Token

Pe
rf

or
m

an
ce

Overthinking
Model

Efficient Model

✨

Cyclical Compression

Harder questions
Lighter penalty

Relax

Compress

Implementation:
Reward Weighting:

<latexit sha1_base64="M9URrLWIjr7u8ywiFb7khLpEec8="></latexit>

r = routcome � ↵ · ppenalty

Advantage Weighting:
<latexit sha1_base64="e11L1NkBCUd/3vWbpLDpQu7k7z0=">AAACIXicbVDLSiNBFK12fMZXZly6KQyCG0O3+NoIihuXEYwK6RBuV25MYXVVU3VbDE3/ymzmV2YzixHJTvwZKzHg80DB4ZxzuXVPkinpKAyfgqkf0zOzc/MLlcWl5ZXV6s9fl87kVmBTGGXsdQIOldTYJEkKrzOLkCYKr5Lb05F/dYfWSaMvaJBhO4UbLXtSAHmpUz084Uf8pFPEhPdUmJyESbEs+TaPQWV94LHoGnpLZKhB0aAsO9VaWA/H4F9JNCE1NkGjUx3GXSPyFDUJBc61ojCjdgGWpFBYVuLcYQbiFm6w5amGFF27GF9Y8k2vdHnPWP808bH6fqKA1LlBmvhkCtR3n72R+J3Xyql32C6kznJCLV4X9XLFyfBRXbwrLQpSA09AWOn/ykUfLAjypVZ8CdHnk7+Sy516tF/fO9+tHdcndcyzdbbBtljEDtgxO2MN1mSC/WZ/2X/2EPwJ/gWPwfA1OhVMZtbYBwTPL+d8o/8=</latexit>

A = Aoutcome � ↵ · Apenalty

Our Difficulty-Aware 
Compression

Baseline

Better Token-Performance Better Inference Scaling Better Length-Difficulty Correlation

Figure 1: An overview of DIET by mitigating LLM verbosity using difficulty-aware training.

A crucial dimension often overlooked in token compression is the intrinsic link between problem
difficulty and the appropriate level of verbosity. We contend that a "one-size-fits-all" compression
strategy is fundamentally flawed. Complex problems may necessitate longer, more detailed reasoning,
whereas simpler ones should elicit direct, concise answers. Indeed, as we later show (§2.3), LLMs
often naturally exhibit a tendency to use more tokens for problems they find more challenging. Token
compression methods that ignore this inherent relationship could force a suboptimal compromise
across the difficulty spectrum. We argue that explicitly incorporating on-the-fly difficulty estimation is
essential for developing token compression strategies that effectively preserve reasoning capabilities.

To address these challenges, we introduce DIET (DIfficulty-AwarE Training), a framework to
systematically "cut token calories" from overthinking LLMs. DIET integrates on-the-fly problem
difficulty into the RL training process, dynamically adapting token compression based on estimated
task difficulty. This enables DIET to selectively encourage conciseness for simpler problems while
preserving necessary verbosity for complex ones, improving the performance-efficiency trade-off and
achieving better reasoning with significantly fewer tokens than the base model.

The effective implementation of such difficulty-aware objectives within popular RL algorithms like
GRPO (Shao et al., 2024) presents its own challenges. We theoretically analyze the pitfalls of naively
applying weighted rewards in these settings and propose a robust Advantage Weighting technique
that ensures stable and effective token compression training. Beyond standard performance gains,
our work reveals two often-overlooked benefits of difficulty-aware compression: (1) Critically for
practical deployment, we show that DIET leads to superior inference scaling. By maintaining high
per-sample quality with fewer tokens, it enables significantly better inference scaling performance
under small computational budgets, an area where most prior token compression efforts falter or show
degradation. (2) We demonstrate that DIET not only compresses, but also enhances the natural positive
correlation between an LLM’s response length and problem difficulty: a desirable characteristic for
adaptive reasoning that many existing compression methods inadvertently disrupt.

This paper thus formalizes the difficulty-aware token compression problem and presents DIET as a
comprehensive solution. Through the core adaptive mechanisms, the enabling Advantage Weighting
technique, and by demonstrating unique benefits in enhancing inference scaling and preserving
adaptive verbosity, DIET offers a principled and highly effective approach for developing more
efficient, practical, and powerful reasoning LLMs.

2 Problem Formulation and Preliminaries

2.1 Token Efficiency in LLMs with Reasoning Capabilities

Formally, we define the token efficiency problem studied in this paper as a multi-objective optimiza-
tion challenge. Given a capable reasoning LLM policy πθ and a distribution of reasoning problems
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D, we aim to find a policy π′
θ that optimizes both performance and token efficiency:

π′
θ = argmax

π
Ex∼D[P (π, x)]− α · Ex∼D[f(L(π, x))], (1)

where L(π, x) represents the expected response length (in tokens) for prompt x under policy π,
P (π, x) represents the performance (e.g., accuracy on math problems) on task x, α > 0 is a coefficient
that controls the trade-off between performance and token efficiency, and f is a monotonically
increasing transformation function with different implementations in prior work.

The current paradigm of RL from outcome rewards typically focuses solely on maximizing per-
formance without considering token efficiency (α = 0), which leads to overthinking. Previous
approaches to addressing this issue have generally attempted to incorporate token length into the
reward function in an intuitive manner:

r(x, y) = routcome(x, y)− α · f (L(y)) , (2)

where routcome(x, y) represents the outcome reward, L(y) is the length of response y in tokens.
However, the uniform penalty α treats all problems equally, failing to account for varying difficulty
levels, and with inappropriate α, it quickly leads to suboptimal tradeoffs, where performance degrades
substantially as response length is reduced.

2.2 Model-Based Difficulty Estimation

A critical insight of our work is that the optimal response length for a task should vary according to
its difficulty. Intuitively, challenging problems may benefit from extended reasoning, while simpler
questions can be answered concisely without sacrificing accuracy. We estimate the difficulty of a
given problem based on the performance of the policy model itself during training. Formally, we
define the estimated correctness for a given prompt x under policy πθ based on N sampled responses
{yi}Ni=1:

Ĉ(x, πθ) =
1

N

N∑
i=1

I(yi is correct) where yi ∼ πθ(·|x). (3)

The estimated difficulty D̂(x, πθ) can then be defined as 1− Ĉ(x, πθ). This formulation captures an
intuitive notion: tasks that the current policy consistently fails on (Ĉ ≈ 0) are considered difficult,
while those consistently answered correctly (Ĉ ≈ 1) are considered easy.

Notably, popular RL algorithms such as GRPO (Shao et al., 2024) and RLOO (Ahmadian et al.,
2024) already require sampling multiple responses (N > 1) per prompt within each training batch to
estimate advantages. Therefore, computing Ĉ(x, πθ) or D̂(x, πθ) incurs no computational overhead,
as the necessary samples and correctness evaluations are already part of the core RL algorithm. This
makes on-the-fly difficulty estimation highly practical for integration into the training process, as we
explore in subsequent sections.

2.3 Preliminary Analysis: Intrinsic Correlation of Response Length and Problem Difficulty
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Figure 2: LLM’s response length relative to prob-
lem difficulty.

Before introducing our compression methods,
we analyze the LLM’s natural verbosity relative
to task difficulty. Using R1-Distill-Qwen-1.5B
and difficulty estimated via Eq. (3), we find that
solution length increases with complexity, even
without difficulty-aware training.

Fig. 2 shows a strong positive correlation: av-
erage response length increases with estimated
problem difficulty, similar findings have been
observed in Estermann & Wattenhofer (2025);
Wu et al. (2025). This suggests LLMs inherently
allocate more tokens to harder problems, likely for more elaborate reasoning. This pivotal observation
implies that common "one-size-fits-all" compression strategies, which ignore difficulty, risk either
truncating vital reasoning on complex tasks or under-compressing simple ones. Indeed, many prior
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compression techniques overlook this, and as shown in §4.4, can distort this natural length-complexity
relationship post-training.

This baseline behavior is a cornerstone of our motivation. Since LLMs instinctively use more tokens
for harder problems, effective compression should leverage this. We hypothesize that integrating on-
the-fly difficulty awareness into compression training enables models to compress more intelligently:
compress aggressively on easier problems while preserving token budgets for complex ones, which is
the key to achieving superior performance-efficiency.

3 Difficulty-Aware Reinforcement Learning for Token Compression

The baseline analysis in §2.3 shows that LLMs naturally adjust response length based on problem
difficulty. This motivates our approach: explicitly incorporating on-the-fly difficulty estimation into
the RL objective. Our goal is to train models that compress responses for simpler tasks while retaining
reasoning for harder ones. This section presents our methods: we first formulate how to integrate
difficulty into the optimization objective, then introduce a key technique for stable implementation
within policy gradients, and finally propose a strategy to refine training dynamics. An overview is
shown in Fig. 1.

3.1 Formulating Difficulty-Aware Optimization Objectives

The standard RL objective for token compression (Eq. (1)) often focuses on task performance P (π, x)
with a simple, uniform trade-off α for response length L(π, x). To instill difficulty awareness, we
propose modifying this objective so that the pressure to be concise adapts to the estimated difficulty
of prompt x under the current policy πθ Eq. (3). We explore two primary strategies for this:

3.1.1 Adaptive Trade-off Parameter αada(x, πθ)

The most direct way to instill difficulty awareness into the objective from Eq. (1) is to make its
trade-off coefficient α adaptive to the estimated problem difficulty. The intuition is to apply stronger
pressure for conciseness (a larger α) when the model finds the problem easy (high Ĉ) and relax it
when the model struggles (low Ĉ).

We replace the constant α with an adaptive trade-off parameter, αada(x, πθ), calculated using the
correctness estimate Ĉ(x, πθ):

αada(x, πθ) = αbase · w(Ĉ(x, πθ)), (4)

where αbase > 0 is a hyperparameter controlling the overall maximum strength of the efficiency
objective, and w(·) is a monotonically increasing function mapping correctness Ĉ ∈ [0, 1] to a
non-negative weight. A simple and effective choice is the identity function, w(Ĉ) = Ĉ, resulting in
the efficiency pressure scaling linearly from 0 for the hardest problems (Ĉ = 0) up to αbase for the
easiest ones (Ĉ = 1). For the penalty function f(L(yi)) itself, we adopt the formulation from Team
et al. (2025) and denote it as fKimi:

fKimi(L(yi)) =

{
γi, if I(yi is correct) = 1

min(0, γi), if I(yi is correct) = 0,
(5)

where γi = 0.5− L(yi)−minj L(yj)
maxj L(yj)−minj L(yj)+ϵ . The overall optimization objective effectively becomes

maximizing Ex∼D[P (π, x)−Ey∼π(·|x)[αada(x, π)·fKimi(L(y))]]. This approach directly modifies the
penalty strength α based on difficulty, prioritizing performance for difficult problems and conciseness
for easy ones, while using a fixed form for f .

3.1.2 Dynamic Length Target fdyn(x, πθ)

An orthogonal strategy is to make the penalty function f(L(y)) itself in Eq. (2) inherently adaptive
to problem difficulty. Instead of relying on a fixed functional form for f that only considers L(y)
(or L(yi) relative to peers), we now define f to be explicitly conditioned on a dynamic target length,
t(x, πθ). This target length depends on the estimated problem difficulty, allowing a larger verbosity
"budget" for harder problems.
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First, we define how the target length t is determined. Based on the estimated difficulty D̂(x, πθ), we
can sample a target t from a distribution that assigns higher values for higher difficulty:

t(x, πθ) ∼ Uniform(max(0, Lmax · (D̂(x, πθ)− δ)), Lmax · D̂(x, πθ)), (6)

where Lmax and δ are hyperparameters defining the maximum potential target length scale, and a
buffer range (e.g., 0.1). This sampling procedure assigns shorter targets for harder problems (high D̂)
and longer targets for easier ones (low D̂).

Next, we define our difficulty-adaptive penalty function, fdyn(yi, x, πθ, {yj}). This function quantifies
the extent to which the generated length L(yi) for response yi ∼ π(·|x) exceeds its specific target
t(x, πθ), normalized across N sampled responses {yj}Nj=1 for the same prompt x. Let p(yi, t) =
max(0, L(yi)− t(x, πθ)) be the raw exceedance. Our adaptive penalty function is:

fdyn(yi, x, πθ, {yj}) =
p(yi, t)− µp

σp + ϵ
, (7)

where µp and σp are the mean and standard deviation of {p(yj , t)}Nj=1. The overall optimization
objective thus becomes maximizing Ex∼D,{yj}∼π(·|x)[P (π, x)− α · fdyn(yi, t(x, πθ), {yj})]. This
approach shifts the efficiency goal from minimizing absolute length to minimizing length relative to a
difficulty-aware budget. These two strategies, adaptive α and adaptive length targets, can be explored
as alternatives or potentially combined.

3.2 Implementing Weighted Objectives with Policy Gradients: The Advantage Weighting

Following the conceptual formulation of difficulty-aware objectives (§ 3.1), we address their RL
implementation. We focus on policy gradient (PG) methods, particularly GRPO (Shao et al., 2024),
which uses per-prompt, multi-sample (N > 1) advantage normalization for stability. Integrating our
weighted difficulty-aware penalties requires careful analysis of weight-normalization interactions.

We show that naively combining task rewards (routcome) with weighted difficulty-dependent penalties
into a single reward signal before GRPO normalization causes problematic interactions. The combined
reward’s normalization factor (e.g., its standard deviation) then depends on both penalty and outcome
variances. Since outcome variance often correlates with problem difficulty (being highest for medium-
difficulty problems and lowest for very easy or very hard ones), the intended effect of the penalty
weight in the final normalized advantage becomes distorted. Specifically, as derived in Appendix B,
the token penalty is unexpectedly weakened for problems of modest difficulty where outcome variance
is high. Conversely, it can be unexpectedly exacerbated for problems where outcome variance is very
low (i.e., those the model consistently gets right or wrong), undermining the desired difficulty-aware
adaptation.
Remark 1 (Pitfall of Naive Reward Weighting). In group-normalized PG algorithms like GRPO,
combining reward components before normalization causes the penalty weight’s effect to be distorted
by the task’s outcome variance, undermining the intended difficulty-aware adaptation.

To prevent this distortion and ensure correct weighting, we propose Advantage Weighting. This
method normalizes advantages for the outcome reward (routcome,i) and raw penalty magnitude (pi)
separately, before combining them using the difficulty-aware penalty weight. Specifically, advantages
for task outcome and the penalty term are normalized independently using their per-prompt means
(µoutcome, µp) and standard deviations (σoutcome, σp) from N rollouts:

Âoutcome,i =
routcome,i − µoutcome

σoutcome + ϵ
, Âp,i =

pi − µp

σp + ϵ
. (8)

Here, pi is the raw token penalty magnitude (e.g., Eqs. (5) and (7)). The final policy gradient
advantage Â′

i combines the normalized components weighted by α′ (e.g., αada or α from §3.1):

Â′
i = Âoutcome,i − α′ · Âp,i. (9)

Thus, each component is scaled by its own variance before adaptive weighting. This allows α to
correctly modulate the normalized penalty’s influence relative to that of the normalized outcome,
faithfully reflecting the intended difficulty-aware trade-off and resolving the distortion. Experiments
in §4.5 validate this improvement, showing significant benefits over naive reward weighting.
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3.3 Refining Training Dynamics: Cyclical Compression Pressure

Although the difficulty-aware objectives (§ 3.1) implemented with Advantage Weighting (§ 3.2)
provide robust adaptive compression, constant pressure may risk premature convergence on brevity
or hinder exploration. To address this and potentially enhance the performance-efficiency trade-off,
we explore temporally modulating the compression intensity during training.

Inspired by annealing schedules, we cyclically vary the difficulty-aware penalty strength using a
time-varying cosine modulation factor c(t) = 0.5

(
1 + cos

(
2πt
T

))
, where T is the cycle period. This

factor c(t) smoothly oscillates between 1 (maximum pressure) and 0 (minimum pressure) and scales
the difficulty-aware penalty component within the final advantage calculation (Eq. (9)):

Â′
i(t) = Âoutcome,i − c(t) · αada(x, πθ) · Âp,i. (10)

This temporal variation aims to improve robustness and the final performance-efficiency trade-off,
potentially allowing the model to escape local optima related to excessive brevity and better balance
reasoning consolidation with conciseness pressure.

3.4 The DIET: DIfficulty-AwarE Training Method

Our approach, DIET, effectively integrates all the elements discussed in this section. Specifically,
DIET employs an objective that synergizes the principles of adaptive penalty strength (§3.1.1) and
dynamic length target (§3.1.2). This combined objective is implemented using Advantage Weighting
(§3.2) and its training is optimized with Cyclical Compression Pressure (§3.3). This holistic strategy,
DIET, underpins the best performance-efficiency results presented in our later experiments.

4 Experimental Validation

4.1 Experimental Setup

Base Model and Algorithm. Our experiments use the R1-Distilled Qwen 1.5B model (DeepSeek-AI
et al., 2025). For RL algorithm, we employ GRPO (Shao et al., 2024). All proposed RL methods are
built on GRPO and use the Advantage Weighting technique (§3.2).

Training. We use the DeepScaleR dataset (Luo et al., 2025b), featuring high-quality mathematical
problems of diverse complexities. We use veRL (Sheng et al., 2024) as the training framework, and
train models on 8 A100 GPUs. For more details of training, please refer to Appendix D.

Baselines. We compare against: (1) The Base Model without any compression. (2) SFT- & DPO-
Based Methods: Kimi 1.5 SFT (Team et al., 2025) (fine-tuning on shortest correct responses), Kimi
1.5 DPO (Team et al., 2025) (using shortest correct as positive DPO examples), and TokenSkip (Xia
et al., 2025) (SFT on responses with redundant tokens removed). (3) Other RL-Based Methods:
CosFn (Chang et al., 2025), O1-Pruner (Luo et al., 2025a), and Kimi 1.5 RL (Team et al., 2025).

Evaluation. We assess Pass@1 (P@1) and average response length (Tokens, Tok) on MATH
500 (Hendrycks et al., 2021), AIME 2024, AMC 2023, Olympiad Bench (He et al., 2024), and
Minerva (Lewkowycz et al., 2022). We sample 32 samples for each question in AIME24, and 10
samples for others to estimate the P@1. Details for evaluation are presented in Appendix E.

4.2 DIET Achieves Improved Performance with Reduced Tokens

Table 1 summarizes the performance and token efficiency of our methods against baselines. The Base
Model establishes a strong performance benchmark but with substantial verbosity, underscoring the
overthinking issue.

Among existing approaches, Kimi 1.5 DPO is a strong baseline that slightly reduces tokens and
improves the performance over the base model. TokenSkip achieves extreme token reduction, but its
average P@1 drops significantly, demonstrating that aggressive, non-nuanced compression severely
degrades reasoning. Standard RL baselines generally achieve more significant token reduction,
however, the performances are slightly inferior to the base model. These methods highlight the
difficulty of achieving both high performance and low token counts simultaneously without more
sophisticated adaptation.
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Table 1: Average performance (Pass@1, %) and token length of R1-Distilled Qwen 1.5B trained with
different token compression methods. For each benchmark, highest P@1 is bolded. For the "Macro
Average" columns, bolding indicates the best P@1 and a favorable performance-efficiency trade-off.

Method
MATH 500 AIME 2024 AMC 2023 Olympiad. Minerva Macro Average
P@1 Tok P@1 Tok P@1 Tok P@1 Tok P@1 Tok P@1 Tok

Base Model 82.1 5534 28.5 16590 62.7 10615 43.5 11587 26.0 7076 48.6 10280

SFT- & DPO-Based
Kimi 1.5 SFT 68.5 6761 22.0 17400 60.4 9323 39.4 10036 23.6 2804 42.7−12.1% 9865 −4.0%

Kimi 1.5 DPO 83.3 4464 31.7 13389 63.0 8678 44.5 9604 26.9 6070 49.9 +2.7% 8441−17.9%

TokenSkip 64.1 1120 6.8 2231 37.3 1401 25.8 2061 20.7 1674 30.9−36.4% 1697−83.5%

RL-Based
CosFn 75.6 2735 27.5 12492 61.1 6970 42.9 8307 27.1 3485 46.8−3.5% 6798−33.9%

O1-Pruner 79.1 2531 25.0 8961 62.5 5010 39.0 5242 23.7 2400 45.9−5.4% 4829−53.0%

Kimi 1.5 RL 66.3 1552 18.8 9109 44.7 3808 28.5 4774 16.7 1009 35.0−27.9% 4050−60.6%

Our Difficulty-Aware Methods
Dynamic Target (§3.1.2) 82.1 2792 27.7 10288 63.4 6017 43.4 6490 26.3 2700 48.6+0.0% 5657−45.0%

Adaptive Weighting (§3.1.1) 82.7 2876 32.2 10255 64.4 5819 43.7 6494 26.6 3170 49.9+2.8% 5723−44.3%

DIET (§3.1.1+§3.1.2) 83.0 3061 31.8 10578 65.4 6425 43.7 6917 26.9 3505 50.2+3.3% 6097−40.7%

Our Difficulty-Aware Methods consistently yield a better performance-efficiency frontier. The
Dynamic Target approach maintains the Base Model’s Macro Average P@1 while reducing average
tokens by a substantial 45.0%. The Adaptive Weighting method further improves the Macro Average
P@1 to 49.9% (+2.8% over Base), matching Kimi 1.5 DPO’s performance but with considerably
fewer tokens. Significantly, DIET, which leverages both Dynamic Target and Adaptive Weighting,
achieves the best P@1. This performance is achieved with an average token count of only 6097,
a significant 40.7% reduction compared to the Base Model. Beyond these quantitative gains, our
qualitative analysis (Appendix F) further reveals that DIET training progressively refines the model’s
reasoning style, leading to more structured language, concise calculations, and a marked reduction in
unnecessary self-doubt and redundant post-solution exploration.

These results underscore the effectiveness of incorporating nuanced difficulty awareness. While
methods like TokenSkip can produce very short answers, they do so at an unacceptable performance
drop. Our difficulty-aware methods, especially the combined strategy, demonstrate that it is possible
to achieve substantial token reductions while maintaining, and even enhancing the sophisticated
reasoning capabilities of the LLM, leading to a superior performance-efficiency trade-off.

4.3 DIET’s Advantage in Inference Scaling
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Figure 3: Micro average of majority voting
Pass@1 on all the benchmarks.

An often-overlooked benefit of token compression is
its potential to enhance inference scaling performance
under a fixed total token budget. Shorter responses al-
low for more samples to be drawn for techniques like
majority voting, which can improve overall accuracy
if per-sample quality is maintained. While previous
token compression work typically focused on single-
sample token counts and Pass@1, we investigate this
inference scaling behavior. We show that many ex-
isting compression methods fail to translate token
savings into improved scaling performance, whereas
DIET achieve superior majority voting accuracy, par-
ticularly at practical, lower token budgets.

Fig. 3 plots the micro average of majority voting Pass@1 across all math benchmarks against the
total token budget. The results highlight the advantages of our approaches. Methods like TokenSkip
and Kimi SFT, despite allowing many samples due to extreme compression, exhibit low and quickly
stagnating majority voting accuracy, confirming that their severe per-sample quality degradation
undermines scaling benefits. While stronger baselines like Kimi DPO show more respectable scaling,
their increase in the scaling performance is slow. The Base Model itself requires a substantial token
budget before multiple samples yield significant gains.

In contrast, our difficulty-aware methods demonstrate advantages. Notably, DIET and Dynamic
Target achieve significantly higher majority voting accuracy at low token budgets. This demonstrates
that DIET effectively preserves per-sample quality, allowing the benefits of increased sampling to
manifest early. Although the final accuracies are similar to other baselines, the faster convergence
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Advantage Weighting Improves Performance
at the Same Token Compression Ratio
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Less Token
Better Performance

Figure 5: Advantage Weighting vs. Reward Weighting analysis. (Left) Training curves (Pass@1
vs. Response Length) demonstrate better performance with Advantage Weighting. (Right) Final
evaluation results show Advantage Weighting yields superior performance-efficiency points.

makes its scaling more practical. Overall, the results show that our methods effectively translate token
savings into improved inference scaling performance, which is crucial for practical applications.

4.4 DIET Enhances Length-Difficulty Correlation

An ideal token compression method should not only reduce verbosity but also preserve, or even
enhance, the intelligent allocation of tokens based on problem difficulty, a natural tendency observed
in base LLMs (§2.3). Uniform compression risks disrupting this by being overly terse on complex
problems or insufficiently concise on simple ones. We investigate this by measuring the Pearson
correlation between estimated problem difficulty and generated response length across our test
benchmarks; a higher positive correlation indicates more appropriately scaled verbosity.
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Figure 4: Pearson correlation between
problem difficulty and average response
length of different methods. All p-values
are lower than 0.01. Methods that are not
included have lower correlation.

Fig. 4 demonstrates that our difficulty-aware methods ex-
cel at maintaining and enhancing this crucial correlation.
Our method, DIET, achieves the highest correlation, sur-
passing the Base Model’s inherent correlation (dashed
horizontal line) and other baselines. This indicates that
DIET successfully learns to modulate verbosity in tight
alignment with problem difficulty, consistent with our de-
sign goals. Notably, another strong baseline, CosFn, also
shows a high correlation, nearly matching DIET, but as
shown in §4.2, it fails to preserve performance when re-
ducing tokens. In contrast, other compression techniques
significantly degrade this adaptive characteristic. For in-
stance, Kimi DPO and Kimi SFT show a markedly weaker
correlation than the Base Model, implying their compres-
sion mechanisms are less sensitive to problem difficulty.
O1 Pruner also shows a reduced correlation. This suggests
that while these methods reduce tokens, they do so in a
more uniform or difficulty-agnostic manner.

These results underscore that intelligent compression, as
achieved by DIET, is not merely about token reduction but about doing so in a way that respects
problem complexity. By strengthening the positive relationship between difficulty and response length,
DIET ensures a more rational allocation of computational budget during inference, contributing to its
robust performance-efficiency.

4.5 Ensuring Stable Difficulty-Aware RL Training with Advantage Weighting

We empirically validate our proposed Advantage Weighting method (§3.2), designed to overcome
the signal distortion pitfalls of naive reward weighting within normalized policy gradient algorithms
like GRPO. As highlighted in our analysis (§3.2), naive weighting can interact poorly with outcome
variance, hindering effective penalty application.

Fig. 5 (left) plots the training dynamics (Average Training Pass@1 vs. Average Response Length).
Advantage Weighting (solid lines) consistently maintains higher performance than Reward Weighting
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(dashed lines) as models compress responses (moving right-to-left during training). This demonstrates
more effective learning during token reduction across all penalty settings when using Advantage
Weighting. The final evaluation results (Fig. 5, right) further reinforce this. Models trained with
Advantage Weighting achieve superior performance-efficiency trade-offs, occupying the desirable
top-left region (high performance, low token count). The DIET without advantage weighting fails to
deliver reasonable performance, we therefore omit it from the visualization.

These empirical results strongly support our theoretical analysis (§3.2). Advantage Weighting is
crucial for the stable and effective implementation of weighted objectives (like difficulty-aware
penalties) in normalized PG algorithms. Naive reward weighting leads to suboptimal training and
significantly poorer final performance-efficiency outcomes.

5 Related Work

Efficient reasoning in LLMs has recently attracted significant attention, as methods that boost
reasoning performance, often via RL with outcome-based rewards, unintentionally induce verbose,
overthought outputs. A growing body of work has therefore aimed at compressing the reasoning to
reduce inference costs without greatly compromising accuracy.

Prompt-Based Approaches. Initial efforts primarily explore prompt engineering to reduce ver-
bosity. For example, Chain-of-Draft (Xu et al., 2025) and Sketch-of-Thought (Aytes et al., 2025)
restructure reasoning by having the model first draft a concise outline before finalizing the answer,
while Constrained-CoT (Nayab et al., 2024) imposes length limits via prompts. Though these methods
allow quick, zero-shot adjustments, their effectiveness is limited since they do not alter the model’s
internal parameters.

Training-Based Compression via Supervised and RL Methods. More fundamental approaches
modify the model’s training process to inherently produce more concise reasoning chains. Supervised
fine-tuning (SFT) techniques aim to internalize efficient reasoning patterns by training on compressed
or optimized CoT data. SPIRIT-FT (Cui et al., 2025) and Skip-Steps (Liu et al., 2024) train models
on reasoning steps deemed crucial. Other SFT approaches focus on distilling longer reasoning chains
from capable models into shorter, equivalent ones (Yu et al., 2024; Kang et al., 2024; Munkhbat
et al., 2025). Some methods even train models to reason implicitly in latent space, generating
concise outputs without explicit step-by-step textual reasoning, such as Coconut (Hao et al., 2024),
CCoT (Cheng & Durme, 2024), and Implicit-CoT (Deng et al., 2024).

Reinforcement learning (RL) offers another avenue, often by incorporating length penalties directly
into the reward function. This typically involves combining the primary outcome-based reward
(e.g., correctness) with a secondary reward term that penalizes longer sequences. Examples include
approaches by Arora & Zanette (2025), L1 (Aggarwal & Welleck, 2025), Kimi-1.5 (Team et al., 2025),
and work exploring how length penalties can be used to stabilize training (Chang et al., 2025). Our
work builds on these efforts by comprehensively introducing difficulty awareness into the compression
process, analyzing the impact of data difficulty on compression training, proposing adaptive reward
shaping techniques that dynamically adjust token penalties based on on-the-fly difficulty estimation,
and addressing methodological issues in applying such rewards within group-normalized RL methods.

6 Conclusion

To combat LLM "overthinking" and its inherent inefficiencies, we introduced DIET (DIfficulty-
AwarE Training), a framework that intelligently "cuts token calories" by integrating on-the-fly
problem difficulty into the RL process for adaptive compression. DIET achieves satisfactory reasoning
performance while significantly reducing token counts. Beyond these primary gains, DIET uniquely
preserves and enhances the natural positive correlation between response length and problem difficulty,
ensuring appropriate verbosity. Furthermore, it translates these efficiencies into superior inference
scaling, delivering better performance under fixed computational budgets, which is a crucial advantage
over prior methods that often falter in this regard. DIET thus offers a principled, effective, and
thoroughly-validated strategy for developing more practical, efficient, and ultimately more capable
large language models.
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A Limitations

While DIET demonstrates significant advancements in creating more token-efficient and performant
reasoning LLMs, we acknowledge certain limitations.

Our empirical validation has primarily focused on mathematical reasoning benchmarks. Although
these tasks robustly test complex reasoning and verbosity patterns, the generalization of DIET’s
benefits to other diverse domains warrants more extensive investigation. The optimal balance between
conciseness and necessary verbosity might vary across these different applications. Still, we think that
mathematical reasoning is a representative reasoning task that can be used to validate the effectiveness
of our methods.

Furthermore, while the principles of our difficulty-aware framework are conceptually orthogonal
to many existing RL-based token compression techniques, suggesting potential for synergistic
combinations, this work did not investigate such hybrid approaches. The empirical exploration
of combining DIET with other methods to potentially achieve further performance enhancements
remains an avenue for future research.

Addressing these areas could lead to even more versatile and efficient large language models.
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B Derivation of Advantage Distortion under Naive Reward Weighting

This appendix provides the mathematical details supporting Remark 1 in §3.2, demonstrating how
naive reward weighting before normalization in algorithms like GRPO distorts the intended effect of
a penalty term. To isolate the distortion caused by the normalization procedure itself, we analyze the
case with a constant penalty trade-off parameter, αbase.

The naive approach combines the outcome reward routcome,i and the penalty term pi for response yi to
prompt x into a single reward:

r′i = routcome,i − αbase · pi. (11)
GRPO then computes the normalized advantage based on the empirical mean µr′ and standard
deviation σr′ of these combined rewards {r′j}Nj=1 for the N responses sampled for prompt x:

Â′
i =

r′i − µr′

σr′ + ϵ
. (12)

Let µoutcome, σoutcome and µp, σp be the empirical means and standard deviations of the outcome
rewards and penalty terms, respectively, within the batch for prompt x. Then µr′ = µoutcome−αbaseµp.
Assuming routcome and p are approximately independent given the prompt within the batch, the
variance of the combined reward is:
σ2
r′ = Var(r′i) = Var(routcome,i−αbasepi) ≈ Var(routcome,i)+α2

baseVar(pi) = σ2
outcome+α2

baseσ
2
p. (13)

Substituting the mean and standard deviation into the advantage calculation:

Â′
i =

(routcome,i − αbasepi)− (µoutcome − αbaseµp)√
σ2

outcome + α2
baseσ

2
p + ϵ

=
(routcome,i − µoutcome)− αbase(pi − µp)√

σ2
outcome + α2

baseσ
2
p + ϵ

=
1√

σ2
outcome + α2

baseσ
2
p + ϵ︸ ︷︷ ︸

outcome scaling

(routcome,i − µoutcome)−
αbase√

σ2
outcome + α2

baseσ
2
p + ϵ︸ ︷︷ ︸

Effective Penalty Scaling: τ̂p

(pi − µp). (14)

The crucial term is the effective penalty scaling factor τ̂p. This factor dictates how strongly the
centered penalty term (pi−µp) contributes to the advantage signal and the subsequent policy gradient
update ∇θJ ∝ E[∇θ log πθ · Â′].

Critically, τ̂p depends on the task outcome variance σ2
outcome. For binary outcome rewards (correc-

t/incorrect), σ2
outcome = Ĉ(1− Ĉ), where Ĉ is the estimated correctness (Eq. 3). This introduces an

unintended dependency on problem difficulty, distorting the effect of the constant hyperparameter
αbase:

• Easy/Hard Problems (Ĉ ≈ 1 or 0): In these cases, the outcome variance σ2
outcome ≈ 0. The

effective penalty scaling becomes τ̂p ≈ αbase√
α2

baseσ
2
p

= αbase
|αbase|σp

= 1
σp

(assuming αbase > 0). The

intended constant penalty weight αbase is effectively removed by the normalization, and the
penalty’s influence is scaled only by its own standard deviation, σp. The hyperparameter no
longer controls the penalty strength.

• Intermediate Difficulty Problems (Ĉ ≈ 0.5): Here, the outcome variance σ2
outcome is maximal

(≈ 0.25 for binary rewards). The denominator
√
σ2

outcome + α2
baseσ

2
p is larger, meaning the

effective penalty scaling τ̂p is minimized. The influence of the constant penalty αbase is most
strongly suppressed precisely when the task difficulty is intermediate.

This analysis reveals that normalizing the combined reward r′ distorts the effect of the penalty weight
αbase. The interaction with the difficulty-dependent outcome variance σ2

outcome prevents αbase from
applying consistent pressure. The policy gradient updates do not accurately reflect the intended
penalty strength, potentially hindering convergence.

The situation becomes even more complex when using the adaptive weight αada(x, πθ) = αbase ·w(Ĉ)
from the main paper. If we substitute αada into Eq. 14 and assume a linear weighting function
w(Ĉ) = Ĉ, the effective penalty scaling factor τ̂p becomes a non-linear function of correctness Ĉ.
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Figure 6: An example plot of Eq. (16) with
αbase = 0.1 and σ2

p = 1.

To visualize this, we can analyze its squared form,
τ̂2p :

τ̂2p =
α2

baseĈ
2

Ĉ(1− Ĉ) + α2
baseĈ

2σ2
p

. (15)

Assuming Ĉ ̸= 0 for now, this simplifies to:

τ̂2p =
α2

base
1−Ĉ
Ĉ

+ α2
baseσ

2
p

=
α2

base
1
Ĉ
− 1 + α2

baseσ
2
p

. (16)

This relationship is highly non-linear. To illustrate,
we can take the case where αbase = 0.1 and σ2

p = 1
(a plausible assumption if the penalty term is also nor-
malized, as we have done in Eq. (7)). The resulting
function for τ̂2p is plotted in Fig. 6. The curve is far
from the linear relationship we desire; the penalty’s
influence is negligible for most of the difficulty range
(Ĉ < 0.8) and then increases sharply only as the
problem becomes extremely easy. This interaction obscures the difficulty-aware trade-off that we
would like to intervene.

The Advantage Weighting approach presented in § 3.2 avoids all these issues by normalizing the
outcome and penalty advantages separately before applying the weight, thus preserving the intended
adaptive scaling and ensuring stable, effective training.

C Unbiased Gradient Estimation with Advantage Weighting

In this section, we provide a formal derivation to show that the core structure of our Advantage
Weighting method provides an unbiased estimate of the true policy gradient. Our goal is to first derive
the unbiased estimator and then explain its connection to our practical implementation.

First, we define the optimization objective J(θ), which combines the task performance reward with
the difficulty-aware length penalty:

J(θ) = Ex∼D,y∼πθ(·|x) [rtotal(x, y)] , where rtotal(x, y) = routcome(x, y)−α′(x, πθ) ·p(y). (17)

Here, routcome is the task reward, p(y) is the penalty magnitude, and α′(x, πθ) is the adaptive trade-off
parameter, which is treated as a constant for each group of samples generated for a prompt x.

According to the Policy Gradient Theorem, the true gradient of this objective is:

∇θJ(θ) = Ex,y [∇θ log πθ(y|x) · rtotal(x, y)] . (18)

To reduce variance, one can introduce a baseline B(x) that depends on the prompt x but not the
specific response y. The gradient estimate remains unbiased because the expectation of the baseline
term is zero:

Ey∼πθ(·|x) [∇θ log πθ(y|x) ·B(x)] = B(x) · Ey∼πθ(·|x) [∇θ log πθ(y|x)]

= B(x) ·
∫
y

πθ(y|x)∇θ log πθ(y|x) dy

= B(x) ·
∫
y

πθ(y|x)
∇θπθ(y|x)
πθ(y|x)

dy

= B(x) ·
∫
y

∇θπθ(y|x) dy

= B(x) · ∇θ

∫
y

πθ(y|x) dy

= B(x) · ∇θ(1)

= 0

(19)

14



Thus, the true gradient can be equivalently written as:

∇θJ(θ) = Ex,y [∇θ log πθ(y|x) · (rtotal(x, y)−B(x))] . (20)

The term A(x, y) = rtotal(x, y)−B(x) is the advantage function. Our Advantage Weighting method
constructs a specific baseline for this multi-component reward setting. For a group of N responses
{yi}Ni=1 to a prompt x, we define the empirical means µoutcome(x) and µp(x). We then construct the
baseline as:

B(x) = µoutcome(x)− α′(x, πθ) · µp(x). (21)

Since this baseline only depends on group-level statistics for a given prompt x, it is a valid baseline.
Substituting this into Eq. (20), the advantage for a sample yi becomes:

A(x, yi) = (routcome,i − α′pi)− (µoutcome − α′µp)

= (routcome,i − µoutcome)− α′(x, πθ) · (pi − µp). (22)

This is precisely the structure of the advantage used in our proposed Advantage Weighting method,
it is only that in our practice, we adopt GRPO-style normalization to divide the two terms in the
advantage with their standard deviation respectively. The stochastic gradient estimator ĝi(θ) =
∇θ log πθ(yi|x) · A(x, yi) is an unbiased estimator of the true policy gradient ∇θJ(θ). While the
core structure of our method is unbiased, our practical implementation follows the common practice of
GRPO and normalizes each advantage component by its standard deviation. This final normalization
step introduces a known bias to the gradient’s magnitude, but follows the more common practice in
LLM RL. One can simply remove the standard deviation denominator in Eq. (8) to obtain an unbiased
estimator.

D Training Details

For all baseline methods, we follow the hyperparameter settings reported in their original implemen-
tations. For our RL-based methods, in the rollout phase, we set the number of rollouts to 8, with a
top-p value of 0.95, a temperature of 0.6, and a maximum response length of 8192 tokens. During the
training phase, we set αbase in Eq. (4) to 0.5, half-cycle of Cyclical Compression Pressure to 100, kl
loss coefficient to 0.001, the learning rate to 1e-6, and the batch size to 128.

E Evaluation Detailes

This section of the appendix provides details regarding the evaluation model.

Parameters used for Evaluation: During the evaluation, we employed a temperature of 0.6, a top-p
value of 0.95, and a maximum response length of 32,768.

Sample Count for Different Datasets: For the MATH 500, AMC 2023, Olympiad, and Minerva
datasets, we adopted a sample count of 10; for the AIME 2024 dataset, we adopted a sample count of
32.

Method of Calculating Pass@1, and Token: For each question, we considered the average accuracy
of every sample as Pass@1, the average response length of every sample as Token.

Prompt Used in Evaluation: We utilized the prompt "<Question> Let’s think step by step and output
the final answer within \\boxed{ }" during the evaluation.

Inference Scaling: During the Inference Scaling evaluation of mathematical problems, we utilized
Python’s sympy3 module to ascertain the equivalence of two mathematical formulas in LaTeX format.
We group the responses with equivalent answers, and select the largest group as the majority voting
result. We adopted the LaTeX mathematical formula that appeared most frequently in the k samples
after transformation by sympy as the result of Majority Voting. The Inference Scaling Accuracy was
computed based on whether the Majority Voting result was equivalent to the Ground Truth.

3https://www.sympy.org/
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Figure 7: Evolution of qualitative characteristics during DIET training, showing the average rate at
which model checkpoints satisfy each property better than the Base Model.

F Qualitative Analysis of Behavioral Changes During Training

To understand how our DIET training qualitatively refines the model’s verbosity and reasoning style
beyond aggregate token counts, we conducted a case study. We aimed to assess specific behavioral
changes related to token reduction by defining four qualitative metrics:

1. Reduced Unnecessary Self-Doubt: The model exhibits less hesitation or redundant self-
correction once a correct reasoning path is identified.

2. Reduced Post-Solution Exploration: The model curtails exploration of alternative methods or
further elaboration after a correct answer has already been found.

3. Improved Language Structure: The model’s output is more organized and flows logically, with
fewer digressions or poorly structured sentences.

4. Concise Calculation Process: Mathematical or logical steps are presented more directly and
with less intermediate clutter.

For this analysis, we use questions from AMC 2023, AIME 2024, and MATH 500, and compare
responses from the base model against those from various checkpoints of our DIET model during
its training process. To evaluate the relative improvement on the aforementioned characteristics, we
utilized Gemini 2.5 Pro as a judge to determine if each checkpoint response demonstrated the targeted
behavior when compared with response from the base model.

Fig. 7 illustrates the average "Property Satisfaction Rate" for these four characteristics as training
progresses. Each curve represents the proportion of cases where the DIET checkpoint was judged
superior to the Base Model for that specific characteristic, averaged across datasets.

The trends in Fig. 7 indicate that as DIET training advances, the model progressively improves across
these qualitative dimensions. We observe a clear learning curve where the model becomes more adept
at producing concise and well-structured language. Notably, the "Reduced Self-Doubt" characteristic
shows the most significant impact, with satisfaction rates reaching approximately 90% by the later
stages of training. "Structured Language" and "Concise Calculation" also demonstrate substantial
gains, with satisfaction rates plateauing around 85% and 83%, respectively. "Less Exploration" after
finding a solution also improves steadily, reaching around 80%. These qualitative improvements
suggest how DIET shortens the reasoning trajectory.

G Ablation Studies

G.1 Impact of Cyclical Compression Pressure

We analyze the effect of the cyclical compression pressure strategy, detailed in §3.3, by comparing
our primary difficulty-aware approaches: Adaptive Weighting, Dynamic Target, and our combined
DIET method with and without this temporal modulation.
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Figure 8: Pass@1 versus average token count for Adaptive Weighting, Dynamic Target, and DIET
configurations with and without cyclical compression, across various benchmarks and their Macro
Average. The dashed red line indicates the Base Model’s Pass@1 performance. Cyclical training
generally trades a slight increase in tokens for improved Pass@1.

Table 2: Macro Average Pass@1 (%) and Token Count for the Dynamic Target method with varying
trade-off parameter αbase.

αbase

MATH 500 AIME 2024 AMC 2023 Olympiad. Minerva Macro Average
P@1 Tok P@1 Tok P@1 Tok P@1 Tok P@1 Tok P@1 Tok

0.1 83.1 2616 29.7 8852 65.1 5198 35.0 10326 27.1 2951 48.0 5988
0.5 80.1 1546 27.0 6794 63.6 3467 41.7 3814 24.9 1126 47.4 3349
1.0 73.5 1298 16.4 4217 49.5 1966 34.6 2475 22.2 1016 39.2 2194

Fig. 8 illustrates these comparisons. Consistently across the benchmarks, particularly in the Macro
Average (bottom right), applying cyclical compression shifts the methods to a higher Pass@1 com-
pared to their non-cyclical counterparts. This performance improvement often allows the cyclical
variants to meet or exceed the Base Model’s Pass@1 (dashed red line).

This gain in reasoning accuracy typically corresponds to a moderate increase in average token length.
For example, in the Macro Average plot, the DIET configuration achieves the highest Pass@1, while
DIET w/o Cycl uses fewer tokens but results in the lowest Pass@1. This pattern suggests that while
non-cyclical versions offer more aggressive token reduction, the "relax" phases in cyclical training
are beneficial for achieving peak performance, justifying its inclusion in our best-performing DIET
configurations presented in Table 1. Thus, cyclical compression aids our difficulty-aware methods in
achieving a superior balance of high performance and significant token savings relative to the Base
Model.

G.2 Impact of Trade-off Parameter αbase

To determine an appropriate value for the trade-off parameter αbase in Eq. (1), we conducted an
ablation study on the Dynamic Target as a preliminary experiment. This preliminary experiment
aimed to find a balance between maintaining reasoning performance and achieving significant token
reduction. We tested αbase ∈ {0.1, 0.5, 1.0}, with results shown in Table 2.

As shown in Table 2, increasing αbase leads to more aggressive token reduction but also a correspond-
ing decrease in Pass@1 performance. Specifically, on Macro Average, increasing αbase from 0.1 to
1.0 reduces tokens significantly from 5988 to 2194, but Pass@1 drops from 48.0% to 39.2%. The
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Table 3: Macro Average Pass@1 (%) and Token Count for the ablation of GRPO-style normalization
MATH 500 AIME 2024 AMC 2023 Olympiad. Minerva Macro Average
P@1 Tok P@1 Tok P@1 Tok P@1 Tok P@1 Tok P@1 Tok

w Norm 83.0 3061 31.8 10578 64.5 6425 43.7 6917 26.9 3505 50.2 6097
w/o Norm 82.5 2856 29.0 9994 66.5 5724 43.8 6384 26.9 3070 49.7 5605

Table 4: Macro Average Pass@1 (%) and Token Count for the Dynamic Target method with varying
rollout parameter N .

N
MATH 500 AIME 2024 AMC 2023 Olympiad. Minerva Macro Average
P@1 Tok P@1 Tok P@1 Tok P@1 Tok P@1 Tok P@1 Tok

4 78.1 2104 29.1 8709 63.8 4993 42.7 5298 24.8 2270 47.7 4674
8 83.0 3061 31.8 10578 64.5 6425 43.7 6917 26.9 3505 50.2 6097
16 82.2 2613 28.3 9899 66.6 5328 44.0 5970 26.3 2834 49.5 5328

setting of αbase = 0.5 yields a satisfactory trade-off. Based on this balance, we selected αbase = 0.5
as the default for all the difficulty-aware training in our main experiments.

G.3 Impact of Normalization Within Advantage Weighting

To test the importance of normalizing the penalty term within our Advantage Weighting framework,
we ran an ablation where we removed the GRPO-style normalization from the penalty advantage.
The results are shown on Table 3.

As the results show, removing normalization leads to a substantial token reduction but also causes
a significant degradation in performance. Some careful tuning of the weighting parameter might
mitigate the issue, but normalization is an effective and simple approach. Therefore, we adopt the
normalization. We hypothesize that the un-normalized penalty can have extreme values, which overly
biases the policy gradient towards generating shorter sequences at the expense of correctness.

G.4 Impact of Rollout Parameter N

N is an important hyperparameter of GRPO, to verify its impact on DIET, we conducted an ablation
study, and the results are shown Table 4.

The results show a clear trend. Decreasing the sample count to N=4 results in a noticeable drop in
performance. We attribute this to the less stable estimation of problem difficulty and reward baselines,
which can introduce noise into the policy gradient updates. Increasing the sample count from N=8 to
N=16 does not yield further performance improvements. However, it lowers the number of tokens,
potentially because the difficulty estimation is more accurate, allowing for more token reduction for
problems with suitable difficulty.Considering the trade-off between performance and efficiency, we
select N=8 in our main experiments.

G.5 Impact of Dynamic Length Target Paramter Lmax and δ

We also conducted ablation study for Lmax and δ, and the results are shown in Table 5 and Table 6,
respectively.

Reducing Lmax decreases average response length with modest performance degradation, similar to
decreasing δ. We chose the current configuration as the optimal balance between performance and
token efficiency.

H Scale to Larger Models

To verify the scalability of the DIET, we also conducted experiments on the R1-Distilled Qwen 7B.
The experimental results are shown in Table 7. From the results, we draw two key conclusions:
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Table 5: Macro Average Pass@1 (%) and Token Count for the Dynamic Target method with varying
Lmax.

Lmax

MATH 500 AIME 2024 AMC 2023 Olympiad. Minerva Macro Average
P@1 Tok P@1 Tok P@1 Tok P@1 Tok P@1 Tok P@1 Tok

2048 82.9 2851 28.8 9762 64.8 5597 43.0 5742 29.0 2973 49.7 5385
8192 83.0 3061 31.8 10578 64.5 6425 43.7 6917 26.9 3505 50.2 6097

Table 6: Macro Average Pass@1 (%) and Token Count for the Dynamic Target method with varying
δ.

δ
MATH 500 AIME 2024 AMC 2023 Olympiad. Minerva Macro Average
P@1 Tok P@1 Tok P@1 Tok P@1 Tok P@1 Tok P@1 Tok

0.05 82.6 2903 28.3 7630 65.0 5907 43.4 6710 26.3 3303 49.1 5290
0.1 83.0 3061 31.8 10578 64.5 6425 43.7 6917 26.9 3505 50.2 6097

DIET Improves Performance while Reducing Tokens: Our DIET framework achieves the highest
average Pass@1 score (65.4%), improving upon the already strong 7B base model (64.4%). Crucially,
it simultaneously reduces the average token count This demonstrates that our method effectively
enhances both performance and efficiency at a larger scale.

Superior Performance-Efficiency Trade-off: Most other compression methods exhibit a clear
trade-off, where significant token reduction leads to a noticeable drop in performance. DIET breaks
this trend.

I Functional Form of Dynamic Length Target

As illustrated in Fig. 2, the relationship between difficulty and token count follows a more logarithmic
trend rather than a linear one. To explore this, we conducted this experiment. We first fitted a
logarithmic curve to the data in Fig. 2, then we scaled and moved the curve to ranges from 0 to 8192
when x is in [0, 1], resulting in y = 3116.9∗ ln(21.33x+1.66)−1579.7. We then used this function
to sample target lengths in our Dynamic Target method, instead of sampling from a linear range. The
experimental results are shown in Table 8.

The results show that the method is robust to the selection of the target function, the two choices do
not differ significantly, and the simple linear function already works well.
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Table 7: Average performance and token length of R1-Distilled Qwen 7B trained with RL-based
methods

Method
MATH 500 AIME 2024 AMC 2023 Olympiad. Minerva Macro Average
P@1 Tok P@1 Tok P@1 Tok P@1 Tok P@1 Tok P@1 Tok

Base Model 92.1 3921 53.5 13389 82.5 7730 56.4 8890 37.4 4930 64.4 7772

RL-Based
CosFn 87.1 1397 50.5 8659 78.3 3578 54.0 4593 36.4 1345 61.3 3914
O1-Pruner 71.1 4958 39.2 12054 79.1 6014 50.9 6852 30.5 5277 54.2 7031
Kimi 1.5 RL 64.0 1124 44.3 7903 70.6 2783 46.1 3225 32.5 677 51.5 3142
Our Difficulty-Aware Methods
Dynamic Target (§3.1.2) 90.4 2121 49.6 8186 79.8 4416 54.3 4677 34.5 1819 61.7 4244
Adaptive Weighting (§3.1.1) 90.6 1782 52.1 8313 80.2 4050 54.9 4838 36.9 1638 62.9 4124
DIET (§3.1.1+§3.1.2) 92.1 3187 57.9 10124 82.6 6075 56.5 7026 37.9 3695 65.4 6021

Table 8: Macro Average Pass@1 (%) and Token Count for different length penalty functions of
Dynamic Target

MATH 500 AIME 2024 AMC 2023 Olympiad. Minerva Macro Average
P@1 Tok P@1 Tok P@1 Tok P@1 Tok P@1 Tok P@1 Tok

Logarithmic 83.5 2971 29.8 10890 61.5 6526 43.7 6693 26.5 3319 49.0 6079
Linear 83.0 3061 31.8 10578 64.5 6425 43.7 6917 26.9 3505 50.2 6097
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only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide a derivation of advantage distortion under naive reward weighting
in Appendix B
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide test details in Appendix E. We will also open-source our evaluation
code after proper organization.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
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dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We will open-source our code after proper organization.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide detailed training details in Appendix D and detailed evaluation
details in Appendix E.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We conducted a p-value test when computing the Pearson correlation between
problem difficulty and average response length and ensured that the p-value is less than 0.01.
And we reported error bars in Fig. 2 .
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We detail the computational resources used in our experiments in §4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
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Answer: [Yes]
Justification: Our research adheres to the NeurIPS Code of Ethics. It does not involve human
subjects, personally identifiable information, or sensitive data.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our experiments are conducted using the already widely-used open-source
model, which will not induce new societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We use open-source reasoning model for our experiments, which will pose no
such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All external assets used in our work, including code(e.g., verl, sympy),
datasets(e.g., deepscaler), and models(e.g. R1-Distilled Qwen), are properly credited.
We ensure that the licenses and terms of use for these resources are explicitly stated and
strictly followed.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We will open-source our code and provide detailed documentation and com-
ments for ease of use.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Crowdsourcing and human subjects are not involved in our research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Crowdsourcing and human subjects are not involved in our research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We only used LLM for writing and editing which does not impact the core
methodology.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

26

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Problem Formulation and Preliminaries
	Token Efficiency in LLMs with Reasoning Capabilities
	Model-Based Difficulty Estimation
	Preliminary Analysis: Intrinsic Correlation of Response Length and Problem Difficulty

	Difficulty-Aware Reinforcement Learning for Token Compression
	Formulating Difficulty-Aware Optimization Objectives
	Adaptive Trade-off Parameter alpha_ada(x, pi_theta)
	Dynamic Length Target f_dyn(x, pi_theta)

	Implementing Weighted Objectives with Policy Gradients: The Advantage Weighting
	Refining Training Dynamics: Cyclical Compression Pressure
	The DIET: DIfficulty-AwarE Training Method

	Experimental Validation
	Experimental Setup
	DIET Achieves Improved Performance with Reduced Tokens
	DIET's Advantage in Inference Scaling
	DIET Enhances Length-Difficulty Correlation
	Ensuring Stable Difficulty-Aware RL Training with Advantage Weighting

	Related Work
	Conclusion
	Limitations
	Derivation of Advantage Distortion under Naive Reward Weighting
	Unbiased Gradient Estimation with Advantage Weighting
	Training Details
	Evaluation Detailes
	Qualitative Analysis of Behavioral Changes During Training
	Ablation Studies
	Impact of Cyclical Compression Pressure
	Impact of Trade-off Parameter alpha
	Impact of Normalization Within Advantage Weighting
	Impact of Rollout Parameter N
	Impact of Dynamic Length Target Paramter Lmax and 

	Scale to Larger Models
	Functional Form of Dynamic Length Target

