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Abstract
This paper introduces k-Dynamic Time Warping
(k-DTW), a novel dissimilarity measure for polyg-
onal curves. k-DTW has stronger metric proper-
ties than Dynamic Time Warping (DTW) and is
more robust to outliers than the Fréchet distance,
which are the two gold standards of dissimilarity
measures for polygonal curves. We show inter-
esting properties of k-DTW and give an exact
algorithm as well as a (1 + ε)-approximation al-
gorithm for k-DTW by a parametric search for
the k-th largest matched distance. We prove the
first dimension-free learning bounds for curves
and further learning theoretic results. k-DTW not
only admits smaller sample size than DTW for the
problem of learning the median of curves, where
some factors depending on the curves’ complexity
m are replaced by k, but we also show a surpris-
ing separation on the associated Rademacher and
Gaussian complexities: k-DTW admits strictly
smaller bounds than DTW, by a factor Ω̃(

√
m)

when k ≪ m. We complement our theoretical
findings with an experimental illustration of the
benefits of using k-DTW for clustering and near-
est neighbor classification.

1. Introduction
Handwriting, panel data, time series, sensor-generated tra-
jectories, and many more types of data are instances of
polygonal curves in Euclidean space. These curves are
input for learning processes, both supervised and unsuper-
vised. To compare and quantify the distance of two curves,
a suitable dissimilarity measure is needed that reflects the
fact that similar curves that represent, for instance, the same
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handwritten characters, can be sampled differently and can
therefore look very different at the data level, even though
they are similar in content and visual appearance.

Dissimilarity measures that involve transformations of one
curve into another are therefore studied across the literature.
Prominent examples are the Fréchet distance, arguably the
most popular measure in computational geometry, or the Dy-
namic Time Warping (DTW) distance, which is often used
in the context of machine learning. Both can be computed
in near-quadratic time in terms of the number of vertices
representing the two curves (Alt & Godau, 1995; Eiter &
Mannila, 1994; Vintsyuk, 1968). There is also evidence
that the Fréchet distance as well as DTW cannot be com-
puted in strongly subquadratic time, based on conditional
lower bounds that rely on widely accepted complexity theo-
retic conjectures (Bringmann, 2014; Bringmann & Mulzer,
2016; Abboud et al., 2015; Bringmann & Künnemann, 2015;
Buchin et al., 2019c). Hence, it is widely believed that only
small polylogarithmic improvements can be achieved (Agar-
wal et al., 2014; Gold & Sharir, 2018) over the quadratic
complexity of the natural dynamic programming approach.

Both dissimilarity measures have their caveats: while the
Fréchet distance is a metric, it is however very sensitive
to outlier vertices, to such a degree that the existence of a
single outlier completely determines the distance. DTW is
much less outlier-sensitive, but it is not a metric since it does
not satisfy the triangle inequality, which can be violated by
a large factor that depends on the length of the curve. These
problems can unfavorably affect the outcome when Fréchet
or DTW are applied for clustering or classification.

1.1. Our Contributions

We propose a novel dissimilarity measure k-DTW that pro-
vides the “best of both worlds”, while generalizing and
interpolating between the Fréchet, and the DTW distance.
k-DTW considers only a small subset of size k compris-
ing the most important part of the transformation between
two curves, and ignores the remaining transformation that
matches only small deviations, which often correspond to
noise. We summarize our main contributions as follows:

1) We prove that k-DTW provides a strengthened triangle
inequality compared to DTW and it is thus closer to a
proper metric, while retaining some robustness of DTW.
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2) We provide an exact algorithm as well as a (1 + ε)-
approximation algorithm for k-DTW using a parametric
search for the k-th largest matched distance with stan-
dard DTW on modified distance matrices as a subroutine.

3) We prove the first dimension-free learning bounds for
clustering under k-DTW (including DTW and Fréchet)
and a separation result showing that k-DTW has strictly
smaller Rademacher and Gaussian complexity than
DTW for clustering curves.

4) We experimentally show the benefits of k-DTW over
the Fréchet distance and DTW for clustering and nearest
neighbor classification of synthetic and real world data.

1.2. Other Related Work

Many dissimilarity measures were introduced to alleviate
the drawbacks of the Fréchet distance and DTW. Examples
include the weak Fréchet distance (Alt & Godau, 1995)
and Continuous Dynamic Time Warping (CDTW) (Buchin,
2007; Buchin et al., 2022). Also, clustering under these
measures was considered with different degrees of success.
While center based clustering of curves is NP-hard in most
cases (Driemel et al., 2016; Buchin et al., 2019a; 2020;
Bulteau et al., 2020), there exist practical approaches to
cluster curves under the Fréchet distance (Buchin et al.,
2019b) and CDTW (Brankovic et al., 2020).

We are not aware of previous learning theoretic excess risk
bounds for clustering problems on curves. Recent learn-
ing bounds in the case of clustering points were given in
(Bucarelli et al., 2023). An important concept studied in
the context of so-called coresets (Phillips, 2017; Munteanu
& Schwiegelshohn, 2018; Munteanu, 2023), is the VC
dimension of the space of curves under the Fréchet dis-
tance (Driemel et al., 2021; Brüning & Driemel, 2023;
Cheng & Huang, 2024; Cohen-Addad et al., 2025) and
dynamic time warping (Conradi et al., 2024). A series of re-
sults has been dedicated to dimensionality reducing random
projections for curves (Driemel & Krivošija, 2018; Meintrup
et al., 2019; Psarros & Rohde, 2023).

2. Definitions
A curve in Euclidean space Rd, for d ∈ N, is a continuous
function τ : [0, 1]→ Rd. A polygonal curve is a curve such
that there exist a finite number m ∈ N of values 0 = t1 ≤
t2 ≤ . . . ≤ tm = 1, with wi = τ(ti) which we call vertices.
Further, for each i ∈ {1, . . . ,m− 1} the segment between
the two consecutive vertices τ(ti) and τ(ti+1) is an affine
line segment, i.e., it holds that

τ(ti+x) =

(
1− x

ti+1 − ti

)
· τ(ti)+

x

ti+1 − ti
· τ(ti+1),

for all x ∈ [0, ti+1 − ti]. We can thus fully charac-
terize a curve τ by defining the sequence of its vertices

τ = (w1, . . . , wm).1 We say that such a curve τ has com-
plexity m. For simplicity we write [m] = {1, . . . ,m}. In
this paper, the distance between two points p, q ∈ Rd is al-
ways their Euclidean distance. Therefore, we write ∥p− q∥
to denote their distance under the ℓ2-norm. We work only
with discrete transformations, which are based on the fol-
lowing notion of traversals.

Let σ = (v1, . . . , vm′) and τ = (w1, . . . , wm′′) be two
curves of complexities m′ and m′′ respectively. Then, a
traversal T of σ and τ is a sequence that consists of pairs
of indices (i, j), which we also call matchings, for vertices
vi ∈ σ and wj ∈ τ , such that

i) the traversal T starts with (1, 1) and ends with
(m′,m′′), and

ii) the pair (i, j) of T can be followed only by one of
(i+ 1, j), (i, j + 1) or (i+ 1, j + 1).

For simplicity, we write m = max{m′,m′′}. Every traver-
sal is monotonic by construction, cf. item ii). Let T be the
set of all traversals T of σ and τ , then the discrete Fréchet
distance between σ and τ is defined as

ddF (σ, τ) = min
T∈T

max
(i,j)∈T

∥vi − wj∥,

which satisfies all axioms of a metric on the set of curves
in Euclidean space when we merge any sequence of equal
vertices into a single vertex.2

A related dissimilarity measure of two curves is the dynamic
time warping (DTW) distance. It considers the sum of
distances matched by the traversal instead of the maximum
distance. In the literature we find a generalized version,
taking the ℓq-norm for q ∈ [1,∞) of the vector comprising
the Euclidean distances matched by the traversal. We denote
it the DTW(q) distance, which for two curves σ and τ from
Rd is defined as

dDTW(q)(σ, τ) = min
T∈T

(∑
(i,j)∈T

∥vi − wj∥q
)1/q

.

Note that dDTW(q)(σ, τ) can already be computed if we
are only given all pair-wise distances between vertices
(v, w) with v ∈ σ and w ∈ τ . Hence, given any dis-
tance matrix D ∈ Rm′×m′′

, we define DTW(q)(D) =

minT∈T (
∑

(i,j)∈T D[i, j]q)1/q. DTW(1) is most popular
across the literature, which is the standard DTW distance.
Therefore, we simply use DTW to denote DTW(1) in the
remainder.

DTW(q) does not satisfy the triangle inequality. However, a
relaxed version, depending polynomially on m, holds under
certain assumptions, as shown by Lemire (2009):

1We slightly abuse notation using the functional and the se-
quence representation interchangeably for the same curve τ .

2Without this technical assumption, one can define distinct
curves with zero distance.
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Lemma 2.1 (Lemma 3 and Theorem 2 of Lemire (2009)).
Given 1 ≤ q < ∞. There exists no constant c that is in-
dependent of the complexities of the input curves such that
dDTW(q)(σ, τ) ≤ c · (dDTW(q)(σ, υ) + dDTW(q)(υ, τ)) .
holds for any three curves σ, τ , and υ in Euclidean
space Rd. If the input curves σ, τ , and υ are of the
same complexity m, then it holds that dDTW(q)(σ, τ) ≤
q
√
m · (dDTW(q)(σ, υ) + dDTW(q)(υ, τ)) .

Inspired by the Ky-Fan norm for matrices, which sums their
k largest singular values (Fan, 1951), we propose a novel
dissimilarity measure for curves, which we call k-largest
dynamic time warping distance (k-DTW). It seeks for a
traversal of the two curves minimizing the sum of the k
largest distances between vertices matched by the traversal.
We focus on the case k ≪ m, as we want to observe only a
small, yet significant part of the transformation between two
curves. If k is larger than the optimal traversal (whose length
is at least m), then we can simply fill the missing part with
zeros. We note that this is just for technical convenience.

Definition 2.2 (k-DTW distance). Given two curves σ =
(v1, . . . , vm′) and τ = (w1, . . . , wm′′) in Euclidean space
Rd and a parameter k ∈ N, let T be the set of all traversals
T of σ and τ . Let the pair (i, j) ∈ T attain the l-th largest
distance s(T )

l = ∥vi − wj∥ in T such that s(T )
1 ≥ s

(T )
2 ≥

. . . ≥ s(T )
|T | , where |T | denotes the number of pairs in T . For

any l > |T | let s(T )
l = 0. Then, the k-DTW distance of σ

and τ is defined as

dk-DTW(σ, τ) = min
T∈T

∑k

l=1
s
(T )
l .

The k-DTW distance generalizes both, the discrete Fréchet
distance (for k = 1), and the DTW distance (for k large
enough, e.g., k ≥ 2m− 1).

2.1. Triangle inequality

The k-DTW distance satisfies a relaxed triangle inequality
without assumptions on the curves’ complexities, which we
prove in the following.

Lemma 2.3. For any three curves σ, τ , and υ in Euclidean
space Rd, it holds that

dk-DTW(σ, τ) ≤ k · (dk-DTW(σ, υ) + dk-DTW(υ, τ)) .

This bound is tight. Further, there is no constant c > 0
independent of k and the complexity of the curves that sat-
isfies dk-DTW(σ, τ) ≤ c · (dk-DTW(σ, υ) + dk-DTW(υ, τ)) for
any three input curves.

Proof. Let T (σ, υ) and T (υ, τ) be traversals that realize
dk-DTW(σ, υ) and dk-DTW(υ, τ) respectively. Using these
traversals, we construct a (not necessarily optimal) traversal

T ′(σ, τ) with the underlying idea that any (i, j) ∈ T ′(σ, τ)
will correspond to some (i, l) ∈ T (σ, υ) and (l, j) ∈
T (υ, τ) such that we can use the triangle inequality. We con-
struct T ′(σ, τ) as follows. For any index z of a vertex of υ,
we consider all vertices that it is matched to in the traversals
T (σ, υ) and T (υ, τ), i.e., all (i1, z), . . . , (is, z) ∈ T (σ, υ)
and all (z, j1), . . . , (z, jt) ∈ T (υ, τ). Note that by the def-
inition of a traversal, the indices i1, . . . , is and j1, . . . , jt
are non-empty, contiguous subsets of the natural numbers
respectively. W.l.o.g., let s ≥ t; the other case is symmetric.
For all l ∈ {1, . . . , t}, we add the tuples (il, jl) to our new
traversal T ′(σ, τ), and for all l ∈ {t+ 1, . . . , s} we add the
tuples (il, jt) to T ′(σ, τ). Performing this for all indices z
of vertices of υ, we obtain a valid traversal T ′(σ, τ).

By construction, we know that any element in T ′(σ, τ) was
created from some elements in T (σ, υ) and T (υ, τ). Fur-
thermore, recall that sT1 is the largest distance for some
given traversal T . Hence, by the triangle inequality we ob-
tain sT

′(σ,τ)
1 ≤ sT (σ,υ)

1 + s
T (υ,τ)
1 . Using this inequality, we

then have

dk-DTW(σ, τ) ≤
∑k

l=1
s
T ′(σ,τ)
l ≤ k · sT

′(σ,τ)
1

≤ k · (sT (σ,υ)
1 + s

T (υ,τ)
1 )

≤ k · (dk-DTW(σ, υ) + dk-DTW(υ, τ)).

At first glance, it might seem that the above inequalities are
quite loose. However, we prove in the remainder that they
are actually tight in general. To this end, consider the curves
σ, τ , and υ, each of complexitym ≥ 3, similar to the curves
that Lemire (2009) introduced for the proof of Lemma 2.1.
That is, let σ = (0, . . . , 0) , τ = (0, ε, . . . , ε, 0) , and υ =
(0, ε, 0, . . . , 0) . Let k ≤ m− 2. Then, dk-DTW(σ, τ) = k · ε,
dk-DTW(σ, υ) = ε, and dk-DTW(υ, τ) = 0, implying that the
relaxed triangle inequality that we showed is tight.

Further, towards a contradiction suppose that there is a con-
stant c > 0 for which any three curves σ, τ , and υ satisfy
dk-DTW(σ, τ) ≤ c · (dk-DTW(σ, υ) + dk-DTW(υ, τ)). Then as-
suming k ≤ m−2, the above example implies that c ≥ k. In
the remaining case where k > m− 2, the inequality implies
dk-DTW(σ, τ) = (m− 2) · ε ≤ c · ε, thus c ≥ m− 2.

2.2. Robustness

The concept of robustness for curve distance measures can
be quantified as follows to support the intuition: given two
curves whose matched vertices are at constant distance, say
1, if we move one vertex away to increase the distance
by a large value ∆, then the average distance contributed
per vertex increases through this modification by ∆/Θ(k)
for k-DTW, k ∈ [m]. This means that Fréchet is largely
dominated by the single outlier, while for k-DTW the in-
crease averages out, so that one single large perturbation
of order ∆ ≈ εk is largely indistinguishable from tiny ε
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perturbations of (all) single vertices. To make the claim of
robustness more rigorous, we follow the outline of (Lop-
uhaä & Rousseeuw, 1991) and extend it towards a notion of
robustness for curves with respect to the k-DTW distance
(including Fréchet and DTW). To the best of our knowl-
edge, such a notion of robustness for curves has not been
considered before.

Given a curve π = (p1, . . . , pm) in Rd, let tm(π) =
σ be its curve-of-top-k-median, i.e., σ = (s1, . . . , sm)
where each si equals the geometric median restricted to
the top-k distances (Krivosija & Munteanu, 2019; Af-
shani & Schwiegelshohn, 2024) of the set {p1, . . . , pm}.
More formally, for all j ∈ [m] we define sj = s̄ ∈
argmins∈Rd

∑
top-k ∥pi− s∥. We note that the argmin may

be ambiguous. In that case we may choose an arbitrary but
fixed element, i.e., we require that s1 = . . . = sm. We fi-
nally note that

∑
top-k ∥pi− s̄∥ = dk-DTW(π, σ). It is easy to

see that tm(π) is translational equivariant, which means that
for any v ∈ Rd that we add simultaneously to all vertices
of a curve, it holds that tm(π + v) = tm(π) + v. We prove
this property in Lemma A.9 in the appendix.

First, we define the breakdown point for tm(π) with respect
to k-DTW to be the smallest number 1 ≤ ℓ ≤ m of vertices
to obtain πℓ, which equals π in all but ℓ many vertices that
may be arbitrarily corrupted, such that σℓ = tm(πℓ) is also
arbitrarily corrupted. Formally, we define β(tm, π) :=

min{ℓ ∈ [m] | supπℓ
dk-DTW(tm(π), tm(πℓ)) =∞}.

We prove the following theorem in Appendix A.3.

Theorem 2.4. Let π = (p1, . . . , pm) be a curve with pi ∈
Rd. Let tm(π) = σ be the curve-of-top-k-median. Then
β(tm, π) =

⌊
k+1
2

⌋
.

The proof is composed of two parts. Lemma A.10 shows
β(tm, π) ≤

⌊
k+1
2

⌋
. If β(tm, π) were larger than

⌊
k+1
2

⌋
, it

implies that any πℓ that we get by corrupting ℓ =
⌊
k+1
2

⌋
ver-

tices would result in bounded ∥tm(πℓ)∥ <∞. We construct
two such corrupted curves, by translating a suitable choice
of ℓ vertices by ±v for a large vector v. This requires spe-
cial care in comparison to (Lopuhaä & Rousseeuw, 1991)
to ensure that the set of vertices that determine the top-k
distances remains unchanged. The two curves can then
be related to each other using the translation equivariance
in such a way that the finite bound cannot hold for both
simultaneously, thus leading to a contradiction.

Lemma A.11 shows β(tm, π) ≥
⌊
k+1
2

⌋
. If that were not

true, then we can show that tm(πℓ) must be close to the orig-
inal tm(π), as otherwise, it would contradict the optimality
of tm(πℓ) for the corrupted curve. Again, the technical de-
tails require special care to account for the geometric median
of top-k distances instead of the full set of distances.

3. Construction Algorithm
Here we show how to efficiently compute the k-DTW dis-
tance. We first show in Lemma 3.1 that the k-DTW distance
between two curves is not equal to taking the largest k dis-
tances from the sum that yields their DTW distance. This
precludes the option of directly applying the standard DTW
algorithm for the computation of k-DTW. We also show that
the length of the traversals may differ significantly (linearly
in m) in both directions, which also precludes using a stan-
dard DTW algorithm to even estimate the size of a k-DTW
traversal. This indicates that no provable approximation can
be obtained in such a straightforward manner. The proof
can be found in Appendix A.
Lemma 3.1 (Short version of Lemma A.4). Given an inte-
germ ≥ 5, it holds for any k with 1 ≤ k ≤ 4⌊m5 ⌋, that there
exist curves σ and τ of complexity m such that dk-DTW(σ, τ)
is not equal to the sum of the largest k distances contribut-
ing to dDTW (σ, τ). Furthermore, the difference between
traversal lengths can be linear in the complexity m.

We also stress that the standard dynamic programs for DTW
or Fréchet computation cannot be adapted in a direct way
to k-DTW (i.e., storing the top k distances seen along each
path). The problem is that one can update inductively the
cost of a current solution in a standard way, but the top k
distances cannot be updated to preserve optimality in this
way along each path to the end of the dynamic program.
Other dynamic programming approaches seem to give only
O(m8) time algorithms (Garfinkel et al., 2006).

As a consequence, we need to design a new algorithm for
the k-DTW distance. Our solution is given in Algorithm 1
(whose notation we use in the following). It is inspired
by Algorithm A of Bertsimas & Sim (2003), designed for
the more general framework of top-k-optimization. Our
analysis is significantly simplified and adapted to the case
of the k-DTW distance. Our algorithm uses the standard
DTW as a subroutine, which can be computed exactly in
O(m′m′′) time (Berndt & Clifford, 1994; Vintsyuk, 1968).

We give a self contained proof (in Appendix A) in the k-
DTW context, i.e., we prove that Algorithm 1 returns the
correct dk-DTW(σ, τ), for any two curves σ and τ .
Theorem 3.2. Given two curves σ and τ , |σ| = m′

and |τ | = m′′, and a parameter k, Algorithm 1 returns
dk-DTW(σ, τ) in O (m′m′′z) time, where z is the number of
distinct distances between any pair of vertices in σ and τ .

Here, we give a high level intuition of the proof. We show
that for an arbitrary (not necessarily optimal) but fixed traver-
sal T there exists an iteration where the cost considered by
the algorithm equals the k-DTW cost of this traversal T , i.e.,
the sum of its k largest distances. In particular this happens
in the iteration where the element E[l∗] is a correct guess
on the smallest element among the k largest distances in T .
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Algorithm 1 Computing the k-DTW distance
1: Input: Curves σ = (v1 . . . , vm′) and τ =

(w1, . . . , wm′′), parameter k
2: Output: The k-DTW distance dk-DTW(σ, τ)
3: Initialize the distance matrix D[1..m′, 1..m′′] with
D[i, j]← ∥vi − wj∥

4: Let array E[1..z + 1] store the z distinct distances in
D including 0 in sorted order E[1] > . . . > E[z] >
E[z + 1] = 0

5: Initialize mincost←∞
6: for l ∈ {1, . . . , z + 1} do
7: /* E[l] represents a current guess on the smallest

element among the largest k distances */
8: D′[i, j] ← max{D[i, j] − E[l], 0}, for all (i, j) ∈

[m′]× [m′′]

9: /* update best solution by the DTW distance on the
modified D′ matrix plus k · E[l] */

10: mincost← min{mincost,DTW(D′) + k · E[l]}
11: end for
12: Return: mincost

The reason is that the max in Line 8 of Algorithm 1 evalu-
ates to D[i, j]−E[l∗] for the k largest distances in T while
it evaluates to 0 for all other distances in T . Hence, adding
k ·E[l∗] to the cost of traversal T inD′ recovers the original
cost. In all other iterations the cost cannot become smaller,
which can be shown by the following case distinction:

• For iterations l where E[l] < E[l∗], we again sum the k
largest elements of T as, similarly to iteration l∗, the max
in Line 8 evaluates to D[i, j] − E[l] for these elements
and is compensated for by adding k · E[l]. Hence, the
cost cannot be less than the k-DTW cost of T , but it can
be larger as we potentially sum more elements.

• For iterations l where E[l] > E[l∗], some of the k largest
elements of T are evaluated to 0 in the max in Line 8.
However, by later adding k ·E[l], we add at least what we
subtracted fromD[i, j] in max{D[i, j]−E[l], 0}. Hence,
again the sum is at least the k-DTW cost of T .

Applying this to the optimal k-DTW traversal T ∗, we ad-
ditionally have that the best solution for a suboptimal T
cannot ever be smaller than the best and optimal iteration
for T ∗. The minimization in Line 10 thus yields the optimal
k-DTW cost. The running time follows from the running
time of the standard DTW algorithm repeated for z + 1
distinct guesses of the element E[l].

Note that z may become as large as m′m′′ making the
running time quartic in bad cases. We thus introduce two
heuristic improvements that effectively reduce the number
of iterations that need to be performed on practical instances.
This reduces the number of DTW calculations on average
by 85% – 97.5% in our experiments in Section 5.

1) The first heuristic leverages the fact that the array of
distinct distances E[1..z + 1] is sorted and in iteration l′

we have a lower bound of k ·E[l′]. Whenever this value
exceeds the current mincost value, any element E[l] for
l < l′ is even larger and cannot yield a better solution.
Iterations with l < l′ can thus be omitted.

2) For iterations where E[l] is very small, many of the
distance entries in D′ are larger than zero. This may
result in any solution being invalid since it is summing
over more than k non-zero elements. We can thus run
a binary search for the largest index l′ that admits at
least one valid solution with no more than k non-zero
elements and omit all iterations l > l′.

Next, we state our rigorous approximation results. The first
lemma is a simple, yet important ingredient showing that
we can use the discrete Fréchet distance (Eiter & Mannila,
1994) as a k-approximation for k-DTW. The proof is given
in Appendix A.
Lemma 3.3. Given two curves σ = (v1, . . . , vm′) and
τ = (w1, . . . , wm′′), and a parameter k, it holds that
ddF (σ, τ) is a k-approximation for dk-DTW(σ, τ), which can
be computed in time O(m′m′′). In particular, it holds that
ddF (σ, τ) ≤ dk-DTW(σ, τ) ≤ k · ddF (σ, τ).

Leveraging Lemma 3.3, we obtain our (1 + ε)-
approximation result, which quantifies the trade-off between
the approximation factor and reducing z to a logarithmic
amount, achieving almost quadratic running time.
Theorem 3.4. Given two curves σ and τ , |σ| = m′ and
|τ | = m′′, and a parameter k, there exists a (1 + ε)-
approximation algorithm for k-DTW for any 0 < ε ≤ 1

that runs in O(m′m′′ log(k/ε)
ε ) time.

The proof is given in Appendix A, and we just provide
some intuition here. We first compute the discrete Fréchet
distance ddF . By Lemma 3.3, this k-approximation for k-
DTW allows to round up very small non-zero distances in
the distance matrix to ε·ddF

k , which increases the cost by
at most k · ε·ddFk ≤ ε · dk-DTW. We can also omit iterations
where E[l] > ddF , because the cost in iteration l is lower
bounded by k · E[l] > k · ddF ≥ dk-DTW. The remaining
distances in E[1..z] are rounded to their next power of 1+ε.
This way, no solution becomes cheaper. At the same time,
the cost of any solution can increase by at most a factor of
1 + ε, and the number of distinct distances is bounded by

z ∈ O(log1+ε(k/ε)) = O(log(k/ε)/ε).

We additionally note that the Fréchet distance cannot be
approximated within a factor less than 3 in truly sub-
quadratic time unless the Strong Exponential Time Hypothe-
sis (SETH) fails (Buchin et al., 2019c). Hence, computing a
good approximation for k-DTW has a similar complexity as
computing a good approximation for the Fréchet distance.
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4. Dimension-Free and Improved Learning
Theory via k-DTW

We now showcase the benefits of using k-DTW for learn-
ing the median of curves. We are given a distribu-
tion D over polygonal curves of complexity m with ver-
tices in the unit Euclidean ball Bd2 ⊆ Rd. We define
cost(D, ψ) :=

∫
σ
d(σ, ψ)P[σ] dσ. Further, let OPTD :=

minψ cost(D, ψ). We call the curve ψD inducing the op-
timal objective OPTD the median curve with respect to
D. Given a sample P of n curves drawn independently
and identically distributed from D, we denote by ψP :=
argminψ cost(P,ψ) = argminψ

∑
σ∈P d(σ, ψ) the empiri-

cal risk minimizer. Then the generalization error, or the
excess risk of ψP is

E := cost(D, ψP )−OPTD.

We are interested in bounding the decrease of E as a function
of the sample size n and problem parameters such as the
length of the curves, the ambient dimension, or the new
k-DTW parameter k.

A common way of bounding the generalization error is by
means of bounding the Rademacher and Gaussian complex-
ities

R(P ) := E sup
ψ

∣∣∣∣ 1n∑n

i=1
d(σi, ψ)ri

∣∣∣∣ ,
G(P ) := E sup

ψ

∣∣∣∣ 1n∑n

i=1
d(σi, ψ)gi

∣∣∣∣ ,
where ri ∈ {−1, 1} are independent Rademacher random
variables and gi ∼ N(0, 1) are independent standard Gaus-
sians. It is well-known (Bartlett & Mendelson, 2002) for
P ∼ D that there exist absolute constants c1 < c2 such that

EPE ≤ c1EPR(P ) ≤ c2EPG(P ).

Thus, it suffices to bound the Gaussian complexity to get the
same bound for the Rademacher complexity and the excess
risk as well, up to absolute constants.

Before we continue with the main results and their analysis,
we would like to point out that the main takeaway message
is two-fold: first, to our knowledge, our result gives the first
dimension-free bounds for learning clustering of curves,
specifically their median, with extensions to p-median to be
detailed later. Previous bounds for either DTW (Conradi
et al., 2024) or Fréchet (Driemel et al., 2021) rely on their
respective VC dimension, which is conceptually prone to at
least linear dependence on the ambient dimension d. Sec-
ond, while the generalization to the novel k-DTW follows
in a natural and direct way from our result on DTW, in fact,
taking this step together with a lower bound on DTW re-
veals a non-obvious complexity separation when k is small

enough. More specifically, our results imply that k-DTW
admits strictly smaller Rademacher and Gaussian complexi-
ties than DTW. With this background, we are now ready to
state our main learning theoretic results.

Theorem 4.1. Let D be an arbitrary distribution on curves
of complexity m supported over the unit Euclidean ball. Let
P be an i.i.d. sample from D of size |P | = n. Then the
Rademacher and Gaussian complexities for learning the
median curve of complexity m are bounded above by

R(P ),G(P ) ∈ O

√
m3 ·min{d logm,m2 log4(mn)}

n


under DTW and

R(P ),G(P ) ∈ O

√
mk2 ·min{d log k, k2 log4(mn)}

n


under k-DTW.

As a direct consequence, the excess risk of ψP is bounded
with constant probability by applying Markov’s inequal-
ity. A high probability bound is possible using a sample
complexity of Õ(R(P ) +

√
log(1/δ)/n), see (Bartlett &

Mendelson, 2002). We complement this by the following
lower bounds on the Rademacher and Gaussian complexity.

Proposition 4.2. Let D be an arbitrary distribution on
curves of complexity m supported over the unit Euclidean
ball. Let P be an i.i.d. sample from D of size |P | = n.
Then the Rademacher and Gaussian complexities for learn-
ing the median curve of complexity m under DTW satisfy
R(P ),G(P ) ∈ Ω(

√
m2/n).

The proof in Appendix A is by reduction from the median
problem for points. Comparing the upper and lower bounds,
we see that (for sufficiently small k) the Rademacher or
Gaussian complexity for k-DTW is in Õ(

√
m/n), whereas

the corresponding complexity for DTW is in Ω(
√
m2/n),

showing a complexity separation by at least a factor
Ω̃(
√
m).

We first prove generalization bounds with a dependence on d.
A full proof of the dimension-free bound is given separately
in Appendix A. For a point set P , we define VP,DTW to be
the set of cost vectors defined by median curves in Bd2 with
respect to DTW and we define VP,k-DTW to be the set of
cost vectors defined by median curves in Bd2 with respect
to k-DTW. That is, for any curve ψ ⊂ Bd2 , there exists a vψ

with vψi = d(σi, ψ), σi ∈ P , where d(·, ·) denotes either
DTW or k-DTW. Define a net N (VP , ∥.∥∞, ε) as a set of
vectors Nε such that for each ψ ⊂ Bd2 , there exists a vector
v′ ∈ N (VP , ∥.∥∞, ε) with |v′i − v

ψ
i | ≤ ε for all i ∈ [|P |].

We start with the following lemma.
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Lemma 4.3. For an absolute constant c, we have that

1) |N (VP,DTW , ∥.∥∞, ε)| ≤ exp(c · d ·m · log(m/ε))
2) |N (VP,k-DTW , ∥.∥∞, ε)| ≤ exp(c · d ·m · log(k/ε)).

Proof. Let ε′ be a constant depending on ε and m, to be
determined later. Consider an ε′-net with respect to the
d-dimensional unit Euclidean ball, that is a covering of
Bd2 with Euclidean balls of radius ε′. It is well known
that such a covering C using

(
1 + 2

ε′

)d
balls exists (Pisier,

1999) and can be represented by the set of centers of each
ball. We consider all subsets of centers S ⊆ C of size
|S| = m, inducing an approximate curve ψ′. We claim that
for an appropriate choice of ε′, the cost vectors induced by
the curves ψ′ define the desired net. The number of these
subsets is upper bounded by exp(c · dm log(1/ε′)). Now,
we first prove correctness, then reconsider the resulting size.
We first observe that for every lengthm curve ψ, there exists
a ψ′ such that the jth vertex of ψ is within distance ε′ of the
jth vertex of ψ′ for each j ∈ [m], by the properties of C.
Second, we observe that for any candidate curve σ of length
at most m and any traversal T of σ and ψ, we have for all
l ∈ [|T |] that |sTl − s

T{ψ′}
l | ≤ ε′ by the triangle inequality,

where T{ψ′} is the traversal T applied to σ and ψ′ instead
of ψ. Thus, we have that

∑|T |
l=1 |sTl − s

T{ψ′}
l | ≤ 2mε′.

Since this holds for all traversals, it also holds in particular
for the optimal traversal. Thus, setting ε′ = ε/(2m) implies
that |dDTW (σ, ψ)− dDTW (σ, ψ′)| ≤ ε. Rescaling the net
accordingly, we obtain exp(c · d ·m · log(m/ε)).

To extend the argument for k-DTW, we merely observe
that ε′ only has to be rescaled by a factor k, yielding the
appropriate bound of exp(c · d ·m · log(k/ε)).

The nets provided by Lemma 4.3 already allow us to prove
the part of Theorem 4.1 that comes with a dependence on d.

Proof of Theorem 4.1 for low dimensions. We start by in-
troducing the so-called chaining technique. Consider an
n-dimension vector vψ ∈ VP . Furthermore, let vψ,j ∈
N (VP , ∥.∥∞, 2−j) be the vector with ∥vψ−vψ,j∥∞ ≤ 2−j

given by Lemma 4.3. Then we may write vψ as a telescop-
ing sum with vψ,0 = 0

vψ =
∑∞

j=0
vψ,j+1 − vψ,j .

We have due to the triangle inequality G(P ) :=

E sup
ψ

∣∣∣∣ 1n∑n

i=1
d(σi, ψ)gi

∣∣∣∣ = E sup
ψ

∣∣∣∣ 1n∑n

i=1
vψi · gi

∣∣∣∣
= E sup

ψ

∣∣∣∣ 1n∑n

i=1

∑∞

j=0
(vψ,j+1
i − vψ,ji )gi

∣∣∣∣
≤

∑∞

j=0
E sup

ψ

∣∣∣∣ 1n∑n

i=1
(vψ,j+1
i − vψ,ji )gi

∣∣∣∣ .

To bound this quantity, observe that
∑n
i=1(v

ψ,j+1
i −vψ,ji )gi

is distributed as a Gaussian g with mean 0 and its variance
ς2j :=

∑n
i=1(v

ψ,j+1
i − vψ,ji )2 is bounded above by

n ·max d(σi, ψ)
2 ∈


O(n ·m2) for j = 0,DTW
O(n · k2) for j = 0, k-DTW
O(n · 2−2j) otherwise.

Thus, using the bounds from Lemma 4.3 and letting z = m
for DTW and z = k for k-DTW, we have that

∑∞

j=0
E sup

ψ

∣∣∣∣ 1n∑n

i=1
(vψ,j+1
i − vψ,ji )gi

∣∣∣∣
≤ 1

n

∑∞

j=0

√
ς2j log(2|N (VP , ∥.∥∞, 2−j)|)

≤ 1

n

√
c · n · d ·m · z2 log z

+
1

n

∑∞

j=1

√
c · n · d ·m · 2−2j · log(z2j)

≤
√
c′ · d ·m · z2 log z

n

where c, c′ are absolute constants. Combining both bounds
yields the theorem.

Using a more involved application of the chaining technique,
we are able to remove the dependence on d, at the cost of an
increased dependence on m and k. Our proof uses terminal
embeddings (Narayanan & Nelson, 2019) as a dimensional-
ity reduction technique. Subsequently, we construct ε-nets
akin to Lemma 4.3 within the reduced dimension that is
independent of d. The convergence argument for the infinite
chaining series that worked in the case of low d still ap-
plies in a similar, yet adapted way to bound all but the first
jmax = O(log(n)) summands. For the remaining terms,
we observe that the number of summands is bounded, and
each contribution can be bounded again in terms of the
net size, which is now independent of d. Unfortunately,
the vanishing geometric progression 2−j cancels with size
parameters of the ε-nets, but the additional factor is only
log(2jmax) = O(log(n)), which is affordable in our context.

Finally, we wish to remark that using standard techniques
(e.g. the result by Foster & Rakhlin, 2019), these ideas
straightforwardly extend to p-clustering objectives, general-
izing p-median to the appropriate problem variant on curves.
More specifically, combining our results for the generaliza-
tion error and Gaussian complexity for median curves with
the main result of Foster & Rakhlin (2019) yields a learning
rate of Õ(

√
p · G(P )). In particular, for the special case of

m = 1, this recovers the optimal bounds recently proven by
Bucarelli et al. (2023) for p-median clustering of points, up
to polylogarithmic factors.
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5. Experimental Illustration
In this section, we conduct experiments using our novel
k-DTW dissimilarity measure to understand the effect of
the increased robustness compared to the Fréchet distance
and the improved relaxed triangle inequality compared to
DTW in practice.3 To this end, we create a synthetic data set
that highlights the properties of the different dissimilarity
measures in agglomerative clustering. Subsequently, we
perform l-nearest neighbor classification on several real-
world data sets.

ε

0

L

L + ε

ε

0

L

L + ε

ε

0

L

L + ε

Figure 1. Curves of type A2 (left); type B (middle); type C (right)

Synthetic curves. Each of the following curves with ver-
tices in R start and end at 0. We define three types of curves
of complexity 4m+ 1, for any m ∈ N, see Figure 1:

A) Curves of type Al have l “peaks” (outlier vertices), l ∈
N. That is, a curve α ∈ Al consists of

• 2m+ 1 vertices with value 0, at indices 2i− 1 for
i ∈ [2m+ 1],

• 2m− l “small value” vertices with value in [0, ε]
at indices 2i for i ∈ [2m], and

• l peaks of value L, at indices 2i for i ∈ [2m].
The peaks are arbitrarily chosen even indices, cf. Fig-
ure 1 (left).

B) Curves of type B have “large values” between[L,L+ ε]
at all vertices except for the first and the last, cf. Figure 1
(middle). More precisely, a curve β ∈ B consists of

• 2 vertices with value 0: β1 and β4m+1,
• 2m− 1 vertices with value L at indices 2i+ 1 for

all i ∈ [2m− 1], and
• 2m vertices with value in [L,L+ ε] at indices 2i,

for all i ∈ [2m].

C) Curves of type C have “small values” for all vertices,
cf. Figure 1 (right). More precisely,

• 2m+ 1 vertices with value 0 at indices 2i− 1 for
all i ∈ [2m+ 1], and

• 2m “small value” vertices with value in [0, ε] at
indices 2i for all i ∈ [2m].

We construct 60 curves, 20 of each type, that demonstrate
the advantages of the k-DTW distance by choosing appro-
priate values of m, ε, l, and L: the main intuition is that
these curves violate the triangle inequality by a Θ(m) factor
for DTW, but only by a k = O(logm) factor for k-DTW.

3Our Python code is available at https://github.com/
akrivosija/kDTW.

Simultaneously, the Fréchet distance suffers from outliers in
type-Al curves for l = O(1), while k-DTW is sufficiently
robust to compensate spikes by summing over O(logm)
distances.

Agglomerative Clustering. Since computing a center based
clustering for more than one curve is computationally hard
even to approximate in most scenarios – as already men-
tioned in the introduction – we use a popular alternative
called Hierarchical Agglomerative Clustering (HAC), which
requires only the pairwise distances between the input data
points. The partition process starts with each curve being
a singleton cluster. The current clusters are then iteratively
merged in ascending order of dissimilarity. Given a dis-
similarity measure d(a, b) for two curves, such as Fréchet,
DTW, or our novel k-DTW, the dissimilarity of two clus-
ters A,B is defined via so called linkage functions. The
arguably most popular linkage functions are single link-
age d(A,B) = mina∈A,b∈B d(a, b) and complete linkage
d(A,B) = maxa∈A,b∈B d(a, b), where the distance of two
clusters is defined as the minimum resp. maximum dis-
tance of two input data points taken from the two clusters
(Kaufman & Rousseeuw, 1990).

In Figure 2 (top) we see the results for single linkage clus-
tering using the three distance measures. DTW (left) clearly
has difficulties to distinguish between type-Al and type-C
curves, since the pairs (Al, C) are very close, (Al, B) are
moderately close, while (B,C) are far from each other,
violating the triangle inequality. The Fréchet distance
(right) has very large intra-cluster distances between type-
Al curves that are of the same magnitude as the inter-cluster
distances. k-DTW (middle) can clearly identify the clusters,
as the triangle inequality is less affected, while being ro-
bust to the spikes of type-Al curves. As a result, we obtain
pure clusters whose intra-cluster distances are reasonably
small and clearly distinguished from the large inter-cluster
distances. The results for complete linkage are very similar,
cf. Figure 2 (bottom).

Table 1. Performance of the Binary Classification of Curves from
the Real-World OULAD Data (Kuzilek et al., 2017), for Fréchet,
DTW, and k-DTW.

Distance AUC Accuracy F1-score
Fréchet 0.73737 0.83742 0.90953
64-DTW 0.78795 0.85557 0.91796
72-DTW 0.79639 0.85520 0.91775
76-DTW 0.79772 0.85469 0.91744
DTW 0.78360 0.85459 0.91735

l-Nearest Neighbor Classification. The l-nearest neigh-
bor (l-NN) model provides a well-known distance based
classifier (Devroye et al., 2013). We use real-world data
from the Open University Learning Analytics Dataset
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Figure 2. Single (top) and complete (bottom) linkage clustering; DTW (left), k-DTW (middle), Fréchet distance (right); synthetic data.

(OULAD) (Kuzilek et al., 2017) and the datasets from
(Aghababa & Phillips, 2023). OULAD provides click-
streams of students acting in an online learning management
system. We represent n = 275 clickstreams of one course
as polygonal curves of complexity m = 294. We use l-NN
in order to predict the final exam result, which serves as a
binary label indicating ’pass’ or ’fail’. See Appendix B.

We run a 100 times repeated 6-fold cross validation, using l-
NN with a standard choice of l = ⌈

√
n⌉ = 17 (cf. Devroye

et al., 2013). We perform an exponential search for the best
parameter k ∈ {2i | i ∈ [8]} for the k-DTW distance, and
a subsequent finer search. The best results were obtained
for k ∈ {64, 76}, which amounts to roughly 20% − 25%
of the curves’ complexity. A selection of results is given
in Table 1. k-DTW outperformed the classification perfor-
mance of Fréchet and DTW by a margin of up to 8.2% resp.
1.8%, when measured by AUC. k-DTW also shows slight
improvements in terms of accuracy and F1-score. k = 72
provides the best values on average over AUC, accuracy,
and F1-score. Please refer to Table 2 in Appendix B.

In addition to our explicit parameter search, cross-validated
over the full data, we also perform a hold-out evaluation.
The parameter k is tuned by cross-validation on training
data, and the best k is used on a hold-out test dataset, for
l-NN classification. Specifically, we randomly split the
OULAD dataset (Kuzilek et al., 2017) into training and test
sets A and B, respectively, where the test set comprises a
1
3 ,

1
4 , or 1

5 fraction of the input. We find the best value of
k on A by running 100 independent repetitions of 6-fold
cross-validation, using l = ⌈

√
|A|⌉ for the l-NN training

and evaluate it on B. Finally, we compare the performances
of Fréchet, k-DTW and DTW distances on the test set B.

The results are presented in Appendix B.3.2.

We finally stress that no extensive search for k is needed. In
our experience, it suffices to compare k-DTW for few small
values of k ∈ {ln(m),

√
m,m/10,m/4}. At least one k-

DTW variant yields best or close to the best performance
across all classification performance measures. Simultane-
ously, the worst results are often attained using one of DTW
or Fréchet, cf. Tables 7 and 8 in Appendix B. Thus, k-DTW
yields the best compromise.

Additionally, we perform experiments using several re-
lated benchmark distance measures: weak discrete Fréchet
distance (Buchin et al., 2019c), edit distance with real
penalty (Chen & Ng, 2004), and two variants of partial
DTW distance (there are multiple distance measures under
the same name in the literature). We use partial window
DTW (Sakoe & Chiba, 1978), which matches vertices of
each curve only within a frame of bounded widthw, and par-
tial segment DTW (Tak & Hwang, 2007; Luo et al., 2024),
which partitions both curves into L segments, each of which
are matched via standard DTW.

We conclude that k-DTW has competitive performance to
the gold standards DTW and Fréchet, and further baselines.
It is mostly among the best performing distance measures,
and sometimes outperforms the competitors. It remains
an important open problem to obtain better running times
for computing the k-DTW distance. In practice, we can
speed-up the computation using the DTW heuristic of Silva
& Batista (2016). However, solving the challenging prob-
lem of improving the top-k optimization framework is an
important open question. Its solution would imply prov-
ably faster algorithms for k-DTW, as well as for other top-k
optimization problems.
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A. Proofs
A.1. Algorithmic Part

The discrete Fréchet distance and the DTW(q) distance between two curves of complexity m′,m′′ can be computed using
dynamic programming in O (m′m′′) time (Eiter & Mannila, 1994; Vintsyuk, 1968; Berndt & Clifford, 1994). Here we show
how to efficiently compute the k-DTW distance.

First, we prove the correctness and the running time of Algorithm 1, that computes the k-DTW distance of two given curves.
Theorem A.1 (Restatement of Theorem 3.2). Given two curves σ and τ , |σ| = m′ and |τ | = m′′, and a parameter k,
Algorithm 1 returns dk-DTW(σ, τ) in O (m′m′′z) time, where z is the number of distinct distances between any pair of
vertices in σ and τ .

Proof of Theorem 3.2/A.1. Consider an arbitrary but fixed traversal T . We prove that there exists an iteration l∗ where the
cost considered by Algorithm 1 equals the exact k-DTW cost of T , i.e., the sum of the largest k distances in the traversal T ,
which we denote DTWk(T ).

Consider iteration l = l∗ where E[l∗] is the smallest element that appears in the sum of largest k elements DTWk(T ). Let
kl be the number of elements of the matrix D that appear in T such that D[i, j] > E[l]. Note, that in iteration l∗ it holds
that kl∗ < k ≤ kl∗+1. We note that the margin case where k > |T | implies, similarly to Definition 2.2, that some distances
will be filled with zeros. This in turn implies that E[l∗] = 0 and thus l∗ = z + 1 is the largest possible index that occurs in
Algorithm 1. Therefore the upper bound kl∗+1 = kz+2 is undefined and does not apply in this case.

Further, we have that

cost(T, l∗) := k · E[l∗] +
∑

(i,j)∈T

max{D[i, j]− E[l∗], 0}

= (k − kl∗) · E[l∗] +
∑

(i,j)∈T,
D[i,j]>E[l∗]

(D[i, j]− E[l∗] + E[l∗]) = DTWk(T ),

since the sum ranges exactly over the kl∗ largest elements and no matter how often E[l∗] appears along T , it is added exactly
k − kl∗ times, i.e., the required number of times to complete the sum of k largest elements, which equals DTWk(T ).

Next, we prove that in all other iterations, the considered cost(T, l) cannot be smaller than the actual k-DTW cost DTWk(T ).
To this end, we make a case distinction below. We define Tk ⊆ T to be an arbitrary but fixed subset indexing |Tk| = k largest
elements D[i, j] in T , where ties are broken arbitrarily. In the margin case that k > |T |, we set Tk = T (the remaining
elements are filled with zeros anyway, cf. Definition 2.2). Similarly to the discussion above, if k > |T |, no iteration l > l∗

exists, and we can proceed directly with the second case where l < l∗.

l > l∗: Note that for all elements (i, j) ∈ Tk it holds that D[i, j] > E[l], since kl ≥ k. Then we have that

cost(T, l) = k · E[l] +
∑

(i,j)∈T

max{D[i, j]− E[l], 0}

= k · E[l] +
∑

(i,j)∈Tk

max{D[i, j]− E[l], 0}+
∑

(i,j)/∈Tk

max{D[i, j]− E[l], 0}

=
∑

(i,j)∈Tk

D[i, j] +
∑

(i,j)/∈Tk

max{D[i, j]− E[l], 0}

= DTWk(T ) +
∑

(i,j)/∈Tk

max{D[i, j]− E[l], 0} ≥ DTWk(T ),

since the sum over (i, j) /∈ Tk is non-negative.

l < l∗: In this case, we have kl < k and for all (i, j) ∈ Tk \ Tkl it holds that E[l] > D[i, j]. Thus, the sum is taken over
less than k elements, and we have that

cost(T, l) = k · E[l] +
∑

(i,j)∈T

max{D[i, j]− E[l], 0}
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= (k − kl) · E[l] +
∑

(i,j)∈Tkl

D[i, j] >
∑

(i,j)∈Tk

D[i, j] = DTWk(T ).

Now, we consider an optimal k-DTW traversal T ∗. By the above arguments the cheapest cost for T ∗ across all iterations
equals the exact k-DTW cost DTWk(T

∗) = OPT . We also have that the considered cost for any suboptimal T ′ is never
smaller than the actual k-DTW cost DTWk(T

′). By suboptimality of T ′, its actual k-DTW cost is strictly larger than the
optimal k-DTW cost of T ∗. Thus, we have that

min
l∈[z+1]

cost(T ′, l) ≥ DTWk(T
′) > DTWk(T

∗) = OPT.

Consequently, the cost returned by Algorithm 1 equals the optimal k-DTW cost of the optimal traversal T ∗, since it
corresponds to the smallest cost considered in the DTW (D′) + k · E[l] minimization across all iterations l ∈ [z + 1].

The running time follows since the initialization can be completed by computing all m′m′′ pairwise distances D[i, j] and
inserting them into a binary search tree, skipping duplicates. We thus only keep the z + 1 distinct items in O(m′m′′ log(z))
time and read them in the sorted order in another O(z) time to build the array E. Then, Algorithm 1 runs z + 1 ≤
m′m′′ + 1 iterations and in each iteration it updates all distances in the matrix D′, which takes time O(m′m′′), and
runs one DTW calculation in time O(m′m′′). The final cost update takes only constant time. The total time is thus
O(m′m′′ log(z) + z +m′m′′z) = O(m′m′′z).

We next provide a quadratic time (1 + ε)-approximation. As an ingredient towards this goal, we first show how to obtain a
simple k-approximation for k-DTW by calculating the discrete Fréchet distance in quadratic time.

Lemma A.2 (Restatement of Lemma 3.3). Given two curves σ = (v1, . . . , vm′) and τ = (w1, . . . , wm′′), and a parameter
k, it holds that ddF (σ, τ) is a k-approximation for dk-DTW(σ, τ), which can be computed in time O(m′m′′). In particular, it
holds that ddF (σ, τ) ≤ dk-DTW(σ, τ) ≤ k · ddF (σ, τ).

Proof of Lemma 3.3/A.2. Let TF and Tk be traversals of σ and τ realizing their discrete Fréchet and k-DTW distances,
respectively. Using the notation of Definition 2.2 we have

ddF (σ, τ) = s
(TF )
1 ≤ s(Tk)

1 ≤
k∑
l=1

s
(Tk)
l = dk-DTW(σ, τ) ≤

k∑
l=1

s
(TF )
l ≤ k · s(TF )

1 = k · ddF (σ, τ) ,

The running time of O(m′m′′) for computing ddF (σ, τ) was proven in (Eiter & Mannila, 1994).

Using the k-approximation and rounding of distances, we can adapt Algorithm 1 to produce a (1 + ε)-approximation for the
k-DTW distance.

Theorem A.3 (Restatement of Theorem 3.4). Given two curves σ and τ , |σ| = m′ and |τ | = m′′, and a parameter k, there
exists a (1 + ε)-approximation algorithm for any 0 < ε ≤ 1 that runs in O(m′m′′ log(k/ε)

ε ) time.

Proof of Theorem 3.4/A.3. Let ε′ = ε/2. We perform the following modifications of Algorithm 1:

1) We first compute ddF (σ, τ), which gives a k-approximation for dk-DTW(σ, τ) in time O(m′m′′) by Lemma 3.3/A.2. Now,
set dmin = ε′·ddF(σ,τ)

k , and dmax = ddF (σ, τ).

When we build the initial distance matrix D, we round all non-zero distances D[i, j] with 0 < D[i, j] < dmax to their
next higher power of (1 + ε′)i · dmin, for

i ∈
{
0, . . . ,

⌈
log1+ε′

(
dmax

dmin

)⌉}
=

{
0, . . . ,

⌈
log1+ε′

(
k

ε′

)⌉}
.

Through this modification, the cost of each edge and thus of any traversal cannot decrease. However, increasing the costs
induces an additive as well as a multiplicative error, which we bound as follows:
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i) The sum of up to k distances 0 < D[i, j] ≤ dmin along any traversal T can only increase by at most

k · dmin = k · ε
′ · ddF (σ, τ)

k
= ε′ · ddF (σ, τ) ,

since their next power in the progression is (1 + ε′)0 · dmin = dmin.
ii) Any distance dmin < D[i, j] < dmax can only increase by at most a factor (1 + ε′) by construction. By linearity,

this also holds for any sum of these distances.

Using these bounds and Lemma 3.3/A.2, the cost of the optimal traversal after rounding the distances is bounded by

(1 + ε′) · dk-DTW(σ, τ) + ε′ · ddF (σ, τ) ≤ (1 + 2ε′) · dk-DTW(σ, τ) = (1 + ε) · dk-DTW(σ, τ) .

2) When we set up the array E[1..z+1], we can omit all indices l where E[l] > dmax = ddF (σ, τ). To see this, recall from
the proof of Theorem 3.2/A.1 that the cost of any traversal T in iteration l is lower bounded by k · E[l], since we add
this amount to a sum of further non-negative costs. Using this fact together with Lemma 3.3/A.2 again, the cost of T in
iteration l is lower bounded by

k · E[l] > k · ddF (σ, τ) ≥ dk-DTW(σ, τ) ,

which implies that the cost of T is not optimal in iteration l.

All modifications can be performed initially in O(m′m′′) time. Further, E[1..z + 1] contains only z ∈ O(log1+ε′(k/ε
′)) =

O( log(k/ε)ε ) distinct distances. The running time follows by plugging this into the O(m′m′′z) running time bound of
Theorem 3.2/A.1.

Next, we show that the k-DTW distance between two curves is not equal to taking the largest k distances from the sum that
yields their DTW distance. This precludes the option of simply applying the standard DTW algorithm for the computation
of k-DTW. We also show that the length of the traversals may differ significantly in both directions, which also precludes
using a standard DTW algorithm to estimate the size of a k-DTW traversal.

Lemma A.4 (Full version of Lemma 3.1). Given a parameter m ∈ N, it holds that:

i) There exist two curves σ and τ of complexity m in Euclidean space Rd, such that the difference∣∣|T(k−DTW )| − |T(DTW )|
∣∣ of the lengths of the optimal k-DTW and the optimal DTW traversals of σ and τ , denoted

|T(k−DTW )| resp. |T(DTW )|, is linear in m. It can hold both, |T(k−DTW )| < |T(DTW )|, or |T(k−DTW )| > |T(DTW )|.

ii) Assume that m ≥ 5. Then for any k, 1 ≤ k ≤ 4⌊m5 ⌋ there exist curves σ and τ of complexity m, s.t. dk-DTW(σ, τ) is not
equal to the sum of the largest k distances contributing to dDTW (σ, τ).

Proof of Lemma 3.1/A.4. We show the first claim of the lemma, that is, that the lengths of the traversals can differ. In the
course of the proof, we will also see for the same curves that the value of the k-DTW distance need not equal the sum of the
k largest distances in a traversal that witnesses the DTW distance. This will provide the arguments to prove the second
statement of the lemma.

For the first inequality |T(k−DTW )| < |T(DTW )|, let us define K-gadgets K(t) containing four vertices for each of two
1-dimensional curves σ(K(t)) and τ(K(t)) as follows, see Figure 3 (left) for an illustration:

v4t+1 = 4tL+ L, v4t+2 = 4tL+ L− ε

2
, v4t+3 = 4tL+ L+

ε

2
, v4t+4 = 4tL+ L+

3ε

2
,

and w4t+1 = 4tL, w4t+2 = 4tL− ε

2
, w4t+3 = 4tL+ L− ε

2
, w4t+4 = 4tL+ L+

ε

2
,

where t ∈ N ∪ {0} is the offset, and L, ε > 0, with ε = L
10 . Let the two traversals of σ(K(t)) and τ(K(t)) be (written without

the offset 4t for simplicity):

T1 : (1, 1), (2, 2), (3, 3), (4, 4);
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|T(k−DTW )| < |T(DTW )| |T(k−DTW )| > |T(DTW )|

0

−ε

L

L + ε

L + 2ε

v1
v2

v3
v4

w1 w2

w3

w4

L− ε

0

−ε

L

L + ε

L + 2ε

v1
v2 v3

v4

w1 w2

w3

w4
L− ε

Figure 3. K-gadget (left); D-gadget (right); traversals realizing k-DTW (blue); traversals realizing DTW (red).

T2 : (1, 1), (1, 2), (2, 3), (3, 4), (4, 4).

It holds that |T1| < |T2| = |T1|+ 1. The traversal T2 realizes the DTW distance, since∑
(i,j)∈T1

|vi − wj | = 2L+ 2ε > 2L+
ε

2
+ 2 · 0 + ε =

∑
(i,j)∈T2

|vi − wj | = dDTW
(
σ(K(t)), τ(K(t))

)
.

The traversal T1 has the minimum possible traversal size (|T1| = 4), and realizes the k-DTW distance (for k ∈ {1, 2, 3}
within a single gadget), since for these values of k it holds that dk-DTW

(
σ(K(t)), τ(K(t))

)
=

∑k
l=1 s

(T1)
l , and the following

table shows that
∑k
l=1 s

(T1)
l <

∑k
l=1 s

(T2)
l for k ∈ {1, 2, 3}.

k
∑k
l=1 s

(T1)
l

∑k
l=1 s

(T2)
l

1 L L+ ε
2

2 L+ L (L+ ε
2 ) + L

3 L+ L+ ε (L+ ε
2 ) + L+ ε

We note, that for the value k = 4, the inequality |T(k−DTW )| < |T(DTW )| cannot hold (within one gadget) as the k-DTW
distance cannot be smaller than the sum of all four distances in the traversal. We discuss this further in the proof of the
second claim.

Let m̂ = ⌊m4 ⌋, thus m = 4m̂ + r, where 0 ≤ r ≤ 3. By concatenating the curves σ(K(t)) and τ(K(t)) from the gadgets
K(0),K(1), . . . ,K(m̂− 1) we obtain curves σ and τ of complexity 4m̂. To get the complexity m we can add r vertices at
the end of the both curves, each with value 4m̂L+ L. This does not change the DTW or k-DTW distances of σ and τ . The
traversal obtained by concatenating the traversal T2 repeatedly within each gadget witnesses dDTW (σ, τ), and has length
5m̂+ r.

Note, that edges of the witness traversals cannot belong to two different gadgets, since any two gadgets are almost 3L
apart. More specifically, a pair (i, j) cannot satisfy vi ∈ K(l) and wj ∈ K(l + 1) (or vi ∈ K(l + 1) and wj ∈ K(l)) in
an optimal traversal for neither DTW nor k-DTW. This is because the entire curves σ(K(l)) and τ(K(l)) are contained in
[4lL− 1

2ε, (4l+ 1)L+ 3
2ε], while σ(K(l+1)) and τ(K(l+1)) are contained in [4(l+ 1)L− 1

2ε, (4(l+ 1) + 1)L+ 3
2ε]. Thus,

a pair (i, j) matching vertices across consecutive gadgets would witness a distance of at least 3L− 2ε > 2L+ 2ε.

Analogously, the traversal obtained by concatenating the traversal T1 repeatedly in the order of the gadgets, witnesses
dk-DTW(σ, τ) (for k ∈ {1, . . . , 3m̂}), and has length 4m̂ + r. Therefore, the difference of the traversal lengths is
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∣∣ = m̂ = ⌊m4 ⌋, i.e., linear in m, which can be made arbitrarily large. In particular, we conclude

that there exist instances for which |T(k−DTW )| < |T(DTW )|.

To show that there exist instances for which |T(k−DTW )| > |T(DTW )|, we define similar D-gadgets D(t), containing four
vertices for each of two curves σ(D(t)) and τ(D(t)) as follows, see Figure 3 (right) for an illustration:

v4t+1 = 4tL+ L, v4t+2 = 4tL+ L+
ε

2
, v4t+3 = 4tL+ L+

ε

2
, v4t+4 = 4tL+ L+

3ε

2
,

and w4t+1 = 4tL, w4t+2 = 4tL, w4t+3 = 4tL+ L− ε

2
, w4t+4 = 4tL+ L− ε

2
,

where t ∈ N ∪ {0} is the offset, and L, ε > 0, with ε = L
10 . Let the two traversals of σ(D(t)) and τ(D(t)) be the same

traversals T1 and T2 as in the first claim. Now, the traversal T1 (with the minimum possible traversal size) realizes the DTW
distance, since∑

(i,j)∈T2

|vi − wj | = 2L+ 4ε > 2L+
ε

2
+ ε+ 2ε =

∑
(i,j)∈T1

|vi − wj | = dDTW
(
σ(D(t)), τ(D(t))

)
.

The traversal T2 realizes the k-DTW distance (for k ∈ {1, 2, 3, 4}) within single gadget, since for these values of k it
holds that dk-DTW

(
σ(D(t)), τ(D(t))

)
=

∑k
l=1 s

(T2)
l , and in the following table we see that

∑k
l=1 s

(T1)
l >

∑k
l=1 s

(T2)
l holds

for k ∈ {1, 2, 3, 4}.

k
∑k
l=1 s

(T1)
l

∑k
l=1 s

(T2)
l

1 L+ ε
2 L

2 (L+ ε
2 ) + L L+ L

3 (L+ ε
2 ) + L+ 2ε L+ L+ 2ε

4 (L+ ε
2 ) + L+ 2ε+ ε L+ L+ 2ε+ ε

As in the first part above, vertices in consecutive gadgets cannot be matched since this would cause more than 2L + 4ε
cost, which is larger than the whole sum within the gadgets. By concatenating the curves σ(D(t)) and τ(D(t)) from the
gadgets D(0), D(1), . . . , D(m̂− 1), with additional r vertices 4m̂L+ L at the end of both σ and τ , we obtain curves σ
and τ of complexity 4m̂+ r. The traversal obtained by concatenating the traversal T1 repeatedly for all gadgets, witnesses
dDTW (σ, τ) and has length 4m̂ + r. Analogously, the traversal obtained by concatenating the traversal T2 repeatedly,
witnesses dk-DTW(σ, τ) (for k ∈ {1, . . . , 4m̂}) and has length 5m̂ + r. Therefore, the difference of the traversal lengths
is again

∣∣|T(k−DTW )| − |T(DTW )|
∣∣ = m̂, linear in m, and can be made arbitrarily large. In particular, we conclude that

|T(k−DTW )| > |T(DTW )| in this case. This concludes the proof for the first claim of the lemma.

We next prove the second claim of the lemma, first for 1 ≤ k < 3⌊m4 ⌋, and in a second step we extend the upper bound. We
discuss the cases ⌊m4 ⌋ ≤ k ≤ 3⌊m4 ⌋ and 1 ≤ k < ⌊m4 ⌋ separately. Again, let m = 4m̂+ r, 0 ≤ r ≤ 3.

⌊m4 ⌋ ≤ k ≤ 3⌊m4 ⌋: We can use m̂ concatenated K-gadgets from the first part of the lemma to construct the curves σ and τ .
Both curves are extended at their end by the vertices

v4m̂+1 = v4m̂+2 = v4m̂+3 = w4m̂+1 = w4m̂+2 = w4m̂+3 = 4m̂L+ L.

Hereby, the last (up to) three pairs of vertices (4m̂+ 1, 4m̂+ 1), (4m̂+ 2, 4m̂+ 2) and (4m̂+ 3, 4m̂+ 3) in both
traversals T1 and T2 do not interfere with the rest of the matchings for the DTW and the k-DTW distance, and do not
change the values of dDTW (σ, τ) and dk-DTW(σ, τ). Then, for all k, s.t. ⌊m4 ⌋ = m̂ ≤ k ≤ 3m̂ = 3⌊m4 ⌋, there will be
at least one distance among the largest k distances in the k-DTW traversal from each gadget. Analogously, there will
be at most 3 distances among the largest k in the k-DTW traversal. Then, the second claim of the lemma follows from
the analysis that we conducted in the first part of the lemma.

1 ≤ k < ⌊m4 ⌋: To construct the curves σ and τ in this case, we use k concatenated K-gadgets from the first part of the
lemma, in both curves followed by m− 4k vertices vi = wi = 4kL+ L, for i ∈ {4k + 1, . . . ,m}. The traversals T1
and T2 from the first part of the lemma are extended by the matchings (i, i), i ∈ {4k + 1, . . . ,m}. Hereby, at least one
distance within each of the k gadgets will contribute to the largest k distances in the k-DTW traversal. The second
claim of the lemma thus follows from the analysis of the first claim.
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3

2

1

0 ε

ε

ε2

σ
τ

w1

v1

v2

w4,

. . . ,

wm−2

vm−1

vm

vm−2

v3,

. . . ,

vm−3

w2

w3

wm−1 wm

Figure 4. Example curves used to prove Lemma A.5. An example instance that has a long DTW traversal (length 2m− 5) but a short
k-DTW traversal (length m+ 1)

The proof of the second claim of the lemma can be repeated analogously using the D-gadgets instead of the K-gadgets. The
following cases need to be considered: ⌊m5 ⌋ ≤ k ≤ 4⌊m5 ⌋ and 1 ≤ k < ⌊m5 ⌋. The rest of the analysis can be conducted
verbatim. This completes the proof.

We can even show that the traversal lengths of DTW and k-DTW can be pushed almost to the extremes 2m and m, thus
maximizing their difference.

Lemma A.5. There exist two curves σ, τ of complexity m with vertices in R such that the length of the only realizing DTW
traversal is 2m− 5, and there exists a realizing k-DTW traversal of length m+ 1, for any k ≤ m− 3.

Proof of Lemma A.5. We claim that the two curves that realize the properties stated in the lemma are the following, see
Figure 4:

σ = (v1, . . . , vm) = (0, −ε, 2, . . . , 2︸ ︷︷ ︸
m−5

, 3, 1, 2)

and
τ = (w1, . . . , wm) = (1, 1− ε, 3 + ε2, 1, . . . , 1︸ ︷︷ ︸

m−5

, 2, 2),

where we set ε = 1/10 and choose m large enough, e.g., m ≥ 1000. Recall that the position (i, j) of a traversal refers to
the pair of vertices (vi, wj).

To facilitate the understanding, we first give an informal intuition of the DTW and k-DTW traversals. Thereafter, we continue
by giving a rigorous proof. Due to the small ε-step in the negative direction at the beginning, a k-DTW traversal is forced to
step forward in both curves since it cannot afford a single matching of cost 1 + ε. Consequently, the k-DTW traversal needs
to continue via the vertices w3, . . . , wm−3 in order to match the vertices v3, . . . , vm−3, which can be accomplished in a
parallel fashion. The traversal can then be completed using only matchings of cost at most 1. Hence, k + ε2 is the optimal
k-DTW cost and it can be realized by an almost parallel traversal of length m+ 1. For DTW on the other hand, we can
leverage that w3, . . . , wm can be matched to vm−2, vm−1, vm with a cost of only ε2. Hence, we match v1, . . . , vm−3 to
w1, w2 with a cost of m− 3 + 2ε and then transition into the position (m− 2, 3) to match the remainder with a cost of ε2.
If we step forward earlier on τ , then either the matching to v3, . . . , vm−3 or the matching of vertices wm−2, wm−1, wm and
vm−2, vm−1, vm at the end becomes too expensive.

We show the claims for DTW and k-DTW separately, starting with the latter.
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k-DTW: Let k ≤ m − 3. We first show an upper bound of k + ε2 on the k-DTW cost, which is simply given by the
following traversal of σ and τ :

(1, 1), . . . , (m− 3,m− 3), (m− 3,m− 2), (m− 2,m− 1), (m− 1,m), (m,m).

The only matching cost larger than 1 is induced by matching v3 and w3 with a cost of 1 + ε2. Note that this traversal has
length m+ 1.

To show that this upper bound is tight, we first show the following claim: Consider any traversal and the first time that it
reaches vm−3. The sum of the k largest matchings of any such partial traversal is at least k + ε2.

First, note that the only w ∈ τ that have distance |w− v| < 1 for any v ∈ {v1, . . . , vm−3} are wm−1, wm, and w2 for which
only |v1 − w2| < 1. Note that v1 and w2 are only matched in a traversal that starts with (1, 1), (1, 2), but then any traversal
of sufficiently low cost needs to continue with (2, 2). Hence, going directly from (1, 1) to (2, 2) is always better. The only
way to continue the traversal from here is to continue the parallel traversal, as otherwise we would incur a matching cost of
more than 1 + ε2 or multiple costs of 1 + ε2, which both are prohibitive for a k-DTW cost of k + ε2. It follows from the
above observations that any matching to v1, . . . , vm−3 will lead to a k-DTW cost that is at least k + ε2. This establishes a
lower bound of k + ε2 on the k-DTW cost, which matches the upper bound.

DTW: We first show that the DTW cost is at most m− 3 + 2ε+ ε2 and this is realized by a traversal of length 2m− 5.
The following traversal of σ and τ has these properties:

(1, 1), . . . , (m− 4, 1), (m− 3, 2), (m− 2, 3), (m− 1, 4), . . . , (m− 1,m− 2), (m,m− 1), (m,m). (1)

We now proceed with proving that the DTW cost is also at least m − 3 + 2ε + ε2 and is only realized by the above
or a longer traversal. Consider which prefixes of τ can be matched to v1, . . . , vm−3 with a cost that does not exceed
C = m− 3 + 2ε+ ε2. To this end, first note that completing a traversal from any position (m− 3, l), with l ≥ 4, has cost
at least 2, while any matching of the prefixes v1, . . . , vm−3 and w1, . . . , wl has at least m− 3 pairs at distance at least 1.
Thus, the total cost would be at least m− 2 > C for our choice of m and ε. Hence, we have to match one of the vertices
w1, w2, w3 to vm−3. As w2 and w3 have distance 1 + ε, resp. 1 + ε2, to v3, . . . , vm−3, matching them to any subsequence
of v3, . . . , vm−3 of size larger than 1/3ε leads to a total matching cost larger than C. Thus, any possible traversal that
has cost at most C necessarily matches the majority of v3, . . . , vm−3 to w1. If the position (m − 3, 1) would be part of
such a traversal, then all pairs (i, 1), i ∈ [m− 3], and the pair (m− 3, 2) would have to be in the traversal as well, which
again has cost more than C. Therefore, the position (m− 3, 2) must belong to the traversal, causing the cost 1 + ε. But
adding even one additional position (l, 2), where l ∈ [3,m− 4], into the traversal causes total cost larger than C. Hence,
the only remaining traversal with a cost of at most C = m− 3 + 2ε+ ε2 is the one that realizes the upper bound given in
Equation (1).
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A.2. Learning Theory

Using a more involved application of the chaining technique, we are able to reduce the dependence on d, at the cost of an
increased dependence on m and k. To this end, we require terminal embeddings defined as follows.

Definition A.6 (Terminal Embeddings). For a point set P ⊂ Rd, an ε-terminal embedding is a mapping f : Rd → Rh such
that for all p ∈ P and all q ∈ Rd

(1− ε) · ∥p− q∥ ≤ ∥f(p)− f(q)∥ ≤ (1 + ε)∥p− q∥.

Terminal embeddings are similar to Johnson-Lindenstrauss type embeddings, albeit stronger in the sense that q can be any
point in Rd, rather than just applying to pairwise distances. Nevertheless, the target dimensions of Johnson-Lindenstrauss
embeddings and terminal embeddings are essentially identical, as proven by Narayanan & Nelson (2019) and summarized
in the following lemma.

Lemma A.7. There exist terminal embeddings of target dimension h ∈ O(ε−2 log |P |).

An immediate consequence of the terminal embedding guarantee is that both DTW and k-DTW are preserved up to (1± ε)
factors, if the target dimension is in O(ε−2 log(mn)). In the following, we show that they also yield an alternative bound on
the net size for median curves.

Lemma A.8. For an absolute constant c, we have that

|N (VP,DTW , ∥.∥∞, ε)| ≤ exp(c ·m3 log2(mn/ε) · ε−2)

and
|N (VP,k-DTW , ∥.∥∞, ε)| ≤ exp(c ·m · k2 · log2(mnk/ε) · ε−2).

Proof. Let z = m for DTW and z = k for k-DTW. We first apply a terminal embedding of target dimension h ∈
O(z2 · ε−2 log(mn)), which preserves DTW and k-DTW up to (1± ε/z) factors, and hence both up to an additive error of
ε as all the points on the curves are assumed to have at most unit Euclidean norm. Subsequently, we apply Lemma 4.3,
yielding 2ε-nets of size

|N (VP,DTW , ∥.∥∞, ε)| ≤ exp(c · h ·m · log m
ε
)

and
|N (VP,k-DTW , ∥.∥∞, ε)| ≤ exp(c · h ·m · log k

ε
).

Inserting the appropriate bounds for h and rescaling ε yields the claim.

With this lemma, we now give the dimension-free bound on the Rademacher and Gaussian complexity claimed in Theo-
rem 4.1.

Proof of Theorem 4.1 for high dimensions. As with the proof of the low-dimensional case, we rely on the chaining technique.
There is, however, a key difference. Let jmax be chosen such that 2−jmax = 1/

√
n. We then have due to the triangle

inequality

G(P ) := E sup
ψ

∣∣∣∣∣ 1n
n∑
i=1

d(σi, ψ)gi

∣∣∣∣∣ ≤
jmax∑
j=0

E sup
ψ

∣∣∣∣∣ 1n
n∑
i=1

(vψ,j+1
i − vψ,ji )gi

∣∣∣∣∣ (2)

+

∞∑
j=jmax

E sup
ψ

∣∣∣∣∣ 1n
n∑
i=1

(vψ,j+1
i − vψ,ji )gi

∣∣∣∣∣ . (3)

We bound Equation (2) and Equation (3) separately. For the latter, i.e., Equation (3), observe that

n∑
i=1

(vψ,j+1
i − vψ,ji )2 ≤ n · 2−2j .
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Applying the Cauchy-Schwarz inequality to Equation (3) and inserting this bound then yields

∞∑
j=jmax

E sup
ψ

∣∣∣∣∣ 1n
n∑
i=1

(vψ,j+1
i − vψ,ji )gi

∣∣∣∣∣ ≤
∞∑

j=jmax

1

n
E

√√√√ n∑
i=1

g2i ·

√√√√ n∑
i=1

(vψ,j+1
i − vψ,ji )2

≤
∞∑

j=jmax

2−j ≤ 2 · 2−jmax ∈ O(1/
√
n).

For the former, i.e., Equation (2), we observe that the variance bounds derived in the proof of the low dimensional case are
still valid. That is, we have that

ς2j :=

n∑
i=1

(vψ,j+1
i − vψ,ji )2 ≤ n ·max d(σi, ψ)

2 ∈


O(n ·m2) for j = 0, and DTW
O(n · k2) for j = 0, and k-DTW
O(n · 2−2j) otherwise.

Thus for some absolute constant c, for every j > 0

E sup
ψ

∣∣∣∣∣ 1n
n∑
i=1

(vψ,j+1
i − vψ,ji )gi

∣∣∣∣∣ ≤ 1

n

√
ς2j log(2|N (VP , ∥.∥∞, 2−j)|)

≤

√
c ·m · z2 · 2−2j · log2(mnz2j) · 22j

n
.

and for j = 0

E sup
ψ

∣∣∣∣∣ 1n
n∑
i=1

(vψ,1i − vψ,0i )gi

∣∣∣∣∣ ≤
√
c ·m · z4 · log2(mnz)

n
.

Thus, we have

jmax∑
j=0

E sup
ψ

∣∣∣∣∣ 1n
n∑
i=1

(vψ,j+1
i − vψ,ji )gi

∣∣∣∣∣ ≤ (jmax + 1) ·

√
c ·m · z4 · log2(mnz2jmax)

n

∈ O

√
c ·m · z4 · log4(mn)

n

 ,

since z ∈ O(m). Combining both bounds then yields the claim.

Proof of Proposition 4.2. We first recall the corresponding bounds for median queries, that is, for curves of complexity 1.
By tightness of Chernoff bounds (see for example Lemma 4 of Klein & Young (2015)), these queries have a Rademacher
and Gaussian complexity of Ω(

√
1/n). Now for every such query, consider a function space for which every point

is duplicated m times, that is the point (or complexity 1 curve) σ becomes a complexity m curve σm. In this case
dDTW (σm, ψm) = m · ∥σ − ψ∥. Thus, every cost vector is scaled by exactly a factor m. By linearity of Rademacher
and Gaussian complexity, this likewise increases these complexities by a factor of m, yielding the claimed bound of
Ω(

√
m2/n).
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A.3. Robustness

We first observe that the sum of top-k elements of a (non-negative) vector v ∈ Rd is indeed a norm. This is immediate from
the Ky-Fan norm of diagonal matrices diag(v) ∈ Rd×d whose diagonal entries are the coordinates of v. This holds since
the Ky-Fan norm of order k is the sum of k largest singular values, which correspond to the k largest values in v. This
correspondence has been exploited in recent loosely related work on sketching and k-sparsity in machine learning (Clarkson
& Woodruff, 2015; Munteanu et al., 2021; 2022; 2023; Mai et al., 2023; Munteanu & Omlor, 2024) that inspired k-DTW.

We follow the outline of (Lopuhaä & Rousseeuw, 1991, Section 2) and extend it towards a notion of the robustness for
curves with respect to the k-DTW distance (along with its special cases, Fréchet and DTW). To the best of our knowledge,
such a notion of robustness for curves has not been introduced or analyzed before.

Given a curve π = (p1, . . . , pm) in Rd, let tm(π) = σ be its curve-of-top-k-median, i.e., σ = (s1, . . . , sm) where each si
equals the geometric median restricted to the top-k distances (Krivosija & Munteanu, 2019; Afshani & Schwiegelshohn,
2024) of the set {p1, . . . , pm}. More formally, for all j ∈ [m] we define sj = s̄ ∈ argmins∈Rd

∑
top-k ∥pi − s∥. We

note that the argmin may be ambiguous. In that case we may choose an arbitrary but fixed element, i.e., we require that
s1 = . . . = sm. We finally note that

∑
top-k ∥pi − s̄∥ = dk-DTW(π, σ).

It is easy to see that tm(π) is translational equivariant, which means that for any v ∈ Rd that we add simultaneously to all
vertices of a curve, it holds that tm(π + v) = tm(π) + v. We prove this property in Lemma A.9 below.

First, we define the breakdown point for tm(π) with respect to k-DTW to be the smallest number 1 ≤ ℓ ≤ m of vertices to
obtain πℓ that equals π in all but ℓ many vertices that may be arbitrarily corrupted, such that σℓ = tm(πℓ) is also arbitrarily
corrupted. More formally, we define

β(tm, π) = min{ℓ ∈ [m] | supπℓ
dk-DTW(tm(π), tm(πℓ)) =∞}. (4)

Obviously, it holds that dk-DTW(tm(π), tm(πℓ)) = dk-DTW(σ, σℓ) = k · ∥s1 − (σℓ)1∥. Since k is always finite for finite
curves, the supremum is infinite if and only if the distance between the top-k-medians of corrupted and uncorrupted curves
is infinite.

Lemma A.9. tm(π) is translational equivariant and as a consequence β(tm, π) is also translational equivariant.

Proof. Since tm is determined by some choice of k vertices out of the m vertices of π, we can simply restrict to one arbitrary
but fixed choice of top-k indices S ⊆ [m] that determines the minimum. Then for any s ∈ Rd and any translation v ∈ Rd,
we have that

∑
i∈S ∥pi − s∥ =

∑
i∈S ∥(pi + v)− (s+ v)∥. In particular this also holds for the minimizer. It thus follows

that tm(π + v) = tm(π) + v.

For the second claim, note that ∥tm(π+v)− tm(πℓ+v)∥ = ∥tm(π)+v−(tm(πℓ)+v)∥ = ∥tm(π)− tm(πℓ)∥. This means
that the supremum over all πℓ that differ from π in ℓ vertices is infinite if and only if the supremum over all π′

ℓ = πℓ + v that
differ from π′ = π + v in ℓ vertices is infinite.

Our aim is to prove that β(tm, π) = ⌊k+1
2 ⌋. We start with the upper bound.

Lemma A.10. Let π = (p1, . . . , pm) be a curve with pi ∈ Rd. Let tm(π) = σ be the curve-of-top-k-median. Then
β(tm, π) ≤ ⌊k+1

2 ⌋.

Proof. Since tm(π) is translational equivariant by Lemma A.9, we can assume w.l.o.g. that tm(π) = (0, . . . , 0) of length
m. For the sake of a contradiction, suppose that β(tm, π) > ⌊k+1

2 ⌋. This implies that any tm(πℓ), where πℓ is obtained
from π by corrupting ℓ = ⌊k+1

2 ⌋ many vertices arbitrarily, must be bounded. That is, there exists L ∈ R such that

∥tm(πℓ)∥top-k ≤ L <∞ .

Consider a vector v ∈ Rd, and let E+ be the set of ℓ vertices of π that have largest ⟨pi, v⟩ and similarly let E− be the set of
ℓ vertices of π that have largest ⟨pi,−v⟩ in the opposite direction. These are the points that are furthest away from zero in
both directions along the line spanned by v. Ties are broken according to the largest distance to the line spanned by v and
arbitrarily if ties persist. Let E = E+ ∪ E−.

Now, consider the curve π(+v), that we obtain from π by adding v to the ℓ vertices in E+. Similarly consider the curve
π(−v), that we obtain from π by subtracting v from the ℓ vertices in E−. The other vertices remain untouched.
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If we let ∥v∥ grow large enough, then the top-k summands that determine either of tm(π(+v)), tm(π(−v)) are dominated by
the 2ℓ ≥ k extreme elements in E and the other vertices pi /∈ E do not have an influence. We can thus simply remove the
vertices pi /∈ E. Denote by π̄(+v), π̄(−v) the truncated sequences.

Since the number of corruptions are ℓ in each of the constructed curves, it follows from our assumption that
∥tm(π(+v))∥top-k = ∥tm(π̄(+v))∥top-k ≤ L and ∥tm(π(−v))∥top-k = ∥tm(π̄(−v))∥top-k = ∥tm(π̄(+v)) − v∥top-k ≤ L
holds for some L <∞. Putting both bounds together, we get that

2L ≥ ∥tm(π̄(+v))− v∥top-k + ∥tm(π̄(+v))∥top-k ≥ k · ∥v∥ − ∥tm(π̄(+v))∥top-k + ∥tm(π̄(+v))∥top-k = k · ∥v∥.

Thus, any large enough corruption vector that satisfies ∥v∥ > 2L
k yields a contradiction.

It remains to prove the lower bound.

Lemma A.11. Let π = (p1, . . . , pm) be a curve with pi ∈ Rd. Let tm(π) = σ be the curve-of-top-k-median. Then
β(tm, π) ≥ ⌊k+1

2 ⌋.

Proof. Since tm(π) is translational equivariant by Lemma A.9, we can assume w.l.o.g. that tm(π) = (0, . . . , 0) of length
m. Let M = maxi∈[m] ∥pi∥, and let B(0, 2M) be the ball of radius 2M centered at 0. Let πℓ := (q1, . . . , qm) be a
corrupted curve, obtained from π by replacing at most ℓ = ⌊k−1

2 ⌋ of its vertices by arbitrary vectors. Let tm(πℓ) be a curve
σ̂ = (ŝ, . . . , ŝ), where ŝ minimizes

∑
top-k ∥qi − ŝ∥, and let S ⊆ [m] be a set of k indices that determine the minimum.

We show that supσ̂ ∥tm(πℓ)∥top-k, taken over all possible σ̂, is finite. We may assume that ŝ /∈ B(0, 2M) since otherwise
∥tm(πℓ)∥top-k ≤ 2Mk is trivially finite. Let D = infv∈B(0,2M) ∥ŝ− v∥ be the smallest distance between ŝ and B(0, 2M).
Then it holds that

∥tm(πℓ)∥top-k

k
= ∥ŝ∥ ≤ (D + 2M).

For any vertex qi in πℓ that is corrupted, it holds by triangle inequality that

∥qi − ŝ∥ ≥ ∥qi∥ − ∥ŝ∥ ≥ ∥qi∥ − (D + 2M). (5)

Let us assume that D is large, that is, D > 2M · ⌊k−1
2 ⌋. Since πℓ ∈ B(0,M), for each of the uncorrupted vertices qi = pi

of πℓ (there are at least m− ℓ of them), it holds that:

∥pi − ŝ∥ ≥ D +M ≥ D + ∥pi∥. (6)

The top-k values are attained by at most ℓ = ⌊k−1
2 ⌋ corrupted vertices, and at least k − ℓ = k − ⌊k−1

2 ⌋ uncorrupted ones.
Thus, from Equations (5) and (6) it holds that∑

top-k

∥qi − ŝ∥ =
∑
i∈S
∥qi − ŝ∥

=
∑

i∈S, uncorrupted

∥pi − ŝ∥+
∑

i∈S, corrupted

∥qi − ŝ∥

≥
∑

i∈S, uncorrupted

(∥pi∥+D) +
∑

i∈S, corrupted

(∥qi∥ − (D + 2M))

≥
∑
i∈S
∥qi∥+D ·

(
k −

⌊
k − 1

2

⌋)
− (D + 2M) ·

⌊
k − 1

2

⌋
=

∑
i∈S
∥qi∥+D ·

(
k − 2

⌊
k − 1

2

⌋)
− 2M ·

⌊
k − 1

2

⌋
≥

∑
i∈S
∥qi∥+D − 2M ·

⌊
k − 1

2

⌋
>

∑
i∈S
∥qi∥.
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This contradicts the assumption that tm(πℓ) minimizes
∑

top-k ∥qi − ŝ∥, since 0 would be a better top-k-median and the
optimum can only be even smaller.

Therefore it must hold that D ≤ 2M · ⌊k−1
2 ⌋. Thus,

sup
σ̂
∥tm(πℓ)∥top-k ≤ k · (D + 2M) ≤ k ·

(
2M ·

⌊
k − 1

2

⌋
+ 2M

)
= 2M · k ·

⌊
k + 1

2

⌋
<∞

is finite. We conclude that β(tm, π) ≥ ⌊k−1
2 ⌋+ 1 = ⌊k+1

2 ⌋, as desired.

Overall, our above investigation proves the following theorem.

Theorem A.12 (Restatement of Theorem 2.4). Let π = (p1, . . . , pm) be a curve with pi ∈ Rd. Let tm(π) = σ be the
curve-of-top-k-median. Then

β(tm, π) =

⌊
k + 1

2

⌋
.

B. Supplementary Experimental Material
All experiments were run on a HPC workstation with AMD Ryzen Threadripper PRO 5975WX, 32 cores at 3.6GHz, 512GB
DDR4-3200. Our Python code is available at https://github.com/akrivosija/kDTW.

B.1. Synthetic Data

The choice of the parameters for the curves Al, B and C, cf. Figure 1, that are used for our clustering experiment presented
in Figures 2 and 5 is as follows:

• the complexity of the curves m = 1001;
• the k-DTW distance parameter k = ⌊2.5 · log(m)⌋ = 17;
• the number of “peaks” in the curves in Al: l ∈ {5, 6, 7, 8};
• the size of the “peaks” in the Al-type curves: L = 2 · log(m) = 13.816;
• the “small values” bound ε = 0.2;
• the number of curves of each type Al, B, C: 20 (n = 60).

B.2. Agglomerative Clustering

Clustering is an important unsupervised Machine Learning problem, that aims at partitioning the input, consisting of data
objects (often simply called points), such that “similar” points are grouped in the same part, while “dissimilar” points are
assigned to different parts. Center based clustering such as k-means require to efficiently calculate a center point for each of
k clusters. The input points are then assigned to the cluster represented by the closest center. Since computing a center based
clustering for more than one curve is computationally hard even to approximate in most scenarios (Driemel et al., 2016;
Buchin et al., 2019a; 2020; Bulteau et al., 2020), as already mentioned in the introduction, we use a popular alternative
called Hierarchical Agglomerative Clustering (HAC), which requires only the pairwise distances between the input data
points. The partition process starts with each curve being a singleton cluster. The current clusters are then iteratively merged
in ascending order of dissimilarity. Given a dissimilarity measure d(a, b) for two curves, such as Fréchet, DTW, or our novel
k-DTW, the dissimilarity of two clusters A,B is defined via so called linkage functions. The arguably most popular linkage
functions are single linkage d(A,B) = mina∈A,b∈B d(a, b) and complete linkage d(A,B) = maxa∈A,b∈B d(a, b), where
the distance of two clusters is defined as the minimum resp. maximum distance of two input data points taken from each of
the two clusters (Kaufman & Rousseeuw, 1990).

In Figure 5 (top) we see the results for single linkage clustering using the three distance measures. DTW (left) clearly has
difficulties to distinguish between type-Al and type-C curves, since the pairs (Al, C) are very close, (Al, B) are moderately
close, while (B,C) are far from each other, violating the triangle inequality. The Fréchet distance (right) has very large
intra-cluster distances between type-Al curves that are of the same magnitude as the inter-cluster distances. With slight
adjustments to the curves’ parameters, we can aggravate the situation such that Fréchet cannot cluster the curves correctly
either. Note, that we did not create such an extreme example as it would not only be synthetic but also handcrafted to a bad
situation. k-DTW (middle) can clearly identify the clusters, as the triangle inequality is less affected, while being robust to
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the spikes of type-Al curves. As a result, we obtain pure clusters whose intra-cluster distances are reasonably small and
clearly distinguished from the large inter-cluster distances. The results for complete linkage are very similar, cf. Figure 5
(bottom).
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Figure 5. Single (top) and complete (bottom) linkage clustering; DTW (left), k-DTW (middle), Fréchet distance (right); synthetic data.

B.3. l-Nearest Neighbor Classification

Classification is an important ML problem, where based on an input training set XM ⊆ X , consisting of M input points
equipped with one of K labels, we classify the whole domain X into the K categories. The l-nearest neighbor (l-NN) model
provides a well-known distance based classifier (Devroye et al., 2013). Let the input training set XM consist of M pairs
(χi, yi), where χi are from the instance domainX with a distance measure d : X×X → R≥0, and yi ∈ [K], for all i ∈ [M ].
Here, X is the set of polygonal curves in Rd, and the distance measures are the Fréchet, DTW, and k-DTW distances.
Additionally, we perform experiments using several related distance measures: weak discrete Fréchet distance (Buchin et al.,
2019c), edit distance with real penalty (Chen & Ng, 2004), and two variants of partial DTW distance (there are multiple
distance measures under the same name in the literature). We use partial window DTW (Sakoe & Chiba, 1978), which
matches vertices of each curve only within a frame of bounded width w, and partial segment DTW (Tak & Hwang, 2007;
Luo et al., 2024), which partitions both curves into L segments, each of which are matched via standard DTW. We set the
window width to w = 50 and the number of segments to L = 10 in all experiments with these partial DTW variants.

Then, a curve τ ∈ X is classified into category i ∈ [K], if the (relative) majority of the l curves of XM that have smallest
distance to τ are labeled with yi (Devroye et al., 2013).

B.3.1. CLASSIFICATION OF THE OPEN UNIVERSITY LEARNING ANALYTICS DATASET

We first present the results obtained on the real-world data from the Open University Learning Analytics Dataset
(OULAD) (Kuzilek et al., 2017). This dataset contains data about courses, students and their interactions with a vir-
tual learning environment. The clicks of a student, aggregated by days, are represented as clickstreams, which we interpret
as polygonal curves, in order to analyze them using the Fréchet, DTW, and our novel k-DTW distances.

We represent n = 275 clickstreams of one course (a course that started in “October 2014”) as polygonal curves of complexity
m = 294. Each curve is labeled according to the achievement of the student in the course, as either “fail” (0) - 46 students,
or “pass” (1) - 229 students. We use an l-NN model in order to predict the final exam result, which serves as a binary label
indicating ’pass’ or ’fail’. We note that the data set is very sparse, as it contains 56 027 vertices of the curves with value 0.
This amounts to 69.3% of all 80 850 vertices.

We run a 100 times repeated 6-fold cross validation, using l-NN with a standard choice of l = ⌈
√
n⌉ = 17 (cf. Devroye

et al., 2013). We perform an exponential search for the best parameter k ∈ {2i | i ∈ [8]} for the k-DTW distance, and a
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subsequent finer search. The best results were obtained for k ∈ {64, 76}, which amounts to roughly 20% − 25% of the
curves’ complexity. The results for all considered distance measures (the Fréchet distance, DTW, and k-DTW for various
values of k) are given in Table 1. k-DTW outperformed the classification performance of Fréchet and DTW by a margin
of up to 8.2% resp. 1.8%, when measured by AUC. k-DTW also shows slight improvements in terms of accuracy and
F1-score.

Table 2. Binary classification of polygonal curves using l-nearest neighbor algorithm, on the real-world Open University Learning
Analytics Dataset (OULAD) (Kuzilek et al., 2017). Mean classification performance measures (AUC, accuracy, F1-score) taken over
100 independent repetitions of 6-fold cross validation and standard errors “mean (std.err.)”. Best and worst values are highlighted in
blue/red colors. At least one k-DTW variant always yields best or better while close to the best results compared to either standard DTW
or Fréchet.

Distance AUC Accuracy F1-Score T (min) T/TDTW
Fréchet 0.73737 (0.00194) 0.83742 (0.00072) 0.90953 (0.00040) 1.7 1.0
2-DTW 0.74207 (0.00197) 0.83455 (0.00083) 0.90779 (0.00047) 77.4 47.9
4-DTW 0.75888 (0.00184) 0.83706 (0.00068) 0.90929 (0.00038) 80.8 50.0
8-DTW 0.77092 (0.00164) 0.83706 (0.00067) 0.90946 (0.00036) 78.5 48.6
16-DTW 0.76771 (0.00164) 0.83808 (0.00092) 0.90932 (0.00052) 73.7 45.6
32-DTW 0.78213 (0.00160) 0.84946 (0.00090) 0.91438 (0.00050) 68.9 42.6
56-DTW 0.79248 (0.00158) 0.85320 (0.00092) 0.91651 (0.00051) 62.8 38.8
60-DTW 0.79001 (0.00157) 0.85495 (0.00090) 0.91760 (0.00050) 61.7 38.2
64-DTW 0.78795 (0.00150) 0.85557 (0.00088) 0.91796 (0.00048) 60.6 37.4
68-DTW 0.78855 (0.00156) 0.85546 (0.00089) 0.91790 (0.00049) 59.5 36.8
72-DTW 0.79639 (0.00152) 0.85520 (0.00092) 0.91775 (0.00051) 58.3 36.0
76-DTW 0.79772 (0.00150) 0.85469 (0.00092) 0.91744 (0.00051) 57.6 35.6
80-DTW 0.79512 (0.00150) 0.85528 (0.00091) 0.91779 (0.00050) 56.3 34.8
84-DTW 0.79713 (0.00145) 0.85528 (0.00091) 0.91779 (0.00050) 55.2 34.1
88-DTW 0.79691 (0.00147) 0.85528 (0.00091) 0.91779 (0.00050) 54.2 33.5
92-DTW 0.79522 (0.00151) 0.85528 (0.00091) 0.91779 (0.00050) 53.2 32.9
96-DTW 0.79301 (0.00147) 0.85528 (0.00091) 0.91779 (0.00050) 52.3 32.3
100-DTW 0.79347 (0.00142) 0.85528 (0.00091) 0.91779 (0.00050) 51.3 31.7
104-DTW 0.79191 (0.00147) 0.85528 (0.00091) 0.91779 (0.00050) 50.5 31.2
108-DTW 0.78859 (0.00146) 0.85528 (0.00091) 0.91779 (0.00050) 49.7 30.7
112-DTW 0.78556 (0.00148) 0.85528 (0.00091) 0.91779 (0.00050) 49.0 30.3
116-DTW 0.78606 (0.00150) 0.85528 (0.00091) 0.91779 (0.00050) 48.1 29.7
120-DTW 0.78541 (0.00152) 0.85528 (0.00091) 0.91779 (0.00050) 47.5 29.4
124-DTW 0.78399 (0.00155) 0.85528 (0.00091) 0.91779 (0.00050) 46.8 28.9
128-DTW 0.78620 (0.00159) 0.85528 (0.00091) 0.91779 (0.00050) 46.4 28.7
256-DTW 0.77699 (0.00164) 0.85528 (0.00091) 0.91779 (0.00050) 34.1 21.0
DTW 0.78360 (0.00160) 0.85459 (0.00085) 0.91735 (0.00047) 1.6 1.0
EditRealPenalty 0.65800 (0.00261) 0.79892 (0.00335) 0.86557 (0.00348) 4.0 2.5
PartSegmDTW 0.54652 (0.00255) 0.79778 (0.00180) 0.88161 (0.00149) 0.2 0.1
PartWinDTW 0.77959 (0.00175) 0.87823 (0.00051) 0.92956 (0.00031) 0.5 0.3
WeakFréchet 0.73917 (0.00204) 0.83618 (0.00073) 0.90896 (0.00041) 3.0 1.9
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B.3.2. PARAMETER k TUNING AND EVALUATION ON HOLD OUT DATA

In addition to our explicit parameter search, cross validated over the full data, we perform another hold out evaluation. Here
the parameter k of the k-DTW distance is cross validated on training data, and the best value of k is then used on a hold
out test data set, for l-nearest neighbor classification. For that sake, we split the input into training and test sets A and B,
respectively. We randomly split the OULAD dataset (Kuzilek et al., 2017), where the test set B has a { 13 ,

1
4 ,

1
5} fraction

of the input. We find the best value of k on A and evaluate it on B. Finally, we compare the performances of the Fréchet,
k-DTW and DTW distances on the test set B. In all experiments we run 100 times repeated 6-fold cross-validation, using
l = ⌈

√
|A|⌉ for the l-NN training and test on the remaining hold out data.

The results are presented in Tables 3 to 5. In all of the experiments, the best k-DTW variant that is selected on the training
set is either best or close to the best, compared to the standard DTW and the Fréchet distance. Note that very small choices
of the split size imply that the classification quality on the test set significantly decreases (e.g. in Table 5).

Table 3. Binary classification of polygonal curves using l-nearest neighbor algorithm, on the real-world OULAD dataset (Kuzilek et al.,
2017). Training set consists of 2

3
of the input set. Testing set is remaining 1

3
. Mean classification performance measures (AUC, accuracy,

F1-score) taken over 100 independent repetitions of 6-fold cross validation and standard errors “mean (std.err.)”. Best values are
highlighted in blue color.

Training
Distance AUC Accuracy F1-Score Distance AUC Accuracy F1-Score
2-DTW 0.71501 0.84599 0.91524 88-DTW 0.75375 0.85425 0.91969
4-DTW 0.70214 0.84653 0.91554 92-DTW 0.74882 0.85425 0.91969
8-DTW 0.70701 0.84845 0.91661 96-DTW 0.75097 0.85425 0.91969
16-DTW 0.69618 0.85288 0.91907 100-DTW 0.74912 0.85425 0.91969
32-DTW 0.71676 0.84858 0.91651 104-DTW 0.74578 0.85425 0.91969
56-DTW 0.74510 0.85508 0.92015 108-DTW 0.74237 0.85425 0.91969
60-DTW 0.75037 0.85524 0.92024 112-DTW 0.74483 0.85425 0.91969
64-DTW 0.75410 0.85192 0.91832 116-DTW 0.74176 0.85425 0.91969
68-DTW 0.76162 0.85431 0.91971 120-DTW 0.74261 0.85425 0.91969
72-DTW 0.76220 0.85437 0.91975 124-DTW 0.74078 0.85425 0.91969
76-DTW 0.75543 0.85426 0.91969 128-DTW 0.73960 0.85425 0.91969
80-DTW 0.75682 0.85404 0.91957 256-DTW 0.72549 0.85425 0.91969
84-DTW 0.75366 0.85425 0.91969

Testing
Distance AUC Accuracy F1-Score
72-DTW 0.78912 (0.00382) 0.80103 (0.00266) 0.87266 (0.00174)
DTW 0.77772 (0.00381) 0.79724 (0.00258) 0.87005 (0.00167)
Fréchet 0.65995 (0.00542) 0.78542 (0.00144) 0.87542 (0.00087)
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Table 4. Binary classification of polygonal curves using l-nearest neighbor algorithm, on the real-world OULAD dataset (Kuzilek et al.,
2017). Training set consists of 3

4
of the input set. Testing set is remaining 1

4
. Mean classification performance measures (AUC, accuracy,

F1-score) taken over 100 independent repetitions of 6-fold cross validation and standard errors “mean (std.err.)”. Best values are
highlighted in blue color.

Training
Distance AUC Accuracy F1-Score Distance AUC Accuracy F1-Score
2-DTW 0.74698 0.83849 0.91098 88-DTW 0.77448 0.84538 0.91465
4-DTW 0.73626 0.83941 0.91141 92-DTW 0.77248 0.84538 0.91465
8-DTW 0.74288 0.83839 0.91089 96-DTW 0.77127 0.84538 0.91465
16-DTW 0.74744 0.83912 0.91130 100-DTW 0.77002 0.84538 0.91465
32-DTW 0.75834 0.83714 0.90998 104-DTW 0.76765 0.84538 0.91465
56-DTW 0.77456 0.84528 0.91459 108-DTW 0.76388 0.84538 0.91465
60-DTW 0.78048 0.84533 0.91462 112-DTW 0.76606 0.84538 0.91465
64-DTW 0.78281 0.84426 0.91401 116-DTW 0.76558 0.84538 0.91465
68-DTW 0.78641 0.84538 0.91465 120-DTW 0.76449 0.84538 0.91465
72-DTW 0.78423 0.84538 0.91465 124-DTW 0.76259 0.84538 0.91465
76-DTW 0.78071 0.84538 0.91465 128-DTW 0.76108 0.84538 0.91465
80-DTW 0.78088 0.84513 0.91451 256-DTW 0.75135 0.84538 0.91465
84-DTW 0.77768 0.84538 0.91465

Testing
Distance AUC Accuracy F1-Score
68-DTW 0.74092 (0.00533) 0.79057 (0.00164) 0.87842 (0.00102)
DTW 0.73140 (0.00583) 0.79001 (0.00159) 0.87812 (0.00098)
Fréchet 0.57310 (0.00665) 0.79696 (0.00022) 0.88270 (0.00028)

Table 5. Binary classification of polygonal curves using l-nearest neighbor algorithm, on the real-world OULAD dataset (Kuzilek et al.,
2017). Training set consists of 4

5
of the input set. Testing set is remaining 1

5
. Mean classification performance measures (AUC, accuracy,

F1-score) taken over 100 independent repetitions of 6-fold cross validation and standard errors “mean (std.err.)”. Best values are
highlighted in blue color.

Training
Distance AUC Accuracy F1-Score Distance AUC Accuracy F1-Score
2-DTW 0.77194 0.85320 0.91767 88-DTW 0.81430 0.85380 0.91729
4-DTW 0.77292 0.85021 0.91620 92-DTW 0.81094 0.85380 0.91729
8-DTW 0.76751 0.84344 0.91276 96-DTW 0.81126 0.85380 0.91729
16-DTW 0.77602 0.84038 0.91079 100-DTW 0.81037 0.85380 0.91729
32-DTW 0.79556 0.84879 0.91431 104-DTW 0.80934 0.85380 0.91729
56-DTW 0.81157 0.85394 0.91737 108-DTW 0.80691 0.85380 0.91729
60-DTW 0.81480 0.85394 0.91737 112-DTW 0.80950 0.85380 0.91729
64-DTW 0.81617 0.85348 0.91711 116-DTW 0.80972 0.85380 0.91729
68-DTW 0.81908 0.85384 0.91732 120-DTW 0.80900 0.85380 0.91729
72-DTW 0.82163 0.85375 0.91726 124-DTW 0.80801 0.85380 0.91729
76-DTW 0.81766 0.85371 0.91724 128-DTW 0.80602 0.85380 0.91729
80-DTW 0.81915 0.85357 0.91716 256-DTW 0.79856 0.85380 0.91729
84-DTW 0.81579 0.85380 0.91729

Testing
Distance AUC Accuracy F1-Score
72-DTW 0.63990 (0.00602) 0.79996 (0.00021) 0.88358 (0.00031)
DTW 0.62175 (0.00675) 0.79996 (0.00021) 0.88358 (0.00031)
Fréchet 0.48112 (0.00817) 0.79996 (0.00021) 0.88358 (0.00031)
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B.3.3. CLASSIFICATION OF FURTHER DATASETS

We have evaluated the l-Nearest Neighbor Classification on additional datasets that have been used for evaluation of different
distance measures in (Aghababa & Phillips, 2023). Their l-NN experiments are performed with l = 5 and evaluated on a
random 70/30 hold-out split, while we choose l = ⌈

√
n⌉, as for the previous OULAD (Kuzilek et al., 2017) dataset and

evaluate by a 6-fold cross validation, 100 times repeated independently. We compare k-DTW again against the discrete
Fréchet and the DTW distance, as in the rest of our manuscript.

Here, we need to choose the value of k for our k-DTW distance. We will see that it is not needed to perform the extensive
exponential or linear search, as in practice it suffices to choose some small value, compared to the input curves’ complexity
m. Thus, we compare the k-DTW for the values of k ∈ {ln(m),

√
m,m/10,m/4}, and we stress that the linear values

are only needed for short curves which was underlined by our theoretical results. Note that in the paper of Aghababa &
Phillips (2023) there is no analysis of the complexity of the input curves m – we present these values, together with further
descriptive parameters of the observed real-world datasets in Table 6.

Table 6. Description of the real-world datasets from (Aghababa & Phillips, 2023), where each curve has a label from {0, 1}. n – the
number of the curves in a dataset. m – the complexity of curves in a dataset. d – the dimension of the ambient space.

Dataset Reference # Curves Categories Min Max Average Dim.
n m m m d

Cars+Bus (Cruz et al., 2016) 120 (76, 44) 10 645 146 2
Sim. C+B (Aghababa & Phillips, 2023) 446 (226, 220) 9 645 126 2
Char0uw (Williams, 2008) 256 (131, 125) 89 153 117 2
Char1nw (Williams, 2008) 255 (130, 125) 108 143 126 2
Char2nu (Williams, 2008) 261 (130, 131) 92 182 120 2
Two Persons (UIC, 2006) 213 (124, 89) 72 5 493 1 175 2

The dataset “Simulated C+B” (Aghababa & Phillips, 2023) was obtained from the dataset “Cars+Bus” (Cruz et al., 2016),
to balance the number of input curves of the two classes by adding random noise to original input curves. For both the
task is to distinguish between paths that are driven by car vs. bus. The “Characters” dataset (Williams, 2008) contains
multiple hand-written characters, from which we picked three exemplary and challenging pairs (u,w), (n,w) and (n,u) to be
distinguished. Datasets are denoted here as “Char0uw”, “Char1nw” and “Char2nu”, respectively. The “Two Persons” (UIC,
2006) dataset contains trajectories walked by two different persons to be distinguished. As it was done in (Aghababa &
Phillips, 2023) for all datasets, we also removed stationary points along the trajectories, as this does not change the shape of
a polygonal curve.

Tables 7 and 8 show the classification performance results: the means and standard errors over 100 independent repetitions.
Additionally, we present the total running times for all experiments, and the ratio to the running time of the corresponding
experiment using the DTW distance.

The best performing measure for each case is highlighted in blue, and the worst in red. One can see that in the majority of
cases, k-DTW either still performs best, or close to the best. The only exception is “Char0uw” where ERP excels and beats
all others by a large margin. k-DTW is still second best in these cases. Notably, all competitors have some worst cases,
while k-DTW is never worst.
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Table 7. Mean classification performance measures (AUC, accuracy, F1-score) taken over 100 independent repetitions of 6-fold cross
validation and standard errors “mean (std.err.)”. Best and worst values are highlighted in blue/red colors. Note that in half of the
combinations of dataset/performance measure, some k-DTW variant is best, while worst results are mostly attained using standard DTW
or Fréchet. At least one k-DTW variant always yields best or better while close to the best results compared to either standard DTW or
Fréchet. Datasets taken from (Aghababa & Phillips, 2023). Running time (T) given in minutes.

Data Distance AUC Accuracy F1-Score T (min) T /TDTW

C
ar

s+
B

us

Fréchet 0.51511 (0.00390) 0.53158 (0.00355) 0.64938 (0.00299) 1.1 1.0
ln(m)-DTW 0.54830 (0.00383) 0.56192 (0.00308) 0.67068 (0.00252) 5.3 5.0√
m-DTW 0.52259 (0.00369) 0.54058 (0.00280) 0.64863 (0.00261) 5.7 5.4

m/10-DTW 0.53635 (0.00342) 0.53008 (0.00323) 0.62415 (0.00301) 8.1 7.6
m/4-DTW 0.57633 (0.00329) 0.56250 (0.00266) 0.64711 (0.00264) 16.5 15.5
DTW 0.57590 (0.00321) 0.55417 (0.00273) 0.63637 (0.00269) 1.1 1.0
EditRealPenalty 0.56580 (0.00324) 0.54900 (0.00258) 0.62282 (0.00269) 2.4 2.2
PartSegmDTW 0.54492 (0.00358) 0.58108 (0.00293) 0.70430 (0.00236) 0.2 0.1
PartWinDTW 0.58362 (0.00383) 0.60033 (0.00314) 0.71338 (0.00258) 0.8 0.7
WeakFréchet 0.51607 (0.00396) 0.53208 (0.00346) 0.64876 (0.00298) 1.7 1.6

Si
m

.C
+B

Fréchet 0.88027 (0.00049) 0.77717 (0.00075) 0.76358 (0.00091) 25.0 1.1
ln(m)-DTW 0.88748 (0.00046) 0.77291 (0.00074) 0.75119 (0.00092) 61.6 2.8√
m-DTW 0.88966 (0.00045) 0.76037 (0.00073) 0.73046 (0.00098) 69.5 3.1

m/10-DTW 0.89769 (0.00046) 0.76860 (0.00077) 0.72968 (0.00093) 97.4 4.4
m/4-DTW 0.91712 (0.00041) 0.79836 (0.00052) 0.76566 (0.00076) 158.5 7.1
DTW 0.91829 (0.00038) 0.79339 (0.00076) 0.75607 (0.00110) 22.3 1.0
EditRealPenalty 0.90888 (0.00041) 0.79709 (0.00059) 0.76120 (0.00088) 50.6 2.3
PartSegmDTW 0.80593 (0.00088) 0.58766 (0.00071) 0.31972 (0.00168) 3.6 0.2
PartWinDTW 0.83221 (0.00068) 0.63397 (0.00092) 0.46484 (0.00178) 14.8 0.7
WeakFréchet 0.87942 (0.00047) 0.77073 (0.00071) 0.75483 (0.00089) 37.6 1.7

C
ha

r0
uw

Fréchet 0.98094 (0.00029) 0.93426 (0.00053) 0.93568 (0.00056) 0.9 0.9
ln(m)-DTW 0.98374 (0.00025) 0.93341 (0.00061) 0.93553 (0.00061) 12.5 11.9√
m-DTW 0.98434 (0.00026) 0.93139 (0.00064) 0.93426 (0.00063) 14.9 14.1

m/10-DTW 0.98433 (0.00028) 0.92863 (0.00050) 0.93181 (0.00052) 15.8 15.0
m/4-DTW 0.98474 (0.00024) 0.92652 (0.00058) 0.93020 (0.00058) 21.1 20.1
DTW 0.98625 (0.00028) 0.91586 (0.00066) 0.92050 (0.00064) 1.1 1.0
EditRealPenalty 0.99819 (0.00009) 0.97906 (0.00025) 0.97930 (0.00029) 2.3 2.2
PartSegmDTW 0.99712 (0.00016) 0.97793 (0.00029) 0.97840 (0.00033) 0.1 0.1
PartWinDTW 0.98622 (0.00027) 0.91445 (0.00059) 0.91930 (0.00059) 0.7 0.6
WeakFréchet 0.97652 (0.00033) 0.92185 (0.00072) 0.92257 (0.00075) 1.2 1.1
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Table 8. Mean classification performance measures (AUC, accuracy, F1-score) taken over 100 independent repetitions of 6-fold cross
validation and standard errors “mean (std.err.)”. Best and worst values are highlighted in blue/red colors. Note that in half of the
combinations of dataset/performance measure, some k-DTW variant is best, while worst results are mostly attained using standard DTW
or Fréchet. At least one k-DTW variant always yields best or better while close to the best results compared to either standard DTW or
Fréchet. Datasets taken from (Aghababa & Phillips, 2023). Running time (T) given in minutes.

Data Distance AUC Accuracy F1-Score T (min) T /TDTW

C
ha

r1
nw

Fréchet 0.91701 (0.00080) 0.83265 (0.00130) 0.82623 (0.00150) 3.3 1.1
ln(m)-DTW 0.92853 (0.00063) 0.84517 (0.00114) 0.84209 (0.00120) 22.5 7.4√
m-DTW 0.94034 (0.00057) 0.86560 (0.00107) 0.86518 (0.00113) 30.4 10.0

m/10-DTW 0.94180 (0.00054) 0.86354 (0.00125) 0.86334 (0.00121) 39.0 12.9
m/4-DTW 0.95289 (0.00045) 0.88475 (0.00111) 0.88545 (0.00113) 45.1 14.9
DTW 0.95115 (0.00047) 0.87420 (0.00113) 0.87720 (0.00105) 3.0 1.0
EditRealPenalty 0.95442 (0.00048) 0.86093 (0.00100) 0.85042 (0.00121) 6.9 2.3
PartSegmDTW 0.95931 (0.00042) 0.88577 (0.00089) 0.87933 (0.00099) 0.4 0.1
PartWinDTW 0.94604 (0.00051) 0.87546 (0.00109) 0.87802 (0.00107) 2.0 0.7
WeakFréchet 0.91767 (0.00083) 0.83866 (0.00139) 0.82806 (0.00164) 3.8 1.2

C
ha

r2
nu

Fréchet 0.98326 (0.00026) 0.93725 (0.00074) 0.93259 (0.00084) 4.7 0.9
ln(m)-DTW 0.98517 (0.00025) 0.94303 (0.00062) 0.93888 (0.00069) 23.2 4.3√
m-DTW 0.98615 (0.00023) 0.94415 (0.00049) 0.94067 (0.00057) 30.0 5.5

m/10-DTW 0.98816 (0.00018) 0.94228 (0.00053) 0.93861 (0.00063) 38.9 7.2
m/4-DTW 0.98949 (0.00016) 0.94757 (0.00048) 0.94475 (0.00057) 44.6 8.2
DTW 0.99376 (0.00019) 0.95534 (0.00045) 0.95348 (0.00048) 5.4 1.0
EditRealPenalty 0.99830 (0.00007) 0.96695 (0.00030) 0.96573 (0.00035) 12.3 2.3
PartSegmDTW 0.99684 (0.00011) 0.96116 (0.00038) 0.95963 (0.00043) 0.7 0.1
PartWinDTW 0.99355 (0.00019) 0.95519 (0.00045) 0.95334 (0.00049) 3.5 0.6
WeakFréchet 0.98281 (0.00025) 0.93364 (0.00066) 0.92836 (0.00075) 6.5 1.2

Tw
o

Pe
rs

on
s

Fréchet 0.95373 (0.00058) 0.94832 (0.00002) 0.95324 (0.00021) 57.3 0.9
ln(m)-DTW 0.95630 (0.00059) 0.94832 (0.00002) 0.95324 (0.00021) 655.2 10.4√
m-DTW 0.95411 (0.00057) 0.94832 (0.00002) 0.95324 (0.00021) 962.6 15.3

m/10-DTW 0.96191 (0.00053) 0.94832 (0.00002) 0.95324 (0.00021) 1570.8 25.0
m/4-DTW 0.96426 (0.00055) 0.94390 (0.00012) 0.94939 (0.00025) 2857.9 45.6
DTW 0.96115 (0.00053) 0.94832 (0.00002) 0.95324 (0.00021) 62.7 1.0
EditRealPenalty 0.85989 (0.00115) 0.77931 (0.00004) 0.76642 (0.00051) 130.5 2.1
PartSegmDTW 0.95432 (0.00060) 0.90336 (0.00045) 0.90999 (0.00051) 6.1 0.1
PartWinDTW 0.94616 (0.00052) 0.91961 (0.00026) 0.92637 (0.00037) 35.0 0.6
WeakFréchet 0.95376 (0.00056) 0.94832 (0.00002) 0.95324 (0.00021) 92.7 1.5
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