

CHARACTERIZING PATTERN MATCHING AND ITS LIMITS ON COMPOSITIONAL TASK STRUCTURES

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Despite impressive capabilities, LLMs’ successes often rely on pattern-matching behaviors, yet these are also linked to OOD generalization failures in compositional tasks. However, behavioral studies commonly employ task setups that allow multiple generalization sources (e.g., algebraic invariances, structural repetition), obscuring a precise and testable account of how well LLMs perform generalization through pattern matching and their limitations. To address this ambiguity, we first formalize pattern matching as functional equivalence, i.e., identifying pairs of subsequences of inputs that consistently lead to identical results when the rest of the input is held constant. Then, we systematically study how decoder-only Transformer and Mamba behave in controlled tasks with compositional structures that isolate this mechanism. Our formalism yields predictive and quantitative insights: (1) Instance-wise success of pattern matching is well predicted by the number of contexts witnessing the relevant functional equivalence. (2) We prove a tight sample complexity bound of learning a two-hop structure by identifying the exponent of the data scaling law for perfect in-domain generalization. Our empirical results align with the theoretical prediction, under 20 \times parameter scaling and across architectures. (3) Path ambiguity is a structural barrier: when a variable influences the output via multiple paths, models fail to form unified intermediate state representations, impairing accuracy and interpretability. (4) Chain-of-Thought reduces data requirements yet does not resolve path ambiguity. Hence, we provide a predictive, falsifiable boundary for pattern matching and a foundational diagnostic for disentangling mixed generalization mechanisms.

FIXED

FIXED

FIXED
FIXED

1 INTRODUCTION

Despite the remarkable performance of Large Language Models (LLMs) (Brown et al., 2020; Touvron et al., 2023), compositional generalization studies suggest that the core mechanism of generalization might be “pattern matching”, i.e., models learning local statistical regularities between input fragments and outputs in some cases (Loula et al., 2018; Johnson et al., 2017; Berglund et al., 2024; Wang et al., 2024a; Mirzadeh et al., 2025; Keysers et al., 2020; Csordás et al., 2022). However, behavioral studies commonly employ task setups that allow multiple generalization sources (e.g., algebraic invariances, structural repetition), discussing pattern matching without a precise definition and diagnosing it post-hoc rather than characterizing it predictively. As a result, it remains unclear which behaviors should count as pattern matching and which should not, obscuring a constructive and testable account of its boundary.

FIXED

FIXED

To make this notion precise, we (1) introduce a model-agnostic, data-centric formalism for pattern matching and (2) systematically study how modern architectures like decoder-only Transformers (Vaswani et al., 2017) and Mamba (Gu & Dao, 2024) perform generalization through pattern matching. Specifically, we first propose a model-agnostic and data-centric definition of pattern matching by formalizing the substitution of input patterns *observed* to result in identical outputs in shared contexts as **functional-equivalence** (Sec. 3; henceforth, we use *pattern matching* as equivalent to *functional-equivalence-based generalization*). This induces a **coverage boundary**: if learning relies only on such evidence, reliable prediction is expected only for test inputs reachable by these substitutions.

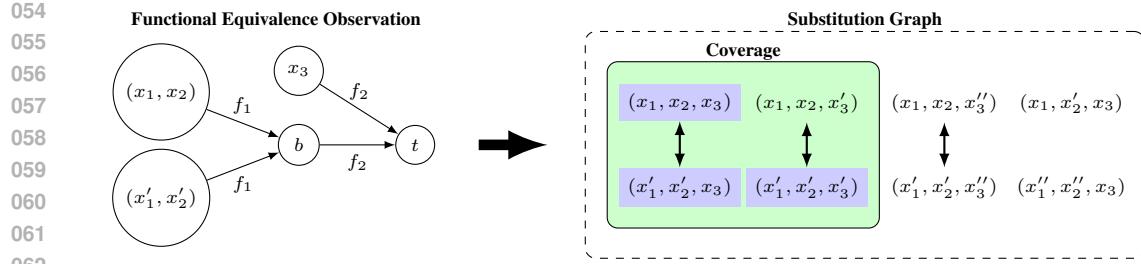


Figure 1: **Illustration of functional equivalence.** **Left:** In a two-hop task $(x_1, x_2, x_3) \mapsto t$ with $t = f_2(f_1(x_1, x_2), x_3)$, two fragments (x_1, x_2) and (x'_1, x'_2) satisfying $f_1(x_1, x_2) = f_1(x'_1, x'_2) = b$ consistently yield the same final output when combined with the same context x_3 , supporting their **functional equivalence**. **Right:** Among all possible inputs (few shown), we draw an edge between any two inputs that differ only by functionally equivalent fragments to form a **substitution graph**. Then, **coverage** is the set of observed inputs (highlighted as blue) and all inputs connected to them. We define pattern matching as a type of generalization that occurs inside the coverage, harnessing functional equivalence.

Moreover, to isolate and study pattern-matching behaviors, we use controlled setups that deliberately remove other generalization sources and make functional equivalence the *primary available mechanism*. With this setting, our formalism yields *predictive and quantitative insights* about the limitations of pattern matching that, to our knowledge, have not been well characterized in prior works:

- **Generalization success is well predicted by the number of supporting contexts that witness the relevant functional equivalence.** Mechanistically, Transformers implement functional equivalence via clustered intermediate representations at specific layers/positions, with clustering strength aligning with evidence strength (Sec. 5). FIXED
- **We prove a tight sample complexity bound of pattern matching on a two-hop structure by identifying the exponent of the data scaling law (in terms of the token set size) which is necessary and sufficient for perfect in-domain generalization (Theorem 6.1).** The measured power-law exponent agrees with our theoretical bounds and remains stable under roughly $20\times$ parameter increase (from 68M to 1.5B) for GPT-2 (Radford et al., 2019), and also holds for Mamba (Gu & Dao, 2024) architecture (Sec. 6). FIXED
- **When the same variable influences the output along multiple computational paths, models fail to form unified intermediate state representations.** Analysis reveals that they instead develop context-dependent state representations, impairing both generalization and interpretability (Sec. 7).
- **Chain-of-Thought (CoT) supervision (Wei et al., 2022) reduces data requirements yet does not resolve path ambiguity without seeing nearly exhaustive in-domain combinations** (Sec. 8).

Finally, we situate this characterization of pattern matching within a mechanism-based taxonomy of generalization mechanisms, proposing two additional distinguishable mechanisms of generalization in compositional tasks: property-based and shared-operator generalization (Sec. 9.2 and App. H).

Our formalism opens several research directions with practical implications (e.g., targeted data augmentation to maximize coverage) and motivates expansion to broader tasks and architectures, as well as systematic studies of how pattern matching interacts with other generalization mechanisms. Overall, our study provides a predictive, falsifiable boundary for what can be achieved through pattern matching alone and a foundational diagnostic for disentangling mixed mechanisms in modern neural networks.

2 RELATED WORK

Pattern matching behaviors of LLMs on compositional tasks. It is well perceived that pattern matching alone is inadequate for systematic generalization (Fodor & Pylyshyn, 1988), and modern LLMs display generalization abilities that seem to be far beyond what pattern matching alone can do, as measured by their remarkable performance on complex benchmarks (Achiam et al., 2023). However, a growing body of work has consistently reported that LLMs still fall short on benchmarks designed to test compositionality (Hupkes et al., 2020), including mathematical

108 reasoning (Mirzadeh et al., 2025), multi-hop reasoning (Yang et al., 2024; Wang et al., 2024a), and
 109 more (Lake & Baroni, 2018; Kim & Linzen, 2020; Csordás et al., 2022; Dziri et al., 2023). This
 110 gap between their capabilities and pattern-matching behaviors on compositional tasks calls for a
 111 principled framework to define what pattern matching is and to what extent a model’s behavior can
 112 be attributed to pattern matching, but it is mostly discussed with behavioral studies under the context
 113 of a specifically designed benchmark. Our work addresses this gap by formally defining pattern
 114 matching, and we systematically analyze models’ behaviors with controlled tasks that are designed to
 115 isolate pattern-matching regimes grounded on our framework.

116 **Mechanistic interpretability.** Mechanistic interpretability studies aim to understand how sub-
 117 mechanisms implement models’ behaviors (Elhage et al., 2021; Olsson et al., 2022; Nanda et al.,
 118 2023; Elhage et al., 2022). Recent work analyzes how Transformer components are causally re-
 119 lated to certain behaviors (Meng et al., 2022; Hanna et al., 2023; Goldowsky-Dill et al., 2023). In
 120 particular, it is reported that in-domain compositional generalization can emerge through grokking,
 121 with identifiable intermediate state representations inside Transformers (Wang et al., 2024a). Our
 122 framework complements these works by providing mechanistic insights about pattern matching. Our
 123 findings also explain why standard interpretability techniques like logit lens (nostalgia, 2020;
 124 Belrose et al., 2023) may fail to identify state representations in models trained on tasks with path
 125 ambiguities.

127 3 FORMALIZING PATTERN MATCHING WITH FUNCTIONAL EQUIVALENCE

128 We now develop a formal framework for pattern matching. We first provide an intuitive illustration
 129 with a two-hop structure, then generalize to arbitrary fixed-length discrete-sequence tasks.

130 Imagine a learner observing data determined by $f : \mathcal{X}^3 \rightarrow \mathcal{X}$. The input $\mathbf{x} = (x_1, x_2, x_3) \in \mathcal{X}^3$ is a
 131 sequence of three discrete tokens and the output is a single token, where each token is chosen from a
 132 finite set \mathcal{X} .¹ Suppose (unknown to the learner) that f factorizes as the composition of two primitive
 133 functions, $f(\mathbf{x}) = f_2(f_1(x_1, x_2), x_3)$, where $f_1 : \mathcal{X}^2 \rightarrow \mathcal{X}$ and $f_2 : \mathcal{X}^2 \rightarrow \mathcal{X}$, as illustrated in
 134 Fig. 2a. How can the learner generalize by only seeing the input-output patterns?

135 Our key intuition is that a **learner exploits the underlying patterns only when two fragments**
 136 **of inputs are observed to behave identically**. For instance, assume that two fragments
 137 $(x_1, x_2), (x'_1, x'_2) \in \mathcal{X}^2$ give the same implicit intermediate state upon the application of f_1 , i.e.,
 138 $f_1(x_1, x_2) = f_1(x'_1, x'_2) = b$. These fragments behave identically regardless of context, i.e., they are
 139 **functionally equivalent**: for all $x_3 \in \mathcal{X}$, $f(x_1, x_2, x_3) = f(x'_1, x'_2, x_3)$. If observations consistently
 140 support their equivalence, i.e., $f(x_1, x_2, x_3) = f(x'_1, x'_2, x_3)$ for observed x_3 values, this equivalence
 141 can be supported (Fig. 1 Left). Intuitively, the learner would harness this equivalence pattern to
 142 predict $f(x'_1, x'_2, x'_3)$, provided the training set contains $f(x_1, x_2, x_3)$.

143 Equivalently, the learner can utilize the observed functional equivalence to correctly infer the output
 144 of an unseen input, if it can reach an observed input by ‘safe substitutions’ (edges in the substitution
 145 graph) supported by observations (Fig. 1 Right), which we define as a pattern matching. **Coverage**
 146 is a set of such inputs that are reachable from an observed input through chains of functionally
 147 equivalent substitutions. Then, coverage sets a boundary for what can be achieved by solely relying
 148 on substituting observed, equivalently behaving patterns. In other words, a learner can only generalize
 149 inside the coverage when it relies on functional equivalence, which we will define as pattern matching.

150 We now formalize these concepts for an arbitrary fixed-length task with an arbitrary set of discrete
 151 sequence observations. We restrict our attention to single-token prediction tasks defined as a de-
 152 terministic mapping $f : \mathcal{X}^\ell \rightarrow \mathcal{X}$, where \mathcal{X} is a finite set of tokens. We also consider a fixed
 153 observation set $D \subset \mathcal{X}^\ell$, a collection of inputs that are allowed to be observed by the learner. Write
 154 $\mathbf{x} = (x_1, \dots, x_\ell) \in \mathcal{X}^\ell$ and, for a subset $I \subset [\ell] := \{1, \dots, \ell\}$, let $\mathbf{x}_I := (x_i)_{i \in I}$ be a subsequence
 155 of \mathbf{x} . The first step is to formalize what it means for two subsequences to be **functionally equivalent**.

156 **Definition 3.1** (Functional k -equivalence). Fix a nonempty proper subset I of indices in $[\ell]$. Consider
 157 any set $S \subset \mathcal{X}^\ell$ of input sequences.² Given a pair of subsequences $\mathbf{a}, \mathbf{a}' \in \mathcal{X}^{|I|}$, we say a pair of

158 ¹For brevity, we use a shared token set \mathcal{X} in the main text. A more general notion using position-specific
 159 domains (e.g., ‘ \mathcal{X}_i ’) can be used; see App. E.1.

160 ²The set S can be any subset of the whole domain, e.g., \mathcal{X}^ℓ itself, the train dataset D , or whatever else.

162 inputs $\{x, x'\}$ to be an **I -co-occurrence of a and a' in S** if it satisfies $\{x, x'\} \subset S$ and $x_I = a$,
 163 $x'_I = a'$, and $x_{[\ell] \setminus I} = x'_{[\ell] \setminus I}$. Also, the subsequences a and a' are said to be **functionally k -equivalent at I in S** and denoted by $a \equiv_S^I a'$, if it satisfies:
 164

- 166 1. **(Sufficiency of co-occurrences.)** There are k or more distinct I -co-occurrences of a and a' in S ;
 167
- 168 2. **(Consistency.)** Every I -co-occurrence $\{x, x'\}$ of a and a' in S satisfies $f(x) = f(x')$.
 169

170 In other words, two subsequences are functionally k -equivalent if they behave identically in the
 171 same contexts at least k times. The hyperparameter k represents the strength of evidence required to
 172 establish functional equivalence between two subsequences. The minimum value $k = 1$ corresponds
 173 to the weakest form of evidence, meaning a single shared context is sufficient to establish equivalence,
 174 whereas higher values of k demand more robust evidence.

175 Next, we ask: which inputs are reachable from observed data utilizing functional equivalence? To
 176 formalize this, we define **substitution graph**: Let $\mathcal{G}^{(D,k)} = (V, E)$ be an undirected graph with a
 177 vertex set $V = \mathcal{X}^\ell$ of all possible inputs. Two vertices $x, x' \in V$ are connected with an edge in E
 178 if and only if there exists an index set $I \subset [\ell]$ such that $\{x, x'\}$ is an I -co-occurrence (in V) of a
 179 pair of functionally k -equivalent sequences at I in D . This process is illustrated on the right side
 180 of Fig. 1, as a special case where $k = 1$. With this substitution graph $\mathcal{G}^{(D,k)}$, we formally define the
 181 **k -coverage** as a set of inputs which are connected³ to at least one observed input as follows:
 182

183 **Definition 3.2** (k -coverage). The **k -coverage** of $D \subset \mathcal{X}^\ell$, denoted by $\text{Cover}_k(D)$, is the set of all
 184 inputs in \mathcal{X}^ℓ connected to an $x \in D$ with a path in the substitution graph $\mathcal{G}^{(D,k)}$.
 185

186 Note that the notion of coverage is a stricter condition of the canonical definition of in-domain
 187 (ID), which is obtained by random train/test split (Wang et al., 2024a) or taking combinations of
 188 observed internal computations (Dziri et al., 2023). In Sec. 5, we demonstrate that learners may not
 189 necessarily generalize on data that are classified as ID in a canonical sense, but coverage can precisely
 190 explain when and why this occurs. We also emphasize that coverage is a property of a dataset and is
 191 independent of model architectures and learning algorithms, and we demonstrate that the predictions
 192 made by our framework are invariant across model architecture and scale in Sec. 6 and 7. Finally,
 193 k -coverage can be algorithmically determined for any fixed-length discrete sequence tasks (Alg. 1),
 194 which we use for the analyses in the following sections.

195 **Now, we formally define pattern matching as a kind of generalization that is done by substituting
 196 functionally k -equivalent fragments of inputs, whose boundary is precisely the k -coverage
 197 defined above.** This formalization enables us to predict, before testing, which inputs will be reliably
 198 handled through pattern matching and which require additional mechanisms. In other words, we view
 199 pattern matching as possible only within k -coverage, and generalization outside the coverage requires
 200 generalization mechanisms other than pattern matching, which we discuss in Sec. 9 and App. H. In
 201 the following sections, we draw a systematic picture of how task structure, dataset, and model size
 202 interact to determine the success and failure of pattern matching through controlled setups, leading us
 203 to important and nontrivial insights.

204 4 EXPERIMENTAL SETUP

205 **Dataset construction.** We construct four synthetic tasks with different structures: 2-HOP, PARAL-
 206 LEL 2-HOP, 3-HOP, and NON-TREE (Fig. 2). To isolate functional-equivalence-based generalizations,
 207 we create random mappings from a product space of token sets to control the generalization sources
 208 not attributable to compositional structures (i.e., commutativity). We explain the dataset construction
 209 process using 2-HOP task (Fig. 2a), $(x_1, x_2, x_3) \mapsto t$ with $t = f_2(f_1(x_1, x_2), x_3)$, as an example.
 210 We construct training datasets by defining a token set with size $|\mathcal{X}|$, and creating two random maps
 211 for the primitive functions $f_1 : \mathcal{X}^2 \rightarrow \mathcal{X}$ and $f_2 : \mathcal{X}^2 \rightarrow \mathcal{X}$. We mark a fraction $p_{\text{seen}} = 0.7$ of each
 212 function’s domain as ‘seen’, gather all possible combinations where both functions are applied to
 213 inputs from their seen domains, and uniformly sample N examples to form a training dataset. See
 214 App. B.1 for more details of the dataset construction process.

215 ³For an undirected graph \mathcal{G} , two vertices u, v are connected if \mathcal{G} contains a path between u and v .

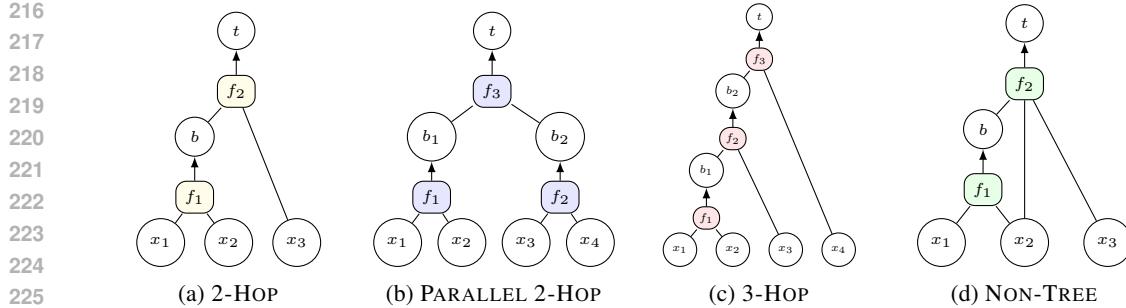


Figure 2: Four synthetic task structures we study.

Training & evaluation. Following Wang et al. (2023), we train randomly initialized GPT-2 (Radford et al., 2019) models with 8 layers, 12 heads, and 768 dimensions as a base model (see App. B.2 for details). We construct two evaluation sets, each with 2,000 instances: **(1) ID Test Set** : all primitive function applications (e.g., $f_1(x_1, x_2)$ and $f_2(b, x_3)$ in 2-HOP task) are observed during training, but their specific combination was unseen. **(2) Out-of-coverage (canonical OOD) Test Set**: at least one primitive function application is never observed during training, which is used as a control group.

5 QUANTITATIVE ANALYSIS OF PATTERN MATCHING IN TRANSFORMERS

5.1 EVIDENCE STRENGTH IS TIGHTLY ALIGNED TO PATTERN-MATCHING SUCCESS

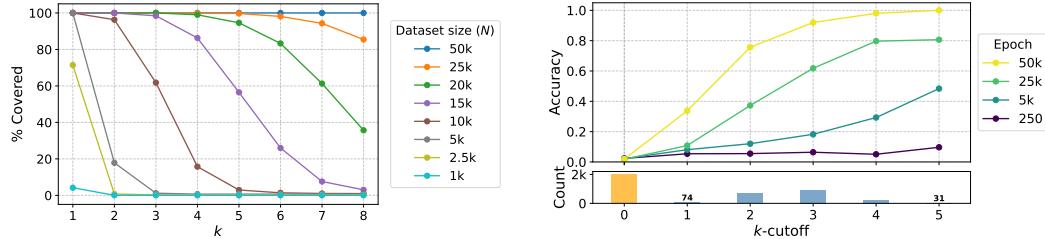


Figure 3: **Left:** Percentage of covered ID data depending on k values and dataset size (N), for 2-HOP task ($|\mathcal{X}| = 50$). **Right:** Test accuracy depending on k -cutoff values for 2-HOP task ($|\mathcal{X}| = 50$, $N = 10k$). Each line represents a different training checkpoint. Note that out-of-coverage ($k = 0$) accuracy remains at chance level ($\approx 1/50$) regardless of training time. The bars below show the number of test data for each k -cutoff value.

We first analyze the correlation between k -coverage and ID generalization performance of the GPT-2 model. To this end, we implement and release a task-agnostic coverage determination algorithm (see App. C) that can be applied to diverse compositional structures. Then, we analyze what fraction of ID test data of 2-HOP task with $|\mathcal{X}| = 50$ lies inside k -coverage, depending on k and dataset size N . Fig. 3 (Left) shows that at $N = 5k$, every ID test example is already covered with minimal evidence ($k = 1$). Hence, in an ideal scenario where a single witness of functional equivalence suffices, training with the dataset as small as $N = 5k$ will lead to perfect ID generalization.

However, we demonstrate in our experiments that minimal coverage (i.e., $k = 1$) alone is practically insufficient for ID generalization. To demonstrate this, let us fix a training dataset D and define the k -cutoff of each input sequence as the lowest value of k for which an input lies in k -coverage, measuring the strength of evidence for functional equivalence. For example, a k -cutoff of 3 means that an example is inside coverage with $k = 3$ but not with $k = 4$. For out-of-coverage data, we define k -cutoff as 0. Then, for the 2-HOP dataset with $N = 10k$, we classify each ID test instance according to its k -cutoff, and track the accuracy development of the GPT-2 model for each group across 50k training epochs. As shown in Fig. 3 (Right), ID test accuracy shows a strongly positive correlation with k -cutoff values. Test data with low k -cutoff values show delayed improvement even after extensive training, while examples with stronger evidence generalize much faster.

These results yield two important insights. **First, successful ID generalization in practice requires a robust coverage so the model can confidently identify and utilize functional equivalence**

relationships. The parameter k effectively quantifies this evidence strength, directly impacting generalization speed and reliability. Second, while our experiments use uniformly sampled datasets, the results can explain why models struggle with generalizing long-tail distributions in imbalanced real-world data (Mallen et al., 2023; Kandpal et al., 2023; Chang et al., 2024). Despite technically being in-distribution, rare combinations naturally receive limited evidence of functional equivalence (low k), effectively and practically placing them outside the coverage. We believe that our insights will motivate future research on targeted data augmentation strategies to maximize k -coverage.

5.2 LATENT REPRESENTATION CLUSTERS DRIVE PATTERN MATCHING ON COVERAGE

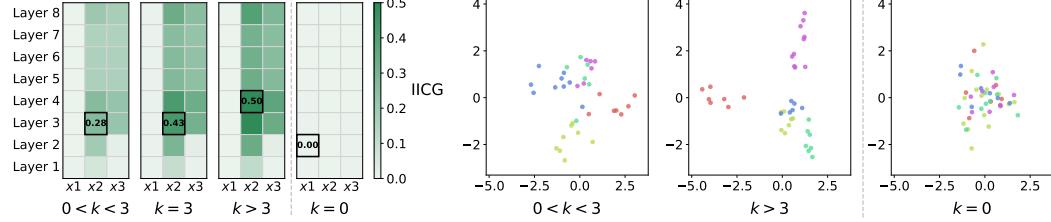


Figure 4: **Left:** Heatmap of Intra-Inter Cosine Gap (IICG) across layers and positions, sliced by k -cutoff. Higher IICG values indicate stronger clustering of representations that share the same intermediate state. The positions with the highest IICG values are marked with squares. **Right:** PCA visualization of latent representations at position x_2 and layer 3. Datapoints are classified by their intermediate states $b = f_1(x_1, x_2)$.

Next, we investigate how the model internally represents functional equivalence for k -covered inputs. Specifically, we inspect a GPT-2 trained on 2-HOP task ($|\mathcal{X}| = 50$, $N = 10k$) for 50k epochs (corresponding to the yellow line in Fig. 3 (Right)).⁴ We observe that when a model successfully generalizes to ID test data, it maps functionally equivalent components into tight latent clusters, thereby encoding the equivalence relationships needed for compositional generalization.

To quantify this representation clustering phenomenon, we develop a metric that captures how distinctly the model separates functionally equivalent fragments from others. Specifically, we measure the difference between the average pairwise cosine similarity of latent vectors that share the same intermediate state $b = f_1(x_1, x_2)$ ($\overline{\cos}_{\text{intra}}$), and those that do not ($\overline{\cos}_{\text{inter}}$), for each position and layer of the model. We term this difference the **Intra-Inter Cosine Gap** $\text{IICG} = \overline{\cos}_{\text{intra}} - \overline{\cos}_{\text{inter}}$, where higher values indicate stronger within-group clustering relative to between-group separation. Fig. 4 (Left) reveals a positive correlation: higher k -cutoff values yield higher IICG scores at certain positions, **indicating that stronger functional equivalence evidence leads to more coherent internal representations**. In contrast, out-of-coverage ($k = 0$) examples exhibit no clustering pattern, as they lack evidence of functional equivalence in the training data. The PCA visualization at position x_2 and layer 3 (Right) shows this trend visually. We verify that the representation clusters play a causal role in pattern matching with causal tracing (Goldowsky-Dill et al., 2023; Hanna et al., 2023), a widely used technique to identify Transformer circuits (Fig. 8).

Our findings extend the previous insights from mechanistic interpretability literature (Wang et al., 2024a) in several ways. First, we demonstrate that unified circuit formation is driven by functional equivalence evidence in the training data, not by explicit exposure to intermediate computation steps. Moreover, we find that these clustered representations are not necessarily aligned with vocabulary embeddings, implying that standard interpretability methods like logit lens *nostalgebraist* (2020) may fail to detect these functional equivalence representations despite their presence (see App. I).

6 DATA SCALING LAW OF PATTERN MATCHING BEHAVIORS

Our analysis in the previous section demonstrates that stronger functional equivalence evidence leads to better generalization. A natural follow-up question arises: How large should the training set be to enable full generalization on all ID test data? Intuitively, this requires the training set to support (strongly enough) the functional equivalence of *every* pair of inputs that shares the

⁴The analyses for varying factors including task structures, entity set size ($|\mathcal{X}|$), dataset size (N), and training steps give consistent results; see App. D.

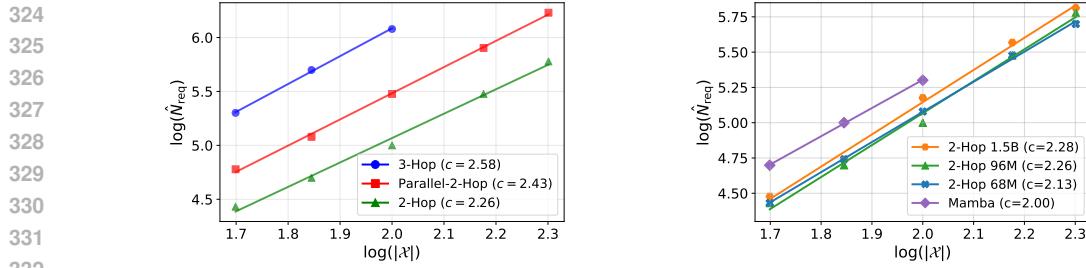


Figure 5: **Left:** Log-log plot of measured \hat{N}_{req} vs. token set size $(|\mathcal{X}|)$ across three compositional tasks. The slope c corresponds to the empirical power-law scaling exponent. Omitted points for 3-HOP are due to prohibitively large dataset requirements. **Right:** Power-law scaling behavior on 2-HOP task across varying GPT-2 model sizes (68M to 1.5B parameters) and Mamba model (For Mamba, we used 4 layers, a hidden dimension of 256, and a learning rate of 0.008, and \hat{N}_{req} is measured for only $|\mathcal{X}| \leq 100$, since a larger token set size led to training instability). $R^2 > 0.99$ for all linear fitting.

same intermediate state b . Formally, for a 2-HOP task we need $(x_1, x_2) \equiv_D^{\{1,2\}} (x'_1, x'_2)$ whenever $f_1(x_1, x_2) = f_1(x'_1, x'_2)$. Assuming that generalization is constrained by the k -coverage, how should the train data size scale in the token set size $|\mathcal{X}|$ to achieve it completely? In practical terms, this question seeks to determine the amount of data necessary and/or sufficient to cover all ID combinations with k -coverage, which is crucial for understanding the data cost for pattern-matching generalization. To quantify the data cost, we establish and prove the following sample-complexity upper bound for learning a 2-HOP task (the complete statement and proof are provided in App. E):

Theorem 6.1 (Informal; Corollaries E.9 and E.17). *Consider a 2-HOP task with a token set of size n . For a uniformly randomly sampled train dataset D of size N , consider a learner that generalizes within the k -coverage of D . Then, for large enough n , the learner achieves perfect ID generalization with high probability if $N \gtrsim n^c$ with $c = 2.5 - \frac{0.5}{k}$. In contrast, the learner (with $k \geq 2$) does not achieve perfect ID generalization with high probability for some 2-HOP task if $n^2 \lesssim N \lesssim n^c$. Here, we ignore the polylogarithmic factors in n .*

Theorem 6.1 presents a tight sample complexity bound $\tilde{\Theta}(n^c)$ for pattern-matching-based generalization, showing that the training dataset required to ensure full ID generalization grows polynomially in the token set size n , with an exponent $c \in [2, 2.5]$. To empirically confirm this, we define a practical threshold \hat{N}_{req} to estimate $N_{\text{req}}(|\mathcal{X}|, k)$, as a minimal amount of training data required to exceed ID accuracy of 0.99 within 100 epochs after reaching the same level on training data (see App. F for the measurement details). Fig. 5 (Left) shows the measured power-law exponents for \hat{N}_{req} vs. $|\mathcal{X}|$ across different task structures. The measured exponent for 2-HOP ($c = 2.26$) aligns well with our theoretical predictions. Although we derive the theoretical bound only for 2-HOP, we observe clear power-law relationships for more complex structures as well. The higher exponents for PARALLEL-2-HOP ($c = 2.43$) and 3-HOP ($c = 2.58$) tasks suggest that extra computational steps essentially add another dimension of relationships that require robust coverage, driving the steeper power-law scaling.

These exponents remain invariant across three different GPT-2 model sizes spanning a 20x range in parameters (from 68M to 1.5B) for all three tasks (Fig. 5 Right and Tab. 2 in App. F). We also show that the exponent measured with a Mamba model (4 layers and a hidden dimension of 256) falls inside the boundary predicted by the theory (same figure). Interestingly, the result in Fig. 6 (Middle) demonstrates that with increasing training dataset size N , there is a sharp phase transition from ID generalization failure to complete success near $N = 20k$.

Overall, the results support that the data scaling law is primarily determined by data properties rather than model capacity or architectures, and additional generalization mechanisms will be required to achieve milder scaling laws on such compositional tasks.⁵ We note that our result aligns with the practical observation that parameter scaling does not significantly improve the multi-hop reasoning

⁵The observed scaling relationships are robust across different hyperparameters (weight decay and learning rate) and empirical decision criteria for \hat{N}_{req} (see App. F).

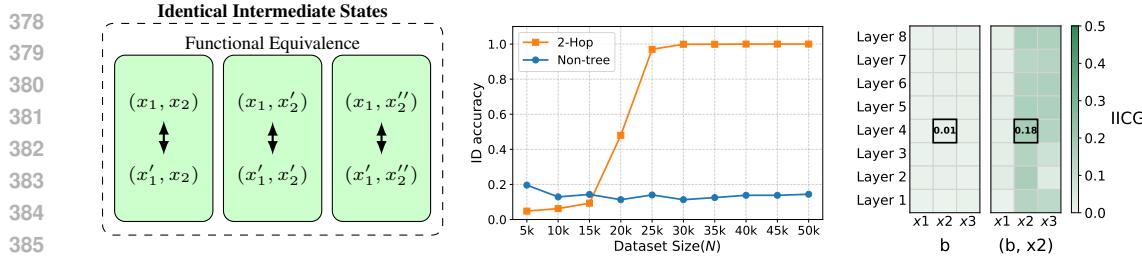


Figure 6: **Left:** In NON-TREE task, the representations of input subsequences with the same intermediate state $b = f_1(x_1, x_2)$ are split into multiple context-dependent state representations, conditioned on x_2 value. **Middle:** ID test accuracy after standard training with varying training dataset size ($|\mathcal{X}| = 50$, evaluated 100 epochs after training accuracy reaches 0.99). Observe a sharp transition from ID generalization failure to complete success near $N = 20k$ for 2-HOP, which does not occur in NON-TREE task. **Right:** IICG heatmap from a model that achieved near-perfect ID accuracy (0.96) after extended training (36k epochs, $|\mathcal{X}| = 50$, $N = 50k$).

capability of LLMs (Yang et al., 2024) and the data-hungry nature of compositional tasks (Lake & Baroni, 2018), suggesting that these could be partly attributed to pattern-matching behaviors. We leave further analysis of the connection between scaling behavior and pattern matching as an exciting future research direction.

7 PATH AMBIGUITY PROBLEM AS A FAILURE CASE OF PATTERN MATCHING

We identify a *path ambiguity problem* with our framework, a previously uncharacterized failure mode that pattern matching struggles with task structures where a single variable affects the output through multiple paths. In this section, we analyze NON-TREE task (Fig. 2d) as a case study, where x_2 affects the output through two paths, as input to f_1 and directly to f_2 . Unlike in the 2-HOP case, one cannot establish the functional equivalence of two subsequences (x_1, x_2) and (x'_1, x'_2) that produce the same intermediate state b , unless they also share the same x_2 value ($x_2 = x'_2$). It is because (x_1, x_2) and (x'_1, x'_2) are not guaranteed to behave identically (i.e., $f(x_1, x_2, x_3)$ is not necessarily equal to $f(x'_1, x'_2, x_3)$) when $x_1 \neq x'_1$. Consequently, we can predict that Transformers trained on the NON-TREE will create context-dependent state representations that are conditioned on x_2 values, failing to unify them to represent the true intermediate state b (Fig. 6 Left).

Experiments show that the path ambiguity indeed hinders both generalization on the ID test set and the interpretability of intermediate state representations, as the model now establishes functional equivalence for each x_2 -conditioned equivalent pair. Fig. 6 (Middle) shows that GPT-2 can fully generalize on the ID test set of 2-HOP task within a reasonable time with increasing data size, but fails with NON-TREE task, even provided with a near-exhaustive amount of possible ID combinations as training data.⁶ Notably, scaling to 1.5B parameters does not show significant improvement in the performance (Fig. 17), and the Mamba model used in Sec. 6 shows the same trend of generalization failure (Fig. 18). In addition, extremely prolonged training (36k epochs) with near-exhaustive ID combinations eventually achieves ID accuracy of 0.96; however, IICG analysis reveals no evidence of a unified intermediate state representation formation, with near-zero IICG scores when grouping by the intermediate state value b (Fig. 6 Right). In contrast, grouping by x_2 -conditioned intermediate state (b, x_2) leads to high IICG scores, showing the formation of context-dependent state representations. This context-dependence due to path ambiguity raises an interpretability concern, as standard linear probing-based techniques like logit lens (nostalgia, 2020; Belrose et al., 2023) would not reliably identify intermediate states when a model relies on pattern matching.

Hence, a generalization mechanism other than pattern matching will be required for a robust ID generalization on complex task structures that require the access and update of intermediate states through multiple paths (e.g., planning tasks (Ruis et al., 2020; Kambhampati et al., 2024; Valmeekam et al., 2023)), where further characterization of this problem remains as an exciting future direction.

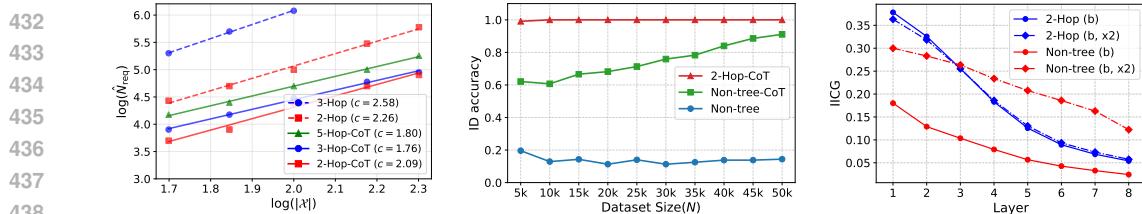


Figure 7: **Left:** Power-law scaling of required dataset size vs. token set size for tasks with CoT supervision. $R^2 > 0.98$ for all linear fits. **Middle:** Comparison of ID test Accuracy of NON-TREE task ($|\mathcal{X}| = 50$) with and without CoT supervision. **Right:** IICG score comparison for NON-TREE and 2-HOP task with CoT supervision ($|\mathcal{X}| = 50, N = 10k$). The scores are measured at each layer of intermediate state position b , based on two grouping strategies: b and (b, x_2) . Models are trained for 100 epochs after reaching training accuracy > 0.99 .

8 COT IMPROVES DATA EFFICIENCY BUT PATH AMBIGUITY PERSISTS

CoT supervision (Wei et al., 2022; Kojima et al., 2022) dramatically improves performance on multi-step reasoning tasks. We investigate how CoT interacts with our framework and whether it can address the challenges observed in Sections 6 and 7. Specifically, we train models to sequentially generate intermediate states before final outputs, making 2-HOP a two-token prediction task: $(x_1, x_2, x_3) \mapsto (b, t)$, for example. This substantially improves data efficiency (Fig. 7 (Left)), with the power-law exponent dropping from 2.58 to 1.76 in the 3-HOP task, aligning with previous studies on the sample efficiency of CoT (Srivastava et al., 2023; Kim & Suzuki, 2025; Wen et al., 2025). The scaling exponents measured for 2-HOP, 3-HOP, and even 5-HOP tasks become nearly identical with CoT supervision. We interpret this as CoT effectively ‘flattening’ multi-hop structures into sequences of single-hop tasks, reducing the compounding data requirements of deeper compositional structures.

However, we find the path ambiguity problem persists even with CoT supervision. Despite showing improvements, the models fail to achieve perfect ID generalization under the same training conditions that yield perfect performance in 2-HOP task (Fig. 7 (Middle)). IICG analysis (Right) reveals that the model’s representations remain partially context-dependent. For the 2-HOP task, the representations cluster purely by intermediate states b , as indicated by the result that IICG measurement with x_2 -conditioned states does not significantly shift the curve. In contrast, the IICG score for NON-TREE task is significantly elevated at every layer with the same conditioning, suggesting the absence of disentangled state representation inside the model. We hypothesize this arises since CoT supervision does not give enough evidence that different (x_1, x_2) pairs sharing the same b should yield identical second-step outputs, as functional equivalence holds only when $x_2 = x'_2$. Hence, while CoT supervision helps with sequential computation by breaking down multi-hop structures, it may partially inherit the limitations on handling tasks with path ambiguities we describe in Sec. 7. Our analysis may explain why LLMs struggle with complex planning tasks even when using CoT techniques and massive training data (Stechly et al., 2024), where we leave further analysis as future work.

9 DISCUSSION

9.1 PRACTICAL IMPLICATIONS

Although the experiments in this work have focused on synthetic setups to dissect purely pattern-matching behaviors, our results provide valuable practical implications for understanding and improving LLMs on natural language tasks.

FIXED

First, it accounts for the data-hungry nature of compositional tasks by demonstrating that robust coverage is required for reliable generalization (Lake et al., 2017). For instance, our scaling-law analysis (Theorem 6.1) provides a quantitative explanation for the observed behavior that the data demand for generalization on multi-hop natural language data dramatically increases with the number of hops (Yao et al., 2025). Such a data-hungry nature of compositional tasks is also well observed in semantic parsing (Dong & Lapata, 2016), where it has been shown that the diversity of data (i.e., the same component is shown in diverse contexts) is more important than the sheer size

⁶For $|\mathcal{X}| = 50$ and $p_{\text{seen}} = 0.7$, our largest run ($N = 50k$) includes virtually the entire domain ($\approx 0.7^2 \times |\mathcal{X}|^3 \approx 61k$ distinct ID triples).

486 of the dataset for better generalization (Keysers et al., 2020). Based on these insights, we believe
 487 our results will motivate strategic data augmentation methods that seek to maximize coverage by
 488 ensuring diverse shared contexts for functionally equivalent components (Andreas, 2020).

489 **Second, our framework helps interpret various real-world failure cases observed in LLMs as**
 490 **originating from their reliance on pattern matching.** For example, our framework aligns with
 491 the reversal curse phenomenon, which is the failure to automatically infer that ‘ A is a child of B ’
 492 by observing that ‘ B is a parent of A ’ (Berglund et al., 2024). This is because pattern matching
 493 is fundamentally incapable of generalizing to the reversing relation without explicit functional
 494 equivalence evidence for that in the training dataset. Similarly, our framework can explain the
 495 notoriously hard problem of logical negation in LLMs (Truong et al., 2023). A purely pattern-
 496 matching learner cannot deduce that the negation rule (i.e., if a statement ‘ p ’ is true, then ‘not p ’
 497 is false and vice versa) should apply to any well-formed statement, including the ones that aren’t
 498 observed, through finite observations. Finally, difficulties in solving complex planning tasks with
 499 LLMs (Valmeekam et al., 2023; Stechly et al., 2024; Kambhampati et al., 2024; Wang et al., 2024b)
 500 might be partially attributed to path ambiguities, since such tasks likely require the correct tracking
 501 of intermediate states, which can be affected by various computational paths.

502 Hence, we believe our framework and analyses can provide important practical insights, which future
 503 work can extend to investigate LLMs’ pattern-matching behaviors under more realistic setups.

505 9.2 TOWARDS A TAXONOMY OF GENERALIZATION MECHANISMS

506 Natural language tasks possess algebraic and structural properties that differ from the random FIXED
 507 mappings we studied. For example, the same knowledge can be used in any hop of the multi-hop
 508 reasoning in practice, unlike our 2-HOP task that used $f_1 \neq f_2$. In practice, a learner may reasonably
 509 harness such properties of a given task to generalize beyond the boundary of pattern-matching
 510 defined by coverage. Therefore, it is natural to ask: **What generalization mechanisms enable**
 511 **generalization beyond the coverage boundary?** While a complete answer requires future work, we
 512 outline a mechanism-based taxonomy as a starting point for a constructive categorization of distinct
 513 generalization mechanisms beyond pattern matching:

- 515 • **Functional equivalence-based generalization**, the main focus of this work.
- 516 • **Function property-based generalization** leverages algebraic invariances of individual primitive
 517 functions, e.g., commutativity or input irrelevance, where certain arguments never affect the
 518 output. This distinguishes it from pattern matching, as it leverages a primitive function’s global
 519 property that holds across all inputs, not only those observed.
- 520 • **Shared-operator generalization** leverages the reuse of the same computation across positions
 521 (e.g., when $f_1 = f_2$ in a two-hop task), which may be important in compositional generalization.
 522 For example, it is known that Transformers with inductive biases towards computation reuse can
 523 improve generalization on compositional tasks (Csordás et al., 2021).

524 We envision this taxonomy as a foundational diagnostic that quantifies when pattern matching suffices
 525 and when other mechanisms are required. See App. H for a complete discussion on the categorization FIXED
 526 of generalization mechanisms.

528 10 CONCLUSION

531 In this work, we formalized a framework for characterizing pattern matching. Our theoretical and FIXED
 532 experimental analyses yielded quantitative and predictive insights into modern neural networks’
 533 pattern-matching behaviors, moving beyond post-hoc accounts of a model’s behavior on compositional
 534 tasks: (i) the alignment of instance-wise success with the strength of functional-equivalence
 535 evidence (Sec. 5), (ii) the theoretical identification and empirical verification of a sharp sample com-
 536 plexity bound for complete ID generalization on the 2-HOP task through pattern matching (Sec. 6),
 537 and (iii) the identification of the path ambiguity problem that impairs accuracy and interpretability
 538 even under high coverage and CoT supervision (Sec. 7 and 8). We anticipate that future work will
 539 build on this foundation, towards a more complete and constructive understanding of compositional
 generalization and its failures.

540 REPRODUCIBILITY STATEMENT
541542 All codes for dataset generation, training, and analysis are contained in the attached supplementary
543 material, with proper instructions for reproducibility.
544545 THE USE OF LARGE LANGUAGE MODELS (LLMs)
546547 This work deployed LLMs to proofread for grammatical errors and improve the quality of writing.
548549 REFERENCES
550551 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
552 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
553 *ArXiv preprint*, abs/2303.08774, 2023. URL <https://arxiv.org/abs/2303.08774>.
554555 David. author. Aldous. *Probability Approximations via the Poisson Clumping Heuristic*. New York,
556 NY : Springer New York : Imprint: Springer, 1989. URL <http://dx.doi.org/10.1007/978-1-4757-6283-9>.
557558 Jacob Andreas. Good-enough compositional data augmentation. In Dan Jurafsky, Joyce Chai, Natalie
559 Schluter, and Joel Tetreault (eds.), *Proceedings of the 58th Annual Meeting of the Association
560 for Computational Linguistics*, pp. 7556–7566, Online, 2020. Association for Computational
561 Linguistics. doi: 10.18653/v1/2020.acl-main.676. URL <https://aclanthology.org/2020.acl-main.676>.
562563 Nora Belrose, Zach Furman, Logan Smith, Danny Halawi, Igor Ostrovsky, Lev McKinney, Stella
564 Biderman, and Jacob Steinhardt. Eliciting latent predictions from transformers with the tuned lens.
565 *ArXiv preprint*, abs/2303.08112, 2023. URL <https://arxiv.org/abs/2303.08112>.
566567 Lukas Berglund, Meg Tong, Maximilian Kaufmann, Mikita Balesni, Asa Cooper Stickland, Tomasz
568 Korbak, and Owain Evans. The reversal curse: LLMs trained on “a is b” fail to learn “b is
569 a”. In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=GPKTIktA0k>.
570571 Alexei Borodin, Andrei Okounkov, and Grigori Olshanski. Asymptotics of plancherel measures for
572 symmetric groups. *Journal of the American Mathematical Society*, 13(3):481–515, 2000.
573574 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
575 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
576 wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
577 Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
578 Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
579 dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
580 learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
581 and Hsuan-Tien Lin (eds.), *Advances in Neural Information Processing Systems 33: Annual
582 Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
583 2020, virtual*, 2020. URL <https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfc4967418bfb8ac142f64a-Abstract.html>.
584585 Hoyeon Chang, Jinho Park, Seonghyeon Ye, Sohee Yang, Youngkyung Seo, Du-Seong
586 Chang, and Minjoon Seo. How do large language models acquire factual knowledge
587 during pretraining? In Amir Globersons, Lester Mackey, Danielle Belgrave, An-
588 gela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), *Advances in
589 Neural Information Processing Systems 38: Annual Conference on Neural Information
590 Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15,
591 2024*, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/6fdf57c71bc1flee29014b8dc52e723f-Abstract-Conference.html.
592593 Róbert Csordás, Kazuki Irie, and Juergen Schmidhuber. The devil is in the detail: Simple tricks
improve systematic generalization of transformers. In Marie-Francine Moens, Xuanjing Huang,

594 Lucia Specia, and Scott Wen-tau Yih (eds.), *Proceedings of the 2021 Conference on Empirical
595 Methods in Natural Language Processing*, pp. 619–634, Online and Punta Cana, Dominican
596 Republic, 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.49.
597 URL <https://aclanthology.org/2021.emnlp-main.49>.

598 Róbert Csordás, Kazuki Irie, and Juergen Schmidhuber. CTL++: Evaluating generalization on
599 never-seen compositional patterns of known functions, and compatibility of neural representations.
600 In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), *Proceedings of the 2022 Conference
601 on Empirical Methods in Natural Language Processing*, pp. 9758–9767, Abu Dhabi, United Arab
602 Emirates, 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.
603 662. URL <https://aclanthology.org/2022.emnlp-main.662>.

604 Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
605 transformers. In *7th International Conference on Learning Representations, ICLR 2019, New
606 Orleans, LA, USA, May 6-9, 2019*. OpenReview.net, 2019. URL <https://openreview.net/forum?id=HyzdRiR9Y7>.

607 Li Dong and Mirella Lapata. Language to logical form with neural attention. In Katrin Erk and
608 Noah A. Smith (eds.), *Proceedings of the 54th Annual Meeting of the Association for Computational
609 Linguistics (Volume 1: Long Papers)*, pp. 33–43, Berlin, Germany, August 2016. Association
610 for Computational Linguistics. doi: 10.18653/v1/P16-1004. URL <https://aclanthology.org/P16-1004/>.

611 Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
612 Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, Jena D. Hwang, Soumya Sanyal, Xiang
613 Ren, Allyson Ettinger, Zaïd Harchaoui, and Yejin Choi. Faith and fate: Limits of transformers on
614 compositionality. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and
615 Sergey Levine (eds.), *Advances in Neural Information Processing Systems 36: Annual Conference
616 on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December
617 10 - 16, 2023*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/deb3c28192f979302c157cb653c15e90-Abstract-Conference.html.

618 Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
619 Askell, Yuntao Bai, Anna Chen, Tom Conerly, et al. A mathematical framework for transformer
620 circuits. *Transformer Circuits Thread*, 1(1):12, 2021.

621 Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
622 Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy models of superposition.
623 *ArXiv preprint*, abs/2209.10652, 2022. URL <https://arxiv.org/abs/2209.10652>.

624 Pál Erdős and Alfréd Rényi. On a classical problem of probability theory. *A Magyar Tudományos
625 Akadémia Matematikai Kutató Intézetének Közleményei*, 6(1-2):215–220, 1961.

626 Jerry A Fodor and Zenon W Pylyshyn. Connectionism and cognitive architecture: A critical analysis.
627 *Cognition*, 28(1-2):3–71, 1988.

628 E. Godehardt and J. Jaworski. Two models of random intersection graphs for classification. In
629 Manfred Schwaiger and Otto Opitz (eds.), *Exploratory Data Analysis in Empirical Research*, pp.
630 67–81, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg. ISBN 978-3-642-55721-7.

631 Nicholas Goldowsky-Dill, Chris MacLeod, Lucas Sato, and Aryaman Arora. Localizing model
632 behavior with path patching. *ArXiv preprint*, abs/2304.05969, 2023. URL <https://arxiv.org/abs/2304.05969>.

633 Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. *arXiv preprint
634 arXiv:1410.5401*, 2014.

635 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In *First
636 Conference on Language Modeling*, 2024. URL <https://openreview.net/forum?id=tEYskw1VY2>.

648 Michael Hanna, Ollie Liu, and Alexandre Variengien. How does GPT-2 compute greater-
 649 than?: Interpreting mathematical abilities in a pre-trained language model. In Alice Oh,
 650 Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.),
 651 *Advances in Neural Information Processing Systems 36: Annual Conference on Neural In-*
 652 *formation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -*
 653 *16, 2023*. URL http://papers.nips.cc/paper_files/paper/2023/hash/efbba7719cc5172d175240f24be11280-Abstract-Conference.html.

654 Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural computation*, 9(8):
 655 1735–1780, 1997.

656 Lars Holst. On birthday, collectors', occupancy and other classical urn problems. *International
 657 Statistical Review/Revue Internationale de Statistique*, pp. 15–27, 1986.

658 Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality decomposed: How
 659 do neural networks generalise? *Journal of Artificial Intelligence Research*, 67:757–795, 2020.

660 Philippe Jacquet and Wojciech Szpankowski. Analytical depoissonization and its applications.
 661 *Theoretical Computer Science*, 201(1-2):1–62, 1998.

662 Kurt Johansson. The longest increasing subsequence in a random permutation and a unitary random
 663 matrix model. *Mathematical Research Letters*, 5(1):68–82, 1998.

664 Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C. Lawrence Zitnick, and
 665 Ross B. Girshick. CLEVR: A diagnostic dataset for compositional language and elementary
 666 visual reasoning. In *2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
 667 2017, Honolulu, HI, USA, July 21-26, 2017*, pp. 1988–1997. IEEE Computer Society, 2017. doi:
 668 10.1109/CVPR.2017.215. URL <https://doi.org/10.1109/CVPR.2017.215>.

669 Marc Kac. On deviations between theoretical and empirical distributions. *Proceedings of the National
 670 Academy of Sciences*, 35(5):252–257, 1949.

671 Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya Stechly, Siddhant
 672 Bhambri, Lucas Saldyt, and Anil Murthy. Position: Llms can't plan, but can help planning in
 673 llm-modulo frameworks. In *Forty-first International Conference on Machine Learning, ICML
 674 2024, Vienna, Austria, July 21-27, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=Th8JPEmH4z>.

675 Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric Wallace, and Colin Raffel. Large language
 676 models struggle to learn long-tail knowledge. In Andreas Krause, Emma Brunskill, Kyunghyun
 677 Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *International Conference
 678 on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA*, volume 202 of
 679 *Proceedings of Machine Learning Research*, pp. 15696–15707. PMLR, 2023. URL <https://proceedings.mlr.press/v202/kandpal23a.html>.

680 Michał Karoński, Edward R Scheinerman, and Karen B Singer-Cohen. On random intersection
 681 graphs: The subgraph problem. *Combinatorics, Probability and Computing*, 8(1-2):131–159,
 682 1999.

683 Daniel Keysers, Nathanael Schärli, Nathan Scales, Hylke Buisman, Daniel Furrer, Sergii Kashubin,
 684 Nikola Momchev, Danila Sinopalnikov, Lukasz Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao Wang,
 685 Marc van Zee, and Olivier Bousquet. Measuring compositional generalization: A comprehensive
 686 method on realistic data. In *8th International Conference on Learning Representations, ICLR
 687 2020, Addis Ababa, Ethiopia, April 26-30, 2020*. OpenReview.net, 2020. URL <https://openreview.net/forum?id=SygcCnNKwr>.

688 Juno Kim and Taiji Suzuki. Transformers provably solve parity efficiently with chain of thought.
 689 In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=n2NidsYDop>.

690 Najoung Kim and Tal Linzen. COGS: A compositional generalization challenge based on semantic
 691 interpretation. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), *Proceedings of the
 692 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 9087–9105,

702 Online, 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.731.
 703 URL <https://aclanthology.org/2020.emnlp-main.731>.
 704

705 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwa-
 706 sawa. Large language models are zero-shot reasoners. In Sanmi Koyejo, S. Mo-
 707 hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural*
 708 *Information Processing Systems 35: Annual Conference on Neural Information Process-
 709 ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,*
 710 *2022, 2022*. URL http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html.
 711

712 Brenden M. Lake and Marco Baroni. Generalization without systematicity: On the compositional
 713 skills of sequence-to-sequence recurrent networks. In Jennifer G. Dy and Andreas Krause (eds.),
 714 *Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stock-
 715 holmsmässan, Stockholm, Sweden, July 10-15, 2018*, volume 80 of *Proceedings of Machine Learn-
 716 ing Research*, pp. 2879–2888. PMLR, 2018. URL <http://proceedings.mlr.press/v80/lake18a.html>.
 717

718 Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building
 719 machines that learn and think like people. *Behavioral and brain sciences*, 40:e253, 2017.
 720

721 João Loula, Marco Baroni, and Brenden Lake. Rearranging the familiar: Testing compositional
 722 generalization in recurrent networks. In Tal Linzen, Grzegorz Chrupała, and Afra Alishahi (eds.),
 723 *Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Net-
 724 works for NLP*, pp. 108–114, Brussels, Belgium, 2018. Association for Computational Linguistics.
 725 doi: 10.18653/v1/W18-5413. URL <https://aclanthology.org/W18-5413>.
 726

727 Ang Lv, Kaiyi Zhang, Shufang Xie, Quan Tu, Yuhan Chen, Ji-Rong Wen, and Rui Yan. An analysis
 728 and mitigation of the reversal curse. In *Proceedings of the 2024 Conference on Empirical Methods
 729 in Natural Language Processing*, pp. 13603–13615, 2024.

730 Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and Hannaneh Hajishirzi.
 731 When not to trust language models: Investigating effectiveness of parametric and non-parametric
 732 memories. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the
 733 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*,
 734 pp. 9802–9822, Toronto, Canada, 2023. Association for Computational Linguistics. doi: 10.18653/
 735 v1/2023.acl-long.546. URL <https://aclanthology.org/2023.acl-long.546>.
 736

737 Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual associa-
 738 tions in GPT. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh
 739 (eds.), *Advances in Neural Information Processing Systems 35: Annual Conference on Neural*
 740 *Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - De-
 741 cember 9, 2022, 2022*. URL http://papers.nips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html.
 742

743 Seyed Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and
 744 Mehrdad Farajtabar. GSM-symbolic: Understanding the limitations of mathematical reasoning in
 745 large language models. In *The Thirteenth International Conference on Learning Representations*,
 746 2025. URL <https://openreview.net/forum?id=AjXkRZIvjB>.
 747

748 Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures for
 749 grokking via mechanistic interpretability. In *The Eleventh International Conference on Learning
 750 Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023. URL
 751 <https://openreview.net/pdf?id=9XFSbDPmdW>.
 752

753 Donald J Newman. The double dixie cup problem. *The American Mathematical Monthly*, 67(1):
 754 58–61, 1960.
 755

nostalggebraist. interpreting gpt: the logit lens. LessWrong, 2020.
 URL <https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens>.

756 Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
 757 Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction heads.
 758 *ArXiv preprint*, abs/2209.11895, 2022. URL <https://arxiv.org/abs/2209.11895>.

759

760 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 761 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

762

763 Laura Ruis, Jacob Andreas, Marco Baroni, Diane Bouchacourt, and Brenden M. Lake. A
 764 benchmark for systematic generalization in grounded language understanding. In Hugo
 765 Larochelle, Marc'Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien
 766 Lin (eds.), *Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual*, 2020. URL <https://proceedings.neurips.cc/paper/2020/hash/e5a90182cc81e12ab5e72d66e0b46fe3-Abstract.html>.

767

768

769 Katarzyna Rybarczyk. Sharp threshold functions for random intersection graphs via a coupling
 770 method. *The Electronic Journal of Combinatorics*, 18, 2011. doi: 10.37236/523.

771

772 Katarzyna Rybarczyk. The coupling method for inhomogeneous random intersection graphs. *The
 773 Electronic Journal of Combinatorics*, 24:P2.10, 2017.

774

775 Arnab Sen Sharma, David Atkinson, and David Bau. Locating and editing factual associations in
 776 mamba. In *First Conference on Language Modeling*, 2024. URL <https://openreview.net/forum?id=yoVRyrEgix>.

777

778 Karen B. Singer. *Random intersection graphs*. PhD thesis, The Johns Hopkins University, 1995.

779

780 Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
 781 Fisch, Adam R. Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, Agnieszka Kluska,
 782 Aitor Lewkowycz, Akshat Agarwal, Alethea Power, Alex Ray, Alex Warstadt, Alexander W.
 783 Kocurek, Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Parrish, Allen Nie, Aman Hussain, Amanda
 784 Askell, Amanda Dsouza, Ambrose Slone, Ameet Rahane, Anantharaman S. Iyer, Anders Johan
 785 Andreassen, Andrea Madotto, Andrea Santilli, Andreas Stuhlmüller, Andrew M. Dai, Andrew
 786 La, Andrew Kyle Lampinen, Andy Zou, Angela Jiang, Angelica Chen, Anh Vuong, Animesh
 787 Gupta, Anna Gottardi, Antonio Norelli, Anu Venkatesh, Arash Gholamidavoodi, Arfa Tabassum,
 788 Arul Menezes, Arun Kirubarajan, Asher Mollokandov, Ashish Sabharwal, Austin Herrick, Avia
 789 Efrat, Aykut Erdem, Ayla Karakaş, B. Ryan Roberts, Bao Sheng Loe, Barret Zoph, Bartłomiej
 790 Bojanowski, Batuhan Özurt, Behnam Hedayatnia, Behnam Neyshabur, Benjamin Inden, Benno
 791 Stein, Berk Ekmekci, Bill Yuchen Lin, Blake Howald, Bryan Orinion, Cameron Diao, Cameron
 792 Dour, Catherine Stinson, Cedrick Argueta, Cesar Ferri, Chandan Singh, Charles Rathkopf, Chenlin
 793 Meng, Chitta Baral, Chiyu Wu, Chris Callison-Burch, Christopher Waites, Christian Voigt, Christo-
 794 pher D Manning, Christopher Potts, Cindy Ramirez, Clara E. Rivera, Clemencia Siro, Colin Raffel,
 795 Courtney Ashcraft, Cristina Garbacea, Damien Sileo, Dan Garrette, Dan Hendrycks, Dan Kilman,
 796 Dan Roth, C. Daniel Freeman, Daniel Khashabi, Daniel Levy, Daniel Moseguí González, Danielle
 797 Perszyk, Danny Hernandez, Danqi Chen, Daphne Ippolito, Dar Gilboa, David Dohan, David
 798 Drakard, David Jurgens, Debajyoti Datta, Deep Ganguli, Denis Emelin, Denis Kleyko, Deniz
 799 Yuret, Derek Chen, Derek Tam, Dieuwke Hupkes, Diganta Misra, Dilyar Buzan, Dimitri Coelho
 800 Mollo, Diyi Yang, Dong-Ho Lee, Dylan Schrader, Ekaterina Shutova, Ekin Dogus Cubuk, Elad
 801 Segal, Eleanor Hagerman, Elizabeth Barnes, Elizabeth Donoway, Ellie Pavlick, Emanuele Rodolà,
 802 Emma Lam, Eric Chu, Eric Tang, Erkut Erdem, Ernie Chang, Ethan A Chi, Ethan Dyer, Ethan
 803 Jerzak, Ethan Kim, Eunice Engefu Manyasi, Evgenii Zheltonozhskii, Fanyue Xia, Fatemeh Siar,
 804 Fernando Martínez-Plumed, Francesca Happé, Francois Chollet, Frieda Rong, Gaurav Mishra,
 805 Genta Indra Winata, Gerard de Melo, Germàn Kruszewski, Giambattista Parascandolo, Giorgio
 806 Mariani, Gloria Xinyue Wang, Gonzalo Jaimovich-Lopez, Gregor Betz, Guy Gur-Ari, Hana
 807 Galijasevic, Hannah Kim, Hannah Rashkin, Hannaneh Hajishirzi, Harsh Mehta, Hayden Bogar,
 808 Henry Francis Anthony Shevlin, Hinrich Schuetze, Hiromu Yakura, Hongming Zhang, Hugh Mee
 809 Wong, Ian Ng, Isaac Noble, Jaap Jumelet, Jack Geissinger, Jackson Kernion, Jacob Hilton, Jaehoon
 Lee, Jaime Fernández Fisac, James B Simon, James Koppel, James Zheng, James Zou, Jan Kocon,
 Jana Thompson, Janelle Wingfield, Jared Kaplan, Jarema Radom, Jascha Sohl-Dickstein, Jason
 Phang, Jason Wei, Jason Yosinski, Jekaterina Novikova, Jelle Bosscher, Jennifer Marsh, Jeremy
 Kim, Jeroen Taal, Jesse Engel, Jesujoba Alabi, Jiacheng Xu, Jiaming Song, Jillian Tang, Joan

810 Waweru, John Burden, John Miller, John U. Balis, Jonathan Batchelder, Jonathan Berant, Jörg
 811 Frohberg, Jos Rozen, Jose Hernandez-Orallo, Joseph Boudeman, Joseph Guerr, Joseph Jones,
 812 Joshua B. Tenenbaum, Joshua S. Rule, Joyce Chua, Kamil Kanclerz, Karen Livescu, Karl Krauth,
 813 Karthik Gopalakrishnan, Katerina Ignatyeva, Katja Markert, Kaustubh Dhole, Kevin Gimpel,
 814 Kevin Omondi, Kory Wallace Mathewson, Kristen Chiafullo, Ksenia Shkaruta, Kumar Shridhar,
 815 Kyle McDonell, Kyle Richardson, Laria Reynolds, Leo Gao, Li Zhang, Liam Dugan, Lianhui Qin,
 816 Lidia Contreras-Ochando, Louis-Philippe Morency, Luca Moschella, Lucas Lam, Lucy Noble,
 817 Ludwig Schmidt, Luheng He, Luis Oliveros-Colón, Luke Metz, Lütfi Kerem Senel, Maarten
 818 Bosma, Maarten Sap, Maartje Ter Hoeve, Maheen Farooqi, Manaal Faruqui, Mantas Mazeika,
 819 Marco Baturan, Marco Marelli, Marco Maru, Maria Jose Ramirez-Quintana, Marie Tolkiehn,
 820 Mario Giulianelli, Martha Lewis, Martin Potthast, Matthew L Leavitt, Matthias Hagen, Mátyás
 821 Schubert, Medina Orduna Baitemirova, Melody Arnaud, Melvin McElrath, Michael Andrew
 822 Yee, Michael Cohen, Michael Gu, Michael Ivanitskiy, Michael Starritt, Michael Strube, Michał
 823 Swędrowski, Michele Bevilacqua, Michihiro Yasunaga, Mihir Kale, Mike Cain, Mimeo Xu, Mirac
 824 Suzgun, Mitch Walker, Mo Tiwari, Mohit Bansal, Moin Aminnaseri, Mor Geva, Mozhdeh Gheini,
 825 Mukund Varma T, Nanyun Peng, Nathan Andrew Chi, Nayeon Lee, Neta Gur-Ari Krakover,
 826 Nicholas Cameron, Nicholas Roberts, Nick Doiron, Nicole Martinez, Nikita Nangia, Niklas
 827 Deckers, Niklas Muennighoff, Nitish Shirish Keskar, Niveditha S. Iyer, Noah Constant, Noah
 828 Fiedel, Nuan Wen, Oliver Zhang, Omar Agha, Omar Elbaghdadi, Omer Levy, Owain Evans,
 829 Pablo Antonio Moreno Casares, Parth Doshi, Pascale Fung, Paul Pu Liang, Paul Vicol, Pegah
 830 Alipoormolabashi, Peiyuan Liao, Percy Liang, Peter W Chang, Peter Eckersley, Phu Mon Htut,
 831 Pinyu Hwang, Piotr Miłkowski, Piyush Patil, Pouya Pezeshkpour, Priti Oli, Qiaozhu Mei, Qing
 832 Lyu, Qinlang Chen, Rabin Banjade, Rachel Etta Rudolph, Raefer Gabriel, Rahel Habacker, Ra-
 833 mon Risco, Raphaël Millière, Rhythm Garg, Richard Barnes, Rif A. Saurous, Riku Arakawa,
 834 Robbe Raymaekers, Robert Frank, Rohan Sikand, Roman Novak, Roman Sitelew, Ronan Le Bras,
 835 Rosanne Liu, Rowan Jacobs, Rui Zhang, Russ Salakhutdinov, Ryan Andrew Chi, Seungjae Ryan
 836 Lee, Ryan Stovall, Ryan Teehan, Rylan Yang, Sahib Singh, Saif M. Mohammad, Sajant Anand,
 837 Sam Dillavou, Sam Shleifer, Sam Wiseman, Samuel Gruetter, Samuel R. Bowman, Samuel Stern
 838 Schoenholz, Sanghyun Han, Sanjeev Kwatra, Sarah A. Rous, Sarik Ghazarian, Sayan Ghosh, Sean
 839 Casey, Sebastian Bischoff, Sebastian Gehrmann, Sebastian Schuster, Sepideh Sadeghi, Shadi Ham-
 840 dan, Sharon Zhou, Shashank Srivastava, Sherry Shi, Shikhar Singh, Shima Asaadi, Shixiang Shane
 841 Gu, Shubh Pachchigar, Shubham Toshniwal, Shyam Upadhyay, Shyamolima Shammie Debnath,
 842 Siamak Shakeri, Simon Thormeyer, Simone Melzi, Siva Reddy, Sneha Priscilla Makini, Soo-Hwan
 843 Lee, Spencer Torene, Sriharsha Hatwar, Stanislas Dehaene, Stefan Divic, Stefano Ermon, Stella
 844 Biderman, Stephanie Lin, Stephen Prasad, Steven Piantadosi, Stuart Shieber, Summer Misherghi,
 845 Svetlana Kiritchenko, Swaroop Mishra, Tal Linzen, Tal Schuster, Tao Li, Tao Yu, Tariq Ali, Tat-
 846 sunori Hashimoto, Te-Lin Wu, Théo Desbordes, Theodore Rothschild, Thomas Phan, Tianle Wang,
 847 Tiberius Nkinyili, Timo Schick, Timofei Kornev, Titus Tunduny, Tobias Gerstenberg, Trenton
 848 Chang, Trishala Neeraj, Tushar Khot, Tyler Shultz, Uri Shaham, Vedant Misra, Vera Demberg,
 849 Victoria Nyamai, Vikas Raunak, Vinay Venkatesh Ramasesh, vinay uday prabhu, Vishakh Pad-
 850 makumar, Vivek Srikumar, William Fedus, William Saunders, William Zhang, Wout Vossen, Xiang
 851 Ren, Xiaoyu Tong, Xinran Zhao, Xinyi Wu, Xudong Shen, Yadollah Yaghoobzadeh, Yair Lakretz,
 852 Yangqiu Song, Yasaman Bahri, Yejin Choi, Yichi Yang, Sophie Hao, Yifu Chen, Yonatan Belinkov,
 853 Yu Hou, Yufang Hou, Yuntao Bai, Zachary Seid, Zhuoye Zhao, Zijian Wang, Zijie J. Wang, Zirui
 854 Wang, and Ziyi Wu. Beyond the imitation game: Quantifying and extrapolating the capabilities of
 855 language models. *Transactions on Machine Learning Research*, 2023. ISSN 2835-8856. URL
 856 <https://openreview.net/forum?id=uyTL5Bvosj>. Featured Certification.

857 Kaya Stechly, Karthik Valmeeckam, and Subbarao Kambhampati. Chain of thoughtless-
 858 ness? an analysis of cot in planning. In Amir Globersons, Lester Mackey, Danielle
 859 Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), *Ad-
 860 vances in Neural Information Processing Systems 38: Annual Conference on Neural Infor-
 861 mation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -
 862 15, 2024*, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/3365d974ce309623bd8151082d78206c-Abstract-Conference.html.

863 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 864 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 865 efficient foundation language models. *ArXiv preprint*, abs/2302.13971, 2023. URL <https://arxiv.org/abs/2302.13971>.

864 Thinh Hung Truong, Timothy Baldwin, Karin Verspoor, and Trevor Cohn. Language models are not
 865 naysayers: an analysis of language models on negation benchmarks. In Alexis Palmer and Jose
 866 Camacho-collados (eds.), *Proceedings of the 12th Joint Conference on Lexical and Computational
 867 Semantics (*SEM 2023)*, pp. 101–114, Toronto, Canada, July 2023. Association for Computational
 868 Linguistics. doi: 10.18653/v1/2023.starsem-1.10. URL <https://aclanthology.org/2023.starsem-1.10/>.

870 Karthik Valmeeekam, Matthew Marquez, Alberto Olmo Hernandez, Sarath Sreedharan, and
 871 Subbarao Kambhampati. Planbench: An extensible benchmark for evaluating large
 872 language models on planning and reasoning about change. In Alice Oh, Tristan Nau-
 873 mann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), *Advances
 874 in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
 875 mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
 876 16, 2023*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/7a92bcdede88c7af108072faf5485c8-Abstract-Datasets_and_Benchmarks.html.

879 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
 880 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
 881 Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
 882 Garnett (eds.), *Advances in Neural Information Processing Systems 30: Annual Conference on
 883 Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA*, pp.
 884 5998–6008, 2017. URL <https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html>.

886 Boshi Wang, Xiang Yue, Yu Su, and Huan Sun. Grokking of implicit reasoning in transfor-
 887 mers: A mechanistic journey to the edge of generalization. In Amir Globersons, Lester Mackey,
 888 Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.),
 889 *Advances in Neural Information Processing Systems 38: Annual Conference on Neural Infor-
 890 mation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -
 891 15, 2024*, 2024a. URL http://papers.nips.cc/paper_files/paper/2024/hash/ad217e0c7fec71bdf48660ad6714b07-Abstract-Conference.html.

893 Kevin Wang, Junbo Li, Neel P. Bhatt, Yihan Xi, qiang liu, ufuk topcu, and Zhangyang Wang.
 894 On the planning abilities of openAI's o1 models: Feasibility, optimality, and generalizability. In
 895 *Language Gamification - NeurIPS 2024 Workshop*, 2024b. URL <https://openreview.net/forum?id=qgvQx30Z0R>.

897 Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
 898 pretability in the wild: a circuit for indirect object identification in GPT-2 small. In *The Eleventh
 899 International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5,
 900 2023*. OpenReview.net, 2023. URL <https://openreview.net/pdf?id=NpsVSN6o4ul>.

902 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
 903 Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
 904 models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.),
 905 *Advances in Neural Information Processing Systems 35: Annual Conference on Neural Infor-
 906 mation Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
 907 9, 2022*, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html.

909 Kaiyue Wen, Huaqing Zhang, Hongzhou Lin, and Jingzhao Zhang. From sparse dependence to
 910 sparse attention: Unveiling how chain-of-thought enhances transformer sample efficiency. In
 911 *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=AmEgWDhmTr>.

913 Sohee Yang, Elena Gribovskaya, Nora Kassner, Mor Geva, and Sebastian Riedel. Do large
 914 language models latently perform multi-hop reasoning? In Lun-Wei Ku, Andre Martins,
 915 and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for
 916 Computational Linguistics (Volume 1: Long Papers)*, pp. 10210–10229, Bangkok, Thailand,
 917 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.550. URL
<https://aclanthology.org/2024.acl-long.550/>.

918 Yuekun Yao, Yupei Du, Dawei Zhu, Michael Hahn, and Alexander Koller. Language models
919 can learn implicit multi-hop reasoning, but only if they have lots of training data. In Christos
920 Christodoulopoulos, Tanmoy Chakraborty, Carolyn Rose, and Violet Peng (eds.), *Proceedings*
921 *of the 2025 Conference on Empirical Methods in Natural Language Processing*, pp. 9695–9713,
922 Suzhou, China, November 2025. Association for Computational Linguistics. ISBN 979-8-89176-
923 332-6. doi: 10.18653/v1/2025.emnlp-main.490. URL <https://aclanthology.org/2025.emnlp-main.490/>.

925 Jun Zhao, Osman Yağan, and Virgil Gligor. On k-connectivity and minimum vertex degree in random
926 s-intersection graphs. In *2015 Proceedings of the Twelfth Workshop on Analytic Algorithmics and*
927 *Combinatorics (ANALCO)*, pp. 1–15. SIAM, 2014.

929 Jun Zhao, Osman Yağan, and Virgil Gligor. On connectivity and robustness in random intersection
930 graphs. *IEEE Transactions on Automatic Control*, 62(5):2121–2136, 2017. doi: 10.1109/TAC.
931 2016.2601564.

932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

972 **Contents of the Appendix**
973

974	A Limitations	20
975		
976	B Detailed Experimental Setup	21
977		
978	B.1 Dataset Construction	21
979	B.2 Training Details	22
980		
981		
982	C Implementation Details for the Coverage Determination Algorithm	23
983		
984	D Detailed Analysis for Representation Unification Experiments	25
985		
986	D.1 Causal Tracing Methodology	25
987	D.2 Causal Tracing Results for Each k -Cutoff Value in 2-HOP Task	25
988	D.3 Token Set Size Ablation	25
989	D.4 Task Ablation	27
990		
991		
992	E Proofs: Asymptotically Perfect Coverage in 2-HOP Task	29
993		
994	E.1 Preliminaries: Definitions, Assumptions, and Facts	29
995	E.2 Main Theorem: Sample Complexity Bound for Perfect Coverage With High Probability	31
996	E.3 Backgrounds, Useful Facts, and Lemmas	40
997	E.3.1 (De-)Poissonization of Monotone Multinomial Events	41
998	E.3.2 Binomial Random Intersection Graphs	47
999		
1000	F Additional Results for Power-Law Scaling Analysis	50
1001		
1002	F.1 Measurement Protocol for N_{req}	50
1003	F.2 Measured Power-Law Scaling Exponents Across Task Structures and Model Sizes .	50
1004	F.3 Robustness to Hyperparameter Variations	50
1005		
1006		
1007	G Detailed Analysis for NON-TREE Task	52
1008		
1009	G.1 Coverage Analysis	52
1010	G.2 Effect of Model Scaling	52
1011	G.3 Comparison between Mamba and GPT-2 on NON-TREE Task	52
1012	G.4 Representation Analysis in Successful Generalization	53
1013		
1014	H Detailed Discussion on the Taxonomy for Understanding Generalization Mechanisms	54
1015		
1016	I Partial Computation Observation Drives the Alignment of Functional Equivalence Representation and Vocabulary Space	55
1017		
1018		
1019		
1020		
1021		
1022		
1023		
1024		
1025		

1026 **A LIMITATIONS**
10271028 We deliberately restrict to synthetic tasks to isolate structure-based limits without confounds from
1029 lexical or domain priors. We leave extending the coverage analysis to discrete sequence tasks with
1030 variable lengths and more natural data as future work. Additionally, our experiments focus on
1031 autoregressive architectures, and the applicability of the coverage principle to broader architectures
1032 remains to be validated.
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080 **B DETAILED EXPERIMENTAL SETUP**
10811082 **B.1 DATASET CONSTRUCTION**
10831084 We now provide detailed information about our dataset construction process. While we primarily
1085 explain this process for the 2-HOP task, we follow similar procedures for the other compositional
1086 structures.1087 **Vocabulary and Token Representation** For a task with token set size $|\mathcal{X}|$, we create $|\mathcal{X}|$ special
1088 tokens of the form $\langle t_0 \rangle, \langle t_1 \rangle, \dots, \langle t_{(|\mathcal{X}| - 1)} \rangle$, which we append to the standard GPT-2
1089 vocabulary. We also add special tokens $\langle /a \rangle$ to mark the end of sequences. For Chain-of-Thought
1090 (CoT) experiments, intermediate computations are represented in the target sequence as the actual
1091 intermediate token.1092 **Function Construction** For the 2-HOP task, we construct two primitive functions $f_1 : \mathcal{X}^2 \rightarrow \mathcal{X}$
1093 and $f_2 : \mathcal{X}^2 \rightarrow \mathcal{X}$ by randomly mapping from their respective domains to the codomain \mathcal{X} . We
1094 create the domain by taking the Cartesian product of the token set with itself. For each function, we
1095 randomly designate a fraction $p_{\text{seen}} = 0.7$ of its domain as the "seen" portion, resulting in sets S_{f_1}
1096 and S_{f_2} .1097 **Dataset Generation Algorithm** To generate the training dataset, we first identify all possible com-
1098 binations where both primitive operations come from their respective "seen" domains. Specifically,
1099 we find all valid tuples (x_1, x_2, x_3, t) such that:

1100
$$(x_1, x_2) \in \text{domain}(S_{f_1}) \quad (1)$$

1101
$$(f_1(x_1, x_2), x_3) \in \text{domain}(S_{f_2}) \quad (2)$$

1102
$$t = f_2(f_1(x_1, x_2), x_3) \quad (3)$$

1103 From this set of all possible in-domain combinations, we uniformly sample N examples to form our
1104 training dataset. When the number of possible combinations exceeds N , this sampling ensures the
1105 model sees only a subset of possible in-domain combinations.1106 **Test Set Construction** We carefully construct test sets to evaluate the model's generalization
1107 capabilities across different coverage conditions. Our test sets contain:1108

- **In-Domain (ID) Test Set:** Combinations unseen during training but where both primitive
1109 operations were observed in other contexts. These examples may lie within the coverage as
1110 defined by our framework.
- **Out-of-coverage (canonical OOD) Test Set:** Examples where at least one primitive opera-
1111 tion was never observed in training. These fall outside the coverage.

1112 **Input-Output Format** The dataset is formatted for auto-regressive token prediction. For the
1113 standard 2-HOP task, inputs comprise three tokens representing x_1 , x_2 , and x_3 , while the target
1114 includes these input tokens followed by the prediction t and an end marker. Below are the examples
1115 of the dataset format for different settings.1116 • **Standard Format:**1117

- Input: $\langle t_5 \rangle \langle t_{12} \rangle \langle t_3 \rangle$
- Target Completion: $\langle t_9 \rangle \langle /a \rangle$
- The model must predict the final output token followed by the end marker.

1118 • **Chain-of-Thought Format:**1119

- Input: $\langle t_5 \rangle \langle t_{12} \rangle \langle t_3 \rangle$
- Target Completion: $\langle t_9 \rangle \langle t_{17} \rangle \langle /a \rangle$
- The model must first predict the intermediate computation result $\langle t_9 \rangle$ (where $\langle t_9 \rangle$
1120 $= f_1(\langle t_5 \rangle, \langle t_{12} \rangle)$), followed by the final output.

1121 • **Partial Computation Format (f_1):**1122

- Input: $\langle t_5 \rangle \langle t_{12} \rangle$
- Target Completion: $\langle t_9 \rangle \langle /a \rangle$
- These examples represent the primitive function applications used to construct the full
1123 compositional task.

1134 For the other compositional tasks, we follow analogous construction procedures, adjusting the number
 1135 of input tokens and the composition structure based on the specific task’s requirements. For example,
 1136 PARALLEL 2-HOP requires four input tokens, while 3-HOP follows a three-step composition chain
 1137 requiring appropriate modifications to the function construction and sampling procedures.

1138
 1139 **B.2 TRAINING DETAILS**

1140

1141 Table 1: Model configurations for different GPT-2 variants used in our experiments

1142

1143 Configuration	1144 GPT-2-Small	1145 GPT-2	1146 GPT-2-XL
1144 Number of Attention Heads	1145 6	1146 12	1147 25
1145 Number of Layers	1146 4	1147 8	1148 48
1146 Hidden Dimension	1147 768	1148 768	1149 1600
1147 Total Parameters	1148 68M	1149 96M	1150 1.5B

1148

1149 For our experiments, we employ three GPT-2 model variants of increasing size: GPT-2-Small (68M
 1150 parameters), GPT-2 (96M parameters), and GPT-2-XL (1.5B parameters). As shown in Tab. 1, GPT-2-
 1151 Small consists of 4 layers with 6 attention heads and a hidden dimension of 768. The standard GPT-2-
 1152 configuration used in most experiments features 8 layers with 12 attention heads while maintaining the
 1153 same hidden dimension of 768. Our largest model, GPT-2-XL, significantly scales up the architecture
 1154 with 48 layers, 25 attention heads, and an increased hidden dimension of 1600. The implementation
 1155 follows the codebase from (Wang et al., 2024a).

1156

1157 We train all models using the AdamW optimizer with beta values of (0.9, 0.999) and epsilon of 1e-8.
 1158 We set the learning rate to 8e-4 with a weight decay of 0.1. A batch size of 16,384 is used, with full
 1159 gradient descent applied for datasets smaller than the batch size. All training is conducted with mixed
 1160 precision (fp16) on 4 NVIDIA A100 GPUs with 80GB memory each. We employ a constant learning
 1161 rate schedule with a linear warmup period of 2,000 steps. This standardized training configuration is
 1162 maintained across all experiments to ensure fair comparisons between different task structures and
 1163 dataset sizes, unless explicitly varied in specific ablation studies.

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188 C IMPLEMENTATION DETAILS FOR THE COVERAGE DETERMINATION
1189 ALGORITHM
1190

1191 **Algorithm 1:** k -Coverage Determination Algorithm

1192 **Input:** Training examples $D = \{(x_i, f(x_i))\}_{i=1}^N$, where $x_i \in \mathcal{X}^n$ and $f(x_i) \in \mathcal{X}$
1193 Minimum evidence threshold $k \geq 1$
1194 **Output:** Coverage set $\text{Cover}(D)$
1195
1196 /* STEP 1: Build behavior maps for each subsequence pattern */
1197 **foreach** nonempty subset $I \subsetneq [n]$ **do**
1198 | Behavior $_I \leftarrow$ map from subsequence x_I to the mapping $\{x_{[n] \setminus I} \mapsto f(x) \mid x \in D\}$
1199 **end**
1200
1201 /* STEP 2: Identify functionally equivalent subsequences */
1202 **foreach** nonempty subset $I \subsetneq [n]$ **do**
1203 | $UF_I \leftarrow$ new UnionFind()
1204 | **foreach** pair of subsequences (α, β) in Behavior $_I$ **do**
1205 | | SharedComplements \leftarrow complements observed with both α and β
1206 | | **if** No contradictions in SharedComplements **and** matching evidence $\geq k$ **then**
1207 | | | $UF_I.\text{Union}(\alpha, \beta)$; // Mark as functionally equivalent
1208 | | **end**
1209 | **end**
1210 | $\text{EquivClasses}_I \leftarrow UF_I$
1211 **end**
1212
1213 /* STEP 3: Build substitution graph */
1214 $G \leftarrow$ empty graph with nodes for all $x \in \mathcal{X}^n$
1215 **foreach** pair of inputs (x, y) with $f(x) = f(y)$ **do**
1216 | **foreach** subset I where x and y differ only on indices in I **do**
1217 | | **if** $\text{EquivClasses}_I.\text{Find}(x_I) = \text{EquivClasses}_I.\text{Find}(y_I)$ **then**
1218 | | | Add edge (x, y) to G
1219 | | **break**
1220 | **end**
1221 | **end**
1222 **end**
1223
1224 /* STEP 4: Determine coverage */
1225 $\text{Cover}(D) \leftarrow \bigcup_{x \in D} \text{ConnectedComponent}(G, x)$
1226 **return** $\text{Cover}(D)$

1227
1228 Alg. 1 presents our approach to computing the coverage set with a minimum evidence threshold k .
1229 The algorithm works in four main stages:
1230

1231 **Stage 1: Behavior mapping** We first analyze the training data to create a mapping of behaviors
1232 for each possible subsequence of the input. For each subset of indices I , we record how different
1233 subsequences x_I behave when paired with their complements $x_{[n] \setminus I}$, essentially mapping each
1234 subsequence to a function from complements to outputs.
1235

1236 **Stage 2: Equivalence class construction** For each subset of indices I , we build equivalence
1237 classes of subsequences that exhibit functionally identical behavior. Two subsequences are considered
1238 equivalent only if: (1) they share at least k distinct complements where they produce the same output,
1239 and (2) they never produce different outputs when given the same complement (no contradictions). We
1240 use a Union-Find data structure to efficiently track and merge these equivalence classes. The Union-
1241 Find (or Disjoint-Set) data structure efficiently maintains a collection of disjoint sets, supporting two
key operations: (1) *Find* - determine which set an element belongs to, and (2) *Union* - merge two sets.

1242 **Stage 3: Substitution Graph Construction** We construct a graph where nodes represent input
1243 sequences from our training and test sets, rather than the entire domain space (which would be
1244 computationally prohibitive for large token sets). We add an edge between two inputs x and y if
1245 and only if: (1) they produce the same output, (2) they differ only in one subsequence position set
1246 I , and (3) their differing subsequences belong to the same equivalence class. This graph represents
1247 the space of *safe substitutions* where one can replace a subsequence with a functionally equivalent
1248 alternative without changing the expected output. Our implementation uses parallel processing to
1249 efficiently construct this graph, even for large datasets.

1250 **Stage 4: Coverage computation** Finally, we compute the coverage set by taking the union of all
1251 connected components in the substitution graph that contain at least one training example. This set
1252 comprises all inputs that are reachable from the training data through chains of equivalent subsequence
1253 substitutions.

1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

1296 D DETAILED ANALYSIS FOR REPRESENTATION UNIFICATION EXPERIMENTS
12971298 D.1 CAUSAL TRACING METHODOLOGY
1299

1300 To analyze the causal role of specific hidden representations in our Transformer model, we employ
1301 causal tracing, a technique that measures the effect of intervening on intermediate activations during
1302 inference (Goldowsky-Dill et al., 2023; Hanna et al., 2023). Specifically, we measure the causal
1303 effect using the *indirect effect* metric defined in (Sharma et al., 2024). This methodology allows us
1304 to identify which components and positions in the model most strongly contribute to compositional
1305 generalization. We illustrate the measurement with 2-HOP task.

1306 Our analysis begins by collecting three types of computational traces:

- 1307 1. **Clean run (G):** We run the model on a compositional task with input (x_1, x_2, x_3) where
1308 the corresponding output is $t = f_2(f_1(x_1, x_2), x_3)$.
- 1309 2. **Corrupted run (G^*):** We replace the original input with a corrupted version by changing
1310 the first two tokens (x_1, x_2) to (x'_1, x'_2) , where $f_1(x'_1, x'_2) \neq f_1(x_1, x_2)$. This ensures that
1311 the model produces a different final output $t^* \neq t$. During this run, we cache all hidden
1312 states $h_i^{*(\ell)}$ for each token position i and layer ℓ .
- 1313 3. **Patched run ($G[\leftarrow h_i^{*(\ell)}]$):** We run the model on the input from the clean run, but at a
1314 specific token position i and layer ℓ , we replace the hidden state with the corresponding
1315 state from the corrupted run.

1316 To quantify the causal effect of a specific hidden state $h_i^{(\ell)}$ on the model’s prediction, we measure the
1317 *Indirect Effect* (IE):

$$1319 \text{IE}_{h_i^{(\ell)}} = \frac{p[\leftarrow h_i^{*(\ell)}](t^*) - p(t^*)}{p^*(t^*) - p(t^*)} \quad (4)$$

1323 where:

- 1324 • $p(t^*)$ is the probability assigned to the corrupted output t^* in the clean run G
- 1325 • $p^*(t^*)$ is the probability assigned to the corrupted output t^* in the corrupted run G^*
- 1327 • $p[\leftarrow h_i^{*(\ell)}](t^*)$ is the probability assigned to the corrupted output t^* in the patched run
1328 $G[\leftarrow h_i^{*(\ell)}]$

1330 This metric quantifies how much corruption in a particular state affects the overall outcome. An
1331 IE value close to 1 indicates that the corruption of the state $h_i^{(\ell)}$ to $h_i^{*(\ell)}$ alone almost completely
1332 changes the prediction to that of the corrupted run, suggesting that this state is causally important for
1333 the computation. Conversely, an IE value close to 0 indicates that the state has minimal causal impact
1334 on the prediction.

1335 In our experiments, we apply causal tracing to analyze different subsets of test data categorized by
1336 their k -cutoff values, where k represents the minimum evidence threshold required for functional
1337 equivalence (as defined in Sec. 3 of the main text). This allows us to correlate the strength of
1338 functional equivalence evidence with the formation of unified internal representations.

1339 D.2 CAUSAL TRACING RESULTS FOR EACH k -CUTOFF VALUE IN 2-HOP TASK
1340

1341 Figure 8 displays the causal tracing results for the 2-HOP task, broken down by different k -cutoff
1342 values. We observe that the causal patterns are similar across different k -cutoff values, with slight
1343 differences in where and how strongly the causal effects manifest in the model. This suggests that
1344 once an example falls within coverage (even with minimal evidence, $k = 1$), the model forms internal
1345 representations that play similar causal roles in prediction.

1346 D.3 TOKEN SET SIZE ABLATION
1347

1348 We show that the observed patterns of cosine similarity analysis and causal tracing in the 2-HOP task
1349 are consistent across different token set sizes $|\mathcal{X}|$. For $|\mathcal{X}| = 70, 100, 150, 200$, we analyze model
checkpoints with training dataset size $N = \hat{N}_{\text{req}}(|\mathcal{X}|)$ that achieve training accuracy > 0.99 . Figure

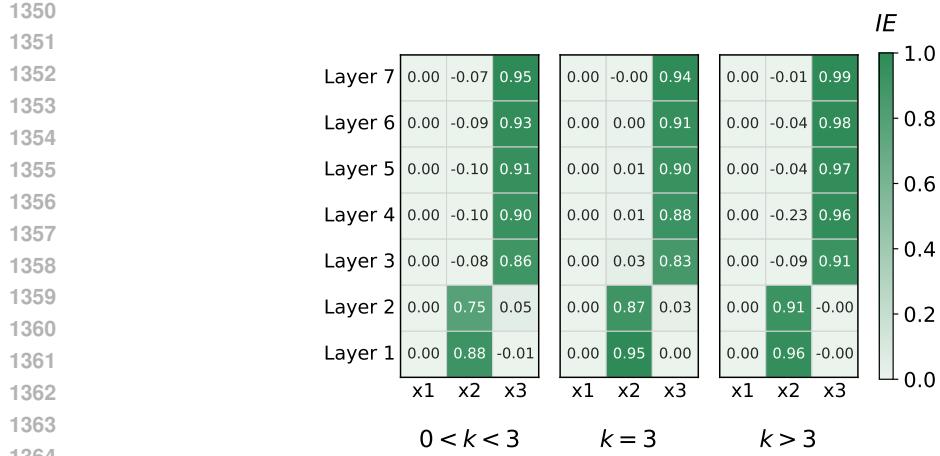


Figure 8: Causal tracing results for the 2-HOP task across different k -cutoff values, showing Indirect Effect (IE) scores at each layer and position.

Fig. 9 shows the results, indicating strong representation clustering at the lower layers of position x_2 for all cases. The causal tracing results in Fig. 10 show that the clustered functional equivalence representations at the lower layers of position x_2 play a causal role in determining the model’s final prediction.

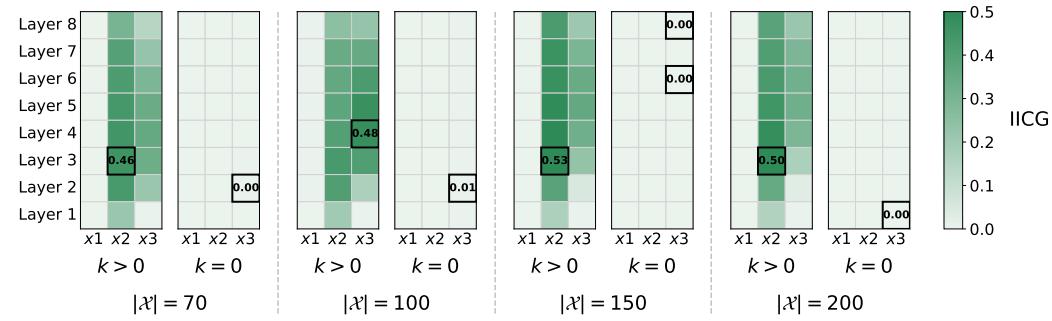


Figure 9: IICG heatmap across different token set sizes, showing consistent representation clustering patterns.

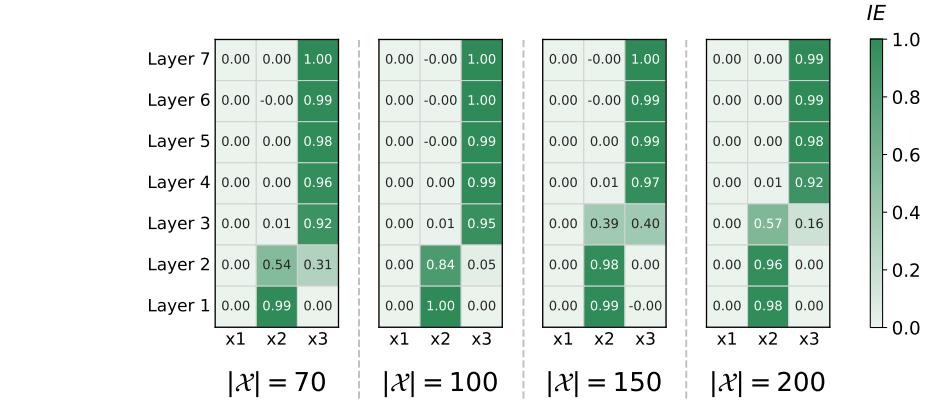
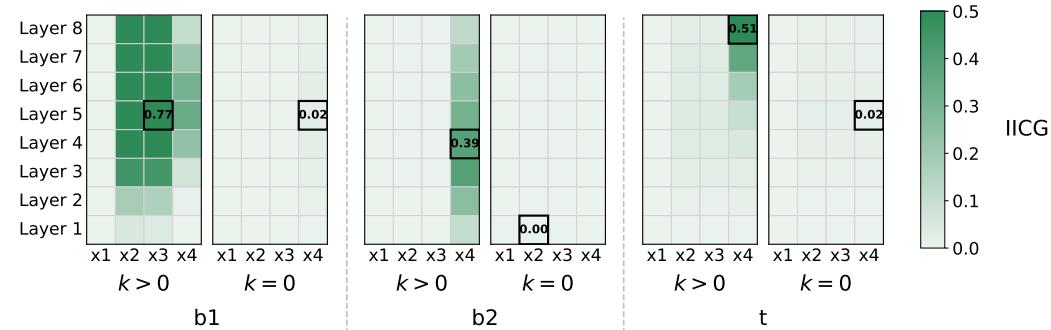


Figure 10: Causal tracing results showing indirect effect heatmaps for different token set sizes $|\mathcal{X}|$.

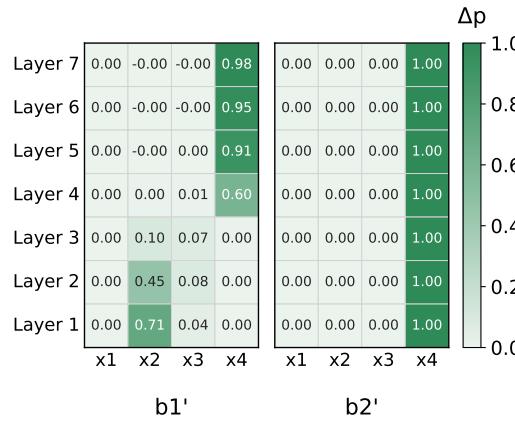
1404 D.4 TASK ABLATION
1405

1406 We show that GPT-2 models trained on PARALLEL-2-HOP and 3-HOP tasks exhibit the same patterns:
1407 clustered functional equivalence representations of intermediate states at specific layers and positions,
1408 confirmed through cosine similarity analysis, with causal tracing analysis verifying their role in model
1409 predictions. For both tasks, we analyze with $|\mathcal{X}| = 50$ and examine model checkpoints with training
1410 dataset size $N = \hat{N}_{\text{req}}(|\mathcal{X}|)$ that achieve training accuracy > 0.99 .

1411 Figures 11 and 12 show the results for the PARALLEL-2-HOP task. The IICG patterns reveal strong
1412 representation clustering at mid-layers: at positions x_2 and x_3 when grouped by $b_1 = f_1(x_1, x_2)$,
1413 and at position x_4 when grouped by $b_2 = f_2(x_3, x_4)$. Causal tracing confirms the causal role of these
1414 clustered representations in the model’s predictions.



1427 Figure 11: IICG heatmap for PARALLEL-2-HOP task with grouping strategies based on $b_1 =$
1428 $f_1(x_1, x_2)$ (**Left**), $b_2 = f_2(x_3, x_4)$ (**Middle**), and $t = f_3(b_1, b_2)$ (**Right**).



1445 Figure 12: Causal tracing results showing indirect effect heatmap for PARALLEL-2-HOP task. **Left:**
1446 perturbation with different (x_1, x_2) pair leading to a different b_1 value. **Right:** perturbation with
1447 different (x_3, x_4) pair leading to a different b_2 value.

1448 Similarly, Figures 13 and 14 show results for the 3-HOP task. The IICG patterns exhibit strong
1449 representation clustering at mid-layers: at position x_3 when grouped by $b_1 = f_1(x_1, x_2)$, and at
1450 position x_3 when grouped by $b_2 = f_2(b_1, x_3)$. Causal tracing again confirms the causal importance
1451 of these representations.

1452 These results demonstrate that the formation of clustered intermediate state representations and
1453 their causal role in compositional generalization is a consistent phenomenon across different task
1454 structures, supporting the generality of our findings beyond the 2-HOP task.

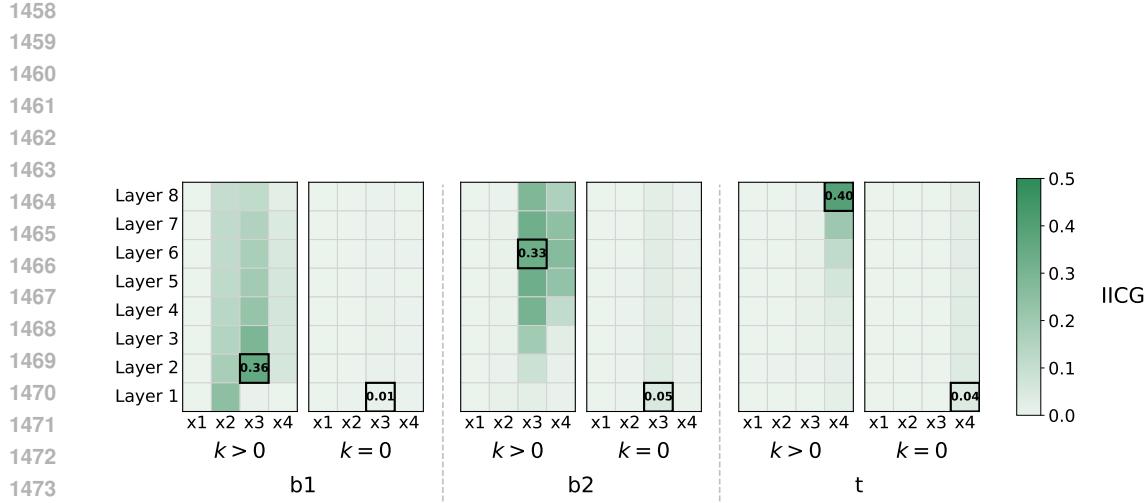


Figure 13: IICG heatmap for 3-HOP task with grouping strategies based on $b_1 = f_1(x_1, x_2)$ (**Left**), $b_2 = f_2(b_1, x_3)$ (**Middle**), and $t = f_3(b_2, x_4)$ (**Right**).

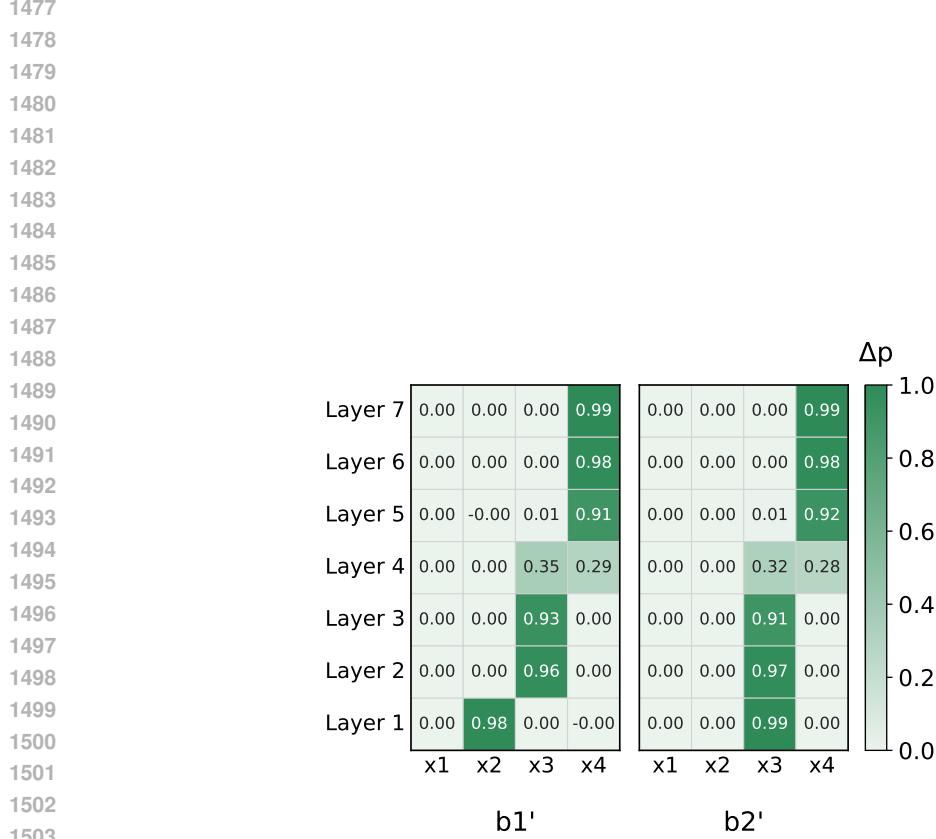


Figure 14: Causal tracing results showing indirect effect heatmap for 3-HOP task. **Left:** perturbation with different (x_1, x_2) pair leading to different b_1 value. **Right:** perturbation leading to different $b_2 = f_2(b_1, x_3)$ value.

1505
1506
1507
1508
1509
1510
1511

1512 **E PROOFS: ASYMPTOTICALLY PERFECT COVERAGE IN 2-HOP TASK**
15131514 We establish a scaling-law analysis for the 2-HOP task (as illustrated in Fig. 2a) within our formal
1515 framework for understanding pattern matching (Sec. 3). While a simplified statement (Theorem 6.1)
1516 is already presented in the main text, we provide the complete results of our analyses here in great
1517 detail, along with their rigorous and self-contained proofs. This appendix is long; we have organized
1518 it into the following structure. FIXED
15191520 • In App. E.1, we first review and (re)define the problem setting for 2-HOP task. Since the
1521 functional (k -)equivalence at indices 1 and 2 matters for the 2-HOP task, we argue that it is
1522 enough for us to focus on $I = \{1, 2\}$, thereby simplifying some key definitions (e.g., substitution
1523 graph, k -coverage) accordingly.1524 • In App. E.2, we state and prove our main theorems that characterize the number of training data
1525 sufficient for a learner to achieve a perfect in-domain generalization with high probability. There
1526 are two main theorems: one is for $k \geq 2$ (Theorem E.7) and another is for $k = 1$ (Theorem E.8).
1527 As a consequence, we further assume a specific regime of set cardinalities—namely, where all
1528 token sets have $\Theta(n)$ elements—and provide Corollary E.9, combining both cases for $k \geq 2$
1529 and $k = 1$. FIXED
15301531 – We also claim that our results are nearly *tight*, especially for $k \geq 2$. It is done by
1532 constructing a worst-case subclass of 2-HOP problems in which, given a dataset slightly
1533 smaller than our upper bound, the learner fails in achieving a perfect ID generalization with
1534 high probability (Theorem E.16 and Corollary E.17). FIXED
15351536 Theorem 6.1 in the main text is indeed a simplified combination of Corollaries E.9 and E.17.
15371538 • In App. E.3, we provide (almost) all postponed proofs of lemmas used in App. E.2. We first
1539 prove that the *connectivity* of all b -evidence graphs (Def. E.5), which are the intermediate-state-
1540 specific induced subgraphs of the substitution graph, is a sufficient condition for the perfect
1541 in-domain generalization we want to show: see Lemma E.10.1542 – App. E.3.1 is dedicated to explaining the renowned *Poissonization* technique, rigorously
1543 proving one of our main lemmas, Lemma E.12. Under a usual fixed-sized dataset sampling
1544 scheme, the edge connections of the substitution graph are not guaranteed to be independent.
1545 Nevertheless, the Poissonization technique enables us to disentangle these dependencies,
1546 thereby simplifying our analysis.1547 – App. E.3.2 reviews the binomial random k -intersection graphs, a topic in the random graph
1548 theory literature. We bring some results on the threshold functions for their connectivity
1549 (without bringing their involved proofs). It is crucial because we show that the b -evidence
1550 graphs can be regarded as binomial random k -intersection graphs under the Poissonization.1551 **E.1 PRELIMINARIES: DEFINITIONS, ASSUMPTIONS, AND FACTS**
15521553 **Ground-truth mapping.** Consider a ground-truth mapping $f : \mathbb{X} = \mathcal{X}_1 \times \mathcal{X}_2 \times \mathcal{X}_3 \rightarrow Y$ defined as
1554 $f(x_1, x_2, x_3) = f_2(f_1(x_1, x_2), x_3)$, a *two-hop* composition of primitive functions $f_1 : \mathcal{X}_1 \times \mathcal{X}_2 \rightarrow B$
1555 and $f_2 : B \times \mathcal{X}_3 \rightarrow Y$. Here, the set $B := f_1(\mathcal{X}_1 \times \mathcal{X}_2)$ is a collection of *intermediate states*,
1556 implicitly assuming surjectivity of f_1 without loss of generality.1557 **Train dataset.** We take a train dataset D by independently sampling input sequences N times
1558 from the uniform distribution over $\mathbb{X} = \mathcal{X}_1 \times \mathcal{X}_2 \times \mathcal{X}_3$. For the sake of simplicity, we allow
1559 duplicates/replacements of train samples in D , thereby considering D as a multiset.
15601561 We find it helpful in our analysis to define a random vector $(Z_x)_{x \in \mathbb{X}}$ that has a one-to-one correspondence
1562 with a dataset constructed by sampling with replacement as described below.
15631564 **Proposition E.1.** *Given a train dataset D and for each $x \in \mathbb{X}$, define Z_x as the sampled count of x
1565 (i.e., the number of identical duplicates equal to x) in D . Then, if D is generated by with-replacement
1566 sampling N times from \mathbb{X} , the random vector $(Z_x)_{x \in \mathbb{X}}$ follows a multinomial distribution with
1567 parameters $n = N$ and $p_x = \frac{1}{|\mathbb{X}|}$ ($\forall x \in \mathbb{X}$). That is, for all collections of integers $z_x \geq 0$ ($\forall x \in \mathbb{X}$)
1568 such that $\sum_{x \in \mathbb{X}} z_x = N$,*

1569
$$\mathbb{P}(Z_x = z_x \ \forall x \in \mathbb{X}) = \frac{N!}{|\mathbb{X}|^N \cdot \prod_{x \in \mathbb{X}} (z_x!)}$$

1570 The one-to-one correspondence between D and $(Z_x)_{x \in \mathbb{X}}$ is straightforward: their realizations
1571 uniquely determine each other (up to the order of sampling).
1572

1566 **A learner making predictions using functional k -equivalence.** Let us consider an artificial
 1567 learner that is perfectly trained on D (i.e., always predicts correctly on D). We suppose that the
 1568 learner confidently predicts the output for the elements in k -coverage of D (defined with functional
 1569 k -equivalence), while producing a random (or unconfident) prediction outside of it. However, the
 1570 confident prediction is not necessarily correct in general. Luckily, since we suppose a clear two-hop
 1571 compositional structure of the task, the confident predictions based on functional equivalences at
 1572 indices $I = \{1, 2\}$ are guaranteed to be correct. Hence, to study the scope of pattern-matching-based
 1573 in-domain (ID) generalization as confident and correct predictions on unseen inputs, we restrict the
 1574 scope of our analysis to the index set $\{1, 2\}$ for our analysis in this appendix.

1575 To formalize how far the learner can generalize (Def. E.4) and how far we hope the learner to
 1576 generalize (Def. E.2), let us (re)define the key terms for our analysis of the two-hop task, based on
 1577 the restriction with respect to the index set $I = \{1, 2\}$. For brevity, let us write $x_{12} := (x_1, x_2) \in$
 $\mathcal{X}_{12} := \mathcal{X}_1 \times \mathcal{X}_2$.

1578 **Definition E.2** (In-domain closure, in terms of $I = \{1, 2\}$). For a train dataset D , its **in-domain**
 1579 **closure** \overline{D} is defined as

$$1580 \overline{D} = \{(x_{12}, x_3) \in \mathbb{X} : \exists (x'_{12}, x'_3) \in \mathbb{X} \text{ such that } f_1(x_{12}) = f_1(x'_{12}), (x'_{12}, x_3) \in D, \text{ and } (x_{12}, x'_3) \in D\}.$$

1582 Also, its element $(x_{12}, x_3) \in \overline{D}$ is said to be an **in-domain data**.

1583

1584 According to the definition above, the in-domain closure \overline{D} contains all input sequences (x_{12}, x_3)
 1585 such that (i) its subsequences $x_{12} (= x_I)$ and $x_3 (= x_{I^c})$ has already been observed in the train dataset
 1586 D , and (ii) its output can be inferred using functional equivalence at indices $I = \{1, 2\}$, namely,
 1587 $f(x_{12}, x_3) = f(x'_{12}, x_3)$ for a training data $(x'_{12}, x_3) \in D$. Hence, the set \overline{D} is the largest set of
 1588 input sequences whose output can be correctly predicted using the exact task structure (e.g., the
 1589 functional equivalence at $\{1, 2\}$). We also remark that it is obvious to see that $D \subset \overline{D}$. We wish
 1590 the learner would acquire such prediction capabilities from a training dataset. Nevertheless, the task
 1591 structure is not directly accessible to our learner since it can only identify the necessary functional
 1592 relationships through functional k -equivalences (Def. 3.1).

1593 On the other hand, the k -coverage quantifies how far the assumed learner can actually make correct
 1594 predictions using the observed functional k -equivalences from the training dataset D . The definition
 1595 (Def. E.4) resembles that of the connectivity of a graph with a vertex set \mathcal{X}_{12} .

1596 Recall that in our main text, we defined a *substitution graph* with the entire input space \mathbb{X} as its vertex
 1597 set since we aim to check all functional equivalences across all index sets. However, since we are
 1598 particularly interested in the functional equivalences at $I = \{1, 2\}$, we can simplify its definition as
 1599 below.

1600 **Definition E.3** (Substitution graph, in terms of $I = \{1, 2\}$). For a train dataset D and a positive
 1601 integer k , we define a **substitution graph** (in terms of $I = \{1, 2\}$) as $\mathcal{G}_\bullet^{(D,k)} = (V_\bullet, E_\bullet^{(D,k)})$. Here,
 1602 the vertex set is $V_\bullet := \mathcal{X}_{12}$ and the edge set is

$$1603 E_\bullet^{(D,k)} := \{\{x_{12}, x'_{12}\} \subset V_\bullet : x_{12} \neq x'_{12} \text{ and } |S_f(x_{12}, x'_{12} \mid D)| \geq k\},$$

1604 where the set $S_f(x_{12}, x'_{12} \mid D)$ is defined as

$$1605 S_f(x_{12}, x'_{12} \mid D) := \{\bar{x}_3 \in \mathcal{X}_3 : f(x_{12}, \bar{x}_3) = f(x'_{12}, \bar{x}_3), (x_{12}, \bar{x}_3) \in D, (x'_{12}, \bar{x}_3) \in D\}.$$

1606

1607 In other words, in the substitution graph $\mathcal{G}_\bullet^{(D,k)}$, two vertices x_{12} and x'_{12} are adjacent if they have at
 1608 least k distinct co-occurrences in D . With this definition, we define the k -coverage as follows.

1609 **Definition E.4** (k -coverage, in terms of $I = \{1, 2\}$). For a train dataset D and a positive integer k ,
 1610 the **k -coverage** of D (in terms of $I = \{1, 2\}$) is a subset of \mathbb{X} defined as

1611 Cover $_k(D)$

$$1612 \stackrel{\text{def}}{=} \{(x_{12}, x_3) \in \mathbb{X} : \exists x'_{12} \in \mathcal{X}_{12} \text{ connected to } x_{12} \text{ with a path in } \mathcal{G}_\bullet^{(D,k)}, \text{ and } (x'_{12}, x_3) \in D\}$$

$$1613 = \{(u_0, x_3) \in \mathbb{X} : \exists \ell \geq 0, \exists u_0, u_1, \dots, u_\ell \in \mathcal{X}_{12} \text{ such that } \{u_{i-1}, u_i\} \in E_\bullet^{(D,k)} \ (\forall i \in [\ell]) \ \& \ (u_\ell, x_3) \in D\},$$

1614 where $[\ell] = \{1, 2, 3, \dots, \ell\}$. Also, an element $(x_{12}, x_3) \in \text{Cover}_k(D)$ is said to be **covered**.

1615

1616 Again, we can easily verify that $D \subset \text{Cover}_k(D)$ by choosing $\ell = 0$ in the definition above. However,
 1617 the inclusion relation between the in-domain coverage (\overline{D}) and the k -coverage ($\text{Cover}_k(D)$) cannot

1620 be explicitly determined in general. From the next sub-section, we aim to analyze when (or, with how
 1621 large D) we do have a relation “ $\overline{D} \subset \text{Cover}_k(D)$ ”, which we call **perfect coverage** of in-domain
 1622 data, with high probability (with respect to the randomness of D).
 1623

1624 We additionally introduce some useful symbols for our later proofs. We denote by B_D the set of all
 1625 intermediate states observed in D : i.e.,
 1626

$$B_D := \{b \in B : \exists (x_{12}, x_3) \in D \text{ such that } f_1(x_{12}) = b\}.$$

1627 Moreover, we introduce the *b-evidence graph* $\mathcal{G}_b^{(D,k)}$, defined as a subgraph of $\mathcal{G}_\bullet^{(D,k)}$ induced by the
 1628 set $V_b = f_1^{-1}(\{b\}) := \{x_{12} \in \mathcal{X}_{12} : f_1(x_{12}) = b\} \subset V_\bullet$ of vertices sharing the same intermediate
 1629 state $b \in B$.
 1630

Definition E.5 (Evidence graphs). For a train dataset D , a positive integer k , and an intermediate
 1631 state $b \in B$, we define a **b-evidence graph** (in terms of $I = \{1, 2\}$) as $\mathcal{G}_b^{(D,k)} = (V_b, E_b^{(D,k)})$. Here,
 1632 the vertex set is $V_b := f_1^{-1}(\{b\})$ and the edge set is
 1633

$$E_b^{(D,k)} := \{\{x_{12}, x'_{12}\} \subset V_b : x_{12} \neq x'_{12} \text{ and } |S(x_{12}, x'_{12} \mid D)| \geq k\}, \quad (5)$$

1634 where the set $S(x_{12}, x'_{12} \mid D)$ is defined as
 1635

$$S(x_{12}, x'_{12} \mid D) := \{\bar{x}_3 \in \mathcal{X}_3 : (x_{12}, \bar{x}_3) \in D, (x'_{12}, \bar{x}_3) \in D\}. \quad (6)$$

1636 Lastly, we introduce an assumption that will be assumed only when we claim the tightness of our
 1637 sample complexity upper bound results.
 1638

Assumption E.6. The learner uses the parameter $k \geq k_* + 1$, where $k_* \geq 0$ is defined as
 1639

$$k_* = \max_{(b, b') \in B^2} |H(b, b')| \quad \text{subject to } b \neq b',$$

1640 and $H(b, b') = \{x_3 \in \mathcal{X}_3 : f_2(b, x_3) = f_2(b', x_3)\}$.
 1641

1642 According to the assumption above, $f_2(b, x_3) = f_2(b', x_3)$ can hold for more than k_* elements in
 1643 \mathcal{X}_3 only when $b = b'$. It is quite a natural assumption for general 2-HOP tasks since it naturally
 1644 eliminates pathological examples that can barely be regarded as 2-HOP tasks (e.g., a constant function
 1645 f on \mathbb{X}).
 1646

1647 The assumption above additionally assumes that our learner *pessimistically* recognizes the functional
 1648 equivalences between $\{1, 2\}$ -subsequences, by using $k \geq k_* + 1$. If $k = k_* + 1$, the learner is
 1649 using the precise value of k to recognize functionally equivalent subsequences sharing the same
 1650 intermediate state; a higher value of k indicates a more pessimistic learner. Because of this pessimism,
 1651 once the learner recognizes that x_{12} and x'_{12} are functionally k -equivalent (i.e., $\{x_{12}, x'_{12}\} \in E_\bullet^{(D,k)}$),
 1652 it is guaranteed that x_{12} and x'_{12} share the same intermediate state (i.e., $f_1(x_{12}) = f_1(x'_{12})$). More
 1653 importantly, it implies that there must be no edges (in $E_\bullet^{(D,k)}$) connecting two graphs $\mathcal{G}_b^{(D,k)}$ and
 1654 $\mathcal{G}_{b'}^{(D,k)}$ for distinct $b, b' \in B$; otherwise, there must be a pair of subsequences $x_{12} \in V_b$ and $x'_{12} \in V_{b'}$
 1655 that are functionally k -equivalent, contradicting the assumption.
 1656

1657 Even though Assumption E.6 appears to pertain to the learning rule of the learner, it can also be
 1658 interpreted as an assumption about the ground-truth mapping, which necessitates $k_* \leq k - 1$ for a
 1659 given $k \geq 1$.
 1660

1662 E.2 MAIN THEOREM: SAMPLE COMPLEXITY BOUND FOR PERFECT COVERAGE WITH HIGH 1663 PROBABILITY

1664 The ultimate goal of this appendix is to characterize a sufficient number of training data $|D|$ (i.e., sam-
 1665 ple complexity upper bound) so that the k -coverage includes all in-domain data, i.e., $\overline{D} \subset \text{Cover}_k(D)$,
 1666 with high probability. Here, we will state and prove our main theorems, Theorem E.7 (for $k \geq 2$) and
 1667 Theorem E.8 (for $k = 1$), which are followed by a simplified combination of them (Corollary E.9).
 1668 Soon after, we will also claim the near-tightness of these theorems by showing that, for $k \geq 2$, the
 1669 training datasets slightly smaller than the obtained sample complexity are sufficient to guarantee
 1670 $\overline{D} \not\subset \text{Cover}_k(D)$ with high probability (Theorem E.16 and Corollary E.17). Although we present
 1671 the proofs of the theorems here, the complete proofs of most lemmas used in the main proofs are
 1672 postponed to the later part of this appendix (App. E.3).
 1673

1674 Here are the statements of our main theorems for the sample complexity upper bounds, which will be
 1675 proved soon after.

1676 FIXED

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

Theorem E.7 (Sample Complexity Upper Bound, $k \geq 2$). *Under the two-hop task setup described in App. E.1, suppose that $k \geq 2$ is a universal constant. Let $\hat{n} := \min_{b \in B_D} |V_b|$ and $\check{n} := \max_{b \in B_D} |V_b|$, and assume that $|\mathcal{X}_3| = \Omega(\check{n})$. Fix any $\delta > 0$. Then, there exists $N_\delta > 0$ satisfying*

$$N_\delta \leq O \left(\max \left\{ \left(\frac{k! (\ln \hat{n})}{\hat{n}} \right)^{\frac{1}{2k}} \cdot |\mathcal{X}_1 \times \mathcal{X}_2| \sqrt{|\mathcal{X}_3|}, \ln \left(\frac{1}{\delta} \right) \right\} \right)$$

such that, for any large enough \hat{n} and any integer $N > N_\delta$, we have

$$\mathbb{P}_N (\overline{D} \subset \text{Cover}_k(D)) \geq 1 - \delta.$$

Here, \mathbb{P}_N is the probability measure for the train dataset D constructed by uniformly randomly sampling its elements N times, allowing duplicates, independently from $\mathbb{X} = \mathcal{X}_1 \times \mathcal{X}_2 \times \mathcal{X}_3$.

Theorem E.8 (Sample Complexity Upper Bound, $k = 1$). *Under the two-hop task setup described in App. E.1, suppose that $k = 1$. Let $\hat{n} := \min_{b \in B_D} |V_b|$ and $\check{n} := \max_{b \in B_D} |V_b|$, and assume that $|\mathcal{X}_3| = O(\check{n})$. Fix any $\delta > 0$. Then, there exists $N_\delta > 0$ satisfying*

$$N_\delta \leq O \left(\max \left\{ (\ln \check{n}) \cdot |\mathcal{X}_1 \times \mathcal{X}_2|, \ln \left(\frac{1}{\delta} \right) \right\} \right)$$

such that, for any large enough \hat{n} and any $N > N_\delta$, we have

$$\mathbb{P}_N (\overline{D} \subset \text{Cover}_k(D)) \geq 1 - \delta.$$

We use the same definition of \mathbb{P}_N as in Theorem E.7.

In particular, these two theorems can be easily combined (hence the detailed proof is skipped) in the regime of almost balanced cardinalities as $\Theta(n)$, which is described in the following corollary.

Corollary E.9 (Power-Law Sample Complexity Upper Bound, Simple). *Under the two-hop task setup described in App. E.1, Assume that \mathcal{X}_1 , \mathcal{X}_2 , \mathcal{X}_3 , and V_b ($\forall b \in B$) are all the sets of size $\Theta(n)$. Fix any $k \geq 1$ and any $\delta > 0$. Then, there exists $N_\delta(n) > 0$ satisfying*

$$N_\delta(n) \leq O \left(\max \left\{ n^{2.5 - \frac{0.5}{k}} \cdot (k! \cdot \ln n)^\gamma, \ln \frac{2}{\delta} \right\} \right), \quad \text{with } \gamma = \begin{cases} 1, & \text{for } k = 1; \\ \frac{1}{2k}, & \text{for } k \geq 2, \end{cases}$$

such that, for any large enough n and any $N > N_\delta(n)$, the learner with a uniformly randomly sampled training dataset D (with replacements) achieves a perfect coverage of in-domain data, i.e., $\overline{D} \subset \text{Cover}_k(D)$, with probability at least $1 - \delta$.

Now, we prove our main theorem for $k \geq 2$ (Theorem E.7). After that, we will present the proof of the other case ($k = 1$, Theorem E.8), which follows a similar plot except for a few different steps at the end.

Proof of Theorem E.7. We begin the proof with the following observation: a sufficient condition for a perfect coverage is that every b -evidence graph (Def. E.5) is a connected graph.

Lemma E.10. *If all $\mathcal{G}_b^{(D,k)}$ are connected graphs ($\forall b \in B_D$), then we have $\overline{D} \subset \text{Cover}_k(D)$.*

Refer to App. E.3 for the proof. Thanks to the lemma above, it suffices to show the following with sufficiently large $N = |D|$:

$$\mathbb{P}_N (\overline{D} \not\subset \text{Cover}_k(D)) \stackrel{\text{Lemma E.10}}{\leq} \mathbb{P}_N (\exists b \in B_D \text{ such that } \mathcal{G}_b^{(D,k)} \text{ is disconnected}) \leq \delta.$$

To this end, consider the multinomial random vector $(Z_x)_{x \in \mathbb{X}}$ corresponding to a randomly sampled training dataset D , as defined in Proposition E.1. Define a property \mathcal{C} as

$$(Z_x)_{x \in \mathbb{X}} \in \mathcal{C} \iff \mathcal{G}_b^{(D,k)} \text{ is connected } \forall b \in B_D. \quad (7)$$

1728 Then, we want to compute an upper bound of a probability $\mathbb{P}_N((Z_{\mathbf{x}})_{\mathbf{x} \in \mathbb{X}} \notin \mathcal{C})$. Observe that the
 1729 property \mathcal{C} is a *non-decreasing* property (Def. E.11): if a vector $(Z_{\mathbf{x}})_{\mathbf{x} \in \mathbb{X}}$ satisfies \mathcal{C} , then it still
 1730 satisfies \mathcal{C} after increasing in its entries by non-negative amounts. In other words, the negation of \mathcal{C}
 1731 (“not satisfying \mathcal{C} ”) is a *non-increasing* property. This is because adding a data point to the training
 1732 dataset D does not remove any edge from all evidence graphs, thereby preserving the connectivity. In
 1733 general, we define the *monotone* property of vectors as below.

1734 **Definition E.11** (Monotone property). We refer to a property \mathcal{A} of m -dimensional vectors as a
 1735 **non-decreasing property** when, for any vector $(\Delta_1, \dots, \Delta_m)$ with non-negative entries $\Delta_i \geq 0$
 1736 ($\forall i = 1, \dots, m$),

$$1737 (z_1, \dots, z_m) \in \mathcal{A} \implies (z_1 + \Delta_1, \dots, z_m + \Delta_m) \in \mathcal{A}. \quad (\text{Non-Decreasing Property})$$

1738 On the other hand, we define **non-increasing property** \mathcal{A} as what satisfies

$$1740 (z_1, \dots, z_m) \in \mathcal{A} \implies (z_1 - \Delta_1, \dots, z_m - \Delta_m) \in \mathcal{A}. \quad (\text{Non-Increasing Property})$$

1741 Taking advantage of the monotonicity, we can apply the Poissonization technique (App. E.3.1) to
 1742 obtain an upper bound on the probability $\mathbb{P}_N((Z_{\mathbf{x}})_{\mathbf{x} \in \mathbb{X}} \notin \mathcal{C})$. The Poissonization technique we use
 1743 is summarized as the lemma below, which will be proved in App. E.3.1:

1744 **Lemma E.12** (De-Poissonizaiton Lemma for Monotone Multinomial Events). *Fix any $n \geq 1$. Define*

$$1745 P_n := \mathbb{P}_{(Z_1, \dots, Z_m) \sim \text{Multinomial}(n; p_1, \dots, p_m)}((Z_1, \dots, Z_m) \in \mathcal{A}).$$

1746 Let \mathcal{A} be a non-decreasing property (Def. E.11) of m -dimensional vector. Then, we have an upper
 1747 bound and a lower bound for P_n as follows:

$$1750 P_n \leq \mathbb{P}_{\text{Po}(n+\varepsilon)}((Z_1, \dots, Z_m) \in \mathcal{A}) + \exp\left(-\frac{(3-c)\varepsilon^2}{6n}\right), \quad (\forall c \in (0, 3), \forall \varepsilon \in (0, cn))$$

$$1752 P_n \geq \mathbb{P}_{\text{Po}(n-\varepsilon)}((Z_1, \dots, Z_m) \in \mathcal{A}) - \exp\left(-\frac{\varepsilon^2}{2n}\right). \quad (\forall \varepsilon \in (0, n))$$

1754 If \mathcal{A} is a non-increasing property (Def. E.11), then we have similar upper and lower bounds for P_n :

$$1755 P_n \leq \mathbb{P}_{\text{Po}(n-\varepsilon)}((Z_1, \dots, Z_m) \in \mathcal{A}) + \exp\left(-\frac{\varepsilon^2}{2n}\right), \quad (\forall \varepsilon \in (0, n))$$

$$1757 P_n \geq \mathbb{P}_{\text{Po}(n+\varepsilon)}((Z_1, \dots, Z_m) \in \mathcal{A}) - \exp\left(-\frac{(3-c)\varepsilon^2}{6n}\right). \quad (\forall c \in (0, 3), \forall \varepsilon \in (0, cn))$$

1759 Here, we denote by $\mathbb{P}_{\text{Po}(\lambda)}$ the probability measure under $Z_i \stackrel{\text{indep.}}{\sim} \text{Poisson}(\lambda p_i)$ ($\forall i = 1, \dots, m$).

1761 In particular, considering the disconnectedness ($\exists b \in B_D$) as a non-increasing property, we have

$$1763 \mathbb{P}_N\left(\exists b \in B_D \text{ such that } \mathcal{G}_b^{(D,k)} \text{ is disconnected}\right) \\ 1764 \leq \mathbb{P}_{\text{Po}(N-\varepsilon)}\left(\exists b \in B_D \text{ such that } \mathcal{G}_b^{(D,k)} \text{ is disconnected}\right) + \exp\left(-\frac{\varepsilon^2}{2N}\right) \\ 1765 \leq \sum_{b \in B_D} \mathbb{P}_{\text{Po}(N-\varepsilon)}\left(\mathcal{G}_b^{(D,k)} \text{ is disconnected}\right) + \exp\left(-\frac{\varepsilon^2}{2N}\right) \quad (\because \text{union bound})$$

1770 for any positive number $\varepsilon < N$, where $\mathbb{P}_{\text{Po}(N-\varepsilon)}$ is the probability measure under i.i.d. Poisson
 1771 random variables $Z_{\mathbf{x}} \sim \text{Poisson}\left(\frac{N-\varepsilon}{|\mathbb{X}|}\right)$ ($\forall \mathbf{x} \in \mathbb{X}$). Let us take $\varepsilon = \sqrt{2N \ln\left(\frac{2}{\delta}\right)}$, which is smaller
 1772 than N by our choice of N_{δ} and ensures that

$$1774 \exp\left(-\frac{\varepsilon^2}{2N}\right) = \exp\left(-\ln\left(\frac{2}{\delta}\right)\right) = \frac{\delta}{2}.$$

1777 Now, we claim that each b -evidence graph $\mathcal{G}_b^{(D,k)}$ is a binomial random k -intersection
 1778 graph (App. E.3.2) for every $b \in B_D$, under the Poissonization governed by $\mathbb{P}_{\text{Po}(N-\varepsilon)}$.

1779 **Lemma E.13** (Evidence Graphs are Binomial k -Intersection Graphs under Poissonization). *Let
 1780 any $b \in B_D$. Consider a vector $(Z_{\mathbf{x}})_{\mathbf{x} \in \mathbb{X}}$ associated with a dataset D (i.e., an input sequence \mathbf{x} is
 1781 sampled $Z_{\mathbf{x}}$ times in D). Let $\mathbb{P}_{\text{Po}(\lambda)}$ be a probability measure for $Z_{\mathbf{x}} \stackrel{\text{i.i.d.}}{\sim} \text{Poisson}(\lambda/|\mathbb{X}|)$. Then,*

under $\mathbb{P}_{\text{Po}(\lambda)}$, the b -evidence graph $\mathcal{G}_b^{(D,k)}$ (Def. E.5) is an instance of binomial random k -intersection graph $\mathcal{G}^{(k)}(n_b, m, p)$ with parameters

$$n_b = |V_b|, \quad m = |\mathcal{X}_3|, \quad p = 1 - \exp\left(-\frac{\lambda}{|\mathbb{X}|}\right).$$

Based on such an observation, we can use the following seminal result about the connectivity of binomial random k -intersection graphs with $p = 1 - \exp(-(N - \varepsilon)/|\mathbb{X}|)$. In particular, we will use only the “ $k \geq 2$ ” part (which tightly matches our assumption $m = \Omega(n_b)$ ($\forall b \in B_D$)) of the lemma below:

Lemma E.14 (Zhao et al., 2014, Theorem 2; Zhao et al., 2017, Theorem 1 & Remark 1). *Fix any $k \geq 1$. Suppose that*

$$m = \begin{cases} \Omega\left(\min\left\{n(\ln n)^5, n^\rho\right\}\right), & \text{if } k = 1, \text{ for any } \rho > 1; \\ \Omega(n), & \text{if } k \geq 2, \end{cases}$$

and

$$p = \left(\frac{k! (\ln n + \alpha_n)}{n}\right)^{\frac{1}{2k}} \cdot \frac{1}{\sqrt{m}} \quad (8)$$

for any sequence $\{\alpha_n\}$ which attains a limit $\alpha_\infty \in [-\infty, +\infty]$ as $n \rightarrow \infty$. Then,

$$\lim_{n \rightarrow \infty} \mathbb{P}\left(\mathcal{G}^{(k)}(n, m, p) \text{ is connected}\right) = \lim_{n \rightarrow \infty} \mathbb{P}\left(\min \deg \mathcal{G}^{(k)}(n, m, p) \geq 1\right) = \exp(-e^{-\alpha_\infty}),$$

where we compute $\exp(-e^{(-\infty)}) = 0$ and $\exp(-e^{(+\infty)}) = 1$.

Now, we aim to find a sufficient condition for N to have

$$\sum_{b \in B_D} \mathbb{P}_{\text{Po}(N - \varepsilon)}\left(\mathcal{G}_b^{(D,k)} \text{ is disconnected}\right) \leq \frac{\delta}{2}. \quad (9)$$

Let us choose the sequence $\alpha_n = \ln n$ in Lemma E.14, which guarantees that

$$\mathbb{P}(\mathcal{G}^{(k)}(n, m, p) \text{ is connected}) \rightarrow 1 \quad \text{as } n \rightarrow \infty.$$

From the definition of the limit of a sequence, for any choice of $\delta > 0$, let us define $n_0(\delta) > e > 0$ such that

$$\mathbb{P}(\mathcal{G}^{(k)}(n, m, p) \text{ is disconnected}) \leq \delta, \quad \forall n > n_0(\delta).$$

Then, choosing all $n_b = |V_b|$ to be greater than $n_0\left(\frac{\delta}{2|B_D|}\right)$, we yield the bound (9). Note that a choice of p larger than the threshold in Eq. (8) will never change that $\mathbb{P}(\mathcal{G}^{(k)}(n, m, p) \text{ is connected}) \rightarrow 1$ as $n \rightarrow \infty$. Thus, since we choose $\alpha_n = \ln n$, it suffices to have

$$p = 1 - \exp\left(-\frac{N - \varepsilon}{|\mathbb{X}|}\right) \geq \left(\frac{k! (2 \ln n_b)}{n_b}\right)^{\frac{1}{2k}} \cdot \frac{1}{\sqrt{|\mathcal{X}_3|}}$$

for each n_b ($\forall b \in B_D$). Since $1 - e^{-u} \geq (1 - \frac{1}{e})u$ for $0 < u < 1$ and $\frac{\ln u}{u}$ is a decreasing function for large enough $u > e$, it suffices to have

$$\left(1 - \frac{1}{e}\right) \frac{N - \varepsilon}{|\mathbb{X}|} \geq \left(\frac{k! (2 \ln \hat{n})}{\hat{n}}\right)^{\frac{1}{2k}} \cdot \frac{1}{\sqrt{|\mathcal{X}_3|}}$$

for $\hat{n} := \min_{b \in B_D} n_b$. Plugging in $\varepsilon = \sqrt{2N \ln(\frac{2}{\delta})}$ and $|\mathbb{X}| = |\mathcal{X}_1 \times \mathcal{X}_2| |\mathcal{X}_3|$, we have

$$N - \sqrt{2N \ln\left(\frac{2}{\delta}\right)} \geq \left(\frac{e}{e-1}\right) \cdot \left(\frac{k! (2 \ln \hat{n})}{\hat{n}}\right)^{\frac{1}{2k}} \cdot |\mathcal{X}_1 \times \mathcal{X}_2| \sqrt{|\mathcal{X}_3|},$$

1836 which is satisfied by

$$1838 \quad N \geq 4 \cdot \max \left\{ \left(\frac{e}{e-1} \right) \cdot \left(\frac{k! (2 \ln \hat{n})}{\hat{n}} \right)^{\frac{1}{2k}} \cdot |\mathcal{X}_1 \times \mathcal{X}_2| \sqrt{|\mathcal{X}_3|}, \ln \left(\frac{2}{\delta} \right) \right\}.$$

1841 In conclusion, for large enough $\hat{n} > \max \left\{ n_0 \left(\frac{\delta}{2|B_D|} \right), e \right\}$, provided that the training dataset size N
 1842 satisfies the inequality above, we finally have

$$1844 \quad \mathbb{P}_N \left(\exists b \in B_D \text{ such that } \mathcal{G}_b^{(D,k)} \text{ is disconnected} \right) \\ 1845 \quad \leq \sum_{b \in B_D} \mathbb{P}_{\text{Po}(N-\varepsilon)} \left(\mathcal{G}_b^{(D,k)} \text{ is disconnected} \right) + \exp \left(-\frac{\varepsilon^2}{2N} \right) \\ 1846 \quad \leq \frac{\delta}{2} + \frac{\delta}{2} = \delta.$$

1850 This concludes the proof of the theorem. ■

1852 *Proof of Theorem E.8.* Even for $k = 1$, we follow almost the same proof as that of Theorem E.7,
 1853 except for the last few steps. Namely, we again observe that every $\mathcal{G}_b^{(D,1)}$ is a binomial random
 1854 1-intersection graph $\mathcal{G}^{(1)}(n_b, m, p)$ with parameters $n_b = |V_b|$, $m = |\mathcal{X}_3|$, and $p = 1 - \exp(-(N -$
 1855 $\varepsilon)/|\mathbb{X}|)$. To guarantee the union bound in Eq. (9), however, we use a different lemma: Lemma E.15
 1856 (instead of Lemma E.14). In particular, we will use only the “ $\rho \leq 1$ ” part (which tightly matches our
 1857 assumption $m = O(n_b)$ ($b \in B_D$)) of the lemma below:

1859 **Lemma E.15** (Singer, 1995, Propositions 3.1–2, Theorem 3.3). *Let $k = 1$. Suppose that $m = n^\rho$ for
 1860 $\rho > 0$ and*

$$1861 \quad p = \begin{cases} \frac{\ln n + \alpha_n}{m} & \text{for } \rho \leq 1; \\ \sqrt{\frac{\ln n + \alpha_n}{mn}} & \text{for } \rho > 1, \end{cases}$$

1866 *for any sequence $\{\alpha_n\}$ which attains a limit $\alpha_\infty \in \{-\infty, +\infty\}$ as $n \rightarrow \infty$. Then,*

$$1868 \quad \lim_{n \rightarrow \infty} \mathbb{P}(\mathcal{G}^{(1)}(n, m, p) \text{ is connected}) = \lim_{n \rightarrow \infty} \mathbb{P} \left(\min \deg \mathcal{G}^{(1)}(n, m, p) \geq 1 \right) = \begin{cases} 0, & \text{if } \alpha_\infty = -\infty; \\ 1, & \text{if } \alpha_\infty = +\infty. \end{cases}$$

1870 Again, let us choose the sequence $\alpha_n = \ln n$ in Lemma E.15, which guarantees that
 1871 $\mathbb{P}(\mathcal{G}^{(1)}(n, m, p) \text{ is connected}) \rightarrow 1$ as $n \rightarrow \infty$. From the definition of the limit of a sequence,
 1872 for any choice of $\delta > 0$, let us define $n_0(\delta) > 1$ such that
 1873

$$1874 \quad \mathbb{P}(\mathcal{G}^{(1)}(n, m, p) \text{ is disconnected}) \leq \delta, \quad \forall n > n_0(\delta).$$

1876 Then, choosing all $n_b = |V_b|$ (and thus $\hat{n} = \min_{b \in B_D} n_b$) to be greater than $n_0 \left(\frac{\delta}{2|B_D|} \right)$, we yield
 1877 the same bound (9). Now, by our choice $\alpha_n = \ln n$, it suffices to have

$$1879 \quad p = 1 - \exp \left(-\frac{N - \varepsilon}{|\mathbb{X}|} \right) \geq \frac{2 \ln n_b}{|\mathcal{X}_3|}$$

1881 for each n_b ($\forall b \in B_D$). Since $1 - e^{-u} \geq (1 - \frac{1}{e})u$ for $0 < u < 1$ and $\ln u$ is an increasing function
 1882 for $u > 1$, it suffices to have

$$1883 \quad \left(1 - \frac{1}{e} \right) \frac{N - \varepsilon}{|\mathbb{X}|} \geq \frac{2 \ln \check{n}}{|\mathcal{X}_3|}$$

1886 for $\check{n} := \max_{b \in B_D} n_b$. Plugging in $\varepsilon = \sqrt{2N \ln \left(\frac{2}{\delta} \right)}$ and $|\mathbb{X}| = |\mathcal{X}_1 \times \mathcal{X}_2| |\mathcal{X}_3|$, we have

$$1888 \quad N - \sqrt{2N \ln \left(\frac{2}{\delta} \right)} \geq \left(\frac{e}{e-1} \right) (2 \ln \check{n}) \cdot |\mathcal{X}_1 \times \mathcal{X}_2|,$$

1890 which is satisfied by

$$1892 \quad N \geq 4 \cdot \max \left\{ \left(\frac{e}{e-1} \right) \cdot (2 \ln \check{n}) \cdot |\mathcal{X}_1 \times \mathcal{X}_2|, \ln \left(\frac{2}{\delta} \right) \right\}.$$

1894 In conclusion, for large enough $\check{n} \geq \hat{n} > \max \left\{ n_0 \left(\frac{\delta}{2|B_D|} \right), 1 \right\}$, provided that the training dataset
1895 size N satisfies the inequality above, we finally have
1896

$$1897 \quad \mathbb{P}_N \left(\exists b \in B_D \text{ such that } \mathcal{G}_b^{(D,1)} \text{ is disconnected} \right) \\ 1898 \quad \leq \sum_{b \in B_D} \mathbb{P}_{\text{Po}(N-\varepsilon)} \left(\mathcal{G}_b^{(D,1)} \text{ is disconnected} \right) + \exp \left(-\frac{\varepsilon^2}{2N} \right) \\ 1901 \quad \leq \frac{\delta}{2} + \frac{\delta}{2} = \delta.$$

1904 This concludes the proof. ■

1910 Subsequently, we argue that the sample complexity upper bound obtained in Theorem E.7 (for $k \geq 2$) is **FIXED**
1911 *nearly tight*.⁷ To this end, we show that the learner (we assumed in App. E.1) cannot avoid an
1912 *incomplete* coverage (i.e., $\overline{D} \not\subset \text{Cover}_k(D)$) with high probability, with a dataset slightly smaller
1913 than our upper bound for certain instances of the 2-HOP task. In particular, it is enough to consider
1914 a subclass of the 2-HOP task satisfying a mild condition (Assumption E.6) that any two distinct
1915 intermediate states in B never share the same output for more than $k_*(< k)$ tokens in \mathcal{X}_3 . The formal
1916 statement of the tightness result is shown below:

1917 **Theorem E.16** (Near-Tightness of the Sample Complexity Upper Bound for $k \geq 2$). *Under*
1918 *the two-hop task setup described in App. E.1, suppose that $k \geq 2$ is a universal constant. Let*
1919 *$\hat{n} := \min_{b \in B} |V_b|$ and $\check{n} := \max_{b \in B} |V_b|$. Assume that $|\mathcal{X}_3| = \Omega(\hat{n})$ and $|\mathcal{X}_1 \times \mathcal{X}_2| \geq 6$. Let us*
1920 *further assume that the ground-truth mapping f satisfies Assumption E.6. Fix any $\delta > 0$. Then,*
1921 *there exists $\tilde{N}_\delta > 0$ satisfying*

$$1922 \quad \tilde{N}_\delta \geq \left(\frac{(k-1)! (\ln \hat{n})}{\hat{n}} \right)^{\frac{1}{2k}} \cdot |\mathcal{X}_1 \times \mathcal{X}_2| \sqrt{|\mathcal{X}_3|}$$

1925 *such that, for any large enough \hat{n} and any integer N satisfying the range*

$$1926 \quad \max \left\{ |\mathcal{X}_1 \times \mathcal{X}_2| \ln \frac{4 |\mathcal{X}_1 \times \mathcal{X}_2|}{\delta}, \frac{|\mathbb{X}|}{\hat{n}} \ln \frac{4 |B \times \mathcal{X}_3|}{\delta} \right\} \leq N < \tilde{N}_\delta$$

1929 *we have*

$$1930 \quad \mathbb{P}_N (\overline{D} \subset \text{Cover}_k(D)) \leq \delta.$$

1931 *We use the same definition of \mathbb{P}_N as in Theorem E.7.*

1933 A caveat of Theorem E.16 is that it makes sense only when the range of N is nonempty. Luckily,
1934 it is easy to verify its validity in the regime of balanced cardinalities, similar to what we assumed
1935 in Corollary E.9. As a result, we establish the *tightness* (for $k \geq 2$, up to a constant factor) of our
1936 sample complexity upper bound in Corollary E.9, among the data sizes $N \gtrsim n^2 \ln n$ (Corollary E.17).
1937 Note that, as shown in the middle of the proof of Theorem E.16, $O(n^2 \ln n)$ is indeed the data size
1938 which is sufficient to guarantee that the learner observes all possible pairs in $\mathcal{X}_1 \times \mathcal{X}_2$ and $B \times \mathcal{X}_3$,
1939 ensuring that all possible input sequences in \mathbb{X} are in-domain, with high probability.

1940
1941
1942
1943 ⁷We often say a complexity upper bound is tight if we can find a worst-case example whose complexity lower
bound is almost identical to the upper bound.

1944
1945
1946
1947
1948

Corollary E.17 (Tightness of Sample Complexity Upper Bound for $k \geq 2$, Simple). *Under the two-hop task setup described in App. E.1, suppose that $|\mathcal{X}_1| = |\mathcal{X}_2| = |\mathcal{X}_3| = |B| = |V_b| = n$ ($\forall b \in B$). Also, assume that the ground-truth mapping f satisfies Assumption E.6. Fix any $k \geq 2$ and any $\delta > 0$. Then, there exists $\tilde{N}_\delta(n) > 0$ satisfying*

$$\tilde{N}_\delta(n) \geq n^{2.5 - \frac{0.5}{k}} \cdot ((k-1)! \cdot \ln n)^{\frac{1}{2k}}$$

such that, for any large enough n (e.g., such that $kn > 256e(\ln n)^3$ and $\sqrt{n}(\ln n)^{\frac{1}{k}} > 4(\ln \frac{4}{\delta})^2$) and any integer N satisfying that

$$n^2 \left(2 \ln n + \ln \frac{4}{\delta} \right) \leq N < \tilde{N}_\delta(n),$$

*the learner with a uniformly randomly sampled training dataset D (with replacements) **cannot** achieve a perfect coverage of in-domain data, i.e., $\overline{D} \not\subset \text{Cover}_k(D)$, with probability at least $1 - \delta$.*

From now on, we prove Theorem E.16, the tightness result of the sample complexity upper bound obtained in Theorem E.7.

Proof of Theorem E.16. We aim to prove that, even when the dataset D is large enough to ensure that $\overline{D} = \mathbb{X}$, the incomplete coverage may happen with high probability for a certain range of data size N . To this end, let us first define two sets D_{12} and D_{B3} as follows:

$$\begin{aligned} D_{12} &:= \{x_{12} \in \mathcal{X}_{12} : \exists x_3 \in \mathcal{X}_3 \text{ such that } (x_{12}, x_3) \in D\}; \\ D_{B3} &:= \{(b, x_3) \in B \times \mathcal{X}_3 : \exists x_{12} \in V_b \text{ such that } (x_{12}, x_3) \in D\}. \end{aligned}$$

Also, we denote by $\min \deg \mathcal{G} := \min_{v \in V} \deg_{\mathcal{G}}(v)$ the minimum degree among all vertices of a graph $\mathcal{G} = (V, E)$. With these definitions in place, we now apply the following lemma, which describes a necessary condition for perfect coverage.

Lemma E.18. *Assume that $D_{12} = \mathcal{X}_{12}$ and $D_{B3} = B \times \mathcal{X}_3$ hold. Then, these imply that $\overline{D} = \mathbb{X}$. Furthermore, suppose that Assumption E.6 holds for a given $1 \leq k \leq |\mathcal{X}_3|$. Then, $\overline{D} \subset \text{Cover}_k(D)$ implies that $\min \deg \mathcal{G}_b^{(D,k)} \geq 1$ for all $b \in B$.*

Refer to App. E.3 for its proof. Now, it suffices to show the inequality below:

$$\begin{aligned} &\mathbb{P}_N(\overline{D} \subset \text{Cover}_k(D)) \\ &\leq \mathbb{P}_N(\overline{D} \subset \text{Cover}_k(D) \text{ or } D_{12} \neq \mathcal{X}_{12} \text{ or } D_{B3} \neq B \times \mathcal{X}_3) \\ &\leq \mathbb{P}_N(\min \deg \mathcal{G}_b^{(D,k)} \geq 1 \text{ } (\forall b \in B) \text{ or } D_{12} \neq \mathcal{X}_{12} \text{ or } D_{B3} \neq B \times \mathcal{X}_3) \quad (\because \text{Lemma E.18}) \\ &\leq \mathbb{P}_N(\min \deg \mathcal{G}_b^{(D,k)} \geq 1 \text{ } (\forall b \in B)) + \mathbb{P}_N(D_{12} \neq \mathcal{X}_{12}) + \mathbb{P}_N(D_{B3} \neq B \times \mathcal{X}_3) \leq \delta. \end{aligned} \quad (10)$$

To this end, consider the multinomial random vector $(Z_x)_{x \in \mathbb{X}} \sim \text{Multinomial}(N; (p_x)_{x \in \mathbb{X}})$ corresponding to a randomly sampled training dataset D , as defined in Proposition E.1. Define a property \mathcal{M}_1 as

$$(Z_x)_{x \in \mathbb{X}} \in \mathcal{M}_1 \iff \min \deg \mathcal{G}_b^{(D,k)} \geq 1 \text{ } (\forall b \in B). \quad (11)$$

Also, observe that

$$\begin{aligned} (T_{x_{12}})_{x_{12} \in \mathcal{X}_{12}} &\sim \text{Multinomial}(N; (q_{x_{12}})_{x_{12} \in \mathcal{X}_{12}}), & \text{if } &\begin{cases} T_{x_{12}} = \sum_{x_3 \in \mathcal{X}_3} Z_{(x_{12}, x_3)}, \\ q_{x_{12}} = \sum_{x_3 \in \mathcal{X}_3} p_{(x_{12}, x_3)}, \end{cases} \\ (U_w)_{w \in B \times \mathcal{X}_3} &\sim \text{Multinomial}(N; (r_w)_{w \in B \times \mathcal{X}_3}), & \text{if } &\begin{cases} U_{(b, x_3)} = \sum_{x_{12} \in V_b} Z_{(x_{12}, x_3)}, \\ r_{(b, x_3)} = \sum_{x_{12} \in V_b} p_{(x_{12}, x_3)}, \end{cases} \end{aligned}$$

1998 where we can actually put $p_{(x_{12}, x_3)} = \frac{1}{|\mathbb{X}|}$, $q_{x_{12}} = \frac{|\mathcal{X}_3|}{|\mathbb{X}|} = \frac{1}{|\mathcal{X}_{12}|}$, and $r_{(b, x_3)} = \frac{|V_b|}{|\mathbb{X}|}$ above. Using this
1999 notation, we know that
2000

$$2001 \quad D_{12} = \mathcal{X}_{12} \iff T_{x_{12}} \geq 1 \quad (\forall x_{12} \in \mathcal{X}_{12});$$

$$2002 \quad D_{B3} = B \times \mathcal{X}_3 \iff U_w \geq 1 \quad (\forall w \in B \times \mathcal{X}_3).$$

2003 Hence, to show Eq. (10), it suffices to prove the following three inequalities:
2004

$$2005 \quad \mathbb{P}_{(Z_{\mathbf{x}})_{\mathbf{x} \in \mathbb{X}} \sim \text{Multinomial}(N; (p_{\mathbf{x}})_{\mathbf{x} \in \mathbb{X}})} ((Z_{\mathbf{x}})_{\mathbf{x} \in \mathbb{X}} \in \mathcal{M}_1) \leq \frac{\delta}{2}; \quad (12)$$

$$2007 \quad \mathbb{P}_{(T_{x_{12}})_{x_{12} \in \mathcal{X}_{12}} \sim \text{Multinomial}(N; (q_{x_{12}})_{x_{12} \in \mathcal{X}_{12}})} (\exists x_{12} \in \mathcal{X}_{12} \text{ such that } T_{x_{12}} = 0) \leq \frac{\delta}{4}; \quad (13)$$

$$2009 \quad \mathbb{P}_{(U_w)_{w \in B \times \mathcal{X}_3} \sim \text{Multinomial}(N; (r_w)_{w \in B \times \mathcal{X}_3})} (\exists w \in B \times \mathcal{X}_3 \text{ such that } U_w = 0) \leq \frac{\delta}{4}. \quad (14)$$

2011 A size N of training dataset D that is sufficient to ensure Eqs. (13) and (14) can be characterized
2012 with the following lemma.
2013

2014 **Lemma E.19** (A Tail Bound for Coupon Collector's Problem). *Consider a multinomial random*
2015 *vector $(Z_1, \dots, Z_m) \sim \text{Multinomial}(n; p_1, \dots, p_m)$. Then,*

$$2016 \quad \mathbb{P}(\exists i \text{ such that } Z_i = 0) \leq \sum_{i=1}^m (1 - p_i)^n.$$

2019 In particular, if $\hat{p} = \min_{1 \leq i \leq m} p_i$, then for any $\delta > 0$,
2020

$$2021 \quad n \geq \frac{1}{\hat{p}} \ln \frac{m}{\delta} \implies \mathbb{P}(\exists i \text{ such that } Z_i = 0) \leq \delta.$$

2023 See App. E.3 for the proof. Applying the lemma and $\hat{n} = \min_{b \in B} |V_b|$, we can figure out that the
2024 data size
2025

$$2026 \quad N \geq \max \left\{ |\mathcal{X}_{12}| \ln \left(\frac{4 |\mathcal{X}_{12}|}{\delta} \right), \frac{|\mathbb{X}|}{\hat{n}} \ln \left(\frac{4 |B \times \mathcal{X}_3|}{\delta} \right) \right\} \quad (15)$$

2028 is enough to ensure both Eqs. (13) and (14). The remaining task now is to determine a condition for
2029 N that guarantees Eq. (12).

2030 Observe that \mathcal{M}_1 (defined as Eq. (11)) is a *non-decreasing* property (Def. E.11) because of a similar
2031 reason for the monotonicity of the property \mathcal{C} (defined as Eq. (7); see the proof of Theorem E.7).
2032 Thanks to the monotonicity of \mathcal{M}_1 , we can apply the Poissonization technique (Lemma E.12) once
2033 again. That is, taking any fixed $c \in (0, 2)$, we have

$$2034 \quad \mathbb{P}_N \left(\min \deg \mathcal{G}_b^{(D, k)} \geq 1 \quad (\forall b \in B) \right)$$

$$2035 \quad \leq \mathbb{P}_{\text{Po}(N+\varepsilon)} \left(\min \deg \mathcal{G}_b^{(D, k)} \geq 1 \quad (\forall b \in B) \right) + \exp \left(-\frac{(3-c)\varepsilon^2}{6N} \right)$$

$$2036 \quad \leq \mathbb{P}_{\text{Po}(N+\varepsilon)} \left(\min \deg \mathcal{G}_b^{(D, k)} \geq 1 \right) + \exp \left(-\frac{(3-c)\varepsilon^2}{6N} \right) \quad (\forall b \in B),$$

2041 for any $\varepsilon \in (0, cN)$, where $\mathbb{P}_{\text{Po}(N+\varepsilon)}$ is the probability measure under i.i.d. Poisson random variables
2042 $Z_{\mathbf{x}} \sim \text{Poisson} \left(\frac{N+\varepsilon}{|\mathbb{X}|} \right) (\forall \mathbf{x} \in \mathbb{X})$. Let us take $\varepsilon = \sqrt{\frac{6N}{3-c} \ln \left(\frac{4}{\delta} \right)}$, which is smaller than N by Eq. (15)
2043 (since $|\mathcal{X}_{12}| \geq 6 > \frac{6}{3-c}$) and ensures that
2044

$$2045 \quad \exp \left(-\frac{(3-c)\varepsilon^2}{6N} \right) = \exp \left(-\ln \left(\frac{4}{\delta} \right) \right) = \frac{\delta}{4}.$$

2048 Moreover, we again use the fact that $\mathcal{G}_b^{(D, k)}$ is an instance of binomial random k -intersection graph
2049 $\mathcal{G}^{(k)}(n_b, m, p)$ with parameters $n_b = |V_b|$, $m = |\mathcal{X}_3|$, and $p = 1 - \exp(-(N+\varepsilon)/|\mathbb{X}|)$, under
2050 the Poissonization governed by $\mathbb{P}_{\text{Po}(N+\varepsilon)}$. Since we assume $k \geq 2$, we can use the “ $k \geq 2$ ” part
2051 of Lemma E.14. In particular, we are to apply Lemma E.14 for an evidence graph $\mathcal{G}_b^{(D, k)}$ with

2052 $b \in \arg \min_{b' \in B} |V_b|$ (thus, $n_b = \hat{n}$), which is possible since we assume $m = |\mathcal{X}_3| = \Omega(\hat{n})$. We aim
 2053 to find a sufficient condition for N to have

$$2054 \quad \mathbb{P}_{\text{Po}(N+\varepsilon)} \left(\min \deg \mathcal{G}_b^{(D,k)} \geq 1 \right) \leq \frac{\delta}{4}. \quad (16)$$

2057 Let us choose the sequence $\alpha_n = -(1 - \frac{1}{k}) \ln n$ in Lemma E.14, which guarantees that
 2058

$$2059 \quad \mathbb{P}(\min \deg \mathcal{G}^{(k)}(n, m, p) \geq 1) \rightarrow 0 \quad \text{as } n \rightarrow \infty.$$

2060 From the definition of the limit of a sequence, for any choice of $\delta > 0$, let us consider $n_0(\delta) > 0$
 2061 satisfying that

$$2062 \quad \mathbb{P} \left(\min \deg \mathcal{G}^{(k)}(n, m, p) \geq 1 \right) \leq \delta, \quad n > n_0(\delta).$$

2064 Then, choosing \hat{n} greater than $n_0(\frac{\delta}{4})$, we yield the bound (16). Observe that a choice of p smaller
 2065 than the threshold in Eq. (8) will never change the limit $\mathbb{P}(\min \deg \mathcal{G}^{(k)}(n, m, p) \geq 1) \rightarrow 0$. Thus,
 2066 by our choice $\alpha_n = -(1 - \frac{1}{k}) \ln n$, it is enough to have
 2067

$$2068 \quad p = 1 - \exp \left(-\frac{N + \varepsilon}{|\mathbb{X}|} \right) \leq \left(\frac{(k-1)! (\ln \hat{n})}{\hat{n}} \right)^{\frac{1}{2k}} \cdot \frac{1}{\sqrt{|\mathcal{X}_3|}}.$$

2071 Applying $1 - e^{-u} \leq u$ for $u \in \mathbb{R}$, it suffices to have

$$2072 \quad \frac{N + \varepsilon}{|\mathbb{X}|} \leq \left(\frac{(k-1)! (\ln \hat{n})}{\hat{n}} \right)^{\frac{1}{2k}} \cdot \frac{1}{\sqrt{|\mathcal{X}_3|}}.$$

2075 Plugging $\varepsilon < cN$ and $|\mathbb{X}| = |\mathcal{X}_1 \times \mathcal{X}_2| |\mathcal{X}_3|$ in, we eventually have a sufficient condition
 2076

$$2077 \quad N \leq \frac{1}{1+c} \cdot \left(\frac{(k-1)! (\ln \hat{n})}{\hat{n}} \right)^{\frac{1}{2k}} \cdot |\mathcal{X}_1 \times \mathcal{X}_2| \sqrt{|\mathcal{X}_3|}.$$

2080 To summarize, for large enough $\hat{n} > n_0(\frac{\delta}{4})$, provided that the data size N satisfies
 2081

$$2082 \quad \max \left\{ |\mathcal{X}_{12}| \ln \frac{4|\mathcal{X}_{12}|}{\delta}, \frac{|\mathbb{X}|}{\hat{n}} \ln \frac{4|B \times \mathcal{X}_3|}{\delta} \right\} \leq N \leq \frac{1}{1+c} \cdot \left(\frac{(k-1)! (\ln \hat{n})}{\hat{n}} \right)^{\frac{1}{2k}} \cdot |\mathcal{X}_1 \times \mathcal{X}_2| \sqrt{|\mathcal{X}_3|}$$

2084 and we take $\varepsilon = \sqrt{\frac{6N}{3-c} \ln \left(\frac{4}{\delta} \right)}$, we finally have
 2085

$$2086 \quad \mathbb{P}_N \left(\overline{D} \subset \text{Cover}_k(D) \right) \\ 2087 \leq \mathbb{P}_{\text{Po}(N+\varepsilon)} \left(\min \deg \mathcal{G}_b^{(D,k)} \geq 1 \right) + \exp \left(-\frac{(3-c)\varepsilon^2}{6N} \right) + \mathbb{P}_N(D_{12} \neq \mathcal{X}_{12}) + \mathbb{P}_N(D_{B3} \neq B \times \mathcal{X}_3) \\ 2088 \leq \frac{\delta}{4} + \frac{\delta}{4} + \frac{\delta}{4} + \frac{\delta}{4} = \delta.$$

2092 Since the choice of $c \in (0, 2)$ is arbitrary, we obtain the same result ($\mathbb{P}_N(\dots) \leq \delta$) by letting $c \searrow 0$
 2093 and choosing N which satisfies that
 2094

$$2095 \quad \max \left\{ |\mathcal{X}_{12}| \ln \frac{4|\mathcal{X}_{12}|}{\delta}, \frac{|\mathbb{X}|}{\hat{n}} \ln \frac{4|B \times \mathcal{X}_3|}{\delta} \right\} \leq N < \left(\frac{(k-1)! (\ln \hat{n})}{\hat{n}} \right)^{\frac{1}{2k}} \cdot |\mathcal{X}_1 \times \mathcal{X}_2| \sqrt{|\mathcal{X}_3|}.$$

■

2100 Before moving on to the postponed proofs of lemmas, we lastly remark that the same proof (of
 2101 Theorem E.16) can hardly apply to the case of $k = 1$ in general. This is because, for the sake
 2102 of simplicity in applying the necessary condition for a perfect coverage (Lemma E.18), we first
 2103 characterize a minimal data size to guarantee $\overline{D} = \mathbb{X}$ with high probability as Eq. (15), using the tail
 2104 bound of the coupon collector's problem (Lemma E.19). Unfortunately, it already exceeds the sample
 2105 complexity upper bound to ensure $\overline{D} \subset \text{Cover}_1(D)$ (obtained as Theorem E.8) for $k = 1$ with high
 probability, especially in the regime of balanced cardinalities assumed in Corollary E.17.

2106 E.3 BACKGROUNDS, USEFUL FACTS, AND LEMMAS
21072108 Now, we delve into the detailed backgrounds to provide a comprehensive understanding of the main
2109 theorems' proof, along with the deferred proofs of the lemmas used earlier.2110 We begin with the proof of a sufficient condition for a perfect coverage (Lemma E.10). For readability,
2111 we restate the lemma here.2112 **Lemma E.20.** *If all $\mathcal{G}_b^{(D,k)}$ are connected graphs ($\forall b \in B_D$), then we have $\overline{D} \subset \text{Cover}_k(D)$.*2114 *Proof of Lemma E.10.* Take any $(x_{12}, x_3) \in \overline{D}$. By definition (Def. E.2), there exists $x'_{12} \in \mathcal{X}_{12}$
2115 such that $f_1(x_{12}) = f_1(x'_{12})$ and $(x'_{12}, x_3) \in D$. Let $b = f_1(x'_{12}) \in B_D$. By assumption, there
2116 exists a path in $\mathcal{G}_b^{(D,k)}$ connecting x_{12} and x'_{12} , which we write as $u_0 (= x_{12}), u_1, \dots, u_\ell (= x'_{12})$ for
2117 some integer $\ell \geq 1$. Then, for each $i \in [\ell]$, we have a set $S(u_{i-1}, u_i \mid D)$ (defined in Def. E.5) of
2118 size at least k . For each $\bar{x}_3 \in S(u_{i-1}, u_i \mid D)$, both (u_{i-1}, \bar{x}_3) and (u_i, \bar{x}_3) are both in D . Also,
2119

2120
$$f(u_{i-1}, \bar{x}_3) = f_2(b, \bar{x}_3) = f(u_i, \bar{x}_3),$$

2121 meaning that the set $S_f(u_{i-1}, u_i \mid D)$ (defined in Def. E.3) is the same as $S(u_{i-1}, u_i \mid D)$, a set of
2122 size at least k , for each $i \in [\ell]$. Hence, (x_{12}, x_3) satisfies the definition of k -coverage with a path
2123 u_0, \dots, u_ℓ , i.e., $(x_{12}, x_3) \in \text{Cover}_k(D)$. \square 2124 Next, we show a necessary condition for a perfect coverage (Lemma E.18). Before proving the **FIXED**
2125 lemma, we recall that we have defined two sets:

2127
$$D_{12} := \{x_{12} \in \mathcal{X}_{12} : \exists x_3 \in \mathcal{X}_3 \text{ such that } (x_{12}, x_3) \in D\};$$

2128
$$D_{B3} := \{(b, x_3) \in B \times \mathcal{X}_3 : \exists x_{12} \in V_b \text{ such that } (x_{12}, x_3) \in D\}.$$

2129 Also, for a graph $\mathcal{G} = (V, E)$, we define $\min \deg \mathcal{G} := \min_{v \in V} \deg_{\mathcal{G}}(v)$ as the minimum degree
2130 among all vertices of \mathcal{G} .2132 **Lemma E.21.** *Assume that $D_{12} = \mathcal{X}_{12}$ and $D_{B3} = B \times \mathcal{X}_3$ hold. Then, these imply that $\overline{D} = \mathbb{X}$.
2133 Furthermore, suppose that Assumption E.6 holds for a given $1 \leq k \leq |\mathcal{X}_3|$. Then, $\overline{D} \subset \text{Cover}_k(D)$
2134 implies that $\min \deg \mathcal{G}_b^{(D,k)} \geq 1$ for all $b \in B$.*2136 *Proof of Lemma E.18.* We first show that $D_{12} = \mathcal{X}_{12}$ and $D_{B3} = B \times \mathcal{X}_3$ imply that $\overline{D} = \mathbb{X}$. Since
2137 we already have $\overline{D} \subset \mathbb{X}$ by definition, it suffices to prove $\mathbb{X} \subset \overline{D}$. Let any $x_{12} \in \mathcal{X}_{12}$ and $x_3 \in \mathcal{X}_3$,
2138 and take $b = f_1(x_{12}) \in B$. Let us define:

2139
$$W_{x_{12}} = \{x'_3 \in \mathcal{X}_3 : (x_{12}, x'_3) \in D\};$$

2141
$$\widetilde{W}_{x_3}^{(b)} = \{x'_{12} \in V_b : (x'_{12}, x_3) \in D\}.$$

2142 The conditions $D_{12} = \mathcal{X}_{12}$ and $D_{B3} = B \times \mathcal{X}_3$ imply that $W_{x_{12}} \neq \emptyset$ and $\widetilde{W}_{x_3}^{(b)} \neq \emptyset$, respectively.
2143 If we take any $x'_3 \in W_{x_{12}}$ and $x'_{12} \in \widetilde{W}_{x_3}^{(b)}$, they hold that $(x_{12}, x'_3) \in D$, $(x'_{12}, x_3) \in D$, and
2144 $f_1(x_{12}) = b = f_1(x'_{12})$. This set of conditions is equivalent to $(x_{12}, x_3) \in \overline{D}$; hence, we have just
2145 shown that

2146
$$D_{12} = \mathcal{X}_{12} \text{ and } D_{B3} = B \times \mathcal{X}_3 \implies \overline{D} = \mathbb{X}.$$

2149 Now, we prove the contrapositive of the lemma. Suppose that $\min \deg \mathcal{G}_b^{(D,k)} = 0$ for some $b \in B$;
2150 we aim to show that $\text{Cover}_k(D) \neq \mathbb{X} = \overline{D}$, or, $\mathbb{X} \setminus \text{Cover}_k(D) \neq \emptyset$.2151 Take a $b \in B$ such that $\min \deg \mathcal{G}_b^{(D,k)} = 0$, which implies that such a graph $\mathcal{G}_b^{(D,k)}$ has an isolated
2152 vertex $x_{12} \in V_b$ (i.e., $\deg_{\mathcal{G}_b^{(D,k)}}(x_{12}) = 0$). Let us fix such an x_{12} . Since we assume Assumption E.6,
2153 there must not be any edge connection between $\mathcal{G}_b^{(D,k)}$ and $\mathcal{G}_{b'}^{(D,k)}$ for distinct $b, b' \in B$. Thus, x_{12}
2154 must be an isolated vertex in the whole substitution graph $\mathcal{G}_\bullet^{(D,k)}$. The isolation implies that, for any
2155 $x_3 \in \mathcal{X}_3$, the input sequence (x_{12}, x_3) cannot be in the k -coverage of D unless it is already in D .2157 Observe that $W_{x'_{12}} \neq \emptyset$ for any $x'_{12} \in \mathcal{X}_{12}$; otherwise, it inevitably holds that $(x'_{12}, \tilde{x}_3) \neq \overline{D}$ for
2158 every $\tilde{x}_3 \in \mathcal{X}_3$, which contradicts to the fact $\overline{D} = \mathbb{X}$ (under the assumption of the lemma). Thus, we
2159 can think of the following two cases:

- **Case 1** ($\emptyset \neq W_{x_{12}} \subsetneq \mathcal{X}_3$). Take any $x_3 \notin W_{x_{12}}$, which implies $(x_{12}, x_3) \notin D$. Thus, we have an element $(x_{12}, x_3) \in \mathbb{X} \setminus \text{Cover}_k(D)$ because x_{12} is an isolated vertex.
- **Case 2** ($W_{x_{12}} = \mathcal{X}_3$). Since x_{12} is an isolated vertex, it is not adjacent to any other vertex x'_{12} . Fix any such an $x'_{12} \in \mathcal{X}_{12} \setminus \{x_{12}\}$. By definition of the edges in $E_{\bullet}^{(D, k)}$, we know that $|W_{x_{12}} \cap W_{x'_{12}}| < k$. Since $W_{x_{12}} = \mathcal{X}_3$, we also know that $|W_{x'_{12}}| < k \leq |\mathcal{X}_3|$. This implies that x'_{12} cannot be adjacent to any other vertices in \mathcal{X}_{12} , meaning that x'_{12} is an isolated vertex. Moreover, since $W_{x'_{12}} \subsetneq \mathcal{X}_3$ ($\because |W_{x'_{12}}| < |\mathcal{X}_3|$), we take any $x_3 \notin W_{x'_{12}}$. Then, since $(x'_{12}, x_3) \notin D$ and x'_{12} is isolated, we have an element $(x'_{12}, x_3) \in \mathbb{X} \setminus \text{Cover}_k(D)$.

In both cases above, we obtain the same result that $\mathbb{X} \setminus \text{Cover}_k(D) \neq \emptyset$. It concludes the proof of the lemma. \square

We also prove the tail probability bound for the coupon collector’s problem (Newman, 1960; Erdős & Rényi, 1961) here. We again restate the lemma here for the sake of readability.

Lemma E.22 (A Tail Bound for Coupon Collector’s Problem). *Consider a multinomial random vector $(Z_1, \dots, Z_m) \sim \text{Multinomial}(n; p_1, \dots, p_m)$. Then,*

$$\mathbb{P}(\exists i \text{ such that } Z_i = 0) \leq \sum_{i=1}^m (1 - p_i)^n.$$

In particular, if $\hat{p} = \min_{1 \leq i \leq m} p_i$, then for any $\delta > 0$,

$$n \geq \frac{1}{\hat{p}} \ln \frac{m}{\delta} \implies \mathbb{P}(\exists i \text{ such that } Z_i = 0) \leq \delta.$$

Proof of Lemma E.19. Observe that $Z_i \sim \text{Bin}(n, p_i)$ for each $i \in [m]$. It implies that $\mathbb{P}(Z_i = 0) = (1 - p_i)^n$. One can yield the same result by directly summing up the multinomial probability masses and applying the multinomial theorem: for instance,

$$\mathbb{P}(Z_1 = 0) = \sum_{\substack{z_2 + \dots + z_m = n \\ z_2, \dots, z_m \geq 0}} \frac{n!}{z_2! \dots z_m!} p_2^{z_2} \dots p_m^{z_m} = (p_2 + \dots + p_m)^n = (1 - p_1)^n.$$

Thus, by applying a union bound,

$$\mathbb{P}(\exists i \text{ such that } Z_i = 0) \leq \sum_{i=1}^m \mathbb{P}(Z_i = 0) = \sum_{i=1}^m (1 - p_i)^n \leq m(1 - \hat{p})^n \leq m e^{-n\hat{p}},$$

where we apply $\hat{p} = \min_{1 \leq i \leq m} p_i$ and $1 + u \leq e^u$ ($\forall u \in \mathbb{R}$) in the last two inequalities above. Solving $m e^{-n\hat{p}} \leq \delta$, we conclude that $n \geq \frac{1}{\hat{p}} \ln \frac{m}{\delta}$ implies $\mathbb{P}(\exists i \text{ such that } Z_i = 0) \leq \delta$. \square

E.3.1 (DE-)POISSONIZATION OF MONOTONE MULTINOMIAL EVENTS

Randomization is a probabilistic technique that provides a convenient way to analyze a sequence by treating the sequence index as a random variable/process. When the sequence $\{a_n\}_{n \geq 0}$ is *monotone* and *bounded*, in particular, it provides us upper/lower bounds of the difference between a_n and the expectation $\mathbb{E}[a_N]$ in terms of a non-negative integral random variable N . The following lemma provides a simple conversion between a deterministic monotone bounded sequence and the expectation of the randomized sequence, which we will prove later.

Lemma E.23 (De-Randomization Lemma, General). *Consider a non-decreasing real-valued sequence $\{a_j\}_{j \geq 0}$ which lies in a closed interval $[m, M]$, i.e., $m \leq a_0 \leq a_1 \leq a_2 \leq \dots \leq M$. Let N be a non-negative integer-valued random variable with probability mass $\mathbb{P}(N = j) = p_j$ ($j = 0, 1, 2, \dots$). Then, for any $n \geq 0$, it holds that*

$$\mathbb{E}[a_N] - (M - m) \cdot \mathbb{P}(N > n) \leq a_n \leq \mathbb{E}[a_N] + (M - m) \cdot \mathbb{P}(N < n). \quad (\text{Non-Decreasing Case})$$

On the other hand, if $\{a_j\}_{j \geq 0}$ is non-increasing, i.e., $M \geq a_0 \geq a_1 \geq a_2 \geq \dots \geq m$, a similar result holds that

$$\mathbb{E}[a_N] - (M - m) \cdot \mathbb{P}(N < n) \leq a_n \leq \mathbb{E}[a_N] + (M - m) \cdot \mathbb{P}(N > n). \quad (\text{Non-Increasing Case})$$

Here, all expectations are taken with respect to N .

2214 *Remark E.24* (On the choice of random index N). When obtaining an estimate of a sequence value
 2215 using the lemma above, it is unnecessary to utilize the same random variable N for both upper
 2216 and lower bounds. Namely, when the sequence is non-decreasing, a choice of N with $\mathbb{E}[N] > n$
 2217 gives a small lower tail $\mathbb{P}(N < n)$ for the upper bound; whereas an N with $0 < \mathbb{E}[N] < n$ gives
 2218 a small upper tail $\mathbb{P}(N > n)$ for the lower bound. We can think of the opposite relationship for
 2219 a non-increasing sequence as well. Moreover, to guarantee the tail bounds to be small, we often
 2220 choose N having a lot of mass concentrated around its mean (e.g., sub-Gaussian); then, we can take
 2221 advantage of concentration inequalities associated with N to have a better estimate of $a_n \approx \mathbb{E}[a_N]$.
 2222

2222 Poissonization (Kac, 1949; Holst, 1986; Aldous, 1989; Jacquet & Szpankowski, 1998; Johansson,
 2223 1998; Borodin et al., 2000) can be thought of as a special case of randomization using Poisson random
 2224 variables. A Poisson random variable $N \sim \text{Poisson}(\lambda)$ with a parameter $\lambda > 0$ is equipped with a
 2225 probability mass function

$$\mathbb{P}(N = n) = \frac{e^{-\lambda} \lambda^n}{n!}. \quad (n = 0, 1, 2, \dots) \quad (\text{Poisson})$$

2226 In this section, our primary goal is to complete the proof of Lemma E.12, asserting that the Pois-
 2227 sonization technique is particularly advantageous for analyzing a monotone property (Def. E.11) of
 2228 multinomial random vectors (e.g., the connectivity of a random graph whose edge connections are
 2229 sampled with replacements). To see why, let us first review an elementary property of Poisson random
 2230 variables: the sum of independent Poisson random variables is again a Poisson random variable,
 2231 whose parameter is the sum of the parameters of individual Poisson variables. We defer the proof for
 2232 brevity.
 2233

2234 **Lemma E.25.** *Consider mutually independent Poisson random variables $Z_i \sim \text{Poisson}(\lambda_i)$ ($i = 1, \dots, m$). Then, $\sum_{i=1}^m Z_i \sim \text{Poisson}(\sum_{i=1}^m \lambda_i)$.*

2235 Next, we explore the relationship between multinomial and Poisson distributions by establishing an
 2236 equivalence between the probability associated with multinomial random vectors and the conditional
 2237 probability of mutually independent Poisson random variables whose sum is fixed. As a result, we
 2238 can construct a Poissonization of a sequence of probabilities by regarding the multinomial random
 2239 vector's parameter n as a Poisson random variable. The detailed formal statement is below, although
 2240 we again defer its proof.

2241 **Lemma E.26.** *Let \mathcal{A} be any property of a (random) m -dimensional vector: we write $(z_1, \dots, z_m) \in \mathcal{A}$ if (z_1, \dots, z_m) satisfies the property \mathcal{A} . Then, for any $\lambda > 0$, and $p_1, \dots, p_m > 0$ that sums to 1
 2242 (i.e., $\sum_{i=1}^m p_i = 1$),*

$$\mathbb{P}_{\text{Multi}(n)}((Z_1, \dots, Z_m) \in \mathcal{A}) = \mathbb{P}_{\text{Po}(\lambda)}\left((Z_1, \dots, Z_m) \in \mathcal{A} \mid \sum_{i=1}^m Z_i = n\right).$$

2243 Here, $\mathbb{P}_{\text{Multi}(n)}$ is the probability measure under $(Z_1, \dots, Z_m) \sim \text{Multinomial}(n; p_1, \dots, p_m)$,
 2244 whereas $\mathbb{P}_{\text{Po}(\lambda)}$ is the probability measure under $Z_i \sim \text{Poisson}(\lambda p_i)$ ($i = 1, \dots, m$) which are
 2245 mutually independent. As a result, it holds that

$$\mathbb{E}_{N \sim \text{Poisson}(\lambda)} \left[\mathbb{P}_{\text{Multi}(N)}((Z_1, \dots, Z_m) \in \mathcal{A}) \right] = \mathbb{P}_{\text{Po}(\lambda)}((Z_1, \dots, Z_m) \in \mathcal{A}).$$

2246 We now move our attention to a monotone property of (finite-dimensional) vectors, of which we
 2247 recall the definition again.

2248 **Definition E.27** (Monotone property). We refer to a property \mathcal{A} of m -dimensional vectors as a
 2249 **non-decreasing property** when, for any vector $(\Delta_1, \dots, \Delta_m)$ with non-negative entries $\Delta_i \geq 0$
 2250 ($\forall i = 1, \dots, m$),

$$(z_1, \dots, z_m) \in \mathcal{A} \implies (z_1 + \Delta_1, \dots, z_m + \Delta_m) \in \mathcal{A}. \quad (\text{Non-Decreasing Property})$$

2251 On the other hand, we define **non-increasing property** \mathcal{A} as what satisfies

$$(z_1, \dots, z_m) \in \mathcal{A} \implies (z_1 - \Delta_1, \dots, z_m - \Delta_m) \in \mathcal{A}. \quad (\text{Non-Increasing Property})$$

2252 A monotone property of multinomial random vectors has an interesting feature: the probability of sat-
 2253 isfying the property is also monotone in the parameter n of the multinomial distribution (Lemma E.29).
 2254 This is roughly because the multinomial distribution is inspired by multiple independent trials of
 2255 with-replacement sampling: an additional trial corresponds to the increase of the parameter n by 1.
 2256 This intuitive explanation can be formalized into the following lemma.

2268 **Lemma E.28.** Consider a multinomial random vector $(Z_1, \dots, Z_m) \sim \text{Multinomial}(n; p_1, \dots, p_m)$
 2269 for $n \geq 1$ and $p_1, \dots, p_m > 0$ such that $\sum_{i=1}^m p_i = 1$. That is, for any non-negative integers
 2270 z_1, \dots, z_m whose sum is n ,

$$2272 \quad \mathbb{P}(Z_1 = z_1, \dots, Z_m = z_m) = \frac{n!}{z_1! \dots z_m!} \cdot p_1^{z_1} \cdots p_m^{z_m}. \quad (\text{Multinomial})$$

2274 Also, consider a categorical (so-called multinoulli) random variable $j \sim \text{Categorical}(p_1, \dots, p_m)$
 2275 which can have a value among the integers $\{1, 2, \dots, m\}$, i.e., for each $i = 1, \dots, m$,

$$2276 \quad \mathbb{P}(j = i) = p_i. \quad (\text{Categorical})$$

2277 Then, if we let $\tilde{Z}_i = Z_i + \mathbb{1}_{\{j=i\}}$ for $1 \leq i \leq m$, we have a new multinomial random vector as
 2278 follows:

$$2280 \quad (\tilde{Z}_1, \dots, \tilde{Z}_m) \sim \text{Multinomial}(n + 1; p_1, \dots, p_m).$$

2282 Using the above as a key lemma, we can prove the following lemma about the monotone property of
 2283 a multinomial random vector.

2284 **Lemma E.29.** Recall the definition of $\mathbb{P}_{\text{Multi}(n)}$ from Lemma E.26. Fix any integers $1 \leq n \leq n'$. If a
 2285 property \mathcal{A} is non-decreasing, then

$$2286 \quad \mathbb{P}_{\text{Multi}(n)}((Z_1, \dots, Z_m) \in \mathcal{A}) \leq \mathbb{P}_{\text{Multi}(n')}((Z_1, \dots, Z_m) \in \mathcal{A}).$$

2287 The direction of the inequality should be opposite (“ \geq ”) if the property is non-increasing.

2289 Most importantly, thanks to Lemmas E.26 and E.29, we can apply the de-randomization lemma
 2290 (Lemma E.23) for the sequence $\{a_n\}$ of probabilities defined with a monotone property \mathcal{A} as

$$2291 \quad a_n := \mathbb{P}_{\text{Multi}(n)}((Z_1, \dots, Z_m) \in \mathcal{A}).$$

2293 The only things left to obtain a complete (de)-Poissonization lemma for upper/lower-bounding the
 2294 sequence a_n are the tail probability bounds for a Poisson distribution. The concentration inequalities
 2295 for the Poisson distribution are already well-known,⁸ although we derive slightly different forms of
 2296 them for our own purposes.

2297 **Lemma E.30.** If $N \sim \text{Poisson}(n - \varepsilon)$ for any $n > 0$ and $0 < \varepsilon < n$, it holds that

$$2298 \quad \mathbb{P}(N \geq n) \leq \exp\left(-\frac{\varepsilon^2}{2n}\right). \quad (\text{Upper Tail Bound})$$

2300 On the other hand, if $N \sim \text{Poisson}(n + \varepsilon)$ for any $n > 0$ and $0 < \varepsilon < cn$ for some $c \in (0, 3)$, it
 2301 holds that

$$2303 \quad \mathbb{P}(N \leq n) \leq \exp\left(-\frac{(3-c)\varepsilon^2}{6n}\right). \quad (\text{Lower Tail Bound})$$

2305 As a result, we finally summarize the arguments in this section as the following de-Poissonization
 2306 lemma for a monotone property of multinomial random vectors:

2307 **Lemma E.31** (De-Poissonization Lemma for Monotone Multinomial Events). Fix any $n \geq 1$. Define

$$2309 \quad P_n := \mathbb{P}_{(Z_1, \dots, Z_m) \sim \text{Multinomial}(n; p_1, \dots, p_m)}((Z_1, \dots, Z_m) \in \mathcal{A}).$$

2310 Let \mathcal{A} be a non-decreasing property (Def. E.11) of m -dimensional vector. Then, we have an upper
 2311 bound and a lower bound for P_n as follows:

$$2313 \quad P_n \leq \mathbb{P}_{\text{Po}(n+\varepsilon)}((Z_1, \dots, Z_m) \in \mathcal{A}) + \exp\left(-\frac{(3-c)\varepsilon^2}{6n}\right), \quad (\forall c \in (0, 3), \forall \varepsilon \in (0, cn))$$

$$2314 \quad P_n \geq \mathbb{P}_{\text{Po}(n-\varepsilon)}((Z_1, \dots, Z_m) \in \mathcal{A}) - \exp\left(-\frac{\varepsilon^2}{2n}\right). \quad (\forall \varepsilon \in (0, n))$$

2316 If \mathcal{A} is a non-increasing property (Def. E.11), then we have similar upper and lower bounds for P_n :

$$2318 \quad P_n \leq \mathbb{P}_{\text{Po}(n-\varepsilon)}((Z_1, \dots, Z_m) \in \mathcal{A}) + \exp\left(-\frac{\varepsilon^2}{2n}\right), \quad (\forall \varepsilon \in (0, n))$$

$$2320 \quad P_n \geq \mathbb{P}_{\text{Po}(n+\varepsilon)}((Z_1, \dots, Z_m) \in \mathcal{A}) - \exp\left(-\frac{(3-c)\varepsilon^2}{6n}\right). \quad (\forall c \in (0, 3), \forall \varepsilon \in (0, cn))$$

2321 ⁸For example, see a document online: “A short note on Poisson tail bounds.”

2322 Here, we denote by $\mathbb{P}_{\text{Po}(\lambda)}$ the probability measure under $Z_i \stackrel{\text{indep.}}{\sim} \text{Poisson}(\lambda p_i)$ ($\forall i = 1, \dots, m$).

2327 *Proof of Lemma E.12.* This is the combination of Lemmas E.23, E.26, E.29 and E.30. \square

2331 We use this de-Poissonization lemma in the proof of our main theorem (Theorems E.7 and E.8).

2332 Lastly, we conclude this section by presenting all the deferred proofs.

2336 *Proof of Lemma E.23.* In the first part of the proof, we deal with the non-decreasing case. Observe
2337 that, since a_N has a finite expectation ($m \leq \mathbb{E}[a_N] \leq M$), the infinite sum $\sum_{j \geq 0} p_j a_j$ converges.
2338 Now, let us first obtain the upper bound. Since $\sum_{j \geq 0} p_j = 1$,

$$\begin{aligned} a_n &= \sum_{0 \leq j < n} p_j a_n + \sum_{j \geq n} p_j a_n \\ &\leq \sum_{0 \leq j < n} p_j a_n + \sum_{j \geq n} p_j a_j && (\because a_j \geq a_n \text{ if } j \geq n) \\ &= \sum_{0 \leq j < n} p_j (a_n - a_j) + \sum_{j \geq 0} p_j a_j \\ &\leq (M - m) \cdot \sum_{0 \leq j < n} p_j + \sum_{j > 0} p_j a_j && (\because a_n - a_j \leq M - m) \\ &= (M - m) \cdot \mathbb{P}(N < n) + \mathbb{E}[a_N]. \end{aligned}$$

2351 Likewise, we obtain the lower bound.

$$\begin{aligned} a_n &= \sum_{0 \leq j \leq n} p_j a_n + \sum_{j > n} p_j a_n \\ &\geq \sum_{0 \leq j \leq n} p_j a_j + \sum_{j > n} p_j a_n && (\because a_j \leq a_n \text{ if } j \leq n) \\ &= \sum_{j \geq 0} p_j a_j - \sum_{j > n} p_j (a_j - a_n) \\ &\geq \sum_{j \geq 0} p_j a_j - (M - m) \cdot \sum_{j > n} p_j && (\because a_n - a_j \geq m - M) \\ &= \mathbb{E}[a_N] - (M - m) \cdot \mathbb{P}(N > n). \end{aligned}$$

2363 These imply the inequality (Non-Decreasing Case) and prove the first part of the lemma.

2364 The second part for the non-increasing sequence $\{a_n\}$ directly follows by applying the first part to
2365 the non-decreasing sequence $\{b_n\}$ defined as $b_n := M + m - a_n$. Indeed, we have

$$\mathbb{E}[M + m - a_N] - (M - m) \cdot \mathbb{P}(N > n) \leq M + m - a_n \leq \mathbb{E}[M + m - a_N] + (M - m) \cdot \mathbb{P}(N < n),$$

2368 which implies the inequality (Non-Increasing Case) and concludes the proof of the lemma. \square

2372 *Proof of Lemma E.25.* Denote the sum of random variables by $\bar{Z}_m := \sum_{i=1}^m Z_i$. Likewise, let us
2373 write $\bar{\lambda}_m := \sum_{i=1}^m \lambda_i$. To prove the lemma, we proceed with the induction on $m \geq 1$.

2374 Since the base case is obvious ($Z_1 \sim \text{Poisson}(\lambda_1)$), let us assume $m \geq 2$ and compute the probability
2375 mass. The inductive assumption says $\bar{Z}_{m-1} \sim \text{Poisson}(\bar{\lambda}_{m-1})$, which is independent of Z_m due to

2376 the mutual independence of Z_1, \dots, Z_m . Then, for any non-negative integer \bar{z} ,
2377

$$\begin{aligned}
2378 \quad \mathbb{P}(\bar{Z}_m = \bar{z}) &= \sum_{z_m=0}^{\bar{z}} \mathbb{P}(\bar{Z}_{m-1} = \bar{z} - z_m, Z_m = z_m) \\
2379 \\
2380 \\
2381 &= 1 \cdot \sum_{z_m=0}^{\bar{z}} \mathbb{P}(\bar{Z}_{m-1} = \bar{z} - z_m) \cdot \mathbb{P}(Z_m = z_m) \quad (\because \bar{Z}_{m-1} \perp Z_m) \\
2382 \\
2383 &= \frac{\bar{z}!}{\bar{z}!} \cdot \sum_{z_m=0}^{\bar{z}} \frac{\exp(-\bar{\lambda}_{m-1}) \cdot (\bar{\lambda}_{m-1})^{\bar{z}-z_m}}{(\bar{z} - z_m)!} \cdot \frac{\exp(-\lambda_m) \cdot (\lambda_m)^{z_m}}{z_m!} \\
2384 \\
2385 &= \frac{\exp(-\sum_{i=1}^m \lambda_i)}{\bar{z}!} \cdot \sum_{z_m=0}^{\bar{z}} \frac{\bar{z}!}{(\bar{z} - z_m)! \cdot z_m!} (\bar{\lambda}_{m-1})^{\bar{z}-z_m} \lambda_m^{z_m} \\
2386 \\
2387 &= \frac{\exp(-\sum_{i=1}^m \lambda_i)}{\bar{z}!} \cdot (\bar{\lambda}_{m-1} + \lambda_m)^{\bar{z}} \quad (\because \text{binomial theorem}) \\
2388 \\
2389 &= \frac{\exp(-\sum_{i=1}^m \lambda_i)}{\bar{z}!} \cdot (\bar{\lambda}_m)^{\bar{z}}.
\end{aligned}$$

2394 Since the choice of \bar{z} is arbitrary, by induction, this ends up proving that $\bar{Z}_m \sim \text{Poisson}(\bar{\lambda}_m)$.
2395

2396 Lastly, we remark that one may prove the same result without induction, by directly applying the
2397 multinomial theorem (which is essentially a recurrent application of the binomial theorem). \square
2398

2400 *Proof of Lemma E.26.* By the law of total probability, for any probability measure \mathbb{P} under any
2401 distribution of a random vector (Z_1, \dots, Z_m) ,

$$2403 \quad \mathbb{P}((Z_1, \dots, Z_m) \in \mathcal{A}) = \sum_{(z_1, \dots, z_m) \in \mathcal{A}} \mathbb{P}(Z_1 = z_1, \dots, Z_m = z_m).$$

2405 Thus, it suffices to compare the multinomial distribution and the conditional distribution of a Poisson
2406 random vector given a fixed sum: namely, we aim to show here that
2407

$$2408 \quad \mathbb{P}_{\text{Multi}(n)}(Z_1 = z_1, \dots, Z_m = z_m) = \mathbb{P}_{\text{Po}(\lambda)}\left(Z_1 = z_1, \dots, Z_m = z_m \mid \sum_{i=1}^m Z_i = n\right). \quad (17)$$

2411 Moreover, it is sufficient for proving the first equation to study the case with non-negative integers
2412 z_1, \dots, z_m such that $\sum_{i=1}^m z_i = n$; otherwise, both sides of Eq. (17) are zero. In this case, observe
2413 an inclusion between events

$$2414 \quad \{Z_1 = z_1, \dots, Z_m = z_m\} \subseteq \left\{ \sum_{i=1}^m Z_i = n \right\}. \quad (18)$$

2416 Because of this, we can compute a conditional probability mass as:

$$\begin{aligned}
2418 \quad &\mathbb{P}_{\text{Po}(\lambda)}\left(Z_1 = z_1, \dots, Z_m = z_m \mid \sum_{i=1}^m Z_i = n\right) \\
2419 \\
2420 \\
2421 &= \frac{\mathbb{P}_{\text{Po}(\lambda)}(Z_1 = z_1, \dots, Z_m = z_m)}{\mathbb{P}_{\text{Po}(\lambda)}(\sum_{i=1}^m Z_i = n)} \quad (\because \text{Eq. (18)}) \\
2422 \\
2423 &= \left(\prod_{i=1}^m \frac{e^{-\lambda p_i} (\lambda p_i)^{z_i}}{z_i!} \right) \cdot \left(\frac{e^{-\lambda} \lambda^n}{n!} \right)^{-1} \quad (\because \sum_{i=1}^m Z_i \sim \text{Poisson}(\lambda), \text{ due to Lemma E.25}) \\
2424 \\
2425 &= \frac{n!}{z_1! \dots z_m!} \cdot p_1^{z_1} \dots p_m^{z_m} \quad (\because \sum_{i=1}^m z_i = n) \\
2426 \\
2427 &= \mathbb{P}_{\text{Multi}(n)}(Z_1 = z_1, \dots, Z_m = z_m).
\end{aligned}$$

2428 Therefore, we have just proved Eq. (17).
2429

2430 Lastly, we conclude the proof by computing the expectation in terms of $N \sim \text{Poisson}(\lambda)$: since
 2431 $\mathbb{P}(N = j) = \mathbb{P}_{\text{Po}(\lambda)}(\sum_{i=1}^m Z_i = j)$ (\because Lemma E.25), by law of total probability,
 2432

$$\begin{aligned} 2433 \mathbb{E}_{N \sim \text{Poisson}(\lambda)} & \left[\mathbb{P}_{\text{Multi}(N)}((Z_1, \dots, Z_m) \in \mathcal{A}) \right] \\ 2434 &= \sum_{j \geq 0} \mathbb{P}_{\text{Multi}(j)}((Z_1, \dots, Z_m) \in \mathcal{A}) \cdot \mathbb{P}(N = j) \\ 2435 &= \sum_{j \geq 0} \mathbb{P}_{\text{Po}(\lambda)} \left((Z_1, \dots, Z_m) \in \mathcal{A} \mid \sum_{i=1}^m Z_i = j \right) \cdot \mathbb{P}(N = j) \\ 2436 &= \sum_{j \geq 0} \mathbb{P}_{\text{Po}(\lambda)} \left((Z_1, \dots, Z_m) \in \mathcal{A} \text{ and } \sum_{i=1}^m Z_i = j \right) \\ 2437 &= \mathbb{P}_{\text{Po}(\lambda)}((Z_1, \dots, Z_m) \in \mathcal{A}). \end{aligned}$$

□

2444
 2445
 2446
 2447
 2448
 2449
 2450 *Proof of Lemma E.28.* Take any integers z_1, \dots, z_m such that $z_1 + \dots + z_m = n+1$. Let us calculate
 2451 the probability mass. Applying the law of total probability,

$$\begin{aligned} 2452 \mathbb{P}(\tilde{Z}_1 = z_1, \dots, \tilde{Z}_m = z_m) &= \sum_{i=1}^m \mathbb{P}(Z_1 + \mathbb{1}_{\{j=1\}} = z_1, \dots, Z_m + \mathbb{1}_{\{j=m\}} = z_m \mid j = i) \cdot \mathbb{P}(j = i) \\ 2453 &= \sum_{i=1}^m \mathbb{P}(Z_i = z_i - 1, Z_r = z_r \ (\forall r \neq i)) \cdot \mathbb{P}(j = i) \quad (\because j \perp (Z_1, \dots, Z_m)) \\ 2454 &= \sum_{i=1}^m \left(\frac{n! \cdot z_i}{z_1! \dots z_m!} \cdot \frac{p_1^{z_1} \dots p_m^{z_m}}{p_i} \right) \cdot p_i \\ 2455 &= \frac{n!}{z_1! \dots z_m!} \cdot p_1^{z_1} \dots p_m^{z_m} \cdot \sum_{i=1}^m z_i \\ 2456 &= \frac{(n+1)!}{z_1! \dots z_m!} \cdot p_1^{z_1} \dots p_m^{z_m}. \end{aligned}$$

2457 Since the choice of z_1, \dots, z_m is arbitrary (given their fixed sum), it proves that $(\tilde{Z}_1, \dots, \tilde{Z}_m)$ follows
 2458 the distribution $\text{Multinomial}(n+1; p_1, \dots, p_m)$, as desired. □
 2459

2460
 2461
 2462
 2463
 2464
 2465
 2466 *Proof of Lemma E.29.* We only consider the non-decreasing property \mathcal{A} since the proof of the non-increasing case can be done symmetrically. Then, by induction, it suffices to prove

$$\mathbb{P}_{\text{Multi}(n)}((Z_1, \dots, Z_m) \in \mathcal{A}) \leq \mathbb{P}_{\text{Multi}(n+1)}((Z_1, \dots, Z_m) \in \mathcal{A}). \quad (19)$$

2467 Fix any $n \geq 1$ and consider $(Z_1, \dots, Z_m) \sim \text{Multinomial}(n; p_1, \dots, p_m)$. Then, by a property of
 2468 multinomial random variables (Lemma E.28), we have another multinomial vector $(\tilde{Z}_1, \dots, \tilde{Z}_m) \sim$
 2469 $\text{Multinomial}(n+1; p_1, \dots, p_m)$ by $\tilde{Z}_i = Z_i + \mathbb{1}_{\{j=i\}}$, where $j \sim \text{Categorical}(p_1, \dots, p_m)$. Observe that
 2470

$$\mathbb{P}((\tilde{Z}_1, \dots, \tilde{Z}_m) \in \mathcal{A} \mid (Z_1, \dots, Z_m) \in \mathcal{A}) = 1,$$

2471 since $Z_i \leq \tilde{Z}_i$ ($\forall i$) and \mathcal{A} is a non-decreasing property.

2484 Hence, we can derive the following by applying the law of total probability:
 2485

$$\begin{aligned}
 2486 \quad & \mathbb{P}\left((\tilde{Z}_1, \dots, \tilde{Z}_m) \in \mathcal{A}\right) \\
 2487 \quad &= \mathbb{P}\left((\tilde{Z}_1, \dots, \tilde{Z}_m) \in \mathcal{A} \mid (Z_1, \dots, Z_m) \notin \mathcal{A}\right) \cdot \mathbb{P}((Z_1, \dots, Z_m) \notin \mathcal{A}) \\
 2488 \quad &+ \mathbb{P}\left((\tilde{Z}_1, \dots, \tilde{Z}_m) \in \mathcal{A} \mid (Z_1, \dots, Z_m) \in \mathcal{A}\right) \cdot \mathbb{P}((Z_1, \dots, Z_m) \in \mathcal{A}) \\
 2489 \quad &\geq 0 + 1 \cdot \mathbb{P}((Z_1, \dots, Z_m) \in \mathcal{A}) \\
 2490 \quad &= \mathbb{P}_{\text{Multi}(n)}((Z_1, \dots, Z_m) \in \mathcal{A}).
 \end{aligned}$$

2491 This proves Eq. (19), concluding the proof. \square
 2492

2493 *Proof of Lemma E.30.* Let us recall the moment generating function (MGF) of a Poisson random
 2494 variable $N \sim \text{Poisson}(\lambda)$ is $\mathbb{E}[e^{tN}] = \exp(\lambda(e^t - 1))$ ($\forall t \in \mathbb{R}$):
 2495

$$\mathbb{E}[e^{tN}] = \sum_{j \geq 0} e^{tj} \cdot \frac{e^{-\lambda} \lambda^j}{j!} = e^{-\lambda} \cdot \sum_{j \geq 0} \frac{(\lambda e^t)^j}{j!} = \exp(-\lambda) \exp(\lambda e^t) = \exp(\lambda(e^t - 1)).$$

2500 For the upper tail (Chernoff) bound, we use $\lambda = n - \varepsilon$ and apply Markov inequality on e^{tN} : for any
 2501 $n > \varepsilon > 0$ and $t > 0$,

$$\mathbb{P}(N \geq n) = \mathbb{P}(e^{tN} \geq e^{tn}) \leq \mathbb{E}[e^{tN}] \cdot e^{-tn} \leq \exp((n - \varepsilon)(e^t - 1) - tn).$$

2502 Since t is arbitrary, we take the infimum of both sides over $t > 0$, obtaining
 2503

$$\begin{aligned}
 2504 \quad & \mathbb{P}(N > n) \leq \inf_{t > 0} \exp((n - \varepsilon)(e^t - 1) - tn) \\
 2505 \quad &= \exp\left(n \left(\ln\left(1 - \frac{\varepsilon}{n}\right) + \frac{\varepsilon}{n}\right)\right) \\
 2506 \quad &\leq \exp\left(-\frac{\varepsilon^2}{2n}\right). \quad (\because \ln(1 - u) + u \leq -\frac{u^2}{2} \text{ if } u > 0)
 \end{aligned}$$

2507 This proves Eq. (Upper Tail Bound). On the other hand, for the lower tail (Chernoff) bound, we use
 2508 $\lambda = n + \varepsilon$ and apply Markov inequality on e^{-tN} : for any $n > 0$, $\varepsilon > 0$, and $t > 0$,
 2509

$$\mathbb{P}(N \leq n) = \mathbb{P}(e^{-tN} \geq e^{-tn}) \leq \mathbb{E}[e^{-tN}] \cdot e^{tn} \leq \exp((n + \varepsilon)(e^{-t} - 1) + tn).$$

2510 Similarly as before, taking the infimum over $t > 0$,

$$\begin{aligned}
 2511 \quad & \mathbb{P}(N < n) \leq \inf_{t > 0} \exp((n + \varepsilon)(e^{-t} - 1) + tn) \\
 2512 \quad &= \exp\left(n \left(\ln\left(1 + \frac{\varepsilon}{n}\right) - \frac{\varepsilon}{n}\right)\right) \\
 2513 \quad &\leq \exp\left(-\frac{\varepsilon^2}{2n} + \frac{\varepsilon^3}{6n^2}\right). \quad (\because \ln(1 + u) - u \leq -\frac{u^2}{2} + \frac{u^3}{6} \text{ if } u > 0)
 \end{aligned}$$

2514 Observe that, if $0 < \varepsilon < cn$ for some $c \in (0, 3)$,

$$-\frac{\varepsilon^2}{2n} + \frac{\varepsilon^3}{6n^2} \leq -\frac{\varepsilon^2}{2n} + \frac{\varepsilon^2}{6n} \cdot c = -\frac{(3 - c)\varepsilon^2}{6n}.$$

2515 This proves Eq. (Lower Tail Bound). \square
 2516

2517 E.3.2 BINOMIAL RANDOM INTERSECTION GRAPHS

2518 Let us explain the random k -intersection graph (Singer, 1995; Karoński et al., 1999; Godehardt &
 2519 Jaworski, 2003). Consider a set V of vertices and another set W of items. Each vertex $v \in V$ is
 2520 randomly assigned a subset of items $W_v \subset W$. Then, a pair of vertices u and v are adjacent (i.e.,
 2521 connected with an edge) in a random k -intersection graph if and only if at least k items are shared
 2522 between u and v , i.e., $|W_u \cap W_v| \geq k$. We remark that k is a universal constant throughout our
 2523 paper.

2524 One of the most well-studied models of random intersection graphs is *binomial random k -intersection*

2525 graphs $\mathcal{G}^{(k)}(n, m, p)$, with $n = |V|$ and $m = |W|$. In the $\mathcal{G}^{(k)}(n, m, p)$ model, for every vertex
 2526 $v \in V$, each item $w \in W$ is assigned to v independently with the same probability $p \in (0, 1)$. That is,

2538 the indicator variables $\mathbb{1}_{\{w \text{ is assigned to } v\}}$ are i.i.d. Bernoulli random variables with the same parameter
 2539 p , for all vertices $v \in V$ and items $w \in W$. The word *binomial* is attached to the name because the
 2540 number of items assigned to each vertex is a random variable following $\text{Bin}(m, p)$.

2541 We are particularly interested in the $\mathcal{G}^{(k)}(n, m, p)$ model because of the following observation.
 2542

2543 **Lemma E.32** (Evidence Graphs are Binomial k -Intersection Graphs under Poissonization). *Let
 2544 any $b \in B_D$. Consider a vector $(Z_x)_{x \in \mathbb{X}}$ associated with a dataset D (i.e., an input sequence x is
 2545 sampled Z_x times in D). Let $\mathbb{P}_{\text{Po}(\lambda)}$ be a probability measure for $Z_x \stackrel{\text{i.i.d.}}{\sim} \text{Poisson}(\lambda/|\mathbb{X}|)$. Then,
 2546 under $\mathbb{P}_{\text{Po}(\lambda)}$, the b -evidence graph $\mathcal{G}_b^{(D, k)}$ (Def. E.5) is an instance of binomial random k -intersection
 2547 graph $\mathcal{G}^{(k)}(n_b, m, p)$ with parameters
 2548*

$$2549 \quad n_b = |V_b|, \quad m = |\mathcal{X}_3|, \quad p = 1 - \exp\left(-\frac{\lambda}{|\mathbb{X}|}\right).$$

2551
 2552
 2553 *Proof of Lemma E.13.* Recall that the vertex set of $\mathcal{G}_b^{(D, k)}$ is $V_b = \{x_{12} \in \mathcal{X}_{12} : f_1(x_{12}) = b\} \subset$
 2554 \mathcal{X}_{12} . Also, consider $W := \mathcal{X}_3$ as the set of all ‘items.’ Define a set of items assigned to each vertex
 2555 $x_{12} \in V_b$ as

$$2556 \quad W_{x_{12}} = \{x_3 \in W : (x_{12}, x_3) \in D\} = \{x_3 \in W : Z_{(x_{12}, x_3)} \geq 1\}.$$

2557 Observe that all vertex-item assignments are i.i.d. Bernoulli random variables with the same probability
 2558 parameter p : for any $x_{12} \in V_b$ and $x_3 \in \mathcal{X}_3$,

$$2559 \quad p = \mathbb{P}_{\text{Po}(\lambda)}(Z_{(x_{12}, x_3)} \geq 1) = 1 - \mathbb{P}_{\text{Po}(\lambda)}(Z_{(x_{12}, x_3)} = 0) = 1 - \exp\left(-\frac{\lambda}{|\mathbb{X}|}\right).$$

2560 In addition, observe that the set $S(x_{12}, x'_{12} \mid D)$ defined in Eq. (6) is identical to the intersection
 2561 $W_{x_{12}} \cap W_{x'_{12}}$. Hence, by the definition of the edge set $E_b^{(D, k)}$ in Eq. (5), two distinct vertices x_{12}
 2562 and x'_{12} are adjacent if and only if $|W_{x_{12}} \cap W_{x'_{12}}| \geq k$. In summary, every b -evidence graph $\mathcal{G}_b^{(D, k)}$
 2563 is a binomial random k -intersection graph $\mathcal{G}^{(k)}(n_b, m, p)$ with parameters $n_b = |V_b|$, $m = |\mathcal{X}_3|$, and
 2564 $p = 1 - \exp(-\lambda/|\mathbb{X}|)$. \square
 2565

2566
 2567
 2568
 2569 Note that n , m , and p are not necessarily independent of each other; the parameters $m = m_n$ and
 2570 $p = p_{n, m}$ are often regarded as functions of n . Indeed, it is often studied in the literature on random
 2571 graphs that a sufficient condition for the parameters (in terms of $n \rightarrow \infty$) to guarantee certain graph
 2572 properties, at least asymptotically. Here, we review a few of the seminal results on the connectivity
 2573 (as well as the disappearance of isolated vertices) of binomial random k -intersection graphs (Singer,
 2574 1995; Zhao et al., 2014; 2017; Rybarczyk, 2011; 2017).⁹ The proofs are involved; thus, we omit
 2575 them.

FIXED

2576 **Lemma E.33** (Zhao et al., 2014, Theorem 2; Zhao et al., 2017, Theorem 1 & Remark 1). *Fix any
 2577 $k \geq 1$. Suppose that*

$$2578 \quad m = \begin{cases} \Omega\left(\min\left\{n(\ln n)^5, n^\rho\right\}\right), & \text{if } k = 1, \text{ for any } \rho > 1; \\ 2579 \quad \Omega(n), & \text{if } k \geq 2, \end{cases}$$

2580 and

$$2582 \quad p = \left(\frac{k! (\ln n + \alpha_n)}{n}\right)^{\frac{1}{2k}} \cdot \frac{1}{\sqrt{m}} \quad (8)$$

2583 for any sequence $\{\alpha_n\}$ which attains a limit $\alpha_\infty \in [-\infty, +\infty]$ as $n \rightarrow \infty$. Then,

$$2584 \quad \lim_{n \rightarrow \infty} \mathbb{P}\left(\mathcal{G}^{(k)}(n, m, p) \text{ is connected}\right) = \lim_{n \rightarrow \infty} \mathbb{P}\left(\min \deg \mathcal{G}^{(k)}(n, m, p) \geq 1\right) = \exp(-e^{-\alpha_\infty}),$$

2585 where we compute $\exp(-e^{(-\infty)}) = 0$ and $\exp(-e^{(+\infty)}) = 1$.

2586
 2587
 2588
 2589
 2590
 2591 ⁹Caveat: in the literature of (random) graph theory, the letter ‘ k ’ is often used for k -connectivity (i.e., being
 2592 connected after removing less than k vertices/edges). On the other hand, they study ‘random s -intersection
 2593 graphs,’ using s as the intersection constraint parameter.

2592 **Lemma E.34** (Singer, 1995, Propositions 3.1–2, Theorem 3.3). *Let $k = 1$. Suppose that $m = n^\rho$ for*
 2593 *$\rho > 0$ and*

$$2594 \quad 2595 \quad 2596 \quad 2597 \quad 2598 \quad p = \begin{cases} \frac{\ln n + \alpha_n}{m} & \text{for } \rho \leq 1; \\ \sqrt{\frac{\ln n + \alpha_n}{mn}} & \text{for } \rho > 1, \end{cases}$$

2599 *for any sequence $\{\alpha_n\}$ which attains a limit $\alpha_\infty \in \{-\infty, +\infty\}$ as $n \rightarrow \infty$. Then,*

$$2600 \quad 2601 \quad \lim_{n \rightarrow \infty} \mathbb{P}(\mathcal{G}^{(1)}(n, m, p) \text{ is connected}) = \lim_{n \rightarrow \infty} \mathbb{P}\left(\min \deg \mathcal{G}^{(1)}(n, m, p) \geq 1\right) = \begin{cases} 0, & \text{if } \alpha_\infty = -\infty; \\ 1, & \text{if } \alpha_\infty = +\infty. \end{cases}$$

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646 F ADDITIONAL RESULTS FOR POWER-LAW SCALING ANALYSIS

2648 F.1 MEASUREMENT PROTOCOL FOR N_{req}

2650 To empirically determine the minimum dataset size required for reliable compositional generalization
 2651 (N_{req}), we develop a measurement protocol that accounts for practical computational constraints
 2652 while ensuring robustness. For each token set size $|\mathcal{X}|$ and task structure, we test multiple dataset
 2653 sizes until we identify the threshold point where the model successfully generalizes to the ID test set.

2654 Specifically, our criterion for “reliable generalization” on ID is defined as:

2655 • The model must reach ID test accuracy of 0.99 within 100 epochs after achieving training
 2656 accuracy > 0.99 .

2658 This protocol balances several considerations:

- 2659 1. **Training-to-generalization delay:** Larger datasets naturally require more iterations to fit
 2660 training data. By measuring epochs after reaching training accuracy > 0.99 , we focus on the
 2661 generalization gap rather than conflating it with initial training difficulty.
- 2662 2. **Epoch-based measurement:** Using epochs rather than raw training steps ensures that the
 2663 model sees each functional equivalence evidence approximately the same number of times,
 2664 regardless of dataset size. This provides a fairer comparison across different dataset sizes.
- 2665 3. **Practical time constraints:** While indefinite training might eventually yield generalization
 2666 with smaller datasets, we established a reasonable upper bound (100 epochs post-training
 2667 convergence) to reflect practical limitations.
- 2668 4. **Measurement precision:** For each identified N_{req} , we verified that 75% of this dataset
 2669 size consistently failed to meet our generalization criterion. This establishes that our
 2670 measurement error is at most $-\log(0.75) = 0.125$ in log scale, providing confidence in the
 2671 derived power-law exponents.

2672 F.2 MEASURED POWER-LAW SCALING EXPONENTS ACROSS TASK STRUCTURES AND 2673 MODEL SIZES

2674 Using our measurement protocol, we measure the required dataset size N_{req} across three different
 2675 compositional structures (2-HOP, PARALLEL-2-HOP, and 3-HOP) and three model scales (68M,
 2676 96M, and 1.5B parameters). For each task structure, we vary the token set size $|\mathcal{X}|$ from 50 to 200,
 2677 allowing us to observe the scaling relationship.

2678 Table 2 presents the power-law exponents obtained by linear fitting $\log(|\mathcal{X}|)$ vs. $\log(N_{\text{req}})$ plots,
 2679 all with $R^2 > 0.99$. The consistency of exponents across model sizes suggests that the observed
 2680 power-law scaling relates to properties of the compositional tasks themselves, rather than model
 2681 capacity. This observation aligns with our theoretical derivation in Section 5.1, which predicts that
 2682 the required dataset size scales at least quadratically with token set size.

2683 Table 2: The power-law exponents for different tasks and GPT-2 sizes, obtained by linear fitting
 2684 $\log(|\mathcal{X}|)$ vs. $\log(N_{\text{req}})$ plots. $R^2 > 0.99$ for all linear fitting.

Model Size	2-HOP	PARALLEL-2-HOP	3-HOP
68M	2.13	2.47	2.61
96M	2.26	2.35	2.50
1.5B	2.28	2.17	2.60

2692 F.3 ROBUSTNESS TO HYPERPARAMETER VARIATIONS

2694 To verify that our observed power-law scaling relationship is not an artifact of specific hyperparameter
 2695 choices, we conduct ablation studies with modified training configurations. Figure 15 demonstrates
 2696 that for the 2-HOP task with $|\mathcal{X}| = 50$, the following changes did not significantly affect the measured
 2697 N_{req} or the derived power-law exponent:

- 2698 1. **Learning rate reduction:** Halving the learning rate from 8e-4 to 4e-4
- 2699 2. **Weight decay reduction:** Decreasing weight decay by a factor of 10 (from 0.1 to 0.01)

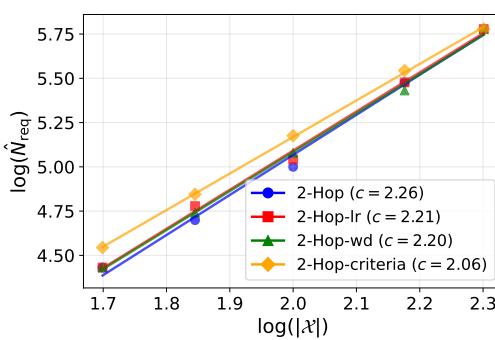


Figure 15: Robustness of power-law scaling relationship to hyperparameter variations in the 2-HOP task with $|\mathcal{X}| = 50$. Each line shows the training and test accuracy curves for a different configuration: (1) baseline, (2) reduced learning rate (4e-4, half of baseline), (3) reduced weight decay (0.01, one-tenth of baseline), and (4) changed generalization criteria (test accuracy > 0.95 within 10 epochs after training accuracy > 0.95). $R^2 > 0.99$ for all linear fitting.

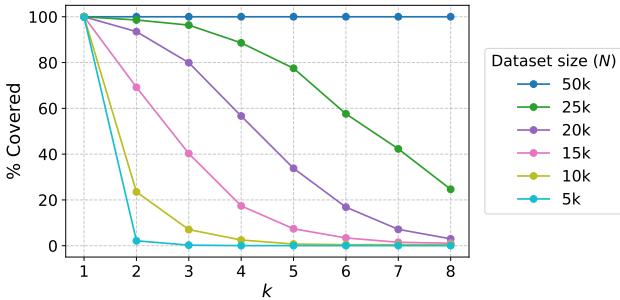
3. **Generalization criteria modification:** Requiring test accuracy > 0.95 within 10 epochs after training accuracy > 0.95

This robustness to hyperparameter variations suggests that the power-law relationship between token set size and required dataset size is primarily a property of the compositional generalization process, rather than an artifact of specific optimization settings.

2754 **G DETAILED ANALYSIS FOR NON-TREE TASK**
 2755

2756 This section provides additional analyses that support our findings in Sec. 7 regarding the challenges
 2757 of path ambiguity in the NON-TREE task.

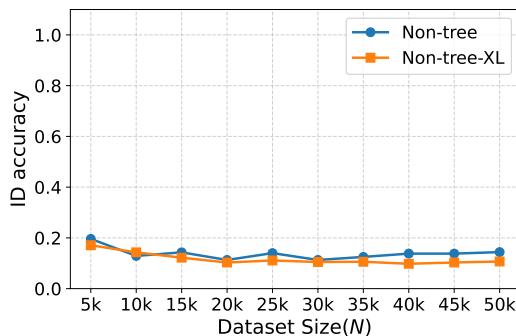
2759 **G.1 COVERAGE ANALYSIS**
 2760



2771 Figure 16: Coverage analysis for NON-TREE task with $|\mathcal{X}| = 50$. The graph shows the percentage of
 2772 ID test data covered at different k values across various dataset sizes (N). Compared to the 2-HOP
 2773 task (Fig. 3, left), NON-TREE has significantly lower coverage at equivalent dataset sizes, indicating
 2774 that path ambiguity impedes the formation of functional equivalence relationships.

2775
 2776 Fig. 16 demonstrates that with equivalent training dataset sizes, a smaller percentage of ID test
 2777 examples fall inside k -coverage for the NON-TREE task compared to the 2-HOP task shown in Fig. 3
 2778 (Left). This aligns with our theoretical analysis in Sec. 7, which predicts that path ambiguity limits
 2779 the establishment of functional equivalence relationships between input subsequences, as the model
 2780 cannot generalize across different x_2 values in the NON-TREE structure even when they produce the
 2781 same intermediate state $b = f_1(x_1, x_2)$.

2782 **G.2 EFFECT OF MODEL SCALING**
 2783



2796 Figure 17: ID test accuracy comparison between GPT-2 (96M parameters) and GPT-2-XL (1.5B
 2797 parameters) on the NON-TREE task with $|\mathcal{X}| = 50$, measured 100 epochs after training accuracy
 2798 exceeds 0.99. Despite the 15x increase in parameter count, the accuracy does not increase.

2799
 2800 Fig. 17 shows that scaling up the model size to GPT-2-XL (1.5B parameters) does not significantly
 2801 improve generalization performance on the NON-TREE task, even when measured 100 epochs after
 2802 reaching training accuracy > 0.99 . This suggests that the challenges posed by path ambiguity cannot
 2803 be overcome simply by increasing model capacity, supporting our claim that the limitation is structural
 2804 rather than related to model capacity.

2805 **G.3 COMPARISON BETWEEN MAMBA AND GPT-2 ON NON-TREE TASK**
 2806

2807 Fig. 18 shows that the Mamba model (4 layers, hidden dimension of 256, trained with learning rate of
 2808 0.008) shows a similar trend of ID test accuracy on NON-TREE task compared to GPT-2, suggesting

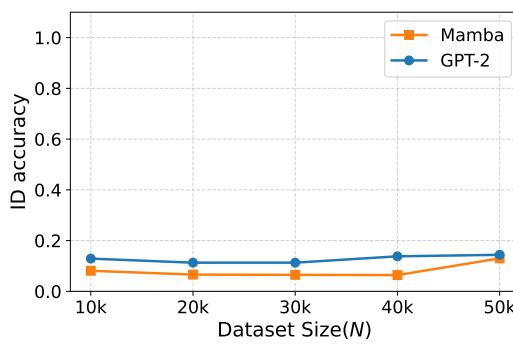


Figure 18: ID test accuracy comparison between GPT-2 and Mamba on the NON-TREE task with $|\mathcal{X}| = 50$, measured 100 epochs after training accuracy exceeds 0.99.

that the generalization failure is more likely due to the task structure itself, rather than a specific model architecture.

G.4 REPRESENTATION ANALYSIS IN SUCCESSFUL GENERALIZATION

For a model that eventually achieved near-perfect ID accuracy (0.96) after extended training (36k epochs, $|\mathcal{X}| = 50$, $N = 50k$), we conduct causal tracing analysis to understand how it achieves generalization despite path ambiguity.

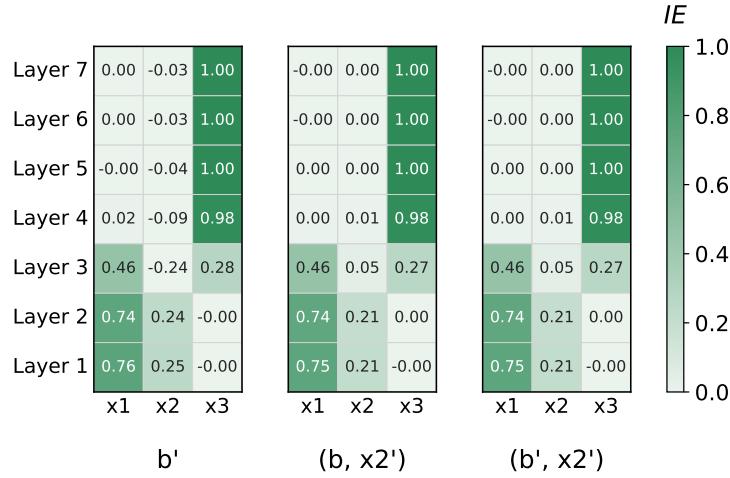


Figure 19: Causal tracing analysis for the NON-TREE model after extended training. The heatmap shows indirect effect values across different layer-token positions. **Left:** perturbation leading to different intermediate state $b = f_1(x_1, x_2)$. **Middle:** same b but different x_2 . **Right:** different b and x_2 .

The causal tracing results in Fig. 19 reveal how the model achieves generalization in the presence of path ambiguity. Across all perturbation strategies, the model’s predictions show strong causal dependence on representations at both the x_1 and x_2 positions, indicating reliance on direct access to both input tokens rather than an abstracted intermediate computation. This pattern contrasts sharply with the 2-HOP task, where causal effects concentrate primarily at positions corresponding to clustered functional equivalence representations.

This analysis demonstrates that even models achieving high accuracy on NON-TREE tasks do so by developing context-dependent representations rather than unified abstractions of intermediate states. The model forms separate computational pathways conditioned on the x_2 value, rather than learning a single unified representation of the intermediate state $b = f_1(x_1, x_2)$. This represents a fundamentally different solution strategy compared to the 2-HOP task, with implications for both generalization capability and interpretability.

2862 **H DETAILED DISCUSSION ON THE TAXONOMY FOR UNDERSTANDING**
 2863 **GENERALIZATION MECHANISMS**

2865 In this section, we initiate a discussion to disambiguate the mixed mechanisms of generalization into
 2866 isolated testable parts by sketching a preliminary taxonomy that distinguishes three complementary
 2867 mechanisms of generalization. We note that we do not view our categorization as a complete one.

2868 **Type-I: Functional equivalence-based generalization (pattern matching).** This is precisely
 2869 what we formalized through this work: models learn that different input fragments yield identical
 2870 results in shared contexts, enabling generalization to new fragment combinations. Crucially, this
 2871 generalization remains bounded by coverage, and reliable generalization fails without sufficient
 2872 functional equivalence evidence. In other words, it describes the ceiling of pattern matching.

2873 **Type-II: Function property-based generalization.** This mechanism exploits intrinsic properties of
 2874 individual primitive functions, e.g., algebraic invariances such as commutativity or *input irrelevance*,
 2875 where certain arguments never affect the output (e.g., $f(x_1, x_2) = f(x_1)$ even when distractor x_2 is
 2876 present (Wen et al., 2025)). Unlike the previous type, this mechanism explains the generalization
 2877 beyond the coverage by leveraging ‘global’ properties that hold across all possible inputs of a
 2878 primitive, beyond what is actually observed. We interpret the Reversal Curse phenomenon (Berglund
 2879 et al., 2024) as an example of the layered nature of challenges across multiple generalization types.
 2880 Our framework predicts the failure of pattern matching on this problem, since training on “ A is
 2881 B ” provides no functional equivalence evidence for “ B is A^{-1} ”. An architectural modification to
 2882 learn inverse mappings from the same training data to handle this problem (Lv et al., 2024) can be
 2883 interpreted as a utilization of Type-II generalization to enable generalization beyond coverage.

2884 **Type-III: Shared-operator generalization.** This mechanism emerges through the reuse of identical
 2885 primitive functions across computational positions (e.g., when $f_1 = f_2$). Recurrent architectures
 2886 (Hochreiter & Schmidhuber, 1997) exemplify the utilization of this through weight sharing across
 2887 time steps, enabling processing of variable-length sequences (Graves et al., 2014). Similarly, it has
 2888 been reported in Transformers with inductive biases towards reuse of the same computation through
 2889 parameter sharing (Dehghani et al., 2019; Csordás et al., 2021; Wang et al., 2024a) can improve
 2890 generalization on complex compositional tasks where the same primitive function can be reused in
 2891 various contexts. We interpret this mechanism as exploiting structural repetition.

2892 **Distinguishing mechanisms from phenomena.** Compared to prior categorizations of generalization,
 2893 which focus on observed phenomena (Lake & Baroni, 2018; Hupkes et al., 2020), we categorize
 2894 the underlying mechanisms. As noted in Sec. 1, many behavioral studies have examined tasks mixing
 2895 functional equivalence, primitives’ intrinsic properties, and operator reuse within the same benchmark,
 2896 making it difficult to pinpoint the true source of success or failure. We therefore advocate clearer
 2897 experimental control and community discussion around this mechanistic distinction to sharpen future
 2898 analyses of neural generalization.

2899 **Implications and future directions.** Real compositional tasks typically involve combinations of
 2900 all three types (and possibly more). While preliminary, we believe this taxonomy guides future
 2901 research design on constructive characterization of neural networks’ generalization behaviors on
 2902 discrete sequence tasks. In this broader context, this work can be understood as a characterization and
 2903 formalization of pattern-matching generalization to clarify its specific boundaries. When models suc-
 2904 ceed beyond our coverage predictions, we view these as exploiting other generalization mechanisms,
 2905 i.e., beyond pattern matching. Our focused study suggests that challenges to reliable generalization
 2906 remain as long as models rely primarily on pattern matching, requiring methodological innovations
 2907 that harness non-pattern-matching mechanisms, e.g., variable binding. We hope this preliminary
 2908 taxonomy serves as a research program towards our better understanding of generalization, and
 2909 confirming or refuting its utility is an empirical matter that we invite the community to explore.

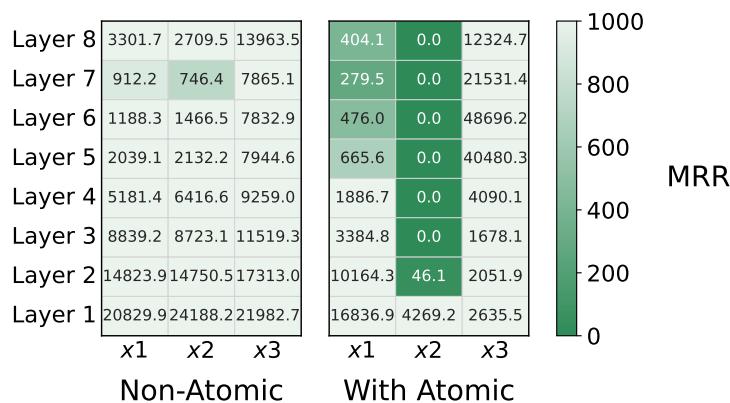
2916 **I PARTIAL COMPUTATION OBSERVATION DRIVES THE ALIGNMENT OF**
 2917 **FUNCTIONAL EQUIVALENCE REPRESENTATION AND VOCABULARY SPACE**
 2918

2919 In this section, we investigate how exposure to partial computations affects the interpretability of
 2920 intermediate state representations through vocabulary space alignment. We compare two training
 2921 conditions on a modified 2-HOP task with $|\mathcal{X}| = 50$ and $N = 10k$, after 40k epochs of training:

2922 1. **Standard Training:** $f_1 \neq f_2$, model only sees complete two-hop examples $(x_1, x_2, x_3) \mapsto$
 2923 t .
 2924 2. **With Partial Computation:** $f_1 = f_2$, model additionally sees all possible partial computations
 2925 $(x_1, x_2) \mapsto b$ where $b = f_1(x_1, x_2)$ (2,500 partial examples, not counted toward the
 2926 $N = 10k$ two-hop training data).

2927 To assess interpretability, we measure the Mean Reciprocal Rank (MRR) of intermediate state
 2928 representations when projected to vocabulary space using the unembedding matrix. The low MRR
 2929 indicates that the model’s internal representation of intermediate state b aligns with the corresponding
 2930 vocabulary token.

2931 Fig. 20 shows a striking contrast between the two conditions. Under standard training, the MRR score
 2932 remains very high throughout training, indicating that intermediate representations are not aligned
 2933 with vocabulary space despite the model successfully learning the compositional task. However,
 2934 when partial computations are included, the MRR score becomes very high, demonstrating clear
 2935 vocabulary alignment.



2951 Figure 20: MRR scores for intermediate state representations projected to vocabulary space. **Left:**
 2952 Standard training ($f_1 \neq f_2$, no partial computation) shows very high MRR regardless of position and
 2953 layer. **Right:** Training with partial computation ($f_1 = f_2$, with partial examples) shows MRR of 0 in
 2954 layers 3 to 8 at position x_2 , indicating strong vocabulary alignment.

2955 This experiment suggests that **logit lens interpretability is orthogonal to functional equivalence**
 2956 **representation formation**. A model can develop functionally correct intermediate representations
 2957 that enable compositional generalization while remaining completely uninterpretable through standard
 2958 vocabulary projection techniques. Interpretability via logit lens requires explicit vocabulary anchoring
 2959 through exposure to partial computations that map intermediate states to vocabulary tokens.

2960 This finding has important implications for mechanistic interpretability research: the absence of
 2961 interpretable representations through the logit lens does not indicate the absence of structured internal
 2962 computation. Furthermore, it suggests that interpretability techniques may need to account for how
 2963 training data shapes the alignment between internal representations and vocabulary space, rather than
 2964 assuming such alignment emerges naturally from task performance.

2965
 2966
 2967
 2968
 2969