
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CHARACTERIZING PATTERN MATCHING AND ITS LIM-
ITS ON COMPOSITIONAL TASK STRUCTURES

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite impressive capabilities, LLMs often exhibit surface-level pattern-matching
behaviors, evidenced by OOD generalization failures in compositional tasks. How-
ever, behavioral studies commonly employ task setups that allow multiple gen-
eralization sources (e.g., algebraic invariances, structural repetition), obscuring a
precise and testable account of how well LLMs perform generalization through
pattern matching and their limitations. To address this ambiguity, we first formal-
ize pattern matching as functional equivalence, i.e., substituting input fragments
observed to result in identical outputs in shared contexts. Then, we systematically
study how decoder-only Transformer and Mamba behave in controlled tasks with
compositional structures that isolate this mechanism. Our formalism yields pre-
dictive and quantitative insights: (1) Instance-wise success of pattern matching
is tightly ordered by the number of contexts witnessing the relevant functional
equivalence. (2) We derive and empirically confirm that the training data required
for learning a two-hop structure grows at least quadratically with token-set size.
The power-law scaling exponent agrees with predictions and remains stable across
20× parameter scaling and different architectures. (3) Path ambiguity is a struc-
tural barrier: when a variable influences the output via multiple paths, models fail
to form unified intermediate state representations, impairing accuracy and inter-
pretability. (4) Chain-of-Thought reduces data requirements yet does not resolve
path ambiguity. Hence, we provide a predictive, falsifiable boundary for pattern
matching and a foundational diagnostic for disentangling mixed generalization
mechanisms.

1 INTRODUCTION

Despite the remarkable performance of Large Language Models (LLMs) (Brown et al., 2020; Tou-
vron et al., 2023), compositional generalization studies report their “pattern-matching” behaviors,
i.e., models exploiting local statistical regularities between input fragments and outputs in some
cases (Loula et al., 2018; Johnson et al., 2017; Berglund et al., 2024; Wang et al., 2024; Mirzadeh
et al., 2025; Keysers et al., 2020; Csordás et al., 2022). However, behavioral studies commonly
employ task setups that allow multiple generalization sources (e.g., algebraic invariances, structural
repetition), discussing pattern matching without a precise definition and diagnosing it post-hoc via
benchmark failures. As a result, it remains unclear which behaviors should count as pattern matching
and which should not, obscuring a constructive and testable account of its boundary.

To make this notion precise, we (1) introduce a model-agnostic, data-centric formalism for pat-
tern matching and (2) systematically study how modern architectures, decoder-only Transform-
ers (Vaswani et al., 2017) and Mamba (Gu & Dao, 2024) perform generalization through pattern
matching. Specifically, first, we propose a model-agnostic and data-centric definition of pattern
matching by formalizing the substitution of input patterns observed to result in identical outputs in
shared contexts as functional-equivalence (Sec. 3; henceforth, we use pattern matching as equivalent
to functional-equivalence-based generalization). This induces a coverage boundary: if learning
relies only on such evidence, reliable prediction is expected only for test inputs reachable by these
substitutions.

Second, to isolate and study pattern-matching behaviors, we use controlled setups that deliberately
remove other generalization sources (e.g., algebraic invariances, structural repetition) and make
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Figure 1: Illustration of functional equivalence. Left: In a two-hop task (x1, x2, x3) 7→ t with t =
f2(f1(x1, x2), x3), two fragments (x1, x2) and (x′

1, x
′
2) satisfying f1(x1, x2) = f1(x

′
1, x

′
2) = b consistently

yield the same final output when combined with the same context x3, supporting their functional equivalence.
Right: Among all possible inputs (few shown), we draw an edge between any two inputs that differ only by
functionally equivalent fragments to form a substitution graph. Then, coverage is the set of observed inputs
(highlighted as blue) and all inputs connected to them. We define pattern matching as a type of generalization
that occurs inside the coverage, harnessing functional equivalence.

functional equivalence the primary available mechanism. With this setting, our formalism yields
predictive and quantitative insights about the limitations of pattern matching that, to our knowledge,
have not been well characterized in prior works:

• Generalization success is tightly ordered by the number of supporting contexts that
witness the relevant functional equivalence. Mechanistically, Transformers implement
functional equivalence via clustered intermediate representations at specific layers/positions,
with clustering strength aligning with evidence strength (Sec. 5).

• We derive and empirically confirm that the training data required for pattern matching
on a two-hop structure grows at least quadratically with token-set size. Measured power-
law exponent agrees with predictions and remains stable under roughly 20× parameter
increase from (68M to 1.5B) for GPT-2 (Radford et al., 2019), and also holds for Mamba
(Gu & Dao, 2024) architecture (Sec. 6).

• When the same variable influences the output along multiple computational paths,
models fail to form unified intermediate state representations. Analysis reveals that they
instead develop context-dependent state representations, impairing both generalization and
interpretability (Sec. 7).

• Chain-of-Thought (CoT) supervision (Wei et al., 2022) reduces data requirements yet
does not resolve path ambiguity without seeing nearly exhaustive in-domain combina-
tions (Sec. 8).

Finally, we situate this characterization of pattern matching within a mechanism-based taxonomy of
generalization mechanisms, proposing two additional distinguishable mechanisms of generalization
in compositional tasks: property-based and shared-operator generalization (Sec. 9 and App. H).

Our formalism opens several research directions with practical implications, e.g., targeted data
augmentation to maximize coverage, and motivates expansion to broader tasks and architectures, as
well as systematic studies of how pattern matching interacts with other generalization mechanisms.
Overall, our study provides a predictive, falsifiable boundary for what can be achieved through pattern
matching alone and a foundational diagnostic for disentangling mixed mechanisms in modern neural
networks.

2 RELATED WORK

Pattern matching behaviors of LLMs on compositional tasks. It is well perceived that pattern
matching alone is inadequate for systematic generalization (Fodor & Pylyshyn, 1988), and modern
LLMs display generalization abilities that seem to be far beyond what pattern matching alone can
do, as measured by their remarkable performance on complex benchmarks (Achiam et al., 2023).
However, a growing body of work has consistently reported that LLMs still fall short on benchmarks
designed to test compositionality (Hupkes et al., 2020), including mathematical reasoning (Mirzadeh
et al., 2025), multi-hop reasoning (Yang et al., 2024; Wang et al., 2024), and more (Lake & Baroni,
2018; Kim & Linzen, 2020; Csordás et al., 2022; Dziri et al., 2023). This gap between their capabilities
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and pattern-matching behaviors on compositional tasks calls for a principled framework to define what
pattern matching is and to what extent a model behavior can be attributed to pattern matching, but it is
mostly discussed with behavioral studies under the context of a specifically designed benchmark. Our
work addresses this gap by formally defining pattern matching, and systematically analyze models’
behaviors with controlled tasks that are designed to isolate pattern-matching regime grounded on our
framework.

Mechanistic interpretability. Mechanistic interpretability studies aim to understand how submech-
anisms implement models’ behaviors (Elhage et al., 2021; Olsson et al., 2022; Nanda et al., 2023;
Elhage et al., 2022). Recent work analyzes how Transformer components are causally related to
certain behaviors (Meng et al., 2022; Hanna et al., 2023; Goldowsky-Dill et al., 2023). In particular,
it is reported that in-domain compositional generalization can emerge through grokking, with identi-
fiable intermediate state representations inside Transformers (Wang et al., 2024). Our framework
complements these works by providing mechanistic insights on pattern matching. Our findings also
explain why standard interpretability techniques like logit lens (nostalgebraist, 2020; Belrose et al.,
2023) may fail to identify state representations in models trained on tasks with path ambiguities.

3 FORMALIZING PATTERN MATCHING WITH FUNCTIONAL EQUIVALENCE

We now develop a formal framework for pattern matching. We first provide an intuitive illustration
with a two-hop structure, then generalize to arbitrary fixed-length discrete-sequence tasks.

Imagine a learner observing data determined by f : X 3 → X . The input x = (x1, x2, x3) ∈ X 3 is a
sequence of three discrete tokens and the output is a single token, where each token is chosen from a
finite set X .1 Suppose (unknown to the learner) that f factorizes as the composition of two primitive
functions, f(x) = f2(f1(x1, x2), x3), where f1 : X 2 → X and f2 : X 2 → X , as illustrated in
Fig. 2a. How can the learner generalize by only seeing the input-output patterns?

Our key intuition is that a learner exploits the underlying patterns only when two frag-
ments of inputs are observed to behave identically. For instance, assume that two fragments
(x1, x2), (x

′
1, x

′
2) ∈ X 2 give the same implicit intermediate state upon the application of f1, i.e.,

f1(x1, x2) = f1(x
′
1, x

′
2) = b. These fragments behave identically regardless of context, i.e., they are

functionally equivalent: for all x3 ∈ X , f(x1, x2, x3) = f(x′
1, x

′
2, x3). If observations consistently

support their equivalence, i.e., f(x1, x2, x3) = f(x′
1, x

′
2, x3) for observed x3 values, this equivalence

can be supported (Fig. 1 Left). Intuitively, the learner would harness this equivalence pattern to
predict f(x′

1, x
′
2, x

′′
3), provided the training set contains f(x1, x2, x

′′
3).

Equivalently, the learner can utilize the observed functional equivalence to correctly infer the output
of an unseen input, if it can reach an observed input by ‘safe substitutions’ (edges in the substitution
graph) supported by observations (Fig. 1 Right), which we define as a pattern matching. Coverage
is a set of such inputs that are reachable from an observed input through chains of functionally
equivalent substitutions. Then, coverage sets a boundary for what can be achieved by solely relying
on substituting observed, equivalently behaving patterns. In other words, a learner can only generalize
inside the coverage when it relies on functional equivalence, which we will define as pattern matching.

We now formalize these concepts for an arbitrary fixed-length task with an arbitrary set of discrete
sequence observations. We restrict our attention to single-token prediction tasks defined as a de-
terministic mapping f : X ℓ → X , where X is a finite set of tokens. We also consider a fixed
observation set D ⊂ X ℓ, a collection of inputs that are allowed to be observed by the learner. Write
x = (x1, . . . , xℓ) ∈ X ℓ and, for a subset I ⊂ [ℓ] := {1, . . . , ℓ}, let xI := (xi)i∈I be a subsequence
of x. The first step is to formalize what it means for two subsequences to be functionally equivalent.
Definition 3.1 (Functional k-equivalence). Fix a nonempty proper subset I of indices in [ℓ]. Consider
any set S ⊂ X ℓ of input sequences.2 Given a pair of subsequences a,a′ ∈ X |I|, we say a pair of
inputs {x,x′} to be an I-co-occurrence of a and a′ in S if it satisfies {x,x′} ⊂ S and xI = a,
x′
I = a′, and x[ℓ]\I = x′

[ℓ]\I . Also, the subsequences a and a′ are said to be functionally k-
equivalent at I in S and denoted by a ≡I

S a′, if it satisfies:
1For brevity, we use a shared token set X . Position-specific domains Xi can be embedded as subsets of an

enlarged token set X̃ = X1 ∪ X2 ∪ X3 without loss of generality.
2The set S can be any subset of the whole domain, e.g., X ℓ itself, the train dataset D, or whatever else.
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Figure 2: Four synthetic task structures we study.

1. (Sufficiency of co-occurrences.) There are k or more distinct I-co-occurrences of a and a′ in S;

2. (Consistency.) Every I-co-occurrence {x,x′} of a and a′ in S satisfies f(x) = f(x′).

In other words, two subsequences are functionally k-equivalent if they behave identically in the
same contexts at least k times. The hyperparameter k represents the strength of evidence required to
establish functional equivalence between two subsequences. The minimum value k = 1 corresponds
to the weakest form of evidence, meaning a single shared context is sufficient to establish equivalence,
whereas higher values of k demand more robust evidence.

Next, we ask: which inputs are reachable from observed data utilizing functional equivalence? To
formalize this, we define substitution graph: Let GD,k = (V,E) be an undirected graph with a
vertex set V = X ℓ of all possible inputs. Two vertices x,x′ ∈ V are connected with an edge in E if
and only if there exists an index set I ⊂ [ℓ] such that {x,x′} is an I-co-occurrence (in V ) of a pair of
functionally k-equivalent sequences at I in D. This process is illustrated on the right side of Fig. 1,
as a special case where k = 1. With this substitution graph GD,k, we formally define the k-coverage
as a set of inputs which are connected3 to at least one observed input as follows:

Definition 3.2 (k-coverage). Consider a subset D of X ℓ. k-coverage, denoted by Coverk(D), is the
set of all inputs in X ℓ that is connected to an input in D on the substitution graph GD,k.

Note that the notion of coverage is a stricter condition of the canonical definition of in-domain
(ID), which is obtained by random train/test split (Wang et al., 2024) or taking combinations of
observed internal computations (Dziri et al., 2023). In Sec. 5, we demonstrate that learners may not
necessarily generalize on data that are classified as ID in a canonical sense, but coverage can precisely
explain when and why this occurs. We also emphasize that coverage is a property of a dataset and is
independent of model architectures and learning algorithms, and we demonstrate that the predictions
made by our framework are invariant across model architecture and scale in Sec. 6 and 7. Finally,
k-coverage can be algorithmically determined for any fixed-length discrete sequence tasks (Alg. 1),
which we use for the analyses in the following sections.

Now, we formally define pattern matching as a kind of generalization that is done by substituting
functionally k-equivalent fragments of inputs, whose boundary is precisely the k-coverage
defined above. This formalization enables us to predict, before testing, which inputs will be reliably
handled through pattern matching and which require additional mechanisms. In other words, we view
pattern matching as possible only within k-coverage, and generalization outside the coverage requires
generalization mechanisms other than pattern matching, which we discuss in Sec. 9 and App. H. In
the following sections, we draw a systematic picture of how task structure, dataset, and model size
interact to determine the success and failure of pattern matching through controlled setups, leading us
to important and nontrivial insights.

4 EXPERIMENTAL SETUP

Dataset construction. We construct four synthetic tasks with different structures: 2-HOP, PARAL-
LEL 2-HOP, 3-HOP, and NON-TREE (Fig. 2). To isolate functional-equivalence-based generalizations,
we create random mappings from the product space of a token set to control generalization sources

3For an undirected graph G, two vertices u, v are connected if G contains a path between u and v.
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not attributable to compositional structures (i.e., commutativity). We explain the dataset construction
process using 2-HOP task (Fig. 2a), (x1, x2, x3) 7→ t with t = f2(f1(x1, x2), x3), as an example.
We construct training datasets by defining a token set with size |X |, and creating two random maps
for the primitive functions f1 : X 2 → X and f2 : X 2 → X . We mark a fraction pseen = 0.7 of each
function’s domain as ‘seen’, gather all possible combinations where both functions are applied to
inputs from their seen domains, and uniformly sample N examples to form a training dataset. See
App. B.1 for more details of the dataset construction process.

Training & evaluation. Following (Wang et al., 2023), we train randomly initialized GPT-2
(Radford et al., 2019) models with 8 layers, 12 heads, and 768 dimensions (see App. B.2 for details).
We construct two evaluation sets, each with 2,000 instances: (1) ID Test Set : all primitive function
applications (e.g., f1(x1, x2) and f2(b, x2) in 2-HOP task) are observed during training, but the
specific combination was unseen. (2) Out-of-coverage (canonical OOD) Test Set: at least one
primitive function application is never observed during training, which is used as a control group.

5 QUANTITATIVE ANALYSIS OF PATTERN MATCHING IN TRANSFORMERS

5.1 EVIDENCE STRENGTH IS TIGHTLY ALIGNED TO PATTERN MATCHING SUCCESS
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Figure 3: Left: Percentage of covered ID data depending on k values and dataset size (N ), for 2-HOP task
(|X |= 50). Right: Test accuracy depending on k-cutoff values for 2-HOP task (|X |= 50, N=10k). Each line
represents a different training checkpoint. Note that out-of-coverage (k = 0) accuracy remains at chance level
(≈ 1/50) regardless of training time. The bars below show the number of test data for each k-cutoff value.

We first analyze correlation between k-coverage and ID generalization performance of GPT-2 model.
To this end, we implement and release a task-agnostic coverage determination algorithm (see App. C)
that can be applied to diverse compositional structures. Then, we analyze what fraction of ID test data
of 2-HOP task with |X |= 50 lies inside k-coverage, depending on k and dataset size N . Fig. 3 (Left)
shows that at N = 5k, every ID test example is already covered with minimal evidence (k = 1).
Hence, in an ideal scenario where a single witness of functional equivalence suffices, training with
the dataset as small as N = 5k will lead to perfect ID generalization.

However, experiments show that minimal coverage alone is insufficient for ID generalization in
practice. To demonstrate this, we first define a sample’s k-cutoff as the lowest k for which an input lies
in k-coverage, measuring the strength of evidence for functional equivalence. For example, a k-cutoff
of 3 means that an example is inside coverage with k = 3 but not with k = 4. For out-of-coverage
data, we define k-cutoff as 0. Then, for the 2-HOP dataset with N = 10k, we classify each ID test
instance according to its k-cutoff, and track the accuracy development of GPT-2 model for each
group across 50k training epochs. As shown in Fig. 3 (Right), generalization success shows a strong
relationship with k-cutoff values. Test data with low k-cutoff values show delayed improvement even
after extensive training, while examples with stronger evidence generalize much faster.

These results yield two important insights. First, successful generalization in practice requires
a robust coverage so the model can confidently identify and utilize functional equivalence
relationships. The k parameter effectively quantifies this evidence strength, directly impacting
generalization speed and reliability. Second, while our experiments use uniformly distributed data,
the results can explain why models struggle with generalizing long-tail distributions in imbalanced
real-world data (Mallen et al., 2023; Kandpal et al., 2023; Chang et al., 2024). Rare combinations
naturally receive limited functional equivalence evidence (low k), placing them effectively outside
practical coverage, despite technically being in-distribution. We note that our insights may guide
targeted data augmentation strategies to maximize k-coverage in future work.
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5.2 LATENT REPRESENTATION CLUSTERS DRIVE PATTERN MATCHING ON COVERAGE
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Figure 4: Left: Heatmap of Intra-Inter Cosine Gap (IICG) across layers and positions, sliced by k-cutoff. Higher
IICG values indicate stronger clustering of representations that share the same intermediate state. The positions
with the highest IICG values are marked with squares. Right: PCA visualization of latent representations at
position x2 and layer 3. Datapoints are classified by their intermediate states b = f1(x1, x2).

Next, we investigate how the model internally represents functional equivalence for k-covered inputs.
Specifically, we inspect a GPT-2 trained on 2-HOP task (|X |= 50, N = 10k) for 50k epochs
(corresponding to the yellow line in Fig. 3 (Right)).4 We observe that when a model successfully
generalizes to ID test data, it maps functionally equivalent components into tight latent clusters,
thereby encoding the equivalence relationships needed for compositional generalization.

To quantify this representation clustering phenomenon, we develop a metric that captures how
distinctly the model separates functionally equivalent fragments from others. Specifically, we
measure the difference between the average pairwise cosine similarity of latent vectors that share the
same intermediate state b = f1(x1, x2) (cosintra), and those that do not (cosinter), for each position and
layer of the model. We term this difference the Intra–Inter Cosine Gap IICG = cosintra − cosinter,
where higher values indicate stronger within-group clustering relative to between-group separation.
Fig. 4 (Left) reveals a clear relationship: higher k-cutoff values yield higher IICG scores at certain
positions, indicating that stronger functional equivalence evidence leads to more coherent
internal representations. In contrast, out-of-coverage (k = 0) examples exhibit no clustering
pattern, as they lack evidence of functional equivalence in the training data. The PCA visualization at
position x2 and layer 3 (Right) shows this trend visually. We verify that the representation clusters
play a causal role in pattern matching with causal tracing (Goldowsky-Dill et al., 2023; Hanna et al.,
2023), a widely used technique to identify Transformer circuits (Fig. 8).

Our findings extend the previous insights from mechanistic interpretability studies (Wang et al.,
2024) in several ways. First, we demonstrate that unified circuit formation is driven by functional
equivalence evidence in the training data, not by explicit exposure to intermediate computation steps.
Moreover, we find that these clustered representations are not necessarily aligned with vocabulary
embeddings, implying that standard interpretability methods like logit lens nostalgebraist (2020) may
fail to detect these functional equivalence representations despite their presence (see App. I).

6 DATA SCALING LAW OF PATTERN MATCHING BEHAVIORS

Our analysis in the previous section demonstrates that stronger functional equivalence evidence
leads to better generalization. A natural follow-up question arises: How large should the training
set be, to enable full generalization on all ID test data? Intuitively, this requires the training set
to support (strongly enough) the functional equivalence of every pair of inputs that shares the
same intermediate state b. Formally, for a 2-HOP task we need (x1, x2) ≡{1,2}

D (x′
1, x

′
2) whenever

f1(x1, x2) = f1(x
′
1, x

′
2). Assuming a learner requires at least k distinct pairs of evidence to establish

functional equivalence of two fragments (i.e., generalizes only inside k-coverage), how does the
required dataset size scale with the token set size |X |? In practical terms, this question addresses
how much data is required to cover all possible ID combinations with k-coverage, which is central to
understanding data scaling requirements for pattern-matching generalization. For 2-HOP task, we
derive the following scaling law (full statement and proof in App. E):

4Analyses for varying factors including task structures, entity set size (|X |), dataset size (N ), and training
steps give consistent results; see App. D.
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Figure 5: Left: Log-log plot of measured N̂req vs. token set size (|X |) across three compositional tasks.
The slope c corresponds to the empirical power-law scaling exponent. Omitted points for 3-HOP are due to
prohibitively large dataset requirements. Right: Power-law scaling behavior on 2-HOP task across varying
GPT-2 model sizes (68M to 1.5B parameters) and Mamba model (For Mamba, we used 4 layers, a hidden
dimension of 256, and a learning rate of 0.008, and N̂req is measured for only |X |≤ 100, since a larger token
set size led to training instability). R2 > 0.99 for all linear fitting.

Result 6.1 (Power-law lower bound). Let f : X 3→X be a 2-HOP composition. Assume a learner
recognizes functional equivalence of two subsequences only after observing them in at least k distinct
pairs of evidence (i.e., functionally k-equivalent).5 Let Nreq(|X |, k) be the smallest training dataset
size that enables complete generalization to ID examples under this evidence threshold. Then, up to
poly-logarithmic factors in |X |, Nreq(|X |, k) = Ω̃(|X |α(k)),where α(k) = 2.5− 0.5

k .

Result 6.1 predicts that a learner relying on pattern matching requires training dataset size scaling
at least quadratically with respect to the token set size, to fully generalize on ID test data. To
empirically confirm this, we define a practical threshold N̂req to estimate Nreq(|X |, k), as a minimal
amount of training data required to exceed ID accuracy of 0.99 within 100 epochs after reaching
the same level on training data (see App. F measurement details). Fig. 5 (Left) shows the measured
power-law exponents for N̂req vs. |X | across different task structures. The measured exponent
for 2-HOP (c = 2.26) aligns well with our theoretical predictions of at least quadratic scaling.
Although we derive the theoretical bound only for 2-HOP, we observe clear power-law relationships
for more complex structures as well. The higher exponents for PARALLEL-2-HOP (c = 2.43) and
3-HOP (c = 2.58) tasks suggest that extra computational steps essentially add another dimension of
relationships that require robust coverage, driving the steeper power-law scaling.

These exponents remain invariant across three different GPT-2 model sizes spanning a 20x range
in parameters (from 68M to 1.5B) for all three tasks (Fig. 5 Right and Tab. 2 in App. F). We also
show that the exponent measured with a Mamba model (4 layers and a hidden dimension of 256) falls
inside the boundary predicted by the theory (same figure). Interestingly, the result in Fig. 6 (Middle)
demonstrates that with increasing training dataset size N , there is a sharp phase transition from ID
generalization failure to complete success near N = 20k.

Overall, the results support that the data scaling law is primarily determined by data properties rather
than model capacity or architectures, and additional generalization mechanisms will be required to
achieve milder scaling laws on such compositional tasks6 We note that our result aligns with the
practical observation that parameter scaling does not significantly improve the multi-hop reasoning
capability of LLMs (Yang et al., 2024) and the data-hungry nature of compositional tasks (Lake &
Baroni, 2018), suggesting that these could be partly attributed to pattern-matching behaviors. We
leave further analysis of the connection between scaling behavior and pattern matching as an exciting
future research direction.

7 PATH AMBIGUITY PROBLEM AS A FAILURE CASE OF PATTERN MATCHING

We identify a path ambiguity problem with our framework, a previously uncharacterized failure mode
that pattern matching struggles with task structures where a single variable affects the output through
multiple paths. In this section, we analyze NON-TREE task (Fig. 2d) as a case study, where x2

5Note that this assumption is equivalent to modeling Fig. 3 (Right) as a step function.
6The observed scaling relationships are robust across different hyperparameters (weight decay and learning

rate) and empirical decision criteria for N̂req (see App. F).
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Figure 6: Left: In NON-TREE task, the representations of input subsequences with the same intermediate state
b = f1(x1, x2) are split into multiple context-dependent state representations, conditioned on x2 value. Middle:
ID test accuracy after standard training with varying training dataset size (|X |= 50, evaluated 100 epochs after
training accuracy reaches 0.99). Observe a sharp transition from ID generalization failure to complete success
near N = 20k for 2-HOP, which does not occur in NON-TREE task. Right: IICG heatmap from a model that
achieved near-perfect ID accuracy (0.96) after extended training (36k epochs, |X |= 50, N = 50k).

affects the output through two paths, as input to f1 and directly to f2. Unlike in the 2-HOP case, one
cannot establish the functional equivalence of two subsequences (x1, x2) and (x′

1, x
′
2) that produce

the same intermediate state b, unless they also share the same x2 value (x2 = x′
2). It is because

(x1, x2) and (x′
1, x

′
2) are not guaranteed to behave identically (i.e., f(x1, x2, x3) is not necessarily

equal to f(x′
1, x

′
2, x3)) when x1 ̸= x2. Consequently, we can predict that Transformers trained on

the NON-TREE will create context-dependent state representations that are conditioned on x2 values,
failing to unify them to represent the true intermediate state b (Fig. 6 Left).

Experiments show that the path ambiguity indeed hinders both generalization on the ID test set and
the interpretability of intermediate state representations, as the model now establishes functional
equivalence for each x2-conditioned equivalent pair. Fig. 6 (Middle) shows that GPT-2 can fully
generalize on the ID test set of 2-HOP task within a reasonable time with increasing data size, but
fails with NON-TREE task, even provided with a near-exhaustive amount of possible ID combinations
as training data.7 Notably, scaling to 1.5B parameters does not show significant improvement in the
performance (Fig. 17), and the Mamba model used in Sec. 6 shows the same trend of generalization
failure (Fig. 18). In addition, extremely prolonged training (36k epochs) with near-exhaustive ID
combinations eventually achieves ID accuracy of 0.96, however, IICG analysis reveals no evidence of
a unified intermediate state representation formation, with near-zero IICG scores when grouping by
the intermediate state value b (Fig. 6 Right). In contrast, grouping by x2-conditioned intermediate state
(b, x2) leads to high IICG scores, showing the formation of context-dependent state representations.
This context-dependence due to path ambiguity raises an interpretability concern, as standard linear
probing-based techniques like logit lens (nostalgebraist, 2020; Belrose et al., 2023) would not reliably
identify intermediate states when a model relies on pattern matching.

Hence, a generalization mechanism other than pattern matching will be required for a robust ID
generalization on complex task structures that requires the access and update of intermediate states
through multiple paths (e.g., planning tasks (Ruis et al., 2020; Kambhampati et al., 2024; Valmeekam
et al., 2023)), where further characterization of this problem remains as an exciting future direction.

8 COT IMPROVES DATA EFFICIENCY, BUT PATH AMBIGUITY PERSISTS

CoT supervision (Wei et al., 2022; Kojima et al., 2022) dramatically improves performance on multi-
step reasoning tasks. We investigate how CoT interacts with our framework and whether it can address
the challenges observed in Sections 6 and 7. Specifically, we train models to sequentially generate
intermediate states before final outputs, making 2-HOP a two-token prediction task: (x1, x2, x3) 7→
(b, t), for example. This substantially improves data efficiency (Fig. 7 (Left)), with the power-law
exponent dropping from 2.58 to 1.76 in 3-HOP task, aligning with previous studies on the sample
efficiency of CoT (Srivastava et al., 2023; Kim & Suzuki, 2025; Wen et al., 2025). The scaling
exponents measured for 2-HOP, 3-HOP, and even 5-HOP tasks become nearly identical with CoT
supervision. We interpret this as CoT effectively ‘flattening’ multi-hop structures into sequences of
single-hop tasks, reducing the compounding data requirements of deeper compositional structures.

7For |X |= 50 and pseen = 0.7, our largest run (N = 50k) includes virtually the entire domain (≈ 0.72×
|X |3 ≈ 61k distinct ID triples).
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Figure 7: Left: Power-law scaling of required dataset size vs. token set size for tasks with CoT supervision.
R2 > 0.98 for all linear fits. Middle: Comparison of ID test Accuracy of NON-TREE task (|X |= 50) with and
without CoT supervision. Right: IICG score comparison for NON-TREE and 2-HOP task with CoT supervision
(|X |= 50, N = 10k). The scores are measured at each layer of intermediate state position b, based on two
grouping strategies: b and (b, x2). Models are trained for 100 epochs after reaching training accuracy>0.99.

However, we find the path ambiguity problem persists even with CoT supervision. Despite showing
improvements, the models fail to achieve perfect ID generalization under the same training conditions
that yield perfect performance in 2-HOP task (Fig. 7 (Middle). IICG analysis (Right) reveals that
the model’s representations remain partially context-dependent. For 2-HOP task, the representations
cluster purely by intermediate states b, as indicated by the result that IICG measurement with x2-
conditioned states does not significantly shift the curve. In contrast, the IICG score for NON-TREE
task is significantly elevated at every layer with the same conditioning, suggesting the absence of
disentangled state representation inside the model. We hypothesize this arises since CoT supervision
does not give enough evidence that different (x1, x2) pairs sharing the same b should yield identical
second-step outputs, as functional equivalence holds only when x2 = x′

2. Hence, while CoT
supervision helps with sequential computation by breaking down multi-hop structures, it may partially
inherit the limitations on handling tasks with path ambiguities we describe in Sec. 7. Our analysis
may explain why LLMs struggle with complex planning tasks even when using CoT techniques and
massive training data (Stechly et al., 2024), where we leave further analysis as future work.

9 DISCUSSION AND CONCLUSION

Our formalism of pattern matching and theoretical and experimental analyses yield quantitative
and predictive insights into modern neural networks’ pattern-matching behaviors, moving beyond
post-hoc accounts of benchmark failures on compositional generalization tasks. Our theory and
experiments show three fundamental limitations of pattern matching for learning compositional
structures: (i) evidence requirements: instance-wise success aligns with the strength of functional-
equivalence evidence (Sec. 5), (ii) data scaling: sample complexity is at least quadratic in token-set
size for 2-HOP task (Sec. 6), and (iii) path ambiguity: a structural failure mode that impairs accuracy
and interpretability even under high coverage and persists with CoT supervision (Sec. 7 and 8).

This naturally raises the question: what generalization mechanisms enable generalization beyond
the coverage boundary? While a complete answer requires future work, we outline a mechanism-
based taxonomy as a starting point for a constructive categorization of distinct generalization mecha-
nisms beyond pattern matching (see App. H for complete discussion):

• Functional equivalence-based generalization, the main focus of this work.
• Function property-based generalization leverages algebraic invariances of individual

primitive functions, e.g., commutativity or input irrelevance where certain arguments never
affect the output. This distinguishes it from pattern matching, as it leverages a primitive
function’s global property that holds across all inputs, not only those observed.

• Shared-operator generalization leverages the reuse of the same computation across po-
sitions (e.g., when f1 = f2 in a two-hop task), which may be important in compositional
generalization. For example, it is known that Transformers with inductive biases towards
computation reuse can improve generalization on compositional tasks (Csordás et al., 2021).

We envision this taxonomy as a foundational diagnostic that quantifies when pattern matching suffices
and when other mechanisms are required. We anticipate that future work will build on this foundation,
towards a more complete and constructive understanding of compositional generalization and its
failures.

9
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REPRODUCIBILITY STATEMENT

All codes for dataset generation, training, and analysis are contained in the attached supplementary
material, with proper instructions for reproducibility.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

This work deployed LLMs to proofread for grammatical errors and improve the quality of writing.
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A LIMITATIONS

We deliberately restrict to synthetic tasks to isolate structure-based limits without confounds from
lexical or domain priors. We leave extending the coverage analysis to discrete sequence tasks with
variable lengths and more natural data as future work. Additionally, our experiments focus on
autoregressive architectures, and the applicability of the coverage principle to broader architectures
remains to be validated.
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B DETAILED EXPERIMENTAL SETUP

B.1 DATASET CONSTRUCTION DETAILS

We now provide detailed information about our dataset construction process. While we primarily
explain this process for the 2-HOP task, we follow similar procedures for the other compositional
structures.

Vocabulary and Token Representation For a task with token set size |X |, we create |X | special
tokens of the form <t_0>, <t_1>, . . ., <t_(|X |−1)>, which we append to the standard GPT-2
vocabulary. We also add special tokens </a> to mark the end of sequences. For Chain-of-Thought
(CoT) experiments, intermediate computations are represented in the target sequence as the actual
intermediate token.

Function Construction For the 2-HOP task, we construct two primitive functions f1 : X 2 → X
and f2 : X 2 → X by randomly mapping from their respective domains to the codomain X . We
create the domain by taking the Cartesian product of the token set with itself. For each function, we
randomly designate a fraction pseen = 0.7 of its domain as the "seen" portion, resulting in sets Sf1
and Sf2 .

Dataset Generation Algorithm To generate the training dataset, we first identify all possible com-
binations where both primitive operations come from their respective "seen" domains. Specifically,
we find all valid tuples (x1, x2, x3, t) such that:

(x1, x2) ∈ domain(Sf1) (1)
(f1(x1, x2), x3) ∈ domain(Sf2) (2)

t = f2(f1(x1, x2), x3) (3)

From this set of all possible in-domain combinations, we uniformly sample N examples to form our
training dataset. When the number of possible combinations exceeds N , this sampling ensures the
model sees only a subset of possible in-domain combinations.

Test Set Construction We carefully construct test sets to evaluate the model’s generalization
capabilities across different coverage conditions. Our test sets contain:

• In-Domain (ID) Test Set: Combinations not seen during training but where both primitive
operations were observed in other contexts. These examples may lie within the coverage as
defined by our framework.

• Out-of-coverage (canonical OOD) Test Set: Examples where at least one primitive opera-
tion was never observed in training. These fall outside the coverage.

Input-Output Format The dataset is formatted for auto-regressive token prediction. For the
standard 2-HOP task, inputs comprise three tokens representing x1, x2, and x3, while the target
includes these input tokens followed by the prediction t and an end marker. Below are the examples
of the dataset format for different settings.

• Standard Format:
– Input: <t_5><t_12><t_3>
– Target Completion: <t_17></a>
– The model must predict the final output token followed by the end marker.

• Chain-of-Thought Format:
– Input: <t_5><t_12><t_3>
– Target Completion: <t_9><t_17></a>
– The model must first predict the intermediate computation result <t_9> (where <t_9>

= f1(<t_5>, <t_12>)), followed by the final output.
• Partial Computation Format (f1):

– Input: <t_5><t_12>
– Target Completion: <t_9></a>
– These examples represent the primitive function applications used to construct the full

compositional task.
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For the other compositional tasks, we follow analogous construction procedures, adjusting the number
of input tokens and the composition structure based on the specific task’s requirements. For example,
PARALLEL 2-HOP requires four input tokens, while 3-HOP follows a three-step composition chain
requiring appropriate modifications to the function construction and sampling procedures.

B.2 TRAINING DETAILS

Table 1: Model configurations for different GPT-2 variants used in our experiments

Configuration GPT-2-Small GPT-2 GPT-2-XL
Number of Attention Heads 6 12 25
Number of Layers 4 8 48
Hidden Dimension 768 768 1600
Total Parameters 68M 96M 1.5B

For our experiments, we employ three GPT-2 model variants of increasing size: GPT-2-Small (68M
parameters), GPT-2 (96M parameters), and GPT-2-XL (1.5B parameters). As shown in Tab. 1, GPT-2-
Small consists of 4 layers with 6 attention heads and a hidden dimension of 768. The standard GPT-2
configuration used in most experiments features 8 layers with 12 attention heads while maintaining the
same hidden dimension of 768. Our largest model, GPT-2-XL, significantly scales up the architecture
with 48 layers, 25 attention heads, and an increased hidden dimension of 1600. The implementation
follows the codebase from (Wang et al., 2024).

We train all models using the AdamW optimizer with beta values of (0.9, 0.999) and epsilon of 1e-8.
We set the learning rate to 8e-4 with a weight decay of 0.1. A batch size of 16,384 is used, with full
gradient descent applied for datasets smaller than the batch size. All training is conducted with mixed
precision (fp16) on 4 NVIDIA A100 GPUs with 80GB memory each. We employ a constant learning
rate schedule with a linear warmup period of 2,000 steps. This standardized training configuration is
maintained across all experiments to ensure fair comparisons between different task structures and
dataset sizes, unless explicitly varied in specific ablation studies.
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C IMPLEMENTATION DETAILS FOR THE COVERAGE DETERMINATION
ALGORITHM

Algorithm 1: k-Coverage Determination Algorithm
Input: Training examples D = {(xi, f(xi))}, where xi ∈ Xn and f(xi) ∈ X
Minimum evidence threshold k ≥ 1
Output: Coverage set Cover(D)
/* STEP 1: Build behavior maps for each subsequence pattern */
foreach subset I ⊂ [n], I ̸= ∅, I ̸= [n] do

BehaviorI ← map from subsequence xI to the mapping {x[n]\I 7→ f(x) | x ∈ D}
end
/* STEP 2: Identify functionally equivalent subsequences */
foreach subset I ⊂ [n], I ̸= ∅, I ̸= [n] do

UFI ← new UnionFind()
foreach pair of subsequences (α, β) in BehaviorI do

SharedComplements← complements observed with both α and β
if No contradictions in SharedComplements and matching evidence ≥ k then

UFI .Union(α, β) ; // Mark as functionally equivalent
end

end
EquivClassesI ← UFI

end
/* STEP 3: Build substitution graph */
G← empty graph with nodes for all x ∈ Xn

foreach pair of inputs (x, y) with f(x) = f(y) do
foreach subset I where x and y differ only on indices in I do

if EquivClassesI .Find(xI) = EquivClassesI .Find(yI) then
Add edge (x, y) to G
break

end
end

end
/* STEP 4: Determine coverage */
Cover(D)←

⋃
x∈D ConnectedComponent(G, x)

return Cover(D)

Algorithm 1 presents our approach to computing the coverage set with a minimum evidence threshold
k. The algorithm works in four main stages:

Stage 1: Behavior mapping We first analyze the training data to create a mapping of behaviors
for each possible subsequence of the input. For each subset of indices I , we record how different
subsequences xI behave when paired with their complements x[n]\I , essentially mapping each
subsequence to a function from complements to outputs.

Stage 2: Equivalence class construction For each subset of indices I , we build equivalence
classes of subsequences that exhibit functionally identical behavior. Two subsequences are considered
equivalent only if: (1) they share at least k distinct complements where they produce the same output,
and (2) they never produce different outputs when given the same complement (no contradictions). We
use a Union-Find data structure to efficiently track and merge these equivalence classes. The Union-
Find (or Disjoint-Set) data structure efficiently maintains a collection of disjoint sets, supporting two
key operations: (1) Find - determine which set an element belongs to, and (2) Union - merge two sets.

Stage 3: Substitution Graph Construction We construct a graph where nodes represent input
sequences from our training and test sets, rather than the entire domain space (which would be
computationally prohibitive for large token sets). We add an edge between two inputs x and y if
and only if: (1) they produce the same output, (2) they differ only in one subsequence position set
I , and (3) their differing subsequences belong to the same equivalence class. This graph represents
the space of safe substitutions where one can replace a subsequence with a functionally equivalent
alternative without changing the expected output. Our implementation uses parallel processing to
efficiently construct this graph even for large datasets.
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Stage 4: Coverage computation Finally, we compute the coverage set by taking the union of all
connected components in the substitution graph that contain at least one training example. This set
comprises all inputs that are reachable from the training data through chains of equivalent subsequence
substitutions.
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D DETAILED ANALYSIS FOR REPRESENTATION UNIFICATION EXPERIMENTS

D.1 CAUSAL TRACING METHODOLOGY

To analyze the causal role of specific hidden representations in our Transformer model, we employ
causal tracing, a technique that measures the effect of intervening on intermediate activations during
inference (Goldowsky-Dill et al., 2023; Hanna et al., 2023). Specifically, we measure the causal
effect using the indirect effect metric defined in (Sharma et al., 2024). This methodology allows us
to identify which components and positions in the model most strongly contribute to compositional
generalization. We illustrate the measurement with 2-HOP task.

Our analysis begins by collecting three types of computational traces:

1. Clean run (G): We run the model on a compositional task with input (x1, x2, x3) where
the corresponding output is t = f2(f1(x1, x2), x3).

2. Corrupted run (G∗): We replace the original input with a corrupted version by changing
the first two tokens (x1, x2) to (x′

1, x
′
2), where f1(x

′
1, x

′
2) ̸= f1(x1, x2). This ensures that

the model produces a different final output t∗ ̸= t. During this run, we cache all hidden
states h∗(ℓ)

i for each token position i and layer ℓ.

3. Patched run (G[← h∗(ℓ)
i ]): We run the model on the input from the clean run, but at a

specific token position i and layer ℓ, we replace the hidden state with the corresponding
state from the corrupted run.

To quantify the causal effect of a specific hidden state h(ℓ)
i on the model’s prediction, we measure the

Indirect Effect (IE):

IE
h
(ℓ)
i

=
p[← h∗(ℓ)

i ](t∗)− p(t∗)

p∗(t∗)− p(t∗)
(4)

where:

• p(t∗) is the probability assigned to the corrupted output t∗ in the clean run G

• p∗(t∗) is the probability assigned to the corrupted output t∗ in the corrupted run G∗

• p[← h∗(ℓ)
i ](t∗) is the probability assigned to the corrupted output t∗ in the patched run

G[← h∗(ℓ)
i ]

This metric quantifies how much corruption in a particular state affects the overall outcome. An
IE value close to 1 indicates that the corruption of the state h

(ℓ)
i to h∗(ℓ)

i alone almost completely
changes the prediction to that of the corrupted run, suggesting that this state is causally important for
the computation. Conversely, an IE value close to 0 indicates that the state has minimal causal impact
on the prediction.

In our experiments, we apply causal tracing to analyze different subsets of test data categorized by
their k-cutoff values, where k represents the minimum evidence threshold required for functional
equivalence (as defined in Sec. 3 of the main text). This allows us to correlate the strength of
functional equivalence evidence with the formation of unified internal representations.

D.2 CAUSAL TRACING RESULTS FOR EACH k-CUTOFF VALUE IN 2-HOP TASK

Figure 8 displays the causal tracing results for the 2-HOP task, broken down by different k-cutoff
values. We observe that the causal patterns are similar across different k-cutoff values, with slight
differences in where and how strongly the causal effects manifest in the model. This suggests that
once an example falls within coverage (even with minimal evidence, k = 1), the model forms internal
representations that play similar causal roles in prediction.

D.3 TOKEN SET SIZE ABLATION

We show that the observed patterns of cosine similarity analysis and causal tracing in the 2-HOP task
are consistent across different token set sizes |X |. For |X |= 70, 100, 150, 200, we analyze model
checkpoints with training dataset size N = N̂req(|X |) that achieve training accuracy > 0.99. Figure
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Figure 8: Causal tracing results for the 2-HOP task across different k-cutoff values, showing Indirect
Effect (IE) scores at each layer and position.

Fig. 9 shows the results, indicating strong representation clustering at the lower layers of position
x2 for all cases. The causal tracing results in Fig. 10 show that the clustered functional equivalence
representations at the lower layers of position x2 play a causal role in determining the model’s final
prediction.
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Figure 9: IICG heatmap across different token set sizes, showing consistent representation clustering
patterns.
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Figure 10: Causal tracing results showing indirect effect heatmaps for different token set sizes |X |.
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D.4 TASK ABLATION

We show that GPT-2 models trained on PARALLEL-2-HOP and 3-HOP tasks exhibit the same patterns:
clustered functional equivalence representations of intermediate states at specific layers and positions,
confirmed through cosine similarity analysis, with causal tracing analysis verifying their role in model
predictions. For both tasks, we analyze with |X |= 50 and examine model checkpoints with training
dataset size N = N̂req(|X |) that achieve training accuracy > 0.99.

Figures 11 and 12 show the results for the PARALLEL-2-HOP task. The IICG patterns reveal strong
representation clustering at mid-layers: at positions x2 and x3 when grouped by b1 = f1(x1, x2),
and at position x4 when grouped by b2 = f2(x3, x4). Causal tracing confirms the causal role of these
clustered representations in the model’s predictions.
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Figure 11: IICG heatmap for PARALLEL-2-HOP task with grouping strategies based on b1 =
f1(x1, x2) (Left), b2 = f2(x3, x4) (Middle), and t = f3(b1, b2) (Right).

x1 x2 x3 x4

Layer 7

Layer 6

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

0.00 -0.00 -0.00 0.98

0.00 -0.00 -0.00 0.95

0.00 -0.00 0.00 0.91

0.00 0.00 0.01 0.60

0.00 0.10 0.07 0.00

0.00 0.45 0.08 0.00

0.00 0.71 0.04 0.00

b1'

x1 x2 x3 x4

0.00 0.00 0.00 1.00

0.00 0.00 0.00 1.00

0.00 0.00 0.00 1.00

0.00 0.00 0.00 1.00

0.00 0.00 0.00 1.00

0.00 0.00 0.00 1.00

0.00 0.00 0.00 1.00

b2'

0.0

0.2

0.4

0.6

0.8

1.0
p

Figure 12: Causal tracing results showing indirect effect heatmap for PARALLEL-2-HOP task. Left:
perturbation with different (x1, x2) pair leading to a different b1 value. Right: perturbation with
different (x3, x4) pair leading to a different b2 value.

Similarly, Figures 13 and 14 show results for the 3-HOP task. The IICG patterns exhibit strong
representation clustering at mid-layers: at position x3 when grouped by b1 = f1(x1, x2), and at
position x3 when grouped by b2 = f2(b1, x3). Causal tracing again confirms the causal importance
of these representations.

These results demonstrate that the formation of clustered intermediate state representations and
their causal role in compositional generalization is a consistent phenomenon across different task
structures, supporting the generality of our findings beyond the 2-HOP task.
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Figure 13: IICG heatmap for 3-HOP task with grouping strategies based on b1 = f1(x1, x2) (Left),
b2 = f2(b1, x3) (Middle), and t = f3(b2, x4) (Right).
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Figure 14: Causal tracing results showing indirect effect heatmap for 3-HOP task. Left: perturbation
with different (x1, x2) pair leading to different b1 value. Right: perturbation leading to different
b2 = f2(b1, x3) value.
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E DERIVATION OF RES. 6.1 (NECESSARY POWER-LAW DATA BOUND)

Problem setting Let X be a finite token set with cardinality |X |. The target mapping
f : X 3 −→ X , f(x1, x2, x3) = f2(f1(x1, x2), x3)

is a two-hop composition of unknown primitives f1 : X 2 → X and f2 : X 2 → X . Write
b = f1(x1, x2) ∈ X for the intermediate state. Throughout the derivation, we impose the following
two assumptions.

(A1) Balanced classes: Each intermediate value b ∈ X is realized by exactly |X | first-hop pairs, i.e.,
the sets Eb := {(x1, x2) ∈ X 2 : f1(x1, x2) = b} all have size |X | and form a partition of X 2.

(A2) Uniform training sampler: The training set D contains N triples drawn uniformly with
replacement from the domain X 3.

Functional k-equivalence and learner model For two first-hop fragments a, a′ ∈ X 2 define
a ∼ a′ :⇐⇒ f1(a) = f1(a

′).

They are functionally k-equivalent w.r.t. D (denoted a ≡k
D a′) when there exist k distinct contexts

c1, . . . , ck ∈ X such that for every r ≤ k both (a, cr) and (a′, cr) appear in D and f(a, cr) =
f(a′, cr). We call each (a, cr), (a

′, cr) an evidence pair.

The coverage principle by itself is only a necessity statement: outside the k-coverage region, a
purely pattern-matching learner’s predictions are unconstrained. To convert this into a sufficient data
condition, we adopt an explicit inductive bias, matching the premise of Result 6.1:

Learner assumption: Whenever two fragments become linked by k independent (i.e., pair-
wise from distinct contexts) evidence pairs, the learner treats them as functionally equivalent;
the learner also propagates equivalence transitively along chains of such links.

With this rule in place the relevant structure inside each class Eb is the k-evidence graph: vertices are
the |X | first-hop pairs in the class and an edge connects two vertices whenever the pair is observed at
least k times in shared contexts. If that graph is connected (every vertex reachable from every other),
then every fragment in Eb is linked by a chain of k-evidence steps and is therefore recognized as
equivalent by the learner. Hence

Data sufficiency criterion: If the k-evidence graph of each class Eb is connected,
the learner generalizes perfectly to all in-domain (ID) inputs.

This criterion requires connectivity, and we aim to derive the condition to yield the connectivity
with high probability using Erdős–Rényi model (Erdős & Rényi, 1959; Erdős & Rényi, 1960). The
minimal dataset size achieving this with high probability is denoted Nreq(|X |, k).
Note that the k-evidence graph on Eb is the restriction of the substitution graph GD,k (Def. 3.2)
to the vertex set Eb × {x3} for any fixed x3. Connectivity of every class therefore implies that
every first-hop fragment lies in the same connected component as some training input, i.e., the entire
in-domain set is contained in k-coverage. Under the learner assumption, this is both necessary and
sufficient for perfect ID generalization, yielding Res. 6.1.

E.1 STEP 1: PROBABILITY OF A SINGLE EVIDENCE PAIR

Evidence pair probability Fix two distinct first–hop fragments i, j ∈ Eb and a context c ∈ X . We
want to find p1, the probability that context c provides an evidence pair for the functional equivalence
of fragments i and j:

p1 := Pr[(i, c) ∈ D and (j, c) ∈ D]

Let q := 1/|X |3 denote the probability of drawing any specific triple in a single draw. Using the
inclusion–exclusion principle:

p1 = Pr[(i, c) ∈ D and (j, c) ∈ D]

= 1− Pr[(i, c) ̸∈ D]− Pr[(j, c) ̸∈ D] + Pr[(i, c) ̸∈ D and (j, c) ̸∈ D]

= 1− (1− q)N − (1− q)N + (1− 2q)N (S1.1)
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For q ≪ 1 (which holds when |X | is large), we can use Taylor expansion:

(1− q)N = 1−Nq +
N(N − 1)

2
q2 +O(q3)

(1− 2q)N = 1− 2Nq +
N(N − 1)

2
(2q)2 +O(q3) (S1.2)

Substituting these approximations:

p1 = 1− 2

(
1−Nq +

N(N − 1)

2
q2
)
+
(
1− 2Nq + 2N(N − 1)q2

)
+O(q3)

= 1− 2 + 2Nq −N(N − 1)q2 + 1− 2Nq + 2N(N − 1)q2 +O(q3)

= N(N − 1)q2 +O(q3)

=
N(N − 1)

|X |6
+O

(
1

|X |9

)
=

N2

|X |6
(1 + o(1)) (S1.3)

Therefore, in the regime of interest (N ≫ |X | but N ≪ |X |3):

p1 =
N2

|X |6
(1 + o(1)) (S1.4)

Equation (S1.4) gives an exact expression for the probability (up to lower-order terms) that the single
context c provides an evidence pair for the functional equivalence of fragments i and j.

Remark on “lucky coincidences” Because functional k-equivalence demands consistency across
all k evidences, a single coincidental equality f(i, c) = f(j, c) with i ̸∼ j can only masquerade as
evidence when k = 1 and the dataset lacks any contradicting context c′. For k ≥ 2 the joint probability
that two independent contexts simultaneously produce such coincidences is |X |−k per fragment pair
and hence negligible relative to the isolate probability once N = Ω(|X |2). Consequently, the effects
of such “lucky coincidences” on the lower bound in Res. 6.1 can be neglected.

E.2 STEP 2: PROBABILITY OF OBSERVING k EVIDENCES FOR ONE FIXED PAIR

Having established the probability p1 for a single evidence pair in Step 1, we now derive pk, the
probability that a dataset provides at least k distinct contexts as evidence for the functional equivalence
of two fragments i and j. This probability will determine the edge probability in the random graph
model analyzed in Step 3.

Indicators for one fragment pair Fix two distinct first-hop fragments i, j ∈ Eb and, for each
context (third token) c ∈ X , set

Zij(c) := 1[(i, c) ∈ D]1[(j, c) ∈ D].

Thus Zij(c) = 1 exactly when the single context c supplies an evidence pair for the functional
equivalence of i and j.

Single-context success probability From (S1.4),

p1 := Pr[Zij(c) = 1] =
N2

|X |6
(1 + o(1)), (|X |→ ∞). (S2.1)

Negatively correlated counts and an i.i.d. surrogate Because all N draws come from a single
multinomial (N, 1/|X |3), the indicators {Zij(c)}c∈X are negatively correlated: drawing many triples
with one context leaves fewer draws for the others. Negative correlation decreases the probability
that several Zij(c) equal 1 simultaneously. Hence the tail probability for the true count

Yij :=
∑
c∈X

Zij(c)
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is upper-bounded by the tail of an i.i.d. binomial variable with the same single-trial success probabil-
ity p1. Concretely, define

Y ⋆
ij ∼ Binom(|X |, p1), p1 =

N2

|X |6
(1 + o(1)).

Then for every real t

Pr[Yij ≥ t] ≤ Pr[Y ⋆
ij ≥ t].

Using Y ⋆
ij therefore overestimates the chance of obtaining k or more distinct evidence contexts, which

is conservative for our goal of deriving a lower bound on the required dataset size N .

Since Y ⋆
ij is binomial with mean

µ := E[Y ⋆
ij ] = |X | p1 =

N2

|X |5
(1 + o(1)), (S2.2)

we may work henceforth with Y ⋆
ij alone; the resulting bounds apply verbatim to the original Yij .

Poisson tail via Le Cam Le Cam’s theorem (Le Cam, 1960) states that the total-variation distance
between Binom(n, p) and Poisson(µ = np) is at most 2np2. At the scaling that will emerge in Step
3 (N = |X | 2.5− 0.5

k ), one has 2|X |p21 = 2|X |−1− 2
k→ 0 and µ = |X |− 1

k→ 0. Thus

Pr[Yij ≥ k] ≤ Pr[Y ⋆
ij ≥ k] =

∞∑
r=k

e−µµr

r!
≤ µk

k!
(1 + o(1)). (S2.3)

This upper bound pk := µk/k! (1 + o(1)) will be the edge probability used in the connectivity
threshold of Step 3.

E.3 STEP 3: CONNECTIVITY INSIDE EACH EQUIVALENCE CLASS

With the edge probability pk from Step 2, we now analyze when the k-evidence graphs become
connected. Recall that under our learner assumption, perfect generalization requires every equivalence
class to form a connected component in the k-evidence graph. We model this as a random graph
connectivity problem.

Random graph construction Fix one balanced class Eb of size n := |X | (Assumption (A1)).
Create a graph Gb whose vertices are the first-hop pairs in Eb, and place an undirected edge {i, j}
exactly when the pair (i, j) has been observed in at least k distinct shared contexts. By Step E.2,
each potential edge appears with probability

pk = Pr[Yij ≥ k] =
µk

k!
, µ =

N2

|X |5
. (S3.1)

Why Gb can be approximated as Erdős–Rényi As mentioned earlier, the dependence among
distinct edges in Gb arises from the constraint that the total sample size is N , which induces a negative
correlation. Such negative dependence reduces the likelihood of simultaneously creating many edges.
Consequently, viewing Gb as an independent Erdős–Rényi graph G(n, pk) provides a conservative
model, and any threshold we derive for connectivity under independence remains valid (or becomes
easier to satisfy).

Classwise connectivity threshold For Erdős–Rényi graphs, the classical result of Erdős–Rényi
(Erdős & Rényi, 1960) states

Pr[G(n, p) is connected] −−−−→
n→∞

1 ⇐⇒ p ≥ log n+ ω(1)

n
.
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Setting n = |X | and p = pk yields the requirement

pk =
µk

k!
≥ log|X |
|X |

(1 + o(1)).

Substituting µ = N2/|X |5 and rearranging gives

N2k

|X |5k k!
≳

log|X |
|X |

, =⇒ N ≳ |X |
5k−1
2k (k! log|X |)1/(2k).

Because (k! log|X |)1/(2k) = (log|X |)O(1/k) grows only poly-logarithmically, we hide it inside a
Ω̃( · ):

N = Ω̃(|X | 2.5− 0.5
k ).

Since every class must be connected to achieve the data–sufficiency criterion in the problem setting,
we conclude

Nreq(|X |, k) = Ω̃(|X | 2.5− 0.5
k ) (with high probability).

As a remark, we note that Erdős–Rényi theory also shows that if N ≤ |X | 2.5− 0.5
k /(log|X |)1/(2k)

then each Gb is disconnected with high probability, so the exponent 2.5− 0.5
k is in fact sharp (up to

poly-logarithmic factors).
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F ADDITIONAL RESULTS FOR POWER-LAW SCALING ANALYSIS

F.1 MEASUREMENT PROTOCOL FOR Nreq

To empirically determine the minimum dataset size required for reliable compositional generalization
(Nreq), we develop a measurement protocol that accounts for practical computational constraints
while ensuring robustness. For each token set size |X | and task structure, we test multiple dataset
sizes until we identify the threshold point where the model successfully generalizes to the ID test set.

Specifically, our criterion for “reliable generalization” on ID is defined as:

• The model must reach ID test accuracy of 0.99 within 100 epochs after achieving training
accuracy > 0.99.

This protocol balances several considerations:

1. Training-to-generalization delay: Larger datasets naturally require more iterations to fit
training data. By measuring epochs after reaching training accuracy > 0.99, we focus on the
generalization gap rather than conflating it with initial training difficulty.

2. Epoch-based measurement: Using epochs rather than raw training steps ensures that the
model sees each functional equivalence evidence approximately the same number of times,
regardless of dataset size. This provides a fairer comparison across different dataset sizes.

3. Practical time constraints: While indefinite training might eventually yield generalization
with smaller datasets, we established a reasonable upper bound (100 epochs post-training
convergence) to reflect practical limitations.

4. Measurement precision: For each identified Nreq, we verified that 75% of this dataset
size consistently failed to meet our generalization criterion. This establishes that our
measurement error is at most − log(0.75) = 0.125 in log scale, providing confidence in the
derived power-law exponents.

F.2 MEASURED POWER-LAW SCALING CONSTANTS ACROSS TASK STRUCTURES AND MODEL
SIZES

Using our measurement protocol, we measure the required dataset size Nreq across three different
compositional structures (2-HOP, PARALLEL-2-HOP, and 3-HOP) and three model scales (68M,
96M, and 1.5B parameters). For each task structure, we vary the token set size |X | from 50 to 200,
allowing us to observe the scaling relationship.

Table 2 presents the power-law exponents obtained by linear fitting log(|X |) vs. log(Nreq) plots,
all with R2 > 0.99. The consistency of exponents across model sizes suggests that the observed
power-law scaling relates to properties of the compositional tasks themselves, rather than model
capacity. This observation aligns with our theoretical derivation in Section 5.1, which predicts that
the required dataset size scales at least quadratically with token set size.

Table 2: Power law exponents for different tasks and GPT-2 sizes, obtained by linear fitting log(|X |)
vs. log(Nreq) plots. R2 > 0.99 for all linear fitting.

Model Size 2-HOP PARALLEL-2-HOP 3-HOP

68M 2.13 2.47 2.61
96M 2.26 2.35 2.50
1.5B 2.28 2.17 2.60

F.3 ROBUSTNESS TO HYPERPARAMETER VARIATIONS

To verify that our observed power-law scaling relationship is not an artifact of specific hyperparameter
choices, we conduct ablation studies with modified training configurations. Figure 15 demonstrates
that for the 2-HOP task with |X |= 50, the following changes did not significantly affect the measured
Nreq or the derived power-law exponent:

1. Learning rate reduction: Halving the learning rate from 8e-4 to 4e-4
2. Weight decay reduction: Decreasing weight decay by a factor of 10 (from 0.1 to 0.01)
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Figure 15: Robustness of power-law scaling relationship to hyperparameter variations in the 2-HOP
task with |X |= 50. Each line shows the training and test accuracy curves for a different configuration:
(1) baseline, (2) reduced learning rate (4e-4, half of baseline), (3) reduced weight decay (0.01,
one-tenth of baseline), and (4) changed generalization criteria (test accuracy > 0.95 within 10 epochs
after training accuracy > 0.95). R2 > 0.99 for all linear fitting.

3. Generalization criteria modification: Requiring test accuracy > 0.95 within 10 epochs
after training accuracy > 0.95

This robustness to hyperparameter variations suggests that the power-law relationship between token
set size and required dataset size is primarily a property of the compositional generalization process,
rather than an artifact of specific optimization settings.
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G DETAILED ANALYSIS FOR NON-TREE TASK

This section provides additional analyses that support our findings in Sec. 7 regarding the challenges
of path ambiguity in the NON-TREE task.

G.1 COVERAGE ANALYSIS
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Figure 16: Coverage analysis for NON-TREE task with |X |= 50. The graph shows the percentage of
ID test data covered at different k values across various dataset sizes (N ). Compared to the 2-HOP
task (Fig. 3, left), NON-TREE has significantly lower coverage at equivalent dataset sizes, indicating
that path ambiguity impedes the formation of functional equivalence relationships.

Fig. 16 demonstrates that with equivalent training dataset sizes, a smaller percentage of ID test
examples fall inside k-coverage for the NON-TREE task compared to the 2-HOP task shown in Fig. 3
(Left). This aligns with our theoretical analysis in Sec. 7, which predicts that path ambiguity limits
the establishment of functional equivalence relationships between input subsequences, as the model
cannot generalize across different x2 values in the NON-TREE structure even when they produce the
same intermediate state b = f1(x1, x2).

G.2 EFFECT OF MODEL SCALING
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Figure 17: ID test accuracy comparison between GPT-2 (96M parameters) and GPT-2-XL (1.5B
parameters) on the NON-TREE task with |X |= 50, measured 100 epochs after training accuracy
exceeds 0.99. Despite the 15x increase in parameter count, the accuracy does not increase.

Fig. 17 shows that scaling up the model size to GPT-2-XL (1.5B parameters) does not significantly
improve generalization performance on the NON-TREE task, even when measured 100 epochs after
reaching training accuracy > 0.99. This suggests that the challenges posed by path ambiguity cannot
be overcome simply by increasing model capacity, supporting our claim that the limitation is structural
rather than related to model capacity.

G.3 COMPARISON OF MAMBA AND GPT-2 ON NON-TREE TASK

Fig. 18 shows that Mamba model (4 layers, hidden dimension of 256, trained with learning rate of
0.008) shows a similar trend of ID test accuracy on NON-TREE task compared to GPT-2, suggesting
that the generalization failure is more likely due to the task structure itself, rather than a specific
model architecture.
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Figure 18: ID test accuracy comparison between GPT-2 and Mamba on the NON-TREE task with
|X |= 50, measured 100 epochs after training accuracy exceeds 0.99.

G.4 REPRESENTATION ANALYSIS IN SUCCESSFUL GENERALIZATION

For a model that eventually achieved near-perfect ID accuracy (0.96) after extended training (36k
epochs, |X |= 50, N = 50k), we conduct causal tracing analysis to understand how it achieves
generalization despite path ambiguity.
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Figure 19: Causal tracing analysis for the NON-TREE model after extended training. The heatmap
shows indirect effect values across different layer-token positions. Left: perturbation leading to
different intermediate state b = f1(x1, x2). Middle: same b but different x2. Right: different b and
x2.

The causal tracing results in Fig. 19 reveal how the model achieves generalization in the presence
of path ambiguity. Across all perturbation strategies, the model’s predictions show strong causal
dependence on representations at both the x1 and x2 positions, indicating reliance on direct access
to both input tokens rather than an abstracted intermediate computation. This pattern contrasts
sharply with the 2-HOP task, where causal effects concentrate primarily at positions corresponding to
clustered functional equivalence representations.

This analysis demonstrates that even models achieving high accuracy on NON-TREE tasks do so
by developing context-dependent representations rather than unified abstractions of intermediate
states. The model forms separate computational pathways conditioned on the x2 value, rather than
learning a single unified representation of the intermediate state b = f1(x1, x2). This represents a
fundamentally different solution strategy compared to the 2-HOP task, with implications for both
generalization capability and interpretability.
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H DETAILED DISCUSSION ON THE TAXONOMY FUR UNDERSTANDING
GENERALIZATION MECHANISMS

In this section, we initiate a discussion to disambiguate the mixed mechanisms of generalization into
isolated testable parts by sketching a preliminary taxonomy that distinguishes three complementary
mechanisms of generalization. We note that we do not view our categorization as a complete one.

Type-I: Functional equivalence-based generalization (pattern matching). This is precisely
what we formalized through this work: models learn that different input fragments yield identical
results in shared contexts, enabling generalization to new fragment combinations. Crucially, this
generalization remains bounded by coverage, and reliable generalization fails without sufficient
functional equivalence evidence. In other words, it describes the ceiling of pattern matching.

Type-II: Function property-based generalization. This mechanism exploits intrinsic properties of
individual primitive functions, e.g., algebraic invariances such as commutativity or input irrelevance,
where certain arguments never affect the output (e.g., f(x1, x2) = f(x1) even when distractor x2 is
present (Wen et al., 2025)). Unlike the previous type, this mechanism explains the generalization
beyond the coverage by leveraging ‘global’ properties that hold across all possible inputs of a
primitive, beyond what is actually observed. We interpret the Reversal Curse phenomenon (Berglund
et al., 2024) as an example of the layered nature of challenges across multiple generalization types.
Our framework predicts the failure of pattern matching on this problem, since training on “A is
B” provides no functional equivalence evidence for “B is A−1”. An architectural modifications to
learn inverse mappings from the same training data to handle this problem (Lv et al., 2024) can be
interpreted as a utilization of Type-II generalization to enable generalization beyond coverage.

Type-III: Shared-operator generalization. This mechanism emerges through the reuse of identical
primitive functions across computational positions (e.g., when f1 = f2). Recurrent architectures
(Hochreiter & Schmidhuber, 1997) exemplify the utilization of this through weight sharing across
time steps, enabling processing of variable-length sequences (Graves et al., 2014). Similarly, it has
been reported in Transformers with inductive biases towards reuse of the same computation through
parameter sharing (Dehghani et al., 2019; Csordás et al., 2021; Wang et al., 2024) can improve
generalization on complex compositional tasks where the same primitive function can be reused in
various contexts. We interpret this mechanism as exploiting structural repetition.

Distinguishing mechanisms from phenomena. Compared to prior categorizations of generaliza-
tion, which focus on observed phenomena (Lake & Baroni, 2018; Hupkes et al., 2020), we categorize
the underlying mechanisms. As noted in Sec. 1, many behavioral studies have examined tasks mixing
functional equivalence, primitives’ intrinsic properties, and operator reuse within the same benchmark,
making it difficult to pinpoint the true source of success or failure. We therefore advocate clearer
experimental control and community discussion around this mechanistic distinction to sharpen future
analyses of neural generalization.

Implications and future directions. Real compositional tasks typically involve combinations of
all three types (and possibly more). While preliminary, we believe this taxonomy guides future
research design on constructive characterization of neural networks’ generalization behaviors on
discrete sequence tasks. In this broader context, this work can be understood as a characterization and
formalization of pattern-matching generalization to clarify its specific boundaries. When models suc-
ceed beyond our coverage predictions, we view these as exploiting other generalization mechanisms,
i.e., beyond pattern matching. Our focused study suggests that challenges to reliable generalization
remain as long as models rely primarily on pattern matching, requiring methodological innovations
that harness non-pattern-matching mechanisms, e.g., variable binding. We hope this preliminary
taxonomy serves as a research program towards our better understanding of generalization, and
confirming or refuting its utility is an empirical matter that we invite the community to explore.
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I PARTIAL COMPUTATION OBSERVATION DRIVES THE ALIGNMENT OF
FUNCTIONAL EQUIVALENCE REPRESENTATION AND VOCABULARY SPACE

In this section, we investigate how exposure to partial computations affects the interpretability of
intermediate state representations through vocabulary space alignment. We compare two training
conditions on a modified 2-HOP task with |X |= 50 and N = 10k, after 40k epochs of training:

1. Standard Training: f1 ̸= f2, model only sees complete two-hop examples (x1, x2, x3) 7→
t.

2. With Partial Computation: f1 = f2, model additionally sees all possible partial computa-
tions (x1, x2) 7→ b where b = f1(x1, x2) (2,500 partial examples, not counted toward the
N = 10k two-hop training data).

To assess interpretability, we measure the Mean Reciprocal Rank (MRR) of intermediate state
representations when projected to vocabulary space using the unembedding matrix. Low MRR
indicates that the model’s internal representation of intermediate state b aligns with the corresponding
vocabulary token.

Fig. 20 shows a striking contrast between the two conditions. Under standard training, the MRR score
remains very high throughout training, indicating that intermediate representations are not aligned
with vocabulary space despite the model successfully learning the compositional task. However,
when partial computations are included, the MRR score becomes very high, demonstrating clear
vocabulary alignment.
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8839.2 8723.1 11519.3
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Figure 20: MRR scores for intermediate state representations projected to vocabulary space. Left:
Standard training (f1 ̸= f2, no partial computation) shows very high MRR regardless of position and
layer. Right: Training with partial computation (f1 = f2, with partial examples) shows MRR of 0 in
layers 3 to 8 at position x2, indicating strong vocabulary alignment.

This experiment suggests that logit lens interpretability is orthogonal to functional equivalence
representation formation. A model can develop functionally correct intermediate representations
that enable compositional generalization while remaining completely uninterpretable through standard
vocabulary projection techniques. Interpretability via logit lens requires explicit vocabulary anchoring
through exposure to partial computations that map intermediate states to vocabulary tokens.

This finding has important implications for mechanistic interpretability research: the absence of
interpretable representations through logit lens does not indicate the absence of structured internal
computation. Furthermore, it suggests that interpretability techniques may need to account for how
training data shapes the alignment between internal representations and vocabulary space, rather than
assuming such alignment emerges naturally from task performance.
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