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ABSTRACT

Despite impressive capabilities, LLMs’ successes often rely on pattern-matching FIXED
behaviors, yet these are also linked to OOD generalization failures in compositional
tasks. However, behavioral studies commonly employ task setups that allow
multiple generalization sources (e.g., algebraic invariances, structural repetition),
obscuring a precise and testable account of how well LLMs perform generalization
through pattern matching and their limitations. To address this ambiguity, we
first formalize pattern matching as functional equivalence, i.e., identifying pairs FIXED
of subsequences of inputs that consistently lead to identical results when the rest
of the input is held constant. Then, we systematically study how decoder-only
Transformer and Mamba behave in controlled tasks with compositional structures
that isolate this mechanism. Our formalism yields predictive and quantitative
insights: (1) Instance-wise success of pattern matching is well predicted by the FIXED
number of contexts witnessing the relevant functional equivalence. (2) We prove FIXED
a tight sample complexity bound of learning a two-hop structure by identifying
the exponent of the data scaling law for perfect in-domain generalization. Our
empirical results align with the theoretical prediction, under 20× parameter scaling
and across architectures. (3) Path ambiguity is a structural barrier: when a variable
influences the output via multiple paths, models fail to form unified intermediate
state representations, impairing accuracy and interpretability. (4) Chain-of-Thought
reduces data requirements yet does not resolve path ambiguity. Hence, we provide a
predictive, falsifiable boundary for pattern matching and a foundational diagnostic
for disentangling mixed generalization mechanisms.

1 INTRODUCTION

Despite the remarkable performance of Large Language Models (LLMs) (Brown et al., 2020; Touvron
et al., 2023), compositional generalization studies suggest that the core mechanism of generalization FIXED
might be “pattern matching”, i.e., models learning local statistical regularities between input fragments
and outputs in some cases (Loula et al., 2018; Johnson et al., 2017; Berglund et al., 2024; Wang et al.,
2024a; Mirzadeh et al., 2025; Keysers et al., 2020; Csordás et al., 2022). However, behavioral studies
commonly employ task setups that allow multiple generalization sources (e.g., algebraic invariances,
structural repetition), discussing pattern matching without a precise definition and diagnosing it FIXED
post-hoc rather than characterizing it predictively. As a result, it remains unclear which behaviors
should count as pattern matching and which should not, obscuring a constructive and testable account
of its boundary.

To make this notion precise, we (1) introduce a model-agnostic, data-centric formalism for pattern
matching and (2) systematically study how modern architectures like decoder-only Transform-
ers (Vaswani et al., 2017) and Mamba (Gu & Dao, 2024) perform generalization through pattern
matching. Specifically, we first propose a model-agnostic and data-centric definition of pattern
matching by formalizing the substitution of input patterns observed to result in identical outputs in
shared contexts as functional-equivalence (Sec. 3; henceforth, we use pattern matching as equivalent
to functional-equivalence-based generalization). This induces a coverage boundary: if learning
relies only on such evidence, reliable prediction is expected only for test inputs reachable by these
substitutions.
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Figure 1: Illustration of functional equivalence. Left: In a two-hop task (x1, x2, x3) 7→ t with t =
f2(f1(x1, x2), x3), two fragments (x1, x2) and (x′

1, x
′
2) satisfying f1(x1, x2) = f1(x

′
1, x

′
2) = b consistently

yield the same final output when combined with the same context x3, supporting their functional equivalence.
Right: Among all possible inputs (few shown), we draw an edge between any two inputs that differ only by
functionally equivalent fragments to form a substitution graph. Then, coverage is the set of observed inputs
(highlighted as blue) and all inputs connected to them. We define pattern matching as a type of generalization
that occurs inside the coverage, harnessing functional equivalence.

Moreover, to isolate and study pattern-matching behaviors, we use controlled setups that deliberately
remove other generalization sources and make functional equivalence the primary available mecha-
nism. With this setting, our formalism yields predictive and quantitative insights about the limitations
of pattern matching that, to our knowledge, have not been well characterized in prior works:

• Generalization success is well predicted by the number of supporting contexts that witness FIXED
the relevant functional equivalence. Mechanistically, Transformers implement functional
equivalence via clustered intermediate representations at specific layers/positions, with clustering
strength aligning with evidence strength (Sec. 5).

• We prove a tight sample complexity bound of pattern matching on a two-hop structure by FIXED
identifying the exponent of the data scaling law (in terms of the token set size) which is
necessary and sufficient for perfect in-domain generalization (Theorem 6.1). The measured
power-law exponent agrees with our theoretical bounds and remains stable under roughly 20×
parameter increase (from 68M to 1.5B) for GPT-2 (Radford et al., 2019), and also holds for
Mamba (Gu & Dao, 2024) architecture (Sec. 6).

• When the same variable influences the output along multiple computational paths, models
fail to form unified intermediate state representations. Analysis reveals that they instead de-
velop context-dependent state representations, impairing both generalization and interpretability
(Sec. 7).

• Chain-of-Thought (CoT) supervision (Wei et al., 2022) reduces data requirements yet
does not resolve path ambiguity without seeing nearly exhaustive in-domain combinations
(Sec. 8).

Finally, we situate this characterization of pattern matching within a mechanism-based taxonomy of
generalization mechanisms, proposing two additional distinguishable mechanisms of generalization
in compositional tasks: property-based and shared-operator generalization (Sec. 9.2 and App. H).

Our formalism opens several research directions with practical implications (e.g., targeted data
augmentation to maximize coverage) and motivates expansion to broader tasks and architectures, as
well as systematic studies of how pattern matching interacts with other generalization mechanisms.
Overall, our study provides a predictive, falsifiable boundary for what can be achieved through pattern
matching alone and a foundational diagnostic for disentangling mixed mechanisms in modern neural
networks.

2 RELATED WORK

Pattern matching behaviors of LLMs on compositional tasks. It is well perceived that pattern
matching alone is inadequate for systematic generalization (Fodor & Pylyshyn, 1988), and modern
LLMs display generalization abilities that seem to be far beyond what pattern matching alone
can do, as measured by their remarkable performance on complex benchmarks (Achiam et al.,
2023). However, a growing body of work has consistently reported that LLMs still fall short
on benchmarks designed to test compositionality (Hupkes et al., 2020), including mathematical
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reasoning (Mirzadeh et al., 2025), multi-hop reasoning (Yang et al., 2024; Wang et al., 2024a), and
more (Lake & Baroni, 2018; Kim & Linzen, 2020; Csordás et al., 2022; Dziri et al., 2023). This
gap between their capabilities and pattern-matching behaviors on compositional tasks calls for a
principled framework to define what pattern matching is and to what extent a model’s behavior can
be attributed to pattern matching, but it is mostly discussed with behavioral studies under the context
of a specifically designed benchmark. Our work addresses this gap by formally defining pattern
matching, and we systematically analyze models’ behaviors with controlled tasks that are designed to
isolate pattern-matching regimes grounded on our framework.

Mechanistic interpretability. Mechanistic interpretability studies aim to understand how sub-
mechanisms implement models’ behaviors (Elhage et al., 2021; Olsson et al., 2022; Nanda et al.,
2023; Elhage et al., 2022). Recent work analyzes how Transformer components are causally re-
lated to certain behaviors (Meng et al., 2022; Hanna et al., 2023; Goldowsky-Dill et al., 2023). In
particular, it is reported that in-domain compositional generalization can emerge through grokking,
with identifiable intermediate state representations inside Transformers (Wang et al., 2024a). Our
framework complements these works by providing mechanistic insights about pattern matching. Our
findings also explain why standard interpretability techniques like logit lens (nostalgebraist, 2020;
Belrose et al., 2023) may fail to identify state representations in models trained on tasks with path
ambiguities.

3 FORMALIZING PATTERN MATCHING WITH FUNCTIONAL EQUIVALENCE

We now develop a formal framework for pattern matching. We first provide an intuitive illustration
with a two-hop structure, then generalize to arbitrary fixed-length discrete-sequence tasks.

Imagine a learner observing data determined by f : X 3 → X . The input x = (x1, x2, x3) ∈ X 3 is a
sequence of three discrete tokens and the output is a single token, where each token is chosen from a
finite set X .1 Suppose (unknown to the learner) that f factorizes as the composition of two primitive
functions, f(x) = f2(f1(x1, x2), x3), where f1 : X 2 → X and f2 : X 2 → X , as illustrated in
Fig. 2a. How can the learner generalize by only seeing the input-output patterns?

Our key intuition is that a learner exploits the underlying patterns only when two frag-
ments of inputs are observed to behave identically. For instance, assume that two fragments
(x1, x2), (x

′
1, x

′
2) ∈ X 2 give the same implicit intermediate state upon the application of f1, i.e.,

f1(x1, x2) = f1(x
′
1, x

′
2) = b. These fragments behave identically regardless of context, i.e., they are

functionally equivalent: for all x3 ∈ X , f(x1, x2, x3) = f(x′
1, x

′
2, x3). If observations consistently

support their equivalence, i.e., f(x1, x2, x3) = f(x′
1, x

′
2, x3) for observed x3 values, this equivalence

can be supported (Fig. 1 Left). Intuitively, the learner would harness this equivalence pattern to
predict f(x′

1, x
′
2, x

′′
3), provided the training set contains f(x1, x2, x

′′
3).

Equivalently, the learner can utilize the observed functional equivalence to correctly infer the output
of an unseen input, if it can reach an observed input by ‘safe substitutions’ (edges in the substitution
graph) supported by observations (Fig. 1 Right), which we define as a pattern matching. Coverage
is a set of such inputs that are reachable from an observed input through chains of functionally
equivalent substitutions. Then, coverage sets a boundary for what can be achieved by solely relying
on substituting observed, equivalently behaving patterns. In other words, a learner can only generalize
inside the coverage when it relies on functional equivalence, which we will define as pattern matching.

We now formalize these concepts for an arbitrary fixed-length task with an arbitrary set of discrete
sequence observations. We restrict our attention to single-token prediction tasks defined as a de-
terministic mapping f : X ℓ → X , where X is a finite set of tokens. We also consider a fixed
observation set D ⊂ X ℓ, a collection of inputs that are allowed to be observed by the learner. Write
x = (x1, . . . , xℓ) ∈ X ℓ and, for a subset I ⊂ [ℓ] := {1, . . . , ℓ}, let xI := (xi)i∈I be a subsequence
of x. The first step is to formalize what it means for two subsequences to be functionally equivalent.
Definition 3.1 (Functional k-equivalence). Fix a nonempty proper subset I of indices in [ℓ]. Consider
any set S ⊂ X ℓ of input sequences.2 Given a pair of subsequences a,a′ ∈ X |I|, we say a pair of

1For brevity, we use a shared token set X in the main text. A more general notion using position-specific
domains (e.g., ‘Xi’) can be used; see App. E.1.

2The set S can be any subset of the whole domain, e.g., X ℓ itself, the train dataset D, or whatever else.
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inputs {x,x′} to be an I-co-occurrence of a and a′ in S if it satisfies {x,x′} ⊂ S and xI = a,
x′
I = a′, and x[ℓ]\I = x′

[ℓ]\I . Also, the subsequences a and a′ are said to be functionally k-
equivalent at I in S and denoted by a ≡I

S a′, if it satisfies:

1. (Sufficiency of co-occurrences.) There are k or more distinct I-co-occurrences of a and a′ in S;

2. (Consistency.) Every I-co-occurrence {x,x′} of a and a′ in S satisfies f(x) = f(x′).

In other words, two subsequences are functionally k-equivalent if they behave identically in the
same contexts at least k times. The hyperparameter k represents the strength of evidence required to
establish functional equivalence between two subsequences. The minimum value k = 1 corresponds
to the weakest form of evidence, meaning a single shared context is sufficient to establish equivalence,
whereas higher values of k demand more robust evidence.

Next, we ask: which inputs are reachable from observed data utilizing functional equivalence? To
formalize this, we define substitution graph: Let G(D,k) = (V,E) be an undirected graph with a FIXED
vertex set V = X ℓ of all possible inputs. Two vertices x,x′ ∈ V are connected with an edge in E
if and only if there exists an index set I ⊂ [ℓ] such that {x,x′} is an I-co-occurrence (in V ) of a
pair of functionally k-equivalent sequences at I in D. This process is illustrated on the right side
of Fig. 1, as a special case where k = 1. With this substitution graph G(D,k), we formally define the
k-coverage as a set of inputs which are connected3 to at least one observed input as follows:

Definition 3.2 (k-coverage). The k-coverage of D ⊂ X ℓ, denoted by Coverk(D), is the set of all FIXED
inputs in X ℓ connected to an x ∈ D with a path in the substitution graph G(D,k). FIXED

Note that the notion of coverage is a stricter condition of the canonical definition of in-domain
(ID), which is obtained by random train/test split (Wang et al., 2024a) or taking combinations of
observed internal computations (Dziri et al., 2023). In Sec. 5, we demonstrate that learners may not
necessarily generalize on data that are classified as ID in a canonical sense, but coverage can precisely
explain when and why this occurs. We also emphasize that coverage is a property of a dataset and is
independent of model architectures and learning algorithms, and we demonstrate that the predictions
made by our framework are invariant across model architecture and scale in Sec. 6 and 7. Finally,
k-coverage can be algorithmically determined for any fixed-length discrete sequence tasks (Alg. 1),
which we use for the analyses in the following sections.

Now, we formally define pattern matching as a kind of generalization that is done by substituting
functionally k-equivalent fragments of inputs, whose boundary is precisely the k-coverage
defined above. This formalization enables us to predict, before testing, which inputs will be reliably
handled through pattern matching and which require additional mechanisms. In other words, we view
pattern matching as possible only within k-coverage, and generalization outside the coverage requires
generalization mechanisms other than pattern matching, which we discuss in Sec. 9 and App. H. In
the following sections, we draw a systematic picture of how task structure, dataset, and model size
interact to determine the success and failure of pattern matching through controlled setups, leading us
to important and nontrivial insights.

4 EXPERIMENTAL SETUP

Dataset construction. We construct four synthetic tasks with different structures: 2-HOP, PARAL-
LEL 2-HOP, 3-HOP, and NON-TREE (Fig. 2). To isolate functional-equivalence-based generalizations,
we create random mappings from a product space of token sets to control the generalization sources
not attributable to compositional structures (i.e., commutativity). We explain the dataset construction
process using 2-HOP task (Fig. 2a), (x1, x2, x3) 7→ t with t = f2(f1(x1, x2), x3), as an example.
We construct training datasets by defining a token set with size |X |, and creating two random maps
for the primitive functions f1 : X 2 → X and f2 : X 2 → X . We mark a fraction pseen = 0.7 of each
function’s domain as ‘seen’, gather all possible combinations where both functions are applied to
inputs from their seen domains, and uniformly sample N examples to form a training dataset. See
App. B.1 for more details of the dataset construction process.

3For an undirected graph G, two vertices u, v are connected if G contains a path between u and v.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

x1 x2

f1

b

x3

f2

t

(a) 2-HOP

x1 x2 x3 x4

f1 f2

b1 b2

f3

t

(b) PARALLEL 2-HOP

x1 x2

f1

b1

x3

f2

b2

x4

f3

t

(c) 3-HOP

x1 x2

f1

b

x3

f2

t

(d) NON-TREE

Figure 2: Four synthetic task structures we study.

Training & evaluation. Following Wang et al. (2023), we train randomly initialized GPT-2 (Rad-
ford et al., 2019) models with 8 layers, 12 heads, and 768 dimensions as a base model (see App. B.2
for details). We construct two evaluation sets, each with 2,000 instances: (1) ID Test Set : all
primitive function applications (e.g., f1(x1, x2) and f2(b, x3) in 2-HOP task) are observed during
training, but their specific combination was unseen. (2) Out-of-coverage (canonical OOD) Test
Set: at least one primitive function application is never observed during training, which is used as a
control group.

5 QUANTITATIVE ANALYSIS OF PATTERN MATCHING IN TRANSFORMERS

5.1 EVIDENCE STRENGTH IS TIGHTLY ALIGNED TO PATTERN-MATCHING SUCCESS
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Figure 3: Left: Percentage of covered ID data depending on k values and dataset size (N ), for 2-HOP task
(|X | = 50). Right: Test accuracy depending on k-cutoff values for 2-HOP task (|X | = 50, N=10k). Each line
represents a different training checkpoint. Note that out-of-coverage (k = 0) accuracy remains at chance level
(≈ 1/50) regardless of training time. The bars below show the number of test data for each k-cutoff value.

We first analyze the correlation between k-coverage and ID generalization performance of the GPT-2
model. To this end, we implement and release a task-agnostic coverage determination algorithm (see
App. C) that can be applied to diverse compositional structures. Then, we analyze what fraction
of ID test data of 2-HOP task with |X | = 50 lies inside k-coverage, depending on k and dataset
size N . Fig. 3 (Left) shows that at N = 5k, every ID test example is already covered with minimal
evidence (k = 1). Hence, in an ideal scenario where a single witness of functional equivalence
suffices, training with the dataset as small as N = 5k will lead to perfect ID generalization.

However, we demonstrate in our experiments that minimal coverage (i.e., k = 1) alone is practically
insufficient for ID generalization. To demonstrate this, let us fix a training dataset D and define
the k-cutoff of each input sequence as the lowest value of k for which an input lies in k-coverage,
measuring the strength of evidence for functional equivalence. For example, a k-cutoff of 3 means
that an example is inside coverage with k = 3 but not with k = 4. For out-of-coverage data, we
define k-cutoff as 0. Then, for the 2-HOP dataset with N = 10k, we classify each ID test instance
according to its k-cutoff, and track the accuracy development of the GPT-2 model for each group
across 50k training epochs. As shown in Fig. 3 (Right), ID test accuracy shows a strongly positive
correlation with k-cutoff values. Test data with low k-cutoff values show delayed improvement even
after extensive training, while examples with stronger evidence generalize much faster.

These results yield two important insights. First, successful ID generalization in practice requires
a robust coverage so the model can confidently identify and utilize functional equivalence

5
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relationships. The parameter k effectively quantifies this evidence strength, directly impacting
generalization speed and reliability. Second, while our experiments use uniformly sampled datasets,
the results can explain why models struggle with generalizing long-tail distributions in imbalanced
real-world data (Mallen et al., 2023; Kandpal et al., 2023; Chang et al., 2024). Despite technically
being in-distribution, rare combinations naturally receive limited evidence of functional equivalence
(low k), effectively and practically placing them outside the coverage. We believe that our insights
will motivate future research on targeted data augmentation strategies to maximize k-coverage.

5.2 LATENT REPRESENTATION CLUSTERS DRIVE PATTERN MATCHING ON COVERAGE
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Figure 4: Left: Heatmap of Intra-Inter Cosine Gap (IICG) across layers and positions, sliced by k-cutoff. Higher
IICG values indicate stronger clustering of representations that share the same intermediate state. The positions
with the highest IICG values are marked with squares. Right: PCA visualization of latent representations at
position x2 and layer 3. Datapoints are classified by their intermediate states b = f1(x1, x2).

Next, we investigate how the model internally represents functional equivalence for k-covered inputs.
Specifically, we inspect a GPT-2 trained on 2-HOP task (|X | = 50, N = 10k) for 50k epochs
(corresponding to the yellow line in Fig. 3 (Right)).4 We observe that when a model successfully
generalizes to ID test data, it maps functionally equivalent components into tight latent clusters,
thereby encoding the equivalence relationships needed for compositional generalization.

To quantify this representation clustering phenomenon, we develop a metric that captures how
distinctly the model separates functionally equivalent fragments from others. Specifically, we
measure the difference between the average pairwise cosine similarity of latent vectors that share the
same intermediate state b = f1(x1, x2) (cosintra), and those that do not (cosinter), for each position and
layer of the model. We term this difference the Intra–Inter Cosine Gap IICG = cosintra − cosinter,
where higher values indicate stronger within-group clustering relative to between-group separation.
Fig. 4 (Left) reveals a positive correlation: higher k-cutoff values yield higher IICG scores at certain
positions, indicating that stronger functional equivalence evidence leads to more coherent
internal representations. In contrast, out-of-coverage (k = 0) examples exhibit no clustering
pattern, as they lack evidence of functional equivalence in the training data. The PCA visualization at
position x2 and layer 3 (Right) shows this trend visually. We verify that the representation clusters
play a causal role in pattern matching with causal tracing (Goldowsky-Dill et al., 2023; Hanna et al.,
2023), a widely used technique to identify Transformer circuits (Fig. 8).

Our findings extend the previous insights from mechanistic interpretability literature (Wang et al.,
2024a) in several ways. First, we demonstrate that unified circuit formation is driven by functional
equivalence evidence in the training data, not by explicit exposure to intermediate computation steps.
Moreover, we find that these clustered representations are not necessarily aligned with vocabulary
embeddings, implying that standard interpretability methods like logit lens nostalgebraist (2020) may
fail to detect these functional equivalence representations despite their presence (see App. I).

6 DATA SCALING LAW OF PATTERN MATCHING BEHAVIORS

Our analysis in the previous section demonstrates that stronger functional equivalence evidence
leads to better generalization. A natural follow-up question arises: How large should the training
set be to enable full generalization on all ID test data? Intuitively, this requires the training set
to support (strongly enough) the functional equivalence of every pair of inputs that shares the

4The analyses for varying factors including task structures, entity set size (|X |), dataset size (N ), and training
steps give consistent results; see App. D.
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Figure 5: Left: Log-log plot of measured N̂req vs. token set size (|X |) across three compositional tasks.
The slope c corresponds to the empirical power-law scaling exponent. Omitted points for 3-HOP are due to
prohibitively large dataset requirements. Right: Power-law scaling behavior on 2-HOP task across varying
GPT-2 model sizes (68M to 1.5B parameters) and Mamba model (For Mamba, we used 4 layers, a hidden
dimension of 256, and a learning rate of 0.008, and N̂req is measured for only |X | ≤ 100, since a larger token
set size led to training instability). R2 > 0.99 for all linear fitting.

same intermediate state b. Formally, for a 2-HOP task we need (x1, x2) ≡{1,2}
D (x′

1, x
′
2) whenever

f1(x1, x2) = f1(x
′
1, x

′
2). Assuming that generalization is constrained by the k-coverage, how FIXED

should the train data size scale in the token set size |X | to achieve it completely? In practical
terms, this question seeks to determine the amount of data necessary and/or sufficient to cover all ID
combinations with k-coverage, which is crucial for understanding the data cost for pattern-matching
generalization. To quantify the data cost, we establish and prove the following sample-complexity
upper bound for learning a 2-HOP task (the complete statement and proof are provided in App. E):

Theorem 6.1 (Informal; Corollaries E.9 and E.17). Consider a 2-HOP task with a token set of size n. FIXED
For a uniformly randomly sampled train dataset D of size N , consider a learner that generalizes
within the k-coverage of D. Then, for large enough n, the learner achieves perfect ID generalization
with high probability if N ≳nc with c = 2.5 − 0.5

k . In contrast, the learner (with k≥ 2) does not
achive perfect ID generalization with high probability for some 2-HOP task if n2≲N≲nc. Here, we
ignore the polylogarithmic factors in n.

Theorem 6.1 presents a tight sample complexity bound Θ̃(nc) for pattern-matching-based generaliza- FIXED
tion, showing that the training dataset required to ensure full ID generalization grows polynomially
in the token set size n, with an exponent c ∈ [2, 2.5). To empirically confirm this, we define a
practical threshold N̂req to estimate Nreq(|X | , k), as a minimal amount of training data required to
exceed ID accuracy of 0.99 within 100 epochs after reaching the same level on training data (see
App. F for the measurement details). Fig. 5 (Left) shows the measured power-law exponents for
N̂req vs. |X | across different task structures. The measured exponent for 2-HOP (c = 2.26) aligns
well with our theoretical predictions. Although we derive the theoretical bound only for 2-HOP, we
observe clear power-law relationships for more complex structures as well. The higher exponents for
PARALLEL-2-HOP (c = 2.43) and 3-HOP (c = 2.58) tasks suggest that extra computational steps
essentially add another dimension of relationships that require robust coverage, driving the steeper
power-law scaling.

These exponents remain invariant across three different GPT-2 model sizes spanning a 20x range
in parameters (from 68M to 1.5B) for all three tasks (Fig. 5 Right and Tab. 2 in App. F). We also
show that the exponent measured with a Mamba model (4 layers and a hidden dimension of 256) falls
inside the boundary predicted by the theory (same figure). Interestingly, the result in Fig. 6 (Middle)
demonstrates that with increasing training dataset size N , there is a sharp phase transition from ID
generalization failure to complete success near N = 20k.

Overall, the results support that the data scaling law is primarily determined by data properties rather
than model capacity or architectures, and additional generalization mechanisms will be required to
achieve milder scaling laws on such compositional tasks.5 We note that our result aligns with the
practical observation that parameter scaling does not significantly improve the multi-hop reasoning

5The observed scaling relationships are robust across different hyperparameters (weight decay and learning
rate) and empirical decision criteria for N̂req (see App. F).
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Figure 6: Left: In NON-TREE task, the representations of input subsequences with the same intermediate state
b = f1(x1, x2) are split into multiple context-dependent state representations, conditioned on x2 value. Middle:
ID test accuracy after standard training with varying training dataset size (|X | = 50, evaluated 100 epochs after
training accuracy reaches 0.99). Observe a sharp transition from ID generalization failure to complete success
near N = 20k for 2-HOP, which does not occur in NON-TREE task. Right: IICG heatmap from a model that
achieved near-perfect ID accuracy (0.96) after extended training (36k epochs, |X | = 50, N = 50k).

capability of LLMs (Yang et al., 2024) and the data-hungry nature of compositional tasks (Lake &
Baroni, 2018), suggesting that these could be partly attributed to pattern-matching behaviors. We
leave further analysis of the connection between scaling behavior and pattern matching as an exciting
future research direction.

7 PATH AMBIGUITY PROBLEM AS A FAILURE CASE OF PATTERN MATCHING

We identify a path ambiguity problem with our framework, a previously uncharacterized failure mode
that pattern matching struggles with task structures where a single variable affects the output through
multiple paths. In this section, we analyze NON-TREE task (Fig. 2d) as a case study, where x2

affects the output through two paths, as input to f1 and directly to f2. Unlike in the 2-HOP case, one
cannot establish the functional equivalence of two subsequences (x1, x2) and (x′

1, x
′
2) that produce

the same intermediate state b, unless they also share the same x2 value (x2 = x′
2). It is because

(x1, x2) and (x′
1, x

′
2) are not guaranteed to behave identically (i.e., f(x1, x2, x3) is not necessarily

equal to f(x′
1, x

′
2, x3)) when x1 ̸= x2. Consequently, we can predict that Transformers trained on

the NON-TREE will create context-dependent state representations that are conditioned on x2 values,
failing to unify them to represent the true intermediate state b (Fig. 6 Left).

Experiments show that the path ambiguity indeed hinders both generalization on the ID test set and
the interpretability of intermediate state representations, as the model now establishes functional
equivalence for each x2-conditioned equivalent pair. Fig. 6 (Middle) shows that GPT-2 can fully
generalize on the ID test set of 2-HOP task within a reasonable time with increasing data size, but
fails with NON-TREE task, even provided with a near-exhaustive amount of possible ID combinations
as training data.6 Notably, scaling to 1.5B parameters does not show significant improvement in the
performance (Fig. 17), and the Mamba model used in Sec. 6 shows the same trend of generalization
failure (Fig. 18). In addition, extremely prolonged training (36k epochs) with near-exhaustive ID
combinations eventually achieves ID accuracy of 0.96; however, IICG analysis reveals no evidence of
a unified intermediate state representation formation, with near-zero IICG scores when grouping by
the intermediate state value b (Fig. 6 Right). In contrast, grouping by x2-conditioned intermediate state
(b, x2) leads to high IICG scores, showing the formation of context-dependent state representations.
This context-dependence due to path ambiguity raises an interpretability concern, as standard linear
probing-based techniques like logit lens (nostalgebraist, 2020; Belrose et al., 2023) would not reliably
identify intermediate states when a model relies on pattern matching.

Hence, a generalization mechanism other than pattern matching will be required for a robust ID
generalization on complex task structures that require the access and update of intermediate states
through multiple paths (e.g., planning tasks (Ruis et al., 2020; Kambhampati et al., 2024; Valmeekam
et al., 2023)), where further characterization of this problem remains as an exciting future direction.

8
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Figure 7: Left: Power-law scaling of required dataset size vs. token set size for tasks with CoT supervision.
R2 > 0.98 for all linear fits. Middle: Comparison of ID test Accuracy of NON-TREE task (|X | = 50) with and
without CoT supervision. Right: IICG score comparison for NON-TREE and 2-HOP task with CoT supervision
(|X | = 50, N = 10k). The scores are measured at each layer of intermediate state position b, based on two
grouping strategies: b and (b, x2). Models are trained for 100 epochs after reaching training accuracy > 0.99.

8 COT IMPROVES DATA EFFICIENCY BUT PATH AMBIGUITY PERSISTS

CoT supervision (Wei et al., 2022; Kojima et al., 2022) dramatically improves performance on multi-
step reasoning tasks. We investigate how CoT interacts with our framework and whether it can address
the challenges observed in Sections 6 and 7. Specifically, we train models to sequentially generate
intermediate states before final outputs, making 2-HOP a two-token prediction task: (x1, x2, x3) 7→
(b, t), for example. This substantially improves data efficiency (Fig. 7 (Left)), with the power-law
exponent dropping from 2.58 to 1.76 in the 3-HOP task, aligning with previous studies on the sample
efficiency of CoT (Srivastava et al., 2023; Kim & Suzuki, 2025; Wen et al., 2025). The scaling
exponents measured for 2-HOP, 3-HOP, and even 5-HOP tasks become nearly identical with CoT
supervision. We interpret this as CoT effectively ‘flattening’ multi-hop structures into sequences of
single-hop tasks, reducing the compounding data requirements of deeper compositional structures.

However, we find the path ambiguity problem persists even with CoT supervision. Despite showing
improvements, the models fail to achieve perfect ID generalization under the same training conditions
that yield perfect performance in 2-HOP task (Fig. 7 (Middle). IICG analysis (Right) reveals that the
model’s representations remain partially context-dependent. For the 2-HOP task, the representations
cluster purely by intermediate states b, as indicated by the result that IICG measurement with x2-
conditioned states does not significantly shift the curve. In contrast, the IICG score for NON-TREE
task is significantly elevated at every layer with the same conditioning, suggesting the absence of
disentangled state representation inside the model. We hypothesize this arises since CoT supervision
does not give enough evidence that different (x1, x2) pairs sharing the same b should yield identical
second-step outputs, as functional equivalence holds only when x2 = x′

2. Hence, while CoT
supervision helps with sequential computation by breaking down multi-hop structures, it may partially
inherit the limitations on handling tasks with path ambiguities we describe in Sec. 7. Our analysis
may explain why LLMs struggle with complex planning tasks even when using CoT techniques and
massive training data (Stechly et al., 2024), where we leave further analysis as future work.

9 DISCUSSION

9.1 PRACTICAL IMPLICATIONS

Although the experiments in this work have focused on synthetic setups to dissect purely pattern- FIXED
matching behaviors, our results provide valuable practical implications for understanding and im-
proving LLMs on natural language tasks.

First, it accounts for the data-hungry nature of compositional tasks by demonstrating that
robust coverage is required for reliable generalization (Lake et al., 2017). For instance, our
scaling-law analysis (Theorem 6.1) provides a quantitative explanation for the observed behavior that
the data demand for generalization on multi-hop natural language data dramatically increases with
the number of hops (Yao et al., 2025). Such a data-hungry nature of compositional tasks is also well
observed in semantic parsing (Dong & Lapata, 2016), where it has been shown that the diversity of
data (i.e., the same component is shown in diverse contexts) is more important than the sheer size

6For |X | = 50 and pseen = 0.7, our largest run (N = 50k) includes virtually the entire domain (≈
0.72× |X |3 ≈ 61k distinct ID triples).

9
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of the dataset for better generalization (Keysers et al., 2020). Based on these insights, we believe
our results will motivate strategic data augmentation methods that seek to maximize coverage by
ensuring diverse shared contexts for functionally equivalent components (Andreas, 2020).

Second, our framework helps interpret various real-world failure cases observed in LLMs as
originating from their reliance on pattern matching. For example, our framework aligns with
the reversal curse phenomenon, which is the failure to automatically infer that ‘A is a child of B’
by observing that ‘B is a parent of A’ (Berglund et al., 2024). This is because pattern matching
is fundamentally incapable of generalizing to the reversing relation without explicit functional
equivalence evidence for that in the training dataset. Similarly, our framework can explain the
notoriously hard problem of logical negation in LLMs (Truong et al., 2023). A purely pattern-
matching learner cannot deduce that the negation rule (i.e., if a statement ‘p’ is true, then ‘not p’
is false and vice versa) should apply to any well-formed statement, including the ones that aren’t
observed, through finite observations. Finally, difficulties in solving complex planning tasks with
LLMs (Valmeekam et al., 2023; Stechly et al., 2024; Kambhampati et al., 2024; Wang et al., 2024b)
might be partially attributed to path ambiguities, since such tasks likely require the correct tracking
of intermediate states, which can be affected by various computational paths.

Hence, we believe our framework and analyses can provide important practical insights, which future
work can extend to investigate LLMs’ pattern-matching behaviors under more realistic setups.

9.2 TOWARDS A TAXONOMY OF GENERALIZATION MECHANISMS

Natural language tasks possess algebraic and structural properties that differ from the random FIXED
mappings we studied. For example, the same knowledge can be used in any hop of the multi-hop
reasoning in practice, unlike our 2-HOP task that used f1 ̸= f2. In practice, a learner may reasonably
harness such properties of a given task to generalize beyond the boundary of pattern-matching
defined by coverage. Therefore, it is natural to ask: What generalization mechanisms enable
generalization beyond the coverage boundary? While a complete answer requires future work, we
outline a mechanism-based taxonomy as a starting point for a constructive categorization of distinct
generalization mechanisms beyond pattern matching:

• Functional equivalence-based generalization, the main focus of this work.
• Function property-based generalization leverages algebraic invariances of individual primitive

functions, e.g., commutativity or input irrelevance, where certain arguments never affect the
output. This distinguishes it from pattern matching, as it leverages a primitive function’s global
property that holds across all inputs, not only those observed.

• Shared-operator generalization leverages the reuse of the same computation across positions
(e.g., when f1 = f2 in a two-hop task), which may be important in compositional generalization.
For example, it is known that Transformers with inductive biases towards computation reuse can
improve generalization on compositional tasks (Csordás et al., 2021).

We envision this taxonomy as a foundational diagnostic that quantifies when pattern matching suffices
and when other mechanisms are required. See App. H for a complete discussion on the categorization FIXED
of generalization mechanisms.

10 CONCLUSION

In this work, we formalized a framework for characterizing pattern matching. Our theoretical and FIXED
experimental analyses yielded quantitative and predictive insights into modern neural networks’
pattern-matching behaviors, moving beyond post-hoc accounts of a model’s behavior on composi-
tional tasks: (i) the alignment of instance-wise success with the strength of functional-equivalence
evidence (Sec. 5), (ii) the theoretical identification and empirical verification of a sharp sample com-
plexity bound for complete ID generalization on the 2-HOP task through pattern matching (Sec. 6),
and (iii) the identification of the path ambiguity problem that impairs accuracy and interpretability
even under high coverage and CoT supervision (Sec. 7 and 8). We anticipate that future work will
build on this foundation, towards a more complete and constructive understanding of compositional
generalization and its failures.
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REPRODUCIBILITY STATEMENT

All codes for dataset generation, training, and analysis are contained in the attached supplementary
material, with proper instructions for reproducibility.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

This work deployed LLMs to proofread for grammatical errors and improve the quality of writing.
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A LIMITATIONS

We deliberately restrict to synthetic tasks to isolate structure-based limits without confounds from
lexical or domain priors. We leave extending the coverage analysis to discrete sequence tasks with
variable lengths and more natural data as future work. Additionally, our experiments focus on
autoregressive architectures, and the applicability of the coverage principle to broader architectures
remains to be validated.
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B DETAILED EXPERIMENTAL SETUP

B.1 DATASET CONSTRUCTION

We now provide detailed information about our dataset construction process. While we primarily
explain this process for the 2-HOP task, we follow similar procedures for the other compositional
structures.

Vocabulary and Token Representation For a task with token set size |X |, we create |X | special
tokens of the form <t_0>, <t_1>, . . ., <t_(|X | − 1)>, which we append to the standard GPT-2
vocabulary. We also add special tokens </a> to mark the end of sequences. For Chain-of-Thought
(CoT) experiments, intermediate computations are represented in the target sequence as the actual
intermediate token.

Function Construction For the 2-HOP task, we construct two primitive functions f1 : X 2 → X
and f2 : X 2 → X by randomly mapping from their respective domains to the codomain X . We
create the domain by taking the Cartesian product of the token set with itself. For each function, we
randomly designate a fraction pseen = 0.7 of its domain as the "seen" portion, resulting in sets Sf1
and Sf2 .

Dataset Generation Algorithm To generate the training dataset, we first identify all possible com-
binations where both primitive operations come from their respective "seen" domains. Specifically,
we find all valid tuples (x1, x2, x3, t) such that:

(x1, x2) ∈ domain(Sf1) (1)
(f1(x1, x2), x3) ∈ domain(Sf2) (2)

t = f2(f1(x1, x2), x3) (3)

From this set of all possible in-domain combinations, we uniformly sample N examples to form our
training dataset. When the number of possible combinations exceeds N , this sampling ensures the
model sees only a subset of possible in-domain combinations.

Test Set Construction We carefully construct test sets to evaluate the model’s generalization
capabilities across different coverage conditions. Our test sets contain:

• In-Domain (ID) Test Set: Combinations unseen during training but where both primitive
operations were observed in other contexts. These examples may lie within the coverage as
defined by our framework.

• Out-of-coverage (canonical OOD) Test Set: Examples where at least one primitive opera-
tion was never observed in training. These fall outside the coverage.

Input-Output Format The dataset is formatted for auto-regressive token prediction. For the
standard 2-HOP task, inputs comprise three tokens representing x1, x2, and x3, while the target
includes these input tokens followed by the prediction t and an end marker. Below are the examples
of the dataset format for different settings.

• Standard Format:
– Input: <t_5><t_12><t_3>
– Target Completion: <t_17></a>
– The model must predict the final output token followed by the end marker.

• Chain-of-Thought Format:
– Input: <t_5><t_12><t_3>
– Target Completion: <t_9><t_17></a>
– The model must first predict the intermediate computation result <t_9> (where <t_9>

= f1(<t_5>, <t_12>)), followed by the final output.
• Partial Computation Format (f1):

– Input: <t_5><t_12>
– Target Completion: <t_9></a>
– These examples represent the primitive function applications used to construct the full

compositional task.
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For the other compositional tasks, we follow analogous construction procedures, adjusting the number
of input tokens and the composition structure based on the specific task’s requirements. For example,
PARALLEL 2-HOP requires four input tokens, while 3-HOP follows a three-step composition chain
requiring appropriate modifications to the function construction and sampling procedures.

B.2 TRAINING DETAILS

Table 1: Model configurations for different GPT-2 variants used in our experiments

Configuration GPT-2-Small GPT-2 GPT-2-XL
Number of Attention Heads 6 12 25
Number of Layers 4 8 48
Hidden Dimension 768 768 1600
Total Parameters 68M 96M 1.5B

For our experiments, we employ three GPT-2 model variants of increasing size: GPT-2-Small (68M
parameters), GPT-2 (96M parameters), and GPT-2-XL (1.5B parameters). As shown in Tab. 1, GPT-2-
Small consists of 4 layers with 6 attention heads and a hidden dimension of 768. The standard GPT-2
configuration used in most experiments features 8 layers with 12 attention heads while maintaining the
same hidden dimension of 768. Our largest model, GPT-2-XL, significantly scales up the architecture
with 48 layers, 25 attention heads, and an increased hidden dimension of 1600. The implementation
follows the codebase from (Wang et al., 2024a).

We train all models using the AdamW optimizer with beta values of (0.9, 0.999) and epsilon of 1e-8.
We set the learning rate to 8e-4 with a weight decay of 0.1. A batch size of 16,384 is used, with full
gradient descent applied for datasets smaller than the batch size. All training is conducted with mixed
precision (fp16) on 4 NVIDIA A100 GPUs with 80GB memory each. We employ a constant learning
rate schedule with a linear warmup period of 2,000 steps. This standardized training configuration is
maintained across all experiments to ensure fair comparisons between different task structures and
dataset sizes, unless explicitly varied in specific ablation studies.
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C IMPLEMENTATION DETAILS FOR THE COVERAGE DETERMINATION
ALGORITHM

Algorithm 1: k-Coverage Determination Algorithm

Input: Training examples D = {(xi, f(xi))}Ni=1, where xi ∈ Xn and f(xi) ∈ X
Minimum evidence threshold k ≥ 1

Output: Coverage set Cover(D)

/* STEP 1: Build behavior maps for each subsequence pattern */

foreach nonempty subset I ⊊ [n] do
BehaviorI ← map from subsequence xI to the mapping {x[n]\I 7→ f(x) | x ∈ D}

end

/* STEP 2: Identify functionally equivalent subsequences */

foreach nonempty subset I ⊊ [n] do
UFI ← new UnionFind()
foreach pair of subsequences (α, β) in BehaviorI do

SharedComplements← complements observed with both α and β

if No contradictions in SharedComplements and matching evidence ≥ k then
UFI .Union(α, β) ; // Mark as functionally equivalent

end
end
EquivClassesI ← UFI

end

/* STEP 3: Build substitution graph */

G← empty graph with nodes for all x ∈ Xn

foreach pair of inputs (x, y) with f(x) = f(y) do
foreach subset I where x and y differ only on indices in I do

if EquivClassesI .Find(xI) = EquivClassesI .Find(yI) then
Add edge (x, y) to G

break
end

end
end

/* STEP 4: Determine coverage */

Cover(D)←
⋃

x∈D ConnectedComponent(G, x)

return Cover(D)

Alg. 1 presents our approach to computing the coverage set with a minimum evidence threshold k.
The algorithm works in four main stages:

Stage 1: Behavior mapping We first analyze the training data to create a mapping of behaviors
for each possible subsequence of the input. For each subset of indices I , we record how different
subsequences xI behave when paired with their complements x[n]\I , essentially mapping each
subsequence to a function from complements to outputs.

Stage 2: Equivalence class construction For each subset of indices I , we build equivalence
classes of subsequences that exhibit functionally identical behavior. Two subsequences are considered
equivalent only if: (1) they share at least k distinct complements where they produce the same output,
and (2) they never produce different outputs when given the same complement (no contradictions). We
use a Union-Find data structure to efficiently track and merge these equivalence classes. The Union-
Find (or Disjoint-Set) data structure efficiently maintains a collection of disjoint sets, supporting two
key operations: (1) Find - determine which set an element belongs to, and (2) Union - merge two sets.
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Stage 3: Substitution Graph Construction We construct a graph where nodes represent input
sequences from our training and test sets, rather than the entire domain space (which would be
computationally prohibitive for large token sets). We add an edge between two inputs x and y if
and only if: (1) they produce the same output, (2) they differ only in one subsequence position set
I , and (3) their differing subsequences belong to the same equivalence class. This graph represents
the space of safe substitutions where one can replace a subsequence with a functionally equivalent
alternative without changing the expected output. Our implementation uses parallel processing to
efficiently construct this graph, even for large datasets.

Stage 4: Coverage computation Finally, we compute the coverage set by taking the union of all
connected components in the substitution graph that contain at least one training example. This set
comprises all inputs that are reachable from the training data through chains of equivalent subsequence
substitutions.
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D DETAILED ANALYSIS FOR REPRESENTATION UNIFICATION EXPERIMENTS

D.1 CAUSAL TRACING METHODOLOGY

To analyze the causal role of specific hidden representations in our Transformer model, we employ
causal tracing, a technique that measures the effect of intervening on intermediate activations during
inference (Goldowsky-Dill et al., 2023; Hanna et al., 2023). Specifically, we measure the causal
effect using the indirect effect metric defined in (Sharma et al., 2024). This methodology allows us
to identify which components and positions in the model most strongly contribute to compositional
generalization. We illustrate the measurement with 2-HOP task.

Our analysis begins by collecting three types of computational traces:

1. Clean run (G): We run the model on a compositional task with input (x1, x2, x3) where
the corresponding output is t = f2(f1(x1, x2), x3).

2. Corrupted run (G∗): We replace the original input with a corrupted version by changing
the first two tokens (x1, x2) to (x′

1, x
′
2), where f1(x

′
1, x

′
2) ̸= f1(x1, x2). This ensures that

the model produces a different final output t∗ ̸= t. During this run, we cache all hidden
states h∗(ℓ)

i for each token position i and layer ℓ.

3. Patched run (G[← h∗(ℓ)
i ]): We run the model on the input from the clean run, but at a

specific token position i and layer ℓ, we replace the hidden state with the corresponding
state from the corrupted run.

To quantify the causal effect of a specific hidden state h(ℓ)
i on the model’s prediction, we measure the

Indirect Effect (IE):

IE
h
(ℓ)
i

=
p[← h∗(ℓ)

i ](t∗)− p(t∗)

p∗(t∗)− p(t∗)
(4)

where:

• p(t∗) is the probability assigned to the corrupted output t∗ in the clean run G

• p∗(t∗) is the probability assigned to the corrupted output t∗ in the corrupted run G∗

• p[← h∗(ℓ)
i ](t∗) is the probability assigned to the corrupted output t∗ in the patched run

G[← h∗(ℓ)
i ]

This metric quantifies how much corruption in a particular state affects the overall outcome. An
IE value close to 1 indicates that the corruption of the state h

(ℓ)
i to h∗(ℓ)

i alone almost completely
changes the prediction to that of the corrupted run, suggesting that this state is causally important for
the computation. Conversely, an IE value close to 0 indicates that the state has minimal causal impact
on the prediction.

In our experiments, we apply causal tracing to analyze different subsets of test data categorized by
their k-cutoff values, where k represents the minimum evidence threshold required for functional
equivalence (as defined in Sec. 3 of the main text). This allows us to correlate the strength of
functional equivalence evidence with the formation of unified internal representations.

D.2 CAUSAL TRACING RESULTS FOR EACH k-CUTOFF VALUE IN 2-HOP TASK

Figure 8 displays the causal tracing results for the 2-HOP task, broken down by different k-cutoff
values. We observe that the causal patterns are similar across different k-cutoff values, with slight
differences in where and how strongly the causal effects manifest in the model. This suggests that
once an example falls within coverage (even with minimal evidence, k = 1), the model forms internal
representations that play similar causal roles in prediction.

D.3 TOKEN SET SIZE ABLATION

We show that the observed patterns of cosine similarity analysis and causal tracing in the 2-HOP task
are consistent across different token set sizes |X |. For |X |= 70, 100, 150, 200, we analyze model
checkpoints with training dataset size N = N̂req(|X |) that achieve training accuracy > 0.99. Figure
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Figure 8: Causal tracing results for the 2-HOP task across different k-cutoff values, showing Indirect
Effect (IE) scores at each layer and position.

Fig. 9 shows the results, indicating strong representation clustering at the lower layers of position
x2 for all cases. The causal tracing results in Fig. 10 show that the clustered functional equivalence
representations at the lower layers of position x2 play a causal role in determining the model’s final
prediction.
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Figure 9: IICG heatmap across different token set sizes, showing consistent representation clustering
patterns.
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Figure 10: Causal tracing results showing indirect effect heatmaps for different token set sizes |X |.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

D.4 TASK ABLATION

We show that GPT-2 models trained on PARALLEL-2-HOP and 3-HOP tasks exhibit the same patterns:
clustered functional equivalence representations of intermediate states at specific layers and positions,
confirmed through cosine similarity analysis, with causal tracing analysis verifying their role in model
predictions. For both tasks, we analyze with |X |= 50 and examine model checkpoints with training
dataset size N = N̂req(|X |) that achieve training accuracy > 0.99.

Figures 11 and 12 show the results for the PARALLEL-2-HOP task. The IICG patterns reveal strong
representation clustering at mid-layers: at positions x2 and x3 when grouped by b1 = f1(x1, x2),
and at position x4 when grouped by b2 = f2(x3, x4). Causal tracing confirms the causal role of these
clustered representations in the model’s predictions.
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Figure 11: IICG heatmap for PARALLEL-2-HOP task with grouping strategies based on b1 =
f1(x1, x2) (Left), b2 = f2(x3, x4) (Middle), and t = f3(b1, b2) (Right).
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Figure 12: Causal tracing results showing indirect effect heatmap for PARALLEL-2-HOP task. Left:
perturbation with different (x1, x2) pair leading to a different b1 value. Right: perturbation with
different (x3, x4) pair leading to a different b2 value.

Similarly, Figures 13 and 14 show results for the 3-HOP task. The IICG patterns exhibit strong
representation clustering at mid-layers: at position x3 when grouped by b1 = f1(x1, x2), and at
position x3 when grouped by b2 = f2(b1, x3). Causal tracing again confirms the causal importance
of these representations.

These results demonstrate that the formation of clustered intermediate state representations and
their causal role in compositional generalization is a consistent phenomenon across different task
structures, supporting the generality of our findings beyond the 2-HOP task.
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Figure 13: IICG heatmap for 3-HOP task with grouping strategies based on b1 = f1(x1, x2) (Left),
b2 = f2(b1, x3) (Middle), and t = f3(b2, x4) (Right).
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Figure 14: Causal tracing results showing indirect effect heatmap for 3-HOP task. Left: perturbation
with different (x1, x2) pair leading to different b1 value. Right: perturbation leading to different
b2 = f2(b1, x3) value.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

E PROOFS: ASYMPTOTICALLY PERFECT COVERAGE IN 2-HOP TASK

We establish a scaling-law analysis for the 2-HOP task (as illustrated in Fig. 2a) within our formal FIXED
framework for understanding pattern matching (Sec. 3). While a simplified statement (Theorem 6.1)
is already presented in the main text, we provide the complete results of our analyses here in great
detail, along with their rigorous and self-contained proofs. This appendix is long; we have organized
it into the following structure.

• In App. E.1, we first review and (re)define the problem setting for 2-HOP task. Since the
functional (k-)equivalence at indices 1 and 2 matters for the 2-HOP task, we argue that it is
enough for us to focus on I = {1, 2}, thereby simplifying some key definitions (e.g., substitution
graph, k-coverage) accordingly.

• In App. E.2, we state and prove our main theorems that characterize the number of training data
sufficient for a learner to achieve a perfect in-domain generalization with high probability. There
are two main theorems: one is for k ≥ 2 (Theorem E.7) and another is for k = 1 (Theorem E.8).
As a consequence, we further assume a specific regime of set cardinalities—namely, where all
token sets have Θ(n) elements—and provide Corollary E.9, combining both cases for k ≥ 2
and k = 1.

– We also claim that our results are nearly tight, especially for k ≥ 2. It is done by FIXED
constructing a worst-case subclass of 2-HOP problems in which, given a dataset slightly
smaller than our upper bound, the learner fails in achieving a perfect ID generalization with
high probability (Theorem E.16 and Corollary E.17).

Theorem 6.1 in the main text is indeed a simplified combination of Corollaries E.9 and E.17.
• In App. E.3, we provide (almost) all postponed proofs of lemmas used in App. E.2. We first

prove that the connectivity of all b-evidence graphs (Def. E.5), which are the intermediate-state-
specific induced subgraphs of the substitution graph, is a sufficient condition for the perfect
in-domain generalization we want to show: see Lemma E.10.

– App. E.3.1 is dedicated to explaining the renowned Poissonization technique, rigorously
proving one of our main lemmas, Lemma E.12. Under a usual fixed-sized dataset sampling
scheme, the edge connections of the substitution graph are not guaranteed to be independent.
Nevertheless, the Poissonization technique enables us to disentangle these dependencies,
thereby simplifying our analysis.

– App. E.3.2 reviews the binomial random k-intersection graphs, a topic in the random graph
theory literature. We bring some results on the threshold functions for their connectivity
(without bringing their involved proofs). It is crucial because we show that the b-evidence
graphs can be regarded as binomial random k-intersection graphs under the Poissonization.

E.1 PRELIMINARIES: DEFINITIONS, ASSUMPTIONS, AND FACTS

Ground-truth mapping. Consider a ground-truth mapping f : X = X1×X2×X3 → Y defined as
f(x1, x2, x3) = f2 (f1(x1, x2), x3), a two-hop composition of primitive functions f1 : X1×X2 → B
and f2 : B × X3 → Y . Here, the set B := f1(X1 × X2) is a collection of intermediate states,
implicitly assuming surjectivity of f1 without loss of generality.

Train dataset. We take a train dataset D by independently sampling input sequences N times
from the uniform distribution over X = X1 × X2 × X3. For the sake of simplicity, we allow
duplicates/replacements of train samples in D, thereby considering D as a multiset.

We find it helpful in our analysis to define a random vector (Zx)x∈X that has a one-to-one correspon-
dence with a dataset constructed by sampling with replacement as described below.
Proposition E.1. Given a train dataset D and for each x ∈ X, define Zx as the sampled count of x
(i.e., the number of identical duplicates equal to x) in D. Then, if D is generated by with-replacement
sampling N times from X, the random vector (Zx)x∈X follows a multinomial distribution with
parameters n = N and px = 1

|X| (∀x ∈ X). That is, for all collections of integers zx ≥ 0 (∀x ∈ X)
such that

∑
x∈X zx = N ,

P(Zx = zx ∀x ∈ X) =
N !

|X|N ·
∏

x∈X(zx! )
.

The one-to-one correspondence between D and (Zx)x∈X is straightforward: their realizations
uniquely determine each other (up to the order of sampling).
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A learner making predictions using functional k-equivalence. Let us consider an artificial
learner that is perfectly trained on D (i.e., always predicts correctly on D). We suppose that the
learner confidently predicts the output for the elements in k-coverage of D (defined with functional
k-equivalence), while producing a random (or unconfident) prediction outside of it. However, the
confident prediction is not necessarily correct in general. Luckily, since we suppose a clear two-hop
compositional structure of the task, the confident predictions based on functional equivalences at
indices I = {1, 2} are guaranteed to be correct. Hence, to study the scope of pattern-matching-based
in-domain (ID) generalization as confident and correct predictions on unseen inputs, we restrict the
scope of our analysis to the index set {1, 2} for our analysis in this appendix.

To formalize how far the learner can generalize (Def. E.4) and how far we hope the learner to
generalize (Def. E.2), let us (re)define the key terms for our analysis of the two-hop task, based on
the restriction with respect to the index set I = {1, 2}. For brevity, let us write x12 := (x1, x2) ∈
X12 := X1 ×X2.
Definition E.2 (In-domain closure, in terms of I = {1, 2}). For a train dataset D, its in-domain
closure D is defined as

D = {(x12, x3)∈X : ∃(x′
12, x

′
3)∈X such that f1(x12)=f1(x

′
12), (x

′
12, x3)∈D, and (x12, x

′
3)∈D} .

Also, its element (x12, x3) ∈ D is said to be an in-domain data.

According to the definition above, the in-domain closure D contains all input sequences (x12, x3)
such that (i) its subsequences x12(= xI ) and x3(= xIc ) has already been observed in the train dataset
D, and (ii) its output can be inferred using functional equivalence at indices I = {1, 2}, namely,
f(x12, x3) = f(x′

12, x3) for a training data (x′
12, x3) ∈ D. Hence, the set D is the largest set of

input sequences whose output can be correctly predicted using the exact task structure (e.g., the
functional equivalence at {1, 2}). We also remark that it is obvious to see that D ⊂ D. We wish
the learner would acquire such prediction capabilities from a training dataset. Nevertheless, the task
structure is not directly accessible to our learner since it can only identify the necessary functional
relationships through functional k-equivalences (Def. 3.1).

On the other hand, the k-coverage quantifies how far the assumed learner can actually make correct
predictions using the observed functional k-equivalences from the training dataset D. The definition
(Def. E.4) resembles that of the connectivity of a graph with a vertex set X12.

Recall that in our main text, we defined a substitution graph with the entire input space X as its vertex
set since we aim to check all functional equivalences across all index sets. However, since we are
particularly interested in the functional equivalences at I = {1, 2}, we can simplify its definition as
below.
Definition E.3 (Substitution graph, in terms of I = {1, 2}). For a train dataset D and a positive
integer k, we define a substitution graph (in terms of I = {1, 2}) as G(D,k)

• = (V•, E
(D,k)
• ). Here,

the vertex set is V• := X12 and the edge set is

E
(D,k)
• := {{x12, x

′
12} ⊂ V• : x12 ̸= x′

12 and |Sf (x12, x
′
12 | D)| ≥ k} ,

where the set Sf (x12, x
′
12 | D) is defined as

Sf (x12, x
′
12 | D) := {x̄3 ∈ X3 : f(x12, x̄3) = f(x′

12, x̄3), (x12, x̄3) ∈ D, (x′
12, x̄3) ∈ D} .

In other words, in the substitution graph G(D,k)
• , two vertices x12 and x′

12 are adjacent if they have at
least k distinct co-occerences in D. With this definition, we define the k-coverage as follows.
Definition E.4 (k-coverage, in terms of I = {1, 2}). For a train dataset D and a positive integer k,
the k-coverage of D (in terms of I = {1, 2}) is a subset of X defined as

Coverk(D)
def
=
{
(x12, x3)∈X : ∃x′

12∈X12 connected to x12 with a path in G(D,k)
• , and (x′

12, x3) ∈ D
}

=
{
(u0, x3)∈X : ∃ℓ≥0, ∃u0, u1, · · · , uℓ∈X12 such that {ui−1, ui}∈E(D,k)

• (∀i∈ [ℓ]) & (uℓ,x3)∈D
}
,

where [ℓ] = {1, 2, 3, · · · , ℓ}. Also, an element (x12, x3) ∈ Coverk(D) is said to be covered.

Again, we can easily verify that D ⊂ Coverk(D) by choosing ℓ = 0 in the definition above. However,
the inclusion relation between the in-domain coverage (D) and the k-coverage (Coverk(D)) cannot
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be explicitly determined in general. From the next sub-section, we aim to analyze when (or, with how
large D) we do have a relation “D ⊂ Coverk(D)”, which we call perfect coverage of in-domain
data, with high probability (with respect to the randomness of D).

We additionally introduce some useful symbols for our later proofs. We denote by BD the set of all
intermediate states observed in D: i.e.,

BD := {b ∈ B : ∃(x12, x3) ∈ D such that f1(x12) = b} .

Moreover, we introduce the b-evidence graph G(D,k)
b , defined as a subgraph of G(D,k)

• induced by the
set Vb = f−1

1 ({b}) := {x12 ∈ X12 : f1(x12) = b} ⊂ V• of vertices sharing the same intermediate
state b ∈ B.
Definition E.5 (Evidence graphs). For a train dataset D, a positive integer k, and an intermediate
state b ∈ B, we define a b-evidence graph (in terms of I = {1, 2}) as G(D,k)

b = (Vb, E
(D,k)
b ). Here,

the vertex set is Vb := f−1
1 ({b}) and the edge set is

E
(D,k)
b := {{x12, x

′
12} ⊂ Vb : x12 ̸= x′

12 and |S(x12, x
′
12 | D)| ≥ k} , (5)

where the set S(x12, x
′
12 | D) is defined as

S(x12, x
′
12 | D) := {x̄3 ∈ X3 : (x12, x̄3) ∈ D, (x′

12, x̄3) ∈ D} . (6)

Lastly, we introduce an assumption that will be assumed only when we claim the tightness of our
sample complexity upper bound results.
Assumption E.6. The learner uses the parameter k ≥ k⋆ + 1, where k⋆ ≥ 0 is defined as

k⋆ = max
(b,b′)∈B2

|H(b, b′)| subject to b ̸= b′,

and H(b, b′) = {x3 ∈ X3 : f2(b, x3) = f2(b
′, x3)}.

According to the assumption above, f2(b, x3) = f2(b
′, x3) can hold for more than k⋆ elements in

X3 only when b = b′. It is quite a natural assumption for general 2-HOP tasks since it naturally
eliminates pathological examples that can barely be regarded as 2-HOP tasks (e.g., a constant function
f on X).

The assumption above additionally assumes that our learner pessimistically recognizes the functional
equivalences between {1, 2}-subsequences, by using k ≥ k⋆ + 1. If k = k⋆ + 1, the learner is
using the precise value of k to recognize functionally equivalent subsequences sharing the same
intermediate state; a higher value of k indicates a more pessimistic learner. Because of this pessimism,
once the learner recognizes that x12 and x′

12 are functionally k-equivalent (i.e., {x12, x
′
12} ∈ E

(D,k)
• ),

it is guaranteed that x12 and x′
12 share the same intermediate state (i.e., f1(x12) = f1(x

′
12)). More

importantly, it implies that there must be no edges (in E
(D,k)
• ) connecting two graphs G(D,k)

b and
G(D,k)
b′ for distinct b, b′ ∈ B; otherwise, there must be a pair of subsequences x12 ∈ Vb and x′

12 ∈ Vb′

that are functionally k-equivalent, contradicting the assumption.

Even though Assumption E.6 appears to pertain to the learning rule of the learner, it can also be
interpreted as an assumption about the ground-truth mapping, which necessitates k⋆ ≤ k − 1 for a
given k ≥ 1.

E.2 MAIN THEOREM: SAMPLE COMPLEXITY BOUND FOR PERFECT COVERAGE WITH HIGH
PROBABILITY

The ultimate goal of this appendix is to characterize a sufficient number of training data |D| (i.e., sam-
ple complexity upper bound) so that the k-coverage includes all in-domain data, i.e., D ⊂ Coverk(D),
with high probability. Here, we will state and prove our main theorems, Theorem E.7 (for k ≥ 2) and
Theorem E.8 (for k = 1), which are followed by a simplified combination of them (Corollary E.9).
Soon after, we will also claim the near-tightness of these theorems by showing that, for k ≥ 2, the FIXED
training datasets slightly smaller than the obtained sample complexity are sufficient to guarantee
D ̸⊂ Coverk(D) with high probability (Theorem E.16 and Corollary E.17). Although we present
the proofs of the theorems here, the complete proofs of most lemmas used in the main proofs are
postponed to the later part of this appendix (App. E.3).

Here are the statements of our main theorems for the sample complexity upper bounds, which will be
proved soon after.
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Theorem E.7 (Sample Complexity Upper Bound, k ≥ 2). Under the two-hop task setup described
in App. E.1, suppose that k ≥ 2 is a universal constant. Let n̂ := minb∈BD

|Vb| and ň :=
maxb∈BD

|Vb|, and assume that |X3| = Ω(ň). Fix any δ > 0. Then, there exists Nδ > 0 satisfying

Nδ ≤ O

(
max

{(
k! (ln n̂)

n̂

)1
2k

· |X1 ×X2|
√
|X3|, ln

(
1

δ

)})
such that, for any large enough n̂ and any integer N > Nδ , we have

PN

(
D ⊂ Coverk(D)

)
≥ 1− δ.

Here, PN is the probability measure for the train dataset D constructed by uniformly randomly
sampling its elements N times, allowing duplicates, independently from X = X1 ×X2 ×X3.

Theorem E.8 (Sample Complexity Upper Bound, k = 1). Under the two-hop task setup described
in App. E.1, suppose that k = 1. Let n̂ := minb∈BD

|Vb| and ň := maxb∈BD
|Vb|, and assume that

|X3| = O(n̂). Fix any δ > 0. Then, there exists Nδ > 0 satisfying

Nδ ≤ O

(
max

{
(ln ň)·|X1 ×X2| , ln

(
1

δ

)})
such that, for any large enough n̂ and any N > Nδ , we have

PN

(
D ⊂ Coverk(D)

)
≥ 1− δ.

We use the same definition of PN as in Theorem E.7.

In particular, these two theorems can be easily combined (hence the detailed proof is skipped) in the
regime of almost balanced cardinalities as Θ(n), which is described in the following corollary.

Corollary E.9 (Power-Law Sample Complexity Upper Bound, Simple). Under the two-hop task
setup described in App. E.1, Assume that X1, X2, X3, and Vb (∀b ∈ B) are all the sets of size Θ(n).
Fix any k ≥ 1 and any δ > 0 Then, there exists Nδ(n) > 0 satisfying

Nδ(n) ≤ O

(
max

{
n2.5− 0.5

k · (k! · lnn)γ , ln 2

δ

})
, with γ =


1, for k = 1;

1

2k
, for k ≥ 2,

such that, for any large enough n and any N > Nδ(n), the learner with a uniformly randomly
sampled training dataset D (with replacements) achieves a perfect coverage of in-domain data, i.e.,
D ⊂ Coverk(D), with probability at least 1− δ.

Now, we prove our main theorem for k ≥ 2 (Theorem E.7). After that, we will present the proof of
the other case (k = 1, Theorem E.8), which follows a similar plot except for a few different steps at
the end.

Proof of Theorem E.7. We begin the proof with the following observation: a sufficient condition for
a perfect coverage is that every b-evidence graph (Def. E.5) is a connected graph.

Lemma E.10. If all G(D,k)
b are connected graphs (∀b ∈ BD), then we have D ⊂ Coverk(D).

Refer to App. E.3 for the proof. Thanks to the lemma above, it suffices to show the following with
sufficiently large N = |D|:

PN

(
D ̸⊂ Coverk(D)

) Lemma E.10
≤ PN

(
∃b ∈ BD such that G(D,k)

b is disconnected
)
≤ δ.

To this end, consider the multinomial random vector (Zx)x∈X corresponding to a randomly sampled
training dataset D, as defined in Proposition E.1. Define a property C as

(Zx)x∈X ∈ C ⇐⇒ G(D,k)
b is connected ∀b ∈ BD. (7)
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Then, we want to compute an upper bound of a probability PN ((Zx)x∈X /∈ C). Observe that the
property C is a non-decreasing property (Def. E.11): if a vector (Zx)x∈X satisfies C, then it still
satisfies C after increasing in its entries by non-negative amounts. In other words, the negation of C
(“not satisfying C”) is a non-increasing property. This is because adding a data point to the training
dataset D does not remove any edge from all evidence graphs, thereby preserving the connectivity. In
general, we define the monotone property of vectors as below.

Definition E.11 (Monotone property). We refer to a property A of m-dimensional vectors as a
non-decreasing property when, for any vector (∆1, · · · ,∆m) with non-negative entries ∆i ≥ 0
(∀i = 1, · · · ,m),

(z1, · · · , zm) ∈ A =⇒ (z1 +∆1, · · · , zm +∆m) ∈ A. (Non-Decreasing Property)

On the other hand, we define non-increasing property A as what satisfies

(z1, · · · , zm) ∈ A =⇒ (z1 −∆1, · · · , zm −∆m) ∈ A. (Non-Increasing Property)

Taking advantage of the monotonicity, we can apply the Poissonization technique (App. E.3.1) to
obtain an upper bound on the probability PN ((Zx)x∈X /∈ C). The Poissonization technique we use
is summarized as the lemma below, which will be proved in App. E.3.1:

Lemma E.12 (De-Poissonizaiton Lemma for Monotone Multinomial Events). Fix any n ≥ 1. Define

Pn := P(Z1,···,Zm)∼Multinomial(n; p1,···,pm) ((Z1, · · · , Zm) ∈ A) .
Let A be a non-decreasing property (Def. E.11) of m-dimensional vector. Then, we have an upper
bound and a lower bound for Pn as follows:

Pn ≤ PPo(n+ε) ((Z1, · · · , Zm) ∈ A) + exp
(
− (3−c)ε2

6n

)
, (∀c ∈ (0, 3), ∀ε ∈ (0, cn))

Pn ≥ PPo(n−ε) ((Z1, · · · , Zm) ∈ A)− exp
(
− ε2

2n

)
. (∀ε ∈ (0, n))

If A is a non-increasing property (Def. E.11), then we have similar upper and lower bounds for Pn:

Pn ≤ PPo(n−ε) ((Z1, · · · , Zm) ∈ A) + exp
(
− ε2

2n

)
, (∀ε ∈ (0, n))

Pn ≥ PPo(n+ε) ((Z1, · · · , Zm) ∈ A)− exp
(
− (3−c)ε2

6n

)
. (∀c ∈ (0, 3), ∀ε ∈ (0, cn))

Here, we denote by PPo(λ) the probability measure under Zi
indep.∼ Poisson(λpi) (∀i = 1, · · · ,m).

In particular, considering the disconnectedness (∃b ∈ BD) as a non-increasing property, we have

PN

(
∃b ∈ BD such that G(D,k)

b is disconnected
)

≤ PPo(N−ε)

(
∃b ∈ BD such that G(D,k)

b is disconnected
)
+ exp

(
− ε2

2N

)
≤
∑
b∈BD

PPo(N−ε)

(
G(D,k)
b is disconnected

)
+ exp

(
− ε2

2N

)
(∵ union bound)

for any positive number ε < N , where PPo(N−ε) is the probability measure under i.i.d. Poisson

random variables Zx ∼ Poisson
(

N−ε
|X|

)
(∀x ∈ X). Let us take ε =

√
2N ln

(
2
δ

)
, which is smaller

than N by our choice of Nδ and ensures that

exp

(
− ε2

2N

)
= exp

(
− ln

(
2

δ

))
=

δ

2
.

Now, we claim that each b-evidence graph G(D,k)
b is a binomial random k-intersection

graph (App. E.3.2) for every b ∈ BD, under the Poissonization governed by PPo(N−ε).

Lemma E.13 (Evidence Graphs are Binomial k-Intersection Graphs under Poissonization). Let
any b ∈ BD. Consider a vector (Zx)x∈X associated with a dataset D (i.e., an input sequence x is
sampled Zx times in D). Let PPo(λ) be a probability measure for Zx

i.i.d.∼ Poisson (λ/|X|). Then,
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under PPo(λ), the b-evidence graph G(D,k)
b (Def. E.5) is an instance of binomial random k-intersection

graph G(k)(nb,m, p) with parameters

nb = |Vb| , m = |X3| , p = 1− exp

(
− λ

|X|

)
.

Based on such an observation, we can use the following seminal result about the connectivity of
binomial random k-intersection graphs with p = 1− exp(−(N − ε)/|X|). In particular, we will use
only the “k ≥ 2” part (which tightly matches our assumption m = Ω(nb) (∀b ∈ BD)) of the lemma
below:

Lemma E.14 (Zhao et al., 2014, Theorem 2; Zhao et al., 2017, Theorem 1 & Remark 1). Fix any
k ≥ 1. Suppose that

m =

{
Ω
(
min

{
n (lnn)

5
, nρ
})

, if k = 1, for any ρ > 1;

Ω (n) , if k ≥ 2,

and

p =

(
k! (lnn+ αn)

n

) 1
2k

· 1√
m

(8)

for any sequence {αn} which attains a limit α∞ ∈ [−∞,+∞] as n→∞. Then,

lim
n→∞

P
(
G(k)(n,m, p) is connected

)
= lim

n→∞
P
(
min deg G(k)(n,m, p) ≥ 1

)
= exp

(
−e−α∞

)
,

where we compute exp
(
−e−(−∞)

)
= 0 and exp

(
−e−(+∞)

)
= 1.

Now, we aim to find a sufficient condition for N to have∑
b∈BD

PPo(N−ε)

(
G(D,k)
b is disconnected

)
≤ δ

2
. (9)

Let us choose the sequence αn = lnn in Lemma E.14, which guarantees that

P(G(k)(n,m, p) is connected)→ 1 as n→∞.

From the definition of the limit of a sequence, for any choice of δ > 0, let us define n0(δ) > e > 0
such that

P(G(k)(n,m, p) is disconnected) ≤ δ, ∀n > n0(δ).

Then, choosing all nb = |Vb| to be greater than n0

(
δ

2|BD|

)
, we yield the bound (9). Note that a choice

of p larger than the threshold in Eq. (8) will never change that P(G(k)(n,m, p) is connected)→ 1 as
n→∞. Thus, since we choose αn = lnn, it suffices to have

p = 1− exp

(
−N − ε

|X|

)
≥
(
k! (2 lnnb)

nb

) 1
2k

· 1√
|X3|

for each nb (∀b ∈ BD). Since 1− e−u ≥ (1− 1
e )u for 0 < u < 1 and lnu

u is a decreasing function
for large enough u > e, it suffices to have(

1− 1

e

)
N − ε

|X|
≥
(
k! (2 ln n̂)

n̂

) 1
2k

· 1√
|X3|

for n̂ := minb∈BD
nb. Plugging in ε =

√
2N ln

(
2
δ

)
and |X| = |X1×X2| |X3|, we have

N −

√
2N ln

(
2

δ

)
≥
(

e

e− 1

)
·
(
k! (2 ln n̂)

n̂

)1
2k

· |X1×X2|
√
|X3|,
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which is satisfied by

N ≥ 4 ·max

{(
e

e− 1

)
·
(
k! (2 ln n̂)

n̂

)1
2k

· |X1×X2|
√
|X3|, ln

(
2

δ

)}
.

In conclusion, for large enough n̂ > max
{
n0

(
δ

2|BD|

)
, e
}

, provided that the training dataset size N
satisfies the inequality above, we finally have

PN

(
∃b ∈ BD such that G(D,k)

b is disconnected
)

≤
∑
b∈BD

PPo(N−ε)

(
G(D,k)
b is disconnected

)
+ exp

(
− ε2

2N

)
≤ δ

2
+

δ

2
= δ.

This concludes the proof of the theorem. ■

Proof of Theorem E.8. Even for k = 1, we follow almost the same proof as that of Theorem E.7,
except for the last few steps. Namely, we again observe that every G(D,1)

b is a binomial random
1-intersection graph G(1)(nb,m, p) with parameters nb = |Vb|, m = |X3|, and p = 1− exp(−(N −
ε)/|X|). To guarantee the union bound in Eq. (9), however, we use a different lemma: Lemma E.15
(instead of Lemma E.14). In particular, we will use only the “ρ ≤ 1” part (which tightly matches our
assumption m = O(nb) (b ∈ BD)) of the lemma below:

Lemma E.15 (Singer, 1995, Propositions 3.1–2, Theorem 3.3). Let k = 1. Suppose that m = nρ for
ρ > 0 and

p =


lnn+ αn

m
for ρ ≤ 1;√

lnn+ αn

mn
for ρ > 1,

for any sequence {αn} which attains a limit α∞ ∈ {−∞,+∞} as n→∞. Then,

lim
n→∞

P(G(1)(n,m, p) is connected) = lim
n→∞

P
(
min deg G(1)(n,m, p) ≥ 1

)
=

{
0, if α∞ = −∞;

1, if α∞ = +∞.

Again, let us choose the sequence αn = lnn in Lemma E.15, which guarantees that
P(G(1)(n,m, p) is connected) → 1 as n → ∞. From the definition of the limit of a sequence,
for any choice of δ > 0, let us define n0(δ) > 1 such that

P(G(1)(n,m, p) is disconnected) ≤ δ, ∀n > n0(δ).

Then, choosing all nb = |Vb| (and thus n̂ = minb∈BD
nb) to be greater than n0

(
δ

2|BD|

)
, we yield

the same bound (9). Now, by our choice αn = lnn, it suffices to have

p = 1− exp

(
−N − ε

|X|

)
≥ 2 lnnb

|X3|

for each nb (∀b ∈ BD). Since 1− e−u ≥ (1− 1
e )u for 0 < u < 1 and lnu is an increasing function

for u > 1, it suffices to have (
1− 1

e

)
N − ε

|X|
≥ 2 ln ň

|X3|

for ň := maxb∈BD
nb. Plugging in ε =

√
2N ln

(
2
δ

)
and |X| = |X1×X2| |X3|, we have

N −

√
2N ln

(
2

δ

)
· ≥

(
e

e− 1

)
(2 ln ň) · |X1×X2| ,
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which is satisfied by

N ≥ 4 ·max

{(
e

e− 1

)
· (2 ln ň)·|X1×X2| , ln

(
2

δ

)}
.

In conclusion, for large enough ň ≥ n̂ > max
{
n0

(
δ

2|BD|

)
, 1
}

, provided that the training dataset
size N satisfies the inequality above, we finally have

PN

(
∃b ∈ BD such that G(D,1)

b is disconnected
)

≤
∑
b∈BD

PPo(N−ε)

(
G(D,1)
b is disconnected

)
+ exp

(
− ε2

2N

)
≤ δ

2
+

δ

2
= δ.

This concludes the proof. ■

Subsequently, we argue that the sample complexity upper bound obtained in Theorem E.7 (for k ≥ 2) FIXED
is nearly tight.7 To this end, we show that the learner (we assumed in App. E.1) cannot avoid an
incomplete coverage (i.e., D ̸⊂ Coverk(D)) with high probability, with a dataset slightly smaller
than our upper bound for certain instances of the 2-HOP task. In particular, it is enough to consider
a subclass of the 2-HOP task satisfying a mild condition (Assumption E.6) that any two distinct
intermediate states in B never share the same output for more than k⋆(< k) tokens in X3. The formal
statement of the tightness result is shown below:

Theorem E.16 (Near-Tightness of the Sample Complexity Upper Bound for k ≥ 2). Under
the two-hop task setup described in App. E.1, suppose that k ≥ 2 is a universal constant. Let
n̂ := minb∈B |Vb| and ň := maxb∈B |Vb|. Assume that |X3| = Ω(n̂) and |X1×X2| ≥ 6. Let us
further assume that the ground-truth mapping f satisfies Assumption E.6. Fix any δ > 0. Then,
there exists Ñδ > 0 satisfying

Ñδ ≥
(
(k − 1)! (ln n̂)

n̂

) 1
2k

· |X1×X2|
√
|X3|

such that, for any large enough n̂ and any integer N satisfying the range

max

{
|X1×X2| ln

4 |X1×X2|
δ

,
|X|
n̂

ln
4 |B×X3|

δ

}
≤ N < Ñδ

we have

PN

(
D ⊂ Coverk(D)

)
≤ δ.

We use the same definition of PN as in Theorem E.7.

A caveat of Theorem E.16 is that it makes sense only when the range of N is nonempty. Luckily,
it is easy to verify its validity in the regime of balanced cardinalities, similar to what we assumed
in Corollary E.9. As a result, we establish the tightness (for k ≥ 2, up to a constant factor) of our
sample complexity upper bound in Corollary E.9, among the data sizes N ≳ n2 lnn (Corollary E.17).
Note that, as shown in the middle of the proof of Theorem E.16, O(n2 lnn) is indeed the data size
which is sufficient to guarantee that the learner observes all possible pairs in X1×X2 and B×X3,
ensuring that all possible input sequences in X are in-domain, with high probability.

7We often say a complexity upper bound is tight if we can find a worst-case example whose complexity lower
bound is almost identical to the upper bound.

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Corollary E.17 (Tightness of Sample Complexity Upper Bound for k ≥ 2, Simple). Under the
two-hop task setup described in App. E.1, suppose that |X1| = |X2| = |X3| = |B| = |Vb| = n
(∀b ∈ B). Also, assume that the ground-truth mapping f satisfies Assumption E.6. Fix any k ≥ 2

and any δ > 0. Then, there exists Ñδ(n) > 0 satisfying

Ñδ(n) ≥ n2.5− 0.5
k · ((k − 1)! · lnn) 1

2k

such that, for any large enough n (e.g., such that kn > 256e(lnn)3 and
√
n(lnn)

1
k > 4(ln 4

δ )
2)

and any integer N satisfying that

n2

(
2 lnn+ ln

4

δ

)
≤ N < Ñδ(n),

the learner with a uniformly randomly sampled training dataset D (with replacements) cannot
achieve a perfect coverage of in-domain data, i.e., D ̸⊂ Coverk(D), with probability at least 1− δ.

From now on, we prove Theorem E.16, the tightness result of the sample complexity upper bound
obtained in Theorem E.7.

Proof of Theorem E.16. We aim to prove that, even when the dataset D is large enough to ensure
that D = X, the incomplete coverage may happen with high probability for a certain range of data
size N . To this end, let us first define two sets D12 and DB3 as follows:

D12 := {x12 ∈ X12 : ∃x3 ∈ X3 such that (x12, x3) ∈ D} ;
DB3 := {(b, x3) ∈ B×X3 : ∃x12 ∈ Vb such that (x12, x3) ∈ D} .

Also, we denote by min deg G := minv∈V degG(v) the minimum degree among all vertices of a
graph G = (V,E). With these definitions in place, we now apply the following lemma, which
describes a necessary condition for perfect coverage.

Lemma E.18. Assume that D12 = X12 and DB3 = B × X3 hold. Then, these imply that D = X.
Furthermore, suppose that Assumption E.6 holds for a given 1 ≤ k ≤ |X3|. Then, D ⊂ Coverk(D)

implies that min deg G(D,k)
b ≥ 1 for all b ∈ B.

Refer to App. E.3 for its proof. Now, it suffices to show the inequality below:

PN

(
D ⊂ Coverk(D)

)
≤ PN

(
D ⊂ Coverk(D) or D12 ̸= X12 or DB3 ̸= B ×X3

)
≤ PN

(
min deg G(D,k)

b ≥ 1 (∀b ∈ B) or D12 ̸= X12 or DB3 ̸= B ×X3

)
(∵ Lemma E.18)

≤ PN

(
min deg G(D,k)

b ≥ 1 (∀b ∈ B)
)
+ PN (D12 ̸= X12) + PN (DB3 ̸= B ×X3) ≤ δ. (10)

To this end, consider the multinomial random vector (Zx)x∈X ∼ Multinomial(N ; (px)x∈X) corre-
sponding to a randomly sampled training dataset D, as defined in Proposition E.1. Define a property
M1 as

(Zx)x∈X ∈M1 ⇐⇒ min deg G(D,k)
b ≥ 1 (∀b ∈ B). (11)

Also, observe that

(Tx12
)x12∈X12

∼ Multinomial(N ; (qx12
)x12∈X12

), if


Tx12

=
∑

x3∈X3

Z(x12,x3),

qx12
=
∑

x3∈X3

p(x12,x3),

(Uw)w∈B×X3
∼ Multinomial(N ; (rw)w∈B×X12

), if


U(b,x3) =

∑
x12∈Vb

Z(x12,x3),

r(b,x3) =
∑

x12∈Vb

p(x12,x3),
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where we can actually put p(x12,x3) =
1
|X| , qx12

= |X3|
|X| = 1

|X12| , and r(b,x3) =
|Vb|
|X| above. Using this

notation, we know that

D12 = X12 ⇐⇒ Tx12
≥ 1 (∀x12 ∈ X12);

DB3 = B ×X3 ⇐⇒ Uw ≥ 1 (∀w ∈ B ×X3).

Hence, to show Eq. (10), it suffices to prove the following three inequalities:

P(Zx)x∈X∼Multinomial(N ;(px)x∈X) ((Zx)x∈X ∈M1) ≤
δ

2
; (12)

P(Tx12
)x12∈X12

∼Multinomial(N ;(qx12
)x12∈X12

) (∃x12 ∈ X12 such that Tx12
= 0) ≤ δ

4
; (13)

P(Uw)w∈B×X3
∼Multinomial(N ;(rw)w∈B×X12

) (∃w ∈ B ×X3 such that Uw = 0) ≤ δ

4
. (14)

A size N of training dataset D that is sufficient to ensure Eqs. (13) and (14) can be characterized
with the following lemma.

Lemma E.19 (A Tail Bound for Coupon Collector’s Problem). Consider a multinomial random
vector (Z1, · · · , Zm) ∼ Multinomial(n; p1, · · · , pm). Then,

P(∃i such that Zi = 0) ≤
m∑
i=1

(1− pi)
n.

In particular, if p̂ = min1≤i≤m pi, then for any δ > 0,

n ≥ 1

p̂
ln

m

δ
=⇒ P(∃i such that Zi = 0) ≤ δ.

See App. E.3 for the proof. Applying the lemma and n̂ = minb∈B |Vb|, we can figure out that the
data size

N ≥ max

{
|X12| ln

(
4 |X12|

δ

)
,
|X|
n̂

ln

(
4 |B×X3|

δ

)}
(15)

is enough to ensure both Eqs. (13) and (14). The remaining task now is to determine a condition for
N that guarantees Eq. (12).

Observe thatM1 (defined as Eq. (11)) is a non-decreasing property (Def. E.11) because of a similar
reason for the monotonicity of the property C (defined as Eq. (7); see the proof of Theorem E.7).
Thanks to the monotonicity ofM1, we can apply the Poissonization technique (Lemma E.12) once
again. That is, taking any fixed c ∈ (0, 2), we have

PN

(
min deg G(D,k)

b ≥ 1 (∀b ∈ B)
)

≤ PPo(N+ε)

(
min deg G(D,k)

b ≥ 1 (∀b ∈ B)
)
+ exp

(
− (3− c)ε2

6N

)
≤ PPo(N+ε)

(
min deg G(D,k)

b ≥ 1
)
+ exp

(
− (3− c)ε2

6N

)
(∀b ∈ B),

for any ε ∈ (0, cN), where PPo(N+ε) is the probability measure under i.i.d. Poisson random variables

Zx ∼ Poisson
(

N+ε
|X|

)
(∀x ∈ X). Let us take ε =

√
6N
3−c ln

(
4
δ

)
, which is smaller than N by Eq. (15)

(since |X12| ≥ 6 > 6
3−c ) and ensures that

exp

(
− (3− c)ε2

6N

)
= exp

(
− ln

(
4

δ

))
=

δ

4
.

Moreover, we again use the fact that G(D,k)
b is an instance of binomial random k-intersection graph

G(k)(nb,m, p) with parameters nb = |Vb|, m = |X3|, and p = 1 − exp (−(N + ε)/|X|), under
the Poissonization governed by PPo(N+ε). Since we assume k ≥ 2, we can use the “k ≥ 2” part
of Lemma E.14. In particular, we are to apply Lemma E.14 for an evidence graph G(D,k)

b with
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b ∈ argminb′∈B |Vb| (thus, nb = n̂), which is possible since we assume m = |X3| = Ω(n̂). We aim
to find a sufficient condition for N to have

PPo(N+ε)

(
min deg G(D,k)

b ≥ 1
)
≤ δ

4
. (16)

Let us choose the sequence αn = −(1− 1
k ) lnn in Lemma E.14, which guarantees that

P(min deg G(k)(n,m, p) ≥ 1)→ 0 as n→∞.

From the definition of the limit of a sequence, for any choice of δ > 0, let us consider n0(δ) > 0
satisfying that

P
(
min deg G(k)(n,m, p) ≥ 1

)
≤ δ, n > n0(δ).

Then, choosing n̂ greater than n0

(
δ
4

)
, we yield the bound (16). Observe that a choice of p smaller

than the threshold in Eq. (8) will never change the limit P(min deg G(k)(n,m, p) ≥ 1)→ 0. Thus,
by our choice αn = −(1− 1

k ) lnn, it is enough to have

p = 1− exp

(
−N + ε

|X|

)
≤
(
(k − 1)! (ln n̂)

n̂

) 1
2k

· 1√
|X3|

.

Applying 1− e−u ≤ u for u ∈ R, it suffices to have

N + ε

|X|
≤
(
(k − 1)! (ln n̂)

n̂

) 1
2k

· 1√
|X3|

.

Plugging ε < cN and |X| = |X1×X2| |X3| in, we eventually have a sufficient condition

N ≤ 1

1 + c
·
(
(k − 1)! (ln n̂)

n̂

) 1
2k

· |X1×X2|
√
|X3|.

To summarize, for large enough n̂ > n0

(
δ
4

)
, provided that the data size N satisfies

max

{
|X12| ln

4 |X12|
δ

,
|X|
n̂

ln
4 |B×X3|

δ

}
≤ N ≤ 1

1+c
·
(
(k−1)! (ln n̂)

n̂

) 1
2k

·|X1×X2|
√
|X3|

and we take ε =
√

6N
3−c ln

(
4
δ

)
, we finally have

PN

(
D ⊂ Coverk(D)

)
≤ PPo(N+ε)

(
min deg G(D,k)

b ≥ 1
)
+ exp

(
− (3− c)ε2

6N

)
+ PN (D12 ̸= X12) + PN (DB3 ̸= B×X3)

≤ δ

4
+

δ

4
+

δ

4
+

δ

4
= δ.

Since the choice of c ∈ (0, 2) is arbitrary, we obtain the same result (PN (· · ·) ≤ δ) by letting c↘ 0
and choosing N which satisfies that

max

{
|X12| ln

4 |X12|
δ

,
|X|
n̂

ln
4 |B×X3|

δ

}
≤ N <

(
(k−1)! (ln n̂)

n̂

) 1
2k

·|X1×X2|
√
|X3|.

■

Before moving on to the postponed proofs of lemmas, we lastly remark that the same proof (of
Theorem E.16) can hardly apply to the case of k = 1 in general. This is because, for the sake
of simplicity in applying the necessary condition for a perfect coverage (Lemma E.18), we first
characterize a minimal data size to guarantee D = X with high probability as Eq. (15), using the tail
bound of the coupon collector’s problem (Lemma E.19). Unfortunately, it already exceeds the sample
complexity upper bound to ensure D ⊂ Cover1(D) (obtained as Theorem E.8) for k = 1 with high
probability, especially in the regime of balanced cardinalities assumed in Corollary E.17.
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E.3 BACKGROUNDS, USEFUL FACTS, AND LEMMAS

Now, we delve into the detailed backgrounds to provide a comprehensive understanding of the main
theorems’ proof, along with the deferred proofs of the lemmas used earlier.

We begin with the proof of a sufficient condition for a perfect coverage (Lemma E.10). For readability,
we restate the lemma here.

Lemma E.20. If all G(D,k)
b are connected graphs (∀b ∈ BD), then we have D ⊂ Coverk(D).

Proof of Lemma E.10. Take any (x12, x3) ∈ D. By definition (Def. E.2), there exists x′
12 ∈ X12

such that f1(x12) = f1(x
′
12) and (x′

12, x3) ∈ D. Let b = f1(x
′
12) ∈ BD. By assumption, there

exists a path in G(D,k)
b connecting x12 and x′

12, which we write as u0(= x12), u1, . . . , uℓ(= x′
12) for

some integer ℓ ≥ 1. Then, for each i ∈ [ℓ], we have a set S(ui−1, ui | D) (defined in Def. E.5) of
size at least k. For each x̄3 ∈ S(ui−1, ui | D), both (ui−1, x̄3) and (ui, x̄3) are both in D. Also,

f(ui−1, x̄3) = f2(b, x̄3) = f(ui, x̄3),

meaning that the set Sf (ui−1, ui | D) (defined in Def. E.3) is the same as S(ui−1, ui | D), a set of
size at least k, for each i ∈ [ℓ]. Hence, (x12, x3) satisfies the definition of k-coverage with a path
u0, . . . , uℓ, i.e., (x12, x3) ∈ Coverk(D).

Next, we show a necessary condition for a perfect coverage (Lemma E.18). Before proving the FIXED
lemma, we recall that we have defined two sets:

D12 := {x12 ∈ X12 : ∃x3 ∈ X3 such that (x12, x3) ∈ D} ;
DB3 := {(b, x3) ∈ B×X3 : ∃x12 ∈ Vb such that (x12, x3) ∈ D} .

Also, for a graph G = (V,E), we define min deg G := minv∈V degG(v) as the minimum degree
among all vertices of G.

Lemma E.21. Assume that D12 = X12 and DB3 = B × X3 hold. Then, these imply that D = X.
Furthermore, suppose that Assumption E.6 holds for a given 1 ≤ k ≤ |X3|. Then, D ⊂ Coverk(D)

implies that min deg G(D,k)
b ≥ 1 for all b ∈ B.

Proof of Lemma E.18. We first show that D12 = X12 and DB3 = B ×X3 imply that D = X. Since
we already have D ⊂ X by definition, it suffices to prove X ⊂ D. Let any x12 ∈ X12 and x3 ∈ X3,
and take b = f1(x12) ∈ B. Let us define:

Wx12
= {x′

3 ∈ X3 : (x12, x
′
3) ∈ D} ;

W̃ (b)
x3

= {x′
12 ∈ Vb : (x

′
12, x3) ∈ D} .

The conditions D12 = X12 and DB3 = B ×X3 imply that Wx12
̸= ∅ and W̃

(b)
x3 ̸= ∅, respectively.

If we take any x′
3 ∈ Wx12 and x′

12 ∈ W̃
(b)
x3 , they hold that (x12, x

′
3) ∈ D, (x′

12, x3) ∈ D, and
f1(x12) = b = f1(x

′
12). This set of conditions is equivalent to (x12, x3) ∈ D; hence, we have just

shown that

D12 = X12 and DB3 = B ×X3 =⇒ D = X.

Now, we prove the contrapositive of the lemma. Suppose that min deg G(D,k)
b = 0 for some b ∈ B;

we aim to show that Coverk(D) ̸= X = D, or, X \ Coverk(D) ̸= ∅.

Take a b ∈ B such that min deg G(D,k)
b = 0, which implies that such a graph G(D,k)

b has an isolated
vertex x12 ∈ Vb (i.e., degG(D,k)

b

(x12) = 0). Let us fix such an x12. Since we assume Assumption E.6,

there must not be any edge connection between G(D,k)
b and G(D,k)

b′ for distinct b, b′ ∈ B. Thus, x12

must be an isolated vertex in the whole substitution graph G(D,k)
• . The isolation implies that, for any

x3 ∈ X3, the input sequence (x12, x3) cannot be in the k-coverage of D unless it is already in D.

Observe that Wx′
12
̸= ∅ for any x′

12 ∈ X12; otherwise, it inevitably holds that (x′
12, x̃3) ̸= D for

every x̃3 ∈ X3, which contradicts to the fact D = X (under the assumption of the lemma). Thus, we
can think of the following two cases:

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

• Case 1 (∅ ̸= Wx12
⊊ X3). Take any x3 /∈Wx12

, which implies (x12, x3) /∈ D. Thus, we have
an element (x12, x3) ∈ X \ Coverk(D) because x12 is an isolated vertex.

• Case 2 (Wx12
= X3). Since x12 is an isolated vertex, it is not adjacent to any other vertex

x′
12. Fix any such an x′

12 ∈ X12 \ {x12}. By definition of the edges in E
(D,k)
• , we know

that
∣∣Wx12 ∩Wx′

12

∣∣ < k. Since Wx12 = X3, we also know that
∣∣Wx′

12

∣∣ < k ≤ |X3|. This
implies that x′

12 cannot be adjacent to any other vertices in X12, meaning that x′
12 is an isolated

vertex. Moreover, since Wx′
12

⊊ X3 (∵
∣∣Wx′

12

∣∣ < |X3|), we take any x3 /∈ Wx′
12

. Then, since
(x′

12, x3) /∈ D and x′
12 is isolated, we have an element (x′

12, x3) ∈ X \ Coverk(D).

In both cases above, we obtain the same result that X \ Coverk(D) ̸= ∅. It concludes the proof of
the lemma.

We also prove the tail probability bound for the coupon collector’s problem (Newman, 1960; Erdős FIXED
& Rényi, 1961) here. We again restate the lemma here for the sake of readability.
Lemma E.22 (A Tail Bound for Coupon Collector’s Problem). Consider a multinomial random
vector (Z1, · · · , Zm) ∼ Multinomial(n; p1, · · · , pm). Then,

P(∃i such that Zi = 0) ≤
m∑
i=1

(1− pi)
n.

In particular, if p̂ = min1≤i≤m pi, then for any δ > 0,

n ≥ 1

p̂
ln

m

δ
=⇒ P(∃i such that Zi = 0) ≤ δ.

Proof of Lemma E.19. Observe that Zi ∼ Bin(n, pi) for each i ∈ [m]. It implies that P(Zi = 0) =
(1− pi)

n. One can yield the same result by directly summing up the multinomial probability masses
and applying the multinomial theorem: for instance,

P(Z1 = 0) =
∑

z2+···+zm=n
z2,···,zm≥0

n!

z2! · · · zm!
pz22 · · · pzmm = (p2 + · · ·+ pm)n = (1− p1)

n.

Thus, by applying a union bound,

P(∃i such that Zi = 0) ≤
m∑
i=1

P(Zi = 0) =

m∑
i=1

(1− pi)
n ≤ m(1− p̂)n ≤ me−np̂,

where we apply p̂ = min1≤i≤m pi and 1 + u ≤ eu (∀u ∈ R) in the last two inequalities above.
Solving me−np̂ ≤ δ, we conclude that n ≥ 1

p̂ ln
m
δ implies P(∃i such that Zi = 0) ≤ δ.

E.3.1 (DE-)POISSONIZATION OF MONOTONE MULTINOMIAL EVENTS

Randomization is a probabilistic technique that provides a convenient way to analyze a sequence
by treating the sequence index as a random variable/process. When the sequence {an}n≥0 is
monotone and bounded, in particular, it provides us upper/lower bounds of the difference between
an and the expectation E[aN ] in terms of a non-negative integral random variable N . The following
lemma provides a simple conversion between a deterministic monotone bounded sequence and the
expectation of the randomized sequence, which we will prove later.
Lemma E.23 (De-Randomization Lemma, General). Consider a non-decreasing real-valued se-
quence {aj}j≥0 which lies in a closed interval [m,M ], i.e., m ≤ a0 ≤ a1 ≤ a2 ≤ · · · ≤ M .
Let N be a non-negative integer-valued random variable with probability mass P(N = j) = pj
(j = 0, 1, 2, · · ·). Then, for any n ≥ 0, it holds that

E[aN ]− (M −m) · P(N >n) ≤ an ≤ E[aN ] + (M −m) · P(N <n). (Non-Decreasing Case)

On the other hand, if {aj}j≥0 is non-increasing, i.e., M ≥ a0 ≥ a1 ≥ a2 ≥ · · · ≥ m, a similar
result holds that
E[aN ]− (M −m) · P(N <n) ≤ an ≤ E[aN ] + (M −m) · P(N >n). (Non-Increasing Case)

Here, all expectations are taken with respect to N .
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Remark E.24 (On the choice of random index N ). When obtaining an estimate of a sequence value
using the lemma above, it is unnecessary to utilize the same random variable N for both upper
and lower bounds. Namely, when the sequence is non-decreasing, a choice of N with E[N ] > n
gives a small lower tail P(N <n) for the upper bound; whereas an N with 0 < E[N ] < n gives
a small upper tail P(N >n) for the lower bound. We can think of the opposite relationship for
a non-increasing sequence as well. Moreover, to guarantee the tail bounds to be small, we often
choose N having a lot of mass concentrated around its mean (e.g., sub-Gaussian); then, we can take
advantage of concentration inequalities associated with N to have a better estimate of an ≈ E[aN ].

Poissonization (Kac, 1949; Holst, 1986; Aldous, 1989; Jacquet & Szpankowski, 1998; Johansson,
1998; Borodin et al., 2000) can be thought of as a special case of randomization using Poisson random
variables. A Poisson random variable N ∼ Poisson(λ) with a parameter λ > 0 is equipped with a
probability mass function

P(N = n) =
e−λλn

n!
. (n = 0, 1, 2, · · ·) (Poisson)

In this section, our primary goal is to complete the proof of Lemma E.12, asserting that the Pois-
sonization technique is particularly advantageous for analyzing a monotone property (Def. E.11) of
multinomial random vectors (e.g., the connectivity of a random graph whose edge connections are
sampled with replacements). To see why, let us first review an elementary property of Poisson random
variables: the sum of independent Poisson random variables is again a Poisson random variable,
whose parameter is the sum of the parameters of individual Poisson variables. We defer the proof for
brevity.
Lemma E.25. Consider mutually independent Poisson random variables Zi ∼ Poisson(λi) (i =
1, · · · ,m). Then,

∑m
i=1 Zi ∼ Poisson (

∑m
i=1 λi).

Next, we explore the relationship between multinomial and Poisson distributions by establishing an
equivalence between the probability associated with multinomial random vectors and the conditional
probability of mutually independent Poisson random variables whose sum is fixed. As a result, we
can construct a Poissonization of a sequence of probabilities by regarding the multinomial random
vector’s parameter n as a Poisson random variable. The detailed formal statement is below, although
we again defer its proof.
Lemma E.26. Let A be any property of a (random) m-dimensional vector: we write (z1, · · · , zm) ∈
A if (z1, · · · , zm) satisfies the property A. Then, for any λ > 0, and p1, · · · , pm > 0 that sums to 1
(i.e.,

∑m
i=1 pi = 1),

PMulti(n)

(
(Z1, · · · , Zm) ∈ A

)
= PPo(λ)

(
(Z1, · · · , Zm) ∈ A

∣∣∣∣∣
m∑
i=1

Zi = n

)
.

Here, PMulti(n) is the probability measure under (Z1, . . . , Zm) ∼ Multinomial (n; p1, . . . , pm),
whereas PPo(λ) is the probability measure under Zi ∼ Poisson(λpi) (i = 1, · · · ,m) which are
mutually independent. As a result, it holds that

EN∼Poisson(λ)

[
PMulti(N)

(
(Z1, · · · , Zm) ∈ A

)]
= PPo(λ)

(
(Z1, · · · , Zm) ∈ A

)
.

We now move our attention to a monotone property of (finite-dimensional) vectors, of which we
recall the definition again.
Definition E.27 (Monotone property). We refer to a property A of m-dimensional vectors as a
non-decreasing property when, for any vector (∆1, · · · ,∆m) with non-negative entries ∆i ≥ 0
(∀i = 1, · · · ,m),

(z1, · · · , zm) ∈ A =⇒ (z1 +∆1, · · · , zm +∆m) ∈ A. (Non-Decreasing Property)

On the other hand, we define non-increasing property A as what satisfies

(z1, · · · , zm) ∈ A =⇒ (z1 −∆1, · · · , zm −∆m) ∈ A. (Non-Increasing Property)

A monotone property of multinomial random vectors has an interesting feature: the probability of sat-
isfying the property is also monotone in the parameter n of the multinomial distribution (Lemma E.29).
This is roughly because the multinomial distribution is inspired by multiple independent trials of
with-replacement sampling: an additional trial corresponds to the increase of the parameter n by 1.
This intuitive explanation can be formalized into the following lemma.
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Lemma E.28. Consider a multinomial random vector (Z1, · · · , Zm) ∼ Multinomial(n; p1, · · · , pm)
for n ≥ 1 and p1, · · · , pm > 0 such that

∑m
i=1 pi = 1. That is, for any non-negative integers

z1, · · · , zm whose sum is n,

P(Z1 = z1, · · · , Zm = zm) =
n!

z1! · · · zm!
· pz11 · · · pzmm . (Multinomial)

Also, consider a categorical (so-called multinoulli) random variable j ∼ Categorical(p1, ..., pm)
which can have a value among the integers {1, 2, · · · ,m}, i.e., for each i = 1, · · · ,m,

P(j = i) = pi. (Categorical)

Then, if we let Z̃i = Zi + 1{j=i} for 1 ≤ i ≤ m, we have a new multinomial random vector as
follows:

(Z̃1, · · · , Z̃m) ∼ Multinomial(n+ 1; p1, · · · , pm).

Using the above as a key lemma, we can prove the following lemma about the monotone property of
a multinomial random vector.
Lemma E.29. Recall the definition of PMulti(n) from Lemma E.26. Fix any integers 1 ≤ n ≤ n′. If a
property A is non-decreasing, then

PMulti(n) ((Z1, · · · , Zm) ∈ A) ≤ PMulti(n′) ((Z1, · · · , Zm) ∈ A) .
The direction of the inequality should be opposite (“≥”) if the property is non-increasing.

Most importantly, thanks to Lemmas E.26 and E.29, we can apply the de-randomization lemma
(Lemma E.23) for the sequence {an} of probabilities defined with a monotone property A as

an := PMulti(n) ((Z1, · · · , Zm) ∈ A) .
The only things left to obtain a complete (de)-Poissonization lemma for upper/lower-bounding the
sequence an are the tail probability bounds for a Poisson distribution. The concentration inequalities
for the Poisson distribution are already well-known,8 although we derive slightly different forms of
them for our own purposes.
Lemma E.30. If N ∼ Poisson(n− ε) for any n > 0 and 0 < ε < n, it holds that

P(N ≥ n) ≤ exp

(
− ε2

2n

)
. (Upper Tail Bound)

On the other hand, if N ∼ Poisson(n + ε) for any n > 0 and 0 < ε < cn for some c ∈ (0, 3), it
holds that

P(N ≤ n) ≤ exp

(
− (3− c)ε2

6n

)
. (Lower Tail Bound)

As a result, we finally summarize the arguments in this section as the following de-Poissonization
lemma for a monotone property of multinomial random vectors:
Lemma E.31 (De-Poissonizaiton Lemma for Monotone Multinomial Events). Fix any n ≥ 1. Define

Pn := P(Z1,···,Zm)∼Multinomial(n; p1,···,pm) ((Z1, · · · , Zm) ∈ A) .
Let A be a non-decreasing property (Def. E.11) of m-dimensional vector. Then, we have an upper
bound and a lower bound for Pn as follows:

Pn ≤ PPo(n+ε) ((Z1, · · · , Zm) ∈ A) + exp
(
− (3−c)ε2

6n

)
, (∀c ∈ (0, 3), ∀ε ∈ (0, cn))

Pn ≥ PPo(n−ε) ((Z1, · · · , Zm) ∈ A)− exp
(
− ε2

2n

)
. (∀ε ∈ (0, n))

If A is a non-increasing property (Def. E.11), then we have similar upper and lower bounds for Pn:

Pn ≤ PPo(n−ε) ((Z1, · · · , Zm) ∈ A) + exp
(
− ε2

2n

)
, (∀ε ∈ (0, n))

Pn ≥ PPo(n+ε) ((Z1, · · · , Zm) ∈ A)− exp
(
− (3−c)ε2

6n

)
. (∀c ∈ (0, 3), ∀ε ∈ (0, cn))

8For example, see a document online: “A short note on Poisson tail bounds.”
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Here, we denote by PPo(λ) the probability measure under Zi
indep.∼ Poisson(λpi) (∀i = 1, · · · ,m).

Proof of Lemma E.12. This is the combination of Lemmas E.23, E.26, E.29 and E.30.

We use this de-Poissonization lemma in the proof of our main theorem (Theorems E.7 and E.8).

Lastly, we conclude this section by presenting all the deferred proofs.

Proof of Lemma E.23. In the first part of the proof, we deal with the non-decreasing case. Observe
that, since aN has a finite expectation (m ≤ E[aN ] ≤ M ), the infinite sum

∑
j≥0 pjaj converges.

Now, let us first obtain the upper bound. Since
∑

j≥0 pj = 1,

an =
∑

0≤j<n

pjan +
∑
j≥n

pjan

≤
∑

0≤j<n

pjan +
∑
j≥n

pjaj (∵ aj ≥ an if j ≥ n)

=
∑

0≤j<n

pj(an − aj) +
∑
j≥0

pjaj

≤ (M −m) ·
∑

0≤j<n

pj +
∑
j>0

pjaj (∵ an − aj ≤M −m)

= (M −m) · P(N < n) + E[aN ].

Likewise, we obtain the lower bound.

an =
∑

0≤j≤n

pjan +
∑
j>n

pjan

≥
∑

0≤j≤n

pjaj +
∑
j>n

pjan (∵ aj ≤ an if j ≤ n)

=
∑
j≥0

pjaj −
∑
j>n

pj(aj − an)

≥
∑
j≥0

pjaj − (M −m) ·
∑
j>n

pj (∵ an − aj ≥ m−M)

= E[aN ]− (M −m) · P(N > n).

These imply the inequality (Non-Decreasing Case) and prove the first part of the lemma.

The second part for the non-increasing sequence {an} directly follows by applying the first part to
the non-decreasing sequence {bn} defined as bn := M +m− an. Indeed, we have

E[M +m− aN ]− (M −m) · P(N > n) ≤ M +m− an ≤ E[M +m− aN ] + (M −m) · P(N < n),

which implies the inequality (Non-Increasing Case) and concludes the proof of the lemma.

Proof of Lemma E.25. Denote the sum of random variables by Z̄m :=
∑m

i=1 Zi. Likewise, let us
write λ̄m :=

∑m
i=1 λi. To prove the lemma, we proceed with the induction on m ≥ 1.

Since the base case is obvious (Z1 ∼ Poisson(λ1)), let us assume m ≥ 2 and compute the probability
mass. The inductive assumption says Z̄m−1 ∼ Poisson

(
λ̄m−1

)
, which is independent of Zm due to
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the mutual independence of Z1, · · · , Zm. Then, for any non-negative integer z̄,

P
(
Z̄m = z̄

)
=

z̄∑
zm=0

P(Z̄m−1 = z̄ − zm, Zm = zm)

= 1 ·
z̄∑

zm=0

P(Z̄m−1 = z̄ − zm) · P(Zm = zm) (∵ Z̄m−1 ⊥ Zm)

=
z̄!

z̄!
·

z̄∑
zm=0

exp
(
−λ̄m−1

)
· (λ̄m−1)

z̄−zm

(z̄ − zm)!
· exp(−λm) · (λm)zm

zm!

=
exp (−

∑m
i=1 λi)

z̄!
·

z̄∑
zm=0

z̄!

(z̄ − zm)! ·zm!
(λ̄m−1)

z̄−zmλzm
m

=
exp (−

∑m
i=1 λi)

z̄!
·
(
λ̄m−1 + λm

)z̄
(∵ binomial theorem)

=
exp (−

∑m
i=1 λi)

z̄!
·
(
λ̄m

)z̄
.

Since the choice of z̄ is arbitrary, by induction, this ends up proving that Z̄m ∼ Poisson
(
λ̄m

)
.

Lastly, we remark that one may prove the same result without induction, by directly applying the
multinomial theorem (which is essentially a recurrent application of the binomial theorem).

Proof of Lemma E.26. By the law of total probability, for any probability measure P under any
distribution of a random vector (Z1, · · · , Zm),

P((Z1, · · · , Zm) ∈ A) =
∑

(z1,···,zm)∈A

P(Z1 = z1, · · · , Zm = zm).

Thus, it suffices to compare the multinomial distribution and the conditional distribution of a Poisson
random vector given a fixed sum: namely, we aim to show here that

PMulti(n)(Z1 = z1, · · · , Zm = zm) = PPo(λ)

(
Z1 = z1, · · · , Zm = zm

∣∣∣∣∣
m∑
i=1

Zi = n

)
. (17)

Moreover, it is sufficient for proving the first equation to study the case with non-negative integers
z1, · · · , zm such that

∑m
i=1 zi = n; otherwise, both sides of Eq. (17) are zero. In this case, observe

an inclusion between events

{Z1 = z1, · · · , Zm = zm} ⊆

{
m∑
i=1

Zi = n

}
. (18)

Because of this, we can compute a conditional probability mass as:

PPo(λ)

(
Z1 = z1, · · · , Zm = zm

∣∣∣∣∣
m∑
i=1

Zi = n

)

=
PPo(λ) (Z1 = z1, · · · , Zm = zm)

PPo(λ) (
∑m

i=1 Zi = n)
(∵ Eq. (18))

=

(
m∏
i=1

e−λpi(λpi)
zi

zi!

)
·
(
e−λλn

n!

)−1

(∵
∑m

i=1 Zi ∼ Poisson(λ), due to Lemma E.25)

=
n!

z1! · · · zm!
· pz11 · · · pzmm (∵

∑m
i=1 zi = n)

= PMulti(n)(Z1 = z1, · · · , Zm = zm).

Therefore, we have just proved Eq. (17).

45



2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

Lastly, we conclude the proof by computing the expectation in terms of N ∼ Poisson(λ): since
P(N = j) = PPo(λ) (

∑m
i=1 Zi = j) (∵ Lemma E.25), by law of total probability,

EN∼Poisson(λ)

[
PMulti(N)

(
(Z1, · · · , Zm) ∈ A

)]
=
∑
j≥0

PMulti(j)

(
(Z1, · · · , Zm) ∈ A

)
· P(N = j)

=
∑
j≥0

PPo(λ)

(
(Z1, · · · , Zm) ∈ A

∣∣∣∣∣
m∑
i=1

Zi = j

)
· P(N = j)

=
∑
j≥0

PPo(λ)

(
(Z1, · · · , Zm) ∈ A and

m∑
i=1

Zi = j

)
= PPo(λ) ((Z1, · · · , Zm) ∈ A) .

Proof of Lemma E.28. Take any integers z1, · · · , zm such that z1+· · ·+zm = n+1. Let us calculate
the probability mass. Applying the law of total probability,

P
(
Z̃1 = z1, · · · , Z̃m = zm

)
=

m∑
i=1

P
(
Z1 + 1{j=1} = z1, · · · , Zm + 1{j=m} = zm | j = i

)
· P(j = i)

=

m∑
i=1

P (Zi = zi − 1, Zr = zr (∀r ̸= i)) · P(j = i) (∵ j ⊥ (Z1, · · · , Zm))

=

m∑
i=1

(
n! ·zi

z1! · · · zm!
· p

z1
1 · · · pzmm

pi

)
· pi

=
n!

z1! · · · zm!
· pz11 · · · pzmm ·

m∑
i=1

zi

=
(n+ 1)!

z1! · · · zm!
· pz11 · · · pzmm .

Since the choice of z1, · · · , zm is arbitrary (given their fixed sum), it proves that (Z̃1, · · · , Z̃m) follows
the distribution Multinomial(n+ 1; p1, · · · , pm), as desired.

Proof of Lemma E.29. We only consider the non-decreasing property A since the proof of the non-
increasing case can be done symmetrically. Then, by induction, it suffices to prove

PMulti(n) ((Z1, · · · , Zm) ∈ A) ≤ PMulti(n+1) ((Z1, · · · , Zm) ∈ A) . (19)

Fix any n ≥ 1 and consider (Z1, · · · , Zm) ∼ Multinomial(n; p1, · · · , pm). Then, by a property of
multinomial random variables (Lemma E.28), we have another multinomial vector (Z̃1, · · · , Z̃m) ∼
Multinomial(n + 1; p1, · · · , pm) by Z̃i = Zi + 1{j=i}, where j ∼ Categorical(p1, · · · , pm). Ob-
serve that

P
(
(Z̃1, · · · , Z̃m) ∈ A

∣∣∣ (Z1, · · · , Zm) ∈ A
)
= 1,

since Zi ≤ Z̃i (∀i) and A is a non-decreasing property.
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Hence, we can derive the following by applying the law of total probability:

P
(
(Z̃1, · · · , Z̃m) ∈ A

)
= P

(
(Z̃1, · · · , Z̃m) ∈ A

∣∣∣ (Z1, · · · , Zm) /∈ A
)
· P ((Z1, · · · , Zm) /∈ A)

+ P
(
(Z̃1, · · · , Z̃m) ∈ A

∣∣∣ (Z1, · · · , Zm) ∈ A
)
· P ((Z1, · · · , Zm) ∈ A)

≥ 0 + 1 · P ((Z1, · · · , Zm) ∈ A)
= PMulti(n) ((Z1, · · · , Zm) ∈ A) .

This proves Eq. (19), concluding the proof.

Proof of Lemma E.30. Let us recall the moment generating function (MGF) of a Poisson random
variable N ∼ Poisson(λ) is E[etN ] = exp (λ(et − 1)) (∀t ∈ R):

E[etN ] =
∑
j≥0

etj · e
−λλj

j!
= e−λ ·

∑
j≥0

(λet)
j

j!
= exp (−λ) exp

(
λet
)
= exp

(
λ(et − 1)

)
.

For the upper tail (Chernoff) bound, we use λ = n− ε and apply Markov inequality on etN : for any
n > ε > 0 and t > 0,

P(N ≥ n) = P
(
etN ≥ etn

)
≤ E

[
etN
]
· e−tn ≤ exp

(
(n− ε)(et − 1)− tn

)
.

Since t is arbitrary, we take the infimum of both sides over t > 0, obtaining

P(N > n) ≤ inf
t>0

exp
(
(n− ε)(et − 1)− tn

)
= exp

(
n
(
ln
(
1− ε

n

)
+

ε

n

))
≤ exp

(
− ε2

2n

)
. (∵ ln(1− u) + u ≤ −u2

2
if u > 0)

This proves Eq. (Upper Tail Bound). On the other hand, for the lower tail (Chernoff) bound, we use
λ = n+ ε and apply Markov inequality on e−tN : for any n > 0, ε > 0, and t > 0,

P(N ≤ n) = P
(
e−tN ≥ e−tn

)
≤ E

[
e−tN

]
· etn ≤ exp

(
(n+ ε)(e−t − 1) + tn

)
.

Similarly as before, taking the infimum over t > 0,

P(N < n) ≤ inf
t>0

exp
(
(n+ ε)(e−t − 1) + tn

)
= exp

(
n
(
ln
(
1 +

ε

n

)
− ε

n

))
≤ exp

(
− ε2

2n
+

ε3

6n2

)
. (∵ ln(1 + u)− u ≤ −u2

2
+

u3

6
if u > 0)

Observe that, if 0 < ε < cn for some c ∈ (0, 3),

− ε2

2n
+

ε3

6n2
≤ − ε2

2n
+

ε2

6n
· c = − (3− c)ε2

6n
.

This proves Eq. (Lower Tail Bound).

E.3.2 BINOMIAL RANDOM INTERSECTION GRAPHS

Let us explain the random k-intersection graph (Singer, 1995; Karoński et al., 1999; Godehardt &
Jaworski, 2003). Consider a set V of vertices and another set W of items. Each vertex v ∈ V is
randomly assigned a subset of items Wv ⊂ W . Then, a pair of vertices u and v are adjacent (i.e.,
connected with an edge) in a random k-intersection graph if and only if at least k items are shared
between u and v, i.e., |Wu ∩Wv| ≥ k. We remark that k is a universal constant throughout our
paper.

One of the most well-studied models of random intersection graphs is binomial random k-intersection
graphs G(k)(n,m, p), with n = |V | and m = |W |. In the G(k)(n,m, p) model, for every vertex
v ∈ V , each item w ∈W is assigned to v independently with the same probability p ∈ (0, 1). That is,
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the indicator variables 1{w is assigned to v} are i.i.d. Bernoulli random variables with the same parameter
p, for all vertices v ∈ V and items w ∈W . The word binomial is attached to the name because the
number of items assigned to each vertex is a random variable following Bin(m, p).

We are particularly interested in the G(k)(n,m, p) model because of the following observation.

Lemma E.32 (Evidence Graphs are Binomial k-Intersection Graphs under Poissonization). Let
any b ∈ BD. Consider a vector (Zx)x∈X associated with a dataset D (i.e., an input sequence x is
sampled Zx times in D). Let PPo(λ) be a probability measure for Zx

i.i.d.∼ Poisson (λ/|X|). Then,

under PPo(λ), the b-evidence graph G(D,k)
b (Def. E.5) is an instance of binomial random k-intersection

graph G(k)(nb,m, p) with parameters

nb = |Vb| , m = |X3| , p = 1− exp

(
− λ

|X|

)
.

Proof of Lemma E.13. Recall that the vertex set of G(D,k)
b is Vb = {x12 ∈ X12 : f1(x12) = b} ⊂

X12. Also, consider W := X3 as the set of all ‘items.’ Define a set of items assigned to each vertex
x12 ∈ Vb as

Wx12
= {x3 ∈W : (x12, x3) ∈ D} =

{
x3 ∈W : Z(x12,x3) ≥ 1

}
.

Observe that all vertex-item assignments are i.i.d. Bernoulli random variables with the same probabil-
ity parameter p: for any x12 ∈ Vb and x3 ∈ X3,

p = PPo(λ)(Z(x12,x3) ≥ 1) = 1− PPo(λ)(Z(x12,x3) = 0) = 1− exp

(
− λ

|X|

)
.

In addition, observe that the set S(x12, x
′
12 | D) defined in Eq. (6) is identical to the intersection

Wx12 ∩Wx′
12

. Hence, by the definition of the edge set E(D,k)
b in Eq. (5), two distinct vertices x12

and x′
12 are adjacent if and only if

∣∣Wx12
∩Wx′

12

∣∣ ≥ k. In summary, every b-evidence graph G(D,k)
b

is a binomial random k-intersection graph G(k)(nb,m, p) with parameters nb = |Vb|, m = |X3|, and
p = 1− exp(−λ/|X|).

Note that n, m, and p are not necessarily independent of each other; the parameters m = mn and
p = pn,m are often regarded as functions of n. Indeed, it is often studied in the literature on random
graphs that a sufficient condition for the parameters (in terms of n→∞) to guarantee certain graph
properties, at least asymptotically. Here, we review a few of the seminal results on the connectivity FIXED
(as well as the disappearance of isolated vertices) of binomial random k-intersection graphs (Singer,
1995; Zhao et al., 2014; 2017; Rybarczyk, 2011; 2017).9 The proofs are involved; thus, we omit
them.
Lemma E.33 (Zhao et al., 2014, Theorem 2; Zhao et al., 2017, Theorem 1 & Remark 1). Fix any
k ≥ 1. Suppose that

m =

{
Ω
(
min

{
n (lnn)

5
, nρ
})

, if k = 1, for any ρ > 1;

Ω (n) , if k ≥ 2,

and

p =

(
k! (lnn+ αn)

n

) 1
2k

· 1√
m

(8)

for any sequence {αn} which attains a limit α∞ ∈ [−∞,+∞] as n→∞. Then,

lim
n→∞

P
(
G(k)(n,m, p) is connected

)
= lim

n→∞
P
(
min deg G(k)(n,m, p) ≥ 1

)
= exp

(
−e−α∞

)
,

where we compute exp
(
−e−(−∞)

)
= 0 and exp

(
−e−(+∞)

)
= 1.

9Caveat: in the literature of (random) graph theory, the letter ‘k’ is often used for k-connectivity (i.e., being
connected after removing less than k vertices/edges). On the other hand, they study ‘random s-intersection
graphs,’ using s as the intersection constraint parameter.
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Lemma E.34 (Singer, 1995, Propositions 3.1–2, Theorem 3.3). Let k = 1. Suppose that m = nρ for
ρ > 0 and

p =


lnn+ αn

m
for ρ ≤ 1;√

lnn+ αn

mn
for ρ > 1,

for any sequence {αn} which attains a limit α∞ ∈ {−∞,+∞} as n→∞. Then,

lim
n→∞

P(G(1)(n,m, p) is connected) = lim
n→∞

P
(
min deg G(1)(n,m, p) ≥ 1

)
=

{
0, if α∞ = −∞;

1, if α∞ = +∞.

49



2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

F ADDITIONAL RESULTS FOR POWER-LAW SCALING ANALYSIS

F.1 MEASUREMENT PROTOCOL FOR Nreq

To empirically determine the minimum dataset size required for reliable compositional generalization
(Nreq), we develop a measurement protocol that accounts for practical computational constraints
while ensuring robustness. For each token set size |X | and task structure, we test multiple dataset
sizes until we identify the threshold point where the model successfully generalizes to the ID test set.

Specifically, our criterion for “reliable generalization” on ID is defined as:

• The model must reach ID test accuracy of 0.99 within 100 epochs after achieving training
accuracy > 0.99.

This protocol balances several considerations:

1. Training-to-generalization delay: Larger datasets naturally require more iterations to fit
training data. By measuring epochs after reaching training accuracy > 0.99, we focus on the
generalization gap rather than conflating it with initial training difficulty.

2. Epoch-based measurement: Using epochs rather than raw training steps ensures that the
model sees each functional equivalence evidence approximately the same number of times,
regardless of dataset size. This provides a fairer comparison across different dataset sizes.

3. Practical time constraints: While indefinite training might eventually yield generalization
with smaller datasets, we established a reasonable upper bound (100 epochs post-training
convergence) to reflect practical limitations.

4. Measurement precision: For each identified Nreq, we verified that 75% of this dataset
size consistently failed to meet our generalization criterion. This establishes that our
measurement error is at most − log(0.75) = 0.125 in log scale, providing confidence in the
derived power-law exponents.

F.2 MEASURED POWER-LAW SCALING EXPONENTS ACROSS TASK STRUCTURES AND
MODEL SIZES

Using our measurement protocol, we measure the required dataset size Nreq across three different
compositional structures (2-HOP, PARALLEL-2-HOP, and 3-HOP) and three model scales (68M,
96M, and 1.5B parameters). For each task structure, we vary the token set size |X | from 50 to 200,
allowing us to observe the scaling relationship.

Table 2 presents the power-law exponents obtained by linear fitting log(|X |) vs. log(Nreq) plots,
all with R2 > 0.99. The consistency of exponents across model sizes suggests that the observed
power-law scaling relates to properties of the compositional tasks themselves, rather than model
capacity. This observation aligns with our theoretical derivation in Section 5.1, which predicts that
the required dataset size scales at least quadratically with token set size.

Table 2: The power-law exponents for different tasks and GPT-2 sizes, obtained by linear fitting
log(|X |) vs. log(Nreq) plots. R2 > 0.99 for all linear fitting.

Model Size 2-HOP PARALLEL-2-HOP 3-HOP

68M 2.13 2.47 2.61
96M 2.26 2.35 2.50
1.5B 2.28 2.17 2.60

F.3 ROBUSTNESS TO HYPERPARAMETER VARIATIONS

To verify that our observed power-law scaling relationship is not an artifact of specific hyperparameter
choices, we conduct ablation studies with modified training configurations. Figure 15 demonstrates
that for the 2-HOP task with |X | = 50, the following changes did not significantly affect the measured
Nreq or the derived power-law exponent:

1. Learning rate reduction: Halving the learning rate from 8e-4 to 4e-4
2. Weight decay reduction: Decreasing weight decay by a factor of 10 (from 0.1 to 0.01)
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Figure 15: Robustness of power-law scaling relationship to hyperparameter variations in the 2-HOP
task with |X | = 50. Each line shows the training and test accuracy curves for a different configuration:
(1) baseline, (2) reduced learning rate (4e-4, half of baseline), (3) reduced weight decay (0.01, one-
tenth of baseline), and (4) changed generalization criteria (test accuracy > 0.95 within 10 epochs after
training accuracy > 0.95). R2 > 0.99 for all linear fitting.

3. Generalization criteria modification: Requiring test accuracy > 0.95 within 10 epochs
after training accuracy > 0.95

This robustness to hyperparameter variations suggests that the power-law relationship between token
set size and required dataset size is primarily a property of the compositional generalization process,
rather than an artifact of specific optimization settings.

51



2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

G DETAILED ANALYSIS FOR NON-TREE TASK

This section provides additional analyses that support our findings in Sec. 7 regarding the challenges
of path ambiguity in the NON-TREE task.

G.1 COVERAGE ANALYSIS
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Figure 16: Coverage analysis for NON-TREE task with |X | = 50. The graph shows the percentage of
ID test data covered at different k values across various dataset sizes (N ). Compared to the 2-HOP
task (Fig. 3, left), NON-TREE has significantly lower coverage at equivalent dataset sizes, indicating
that path ambiguity impedes the formation of functional equivalence relationships.

Fig. 16 demonstrates that with equivalent training dataset sizes, a smaller percentage of ID test
examples fall inside k-coverage for the NON-TREE task compared to the 2-HOP task shown in Fig. 3
(Left). This aligns with our theoretical analysis in Sec. 7, which predicts that path ambiguity limits
the establishment of functional equivalence relationships between input subsequences, as the model
cannot generalize across different x2 values in the NON-TREE structure even when they produce the
same intermediate state b = f1(x1, x2).

G.2 EFFECT OF MODEL SCALING
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Figure 17: ID test accuracy comparison between GPT-2 (96M parameters) and GPT-2-XL (1.5B
parameters) on the NON-TREE task with |X | = 50, measured 100 epochs after training accuracy
exceeds 0.99. Despite the 15x increase in parameter count, the accuracy does not increase.

Fig. 17 shows that scaling up the model size to GPT-2-XL (1.5B parameters) does not significantly
improve generalization performance on the NON-TREE task, even when measured 100 epochs after
reaching training accuracy > 0.99. This suggests that the challenges posed by path ambiguity cannot
be overcome simply by increasing model capacity, supporting our claim that the limitation is structural
rather than related to model capacity.

G.3 COMPARISON BETWEEN MAMBA AND GPT-2 ON NON-TREE TASK

Fig. 18 shows that the Mamba model (4 layers, hidden dimension of 256, trained with learning rate of
0.008) shows a similar trend of ID test accuracy on NON-TREE task compared to GPT-2, suggesting
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Figure 18: ID test accuracy comparison between GPT-2 and Mamba on the NON-TREE task with
|X | = 50, measured 100 epochs after training accuracy exceeds 0.99.

that the generalization failure is more likely due to the task structure itself, rather than a specific
model architecture.

G.4 REPRESENTATION ANALYSIS IN SUCCESSFUL GENERALIZATION

For a model that eventually achieved near-perfect ID accuracy (0.96) after extended training (36k
epochs, |X | = 50, N = 50k), we conduct causal tracing analysis to understand how it achieves
generalization despite path ambiguity.
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Figure 19: Causal tracing analysis for the NON-TREE model after extended training. The heatmap
shows indirect effect values across different layer-token positions. Left: perturbation leading to
different intermediate state b = f1(x1, x2). Middle: same b but different x2. Right: different b and
x2.

The causal tracing results in Fig. 19 reveal how the model achieves generalization in the presence
of path ambiguity. Across all perturbation strategies, the model’s predictions show strong causal
dependence on representations at both the x1 and x2 positions, indicating reliance on direct access
to both input tokens rather than an abstracted intermediate computation. This pattern contrasts
sharply with the 2-HOP task, where causal effects concentrate primarily at positions corresponding to
clustered functional equivalence representations.

This analysis demonstrates that even models achieving high accuracy on NON-TREE tasks do so
by developing context-dependent representations rather than unified abstractions of intermediate
states. The model forms separate computational pathways conditioned on the x2 value, rather than
learning a single unified representation of the intermediate state b = f1(x1, x2). This represents a
fundamentally different solution strategy compared to the 2-HOP task, with implications for both
generalization capability and interpretability.
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H DETAILED DISCUSSION ON THE TAXONOMY FOR UNDERSTANDING
GENERALIZATION MECHANISMS

In this section, we initiate a discussion to disambiguate the mixed mechanisms of generalization into
isolated testable parts by sketching a preliminary taxonomy that distinguishes three complementary
mechanisms of generalization. We note that we do not view our categorization as a complete one.

Type-I: Functional equivalence-based generalization (pattern matching). This is precisely
what we formalized through this work: models learn that different input fragments yield identical
results in shared contexts, enabling generalization to new fragment combinations. Crucially, this
generalization remains bounded by coverage, and reliable generalization fails without sufficient
functional equivalence evidence. In other words, it describes the ceiling of pattern matching.

Type-II: Function property-based generalization. This mechanism exploits intrinsic properties of
individual primitive functions, e.g., algebraic invariances such as commutativity or input irrelevance,
where certain arguments never affect the output (e.g., f(x1, x2) = f(x1) even when distractor x2 is
present (Wen et al., 2025)). Unlike the previous type, this mechanism explains the generalization
beyond the coverage by leveraging ‘global’ properties that hold across all possible inputs of a
primitive, beyond what is actually observed. We interpret the Reversal Curse phenomenon (Berglund
et al., 2024) as an example of the layered nature of challenges across multiple generalization types.
Our framework predicts the failure of pattern matching on this problem, since training on “A is
B” provides no functional equivalence evidence for “B is A−1”. An architectural modification to
learn inverse mappings from the same training data to handle this problem (Lv et al., 2024) can be
interpreted as a utilization of Type-II generalization to enable generalization beyond coverage.

Type-III: Shared-operator generalization. This mechanism emerges through the reuse of identical
primitive functions across computational positions (e.g., when f1 = f2). Recurrent architectures
(Hochreiter & Schmidhuber, 1997) exemplify the utilization of this through weight sharing across
time steps, enabling processing of variable-length sequences (Graves et al., 2014). Similarly, it has
been reported in Transformers with inductive biases towards reuse of the same computation through
parameter sharing (Dehghani et al., 2019; Csordás et al., 2021; Wang et al., 2024a) can improve
generalization on complex compositional tasks where the same primitive function can be reused in
various contexts. We interpret this mechanism as exploiting structural repetition.

Distinguishing mechanisms from phenomena. Compared to prior categorizations of generaliza-
tion, which focus on observed phenomena (Lake & Baroni, 2018; Hupkes et al., 2020), we categorize
the underlying mechanisms. As noted in Sec. 1, many behavioral studies have examined tasks mixing
functional equivalence, primitives’ intrinsic properties, and operator reuse within the same benchmark,
making it difficult to pinpoint the true source of success or failure. We therefore advocate clearer
experimental control and community discussion around this mechanistic distinction to sharpen future
analyses of neural generalization.

Implications and future directions. Real compositional tasks typically involve combinations of
all three types (and possibly more). While preliminary, we believe this taxonomy guides future
research design on constructive characterization of neural networks’ generalization behaviors on
discrete sequence tasks. In this broader context, this work can be understood as a characterization and
formalization of pattern-matching generalization to clarify its specific boundaries. When models suc-
ceed beyond our coverage predictions, we view these as exploiting other generalization mechanisms,
i.e., beyond pattern matching. Our focused study suggests that challenges to reliable generalization
remain as long as models rely primarily on pattern matching, requiring methodological innovations
that harness non-pattern-matching mechanisms, e.g., variable binding. We hope this preliminary
taxonomy serves as a research program towards our better understanding of generalization, and
confirming or refuting its utility is an empirical matter that we invite the community to explore.
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I PARTIAL COMPUTATION OBSERVATION DRIVES THE ALIGNMENT OF
FUNCTIONAL EQUIVALENCE REPRESENTATION AND VOCABULARY SPACE

In this section, we investigate how exposure to partial computations affects the interpretability of
intermediate state representations through vocabulary space alignment. We compare two training
conditions on a modified 2-HOP task with |X | = 50 and N = 10k, after 40k epochs of training:

1. Standard Training: f1 ̸= f2, model only sees complete two-hop examples (x1, x2, x3) 7→
t.

2. With Partial Computation: f1 = f2, model additionally sees all possible partial computa-
tions (x1, x2) 7→ b where b = f1(x1, x2) (2,500 partial examples, not counted toward the
N = 10k two-hop training data).

To assess interpretability, we measure the Mean Reciprocal Rank (MRR) of intermediate state
representations when projected to vocabulary space using the unembedding matrix. The low MRR
indicates that the model’s internal representation of intermediate state b aligns with the corresponding
vocabulary token.

Fig. 20 shows a striking contrast between the two conditions. Under standard training, the MRR score
remains very high throughout training, indicating that intermediate representations are not aligned
with vocabulary space despite the model successfully learning the compositional task. However,
when partial computations are included, the MRR score becomes very high, demonstrating clear
vocabulary alignment.
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Figure 20: MRR scores for intermediate state representations projected to vocabulary space. Left:
Standard training (f1 ̸= f2, no partial computation) shows very high MRR regardless of position and
layer. Right: Training with partial computation (f1 = f2, with partial examples) shows MRR of 0 in
layers 3 to 8 at position x2, indicating strong vocabulary alignment.

This experiment suggests that logit lens interpretability is orthogonal to functional equivalence
representation formation. A model can develop functionally correct intermediate representations
that enable compositional generalization while remaining completely uninterpretable through standard
vocabulary projection techniques. Interpretability via logit lens requires explicit vocabulary anchoring
through exposure to partial computations that map intermediate states to vocabulary tokens.

This finding has important implications for mechanistic interpretability research: the absence of
interpretable representations through the logit lens does not indicate the absence of structured internal
computation. Furthermore, it suggests that interpretability techniques may need to account for how
training data shapes the alignment between internal representations and vocabulary space, rather than
assuming such alignment emerges naturally from task performance.
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