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ABSTRACT

Neural networks trained with (stochastic) gradient descent have an inductive bias to-
wards learning simpler solutions. This makes them highly prone to learning simple
spurious features that are highly correlated with a label instead of the predictive but
more complex core features. In this work, we show that, interestingly, the simplicity
bias of gradient descent, can be leveraged to identify spurious correlations early in
training. We provide theoretical insights on a two-layer neural network that subsets
of data points where the spurious features strongly influence the label predictions
are separable based on the model’s output in the initial training iterations. We
further show that if spurious features have a small enough noise-to-signal ratio, the
network’s output on the majority of examples containing the spurious feature will be
almost exclusively determined by the spurious features and will be nearly invariant
to the core feature, leading to poor generalization performance for minority groups.
Building on these findings, we propose SPARE, which separates groups with spu-
rious features early in training, and utilizes importance sampling to alleviate the
spurious correlation by balancing the group sizes. Through rigorous experiments,
we first establish SPARE’s effectiveness in discovering spurious correlations in
Restricted ImageNet dataset. We then demonstrate that SPARE outperforms state-of-
the-art methods by up to 5.6% in worst-group accuracy, while being up to 12x faster.

1 INTRODUCTION

The simplicity bias of gradient-based training algorithms towards learning simpler solutions has
been suggested as a key factor for the superior generalization performance of overparameterized
neural networks (Hermann & Lampinen, 2020; Hu et al., 2020; Nakkiran et al., 2019; Neyshabur
et al., 2014; Pezeshki et al., 2021; Shah et al., 2020). At the same time, it is conjectured to make
neural networks vulnerable to learning spurious correlations frequently found in real-world datasets
(Sagawa et al., 2019; Sohoni et al., 2020). Neural networks trained with gradient-based methods
can exclusively rely on simple spurious features that exist in majority of examples in a class but are
not predictive of the class in general (e.g., image background), and remain invariant to the predictive
but more complex core features (Shah et al., 2020). This results in learning non-robust solutions
that do not generalize well on minority groups of the original data distribution that do not contain
the spurious features (Shah et al., 2020; Teney et al., 2022).

To alleviate spurious biases without knowing the group labels, existing methods partition examples in
each class into majority and minority groups. This is done by training the model via gradient descent
and flagging the minority based on misclassification (Liu et al., 2021), high loss (Nam et al., 2020),
or sensitive representations (Creager et al., 2021; Sohoni et al., 2020). A robust model is then trained
by upweighting (Sagawa et al., 2019) or upsampling (Liu et al., 2021) the minority to counteract the
majority’s spurious features. However, existing methods heavily rely on extensive hyperparameter
tuning using a group-labeled validation set for group inference, or require to directly train with
a group-labeled validation data, which may not be available for real-world datasets. Besides,
state-of-the-art methods are computationally expensive for either group inference (Sohoni et al.,
2020) or robust training (Taghanaki et al., 2021) or both (Liu et al., 2021; Nam et al., 2021; Zhang
et al., 2022) (as evidenced by Table 2), rendering them impractical for even medium-sized datasets.

In this work, we show that the simplicity bias of gradient descent, which leads to learning spurious
biases, can be leveraged to provably separate majority and minority groups early in training. To the
best of our knowledge, this is the first analysis of how the simplicity bias of SGD encourages learning
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of easy spurious correlations and inhibits learning of more complex core features. We examine a
two-layer fully connected neural network and identify two early training phases. Initially, the spurious
feature’s contribution to the model’s output within a majority group rises linearly with the spurious
correlation. Afterward, if the noise-to-signal ratio of a spurious feature is lower than that of the
core feature, the model’s output for most examples in the class becomes almost solely determined
by the spurious feature. We show that the model’s output provably separates majority and minority
groups early in training. Based on these insights, we introduce a method, SPARE (SePArate early and
REsample), that clusters model output early in training to accurately identify examples with spurious
features, and uses importance sampling to balance the groups to effectively mitigate spurious bias
without increasing training time. In contrast to existing methods, our theoretically-grounded method
does not require extensive hyperparameter tuning and thus can operate effectively even without a
group-labeled validation set. Moreover, SPARE is very lightweight and easily scales to large datasets.

We first apply SPARE to Restricted ImageNet, a setting not studied previously in the group inference
literature, to discover spurious correlations in more realistic settings beyond carefully curated bench-
mark datasets: SPARE identifies up to 7.3% more examples with spurious correlations than the state-
of-the-art group inference methods and improves model’s accuracy on minority examples by 11.5%,
i.e., up to 23.2% higher than the state-of-the-art methods. Then, we confirm that SPARE can achieve
up to 5.6% higher worst-group accuracy compared to state-of-the-art baselines on multiple most
commonly used benchmark datasets, including CMNIST (Alain et al., 2015), Waterbirds (Sagawa
et al., 2019), and CelebA (Liu et al., 2015) while being up to 12x faster. Notably, SPARE performs
comparably or even superior to methods requiring ground-truth group information at training time.

2 RELATED WORK

Mitigating spurious bias. If group labels are available at training time, techniques such as class
balancing (He & Garcia, 2009; Cui et al., 2019) and importance weighting (Shimodaira, 2000; Byrd
& Lipton, 2019) are used to enhance performance on minority groups. Alternatively, GDRO (Sagawa
et al., 2019) focuses on higher-loss groups to minimize the worst group-level error.

Without group labels, existing methods aim to first infer this information for a second round of model
training. GEORGE (Sohoni et al., 2020) uses clustering of ERM (Empirical Risk Minimization)
representations and then trains the second model with GDRO. LfF (Nam et al., 2020) trains two
models simultaneously; the second model upweights examples with high loss from the first. JTT (Liu
et al., 2021) and CNC (Zhang et al., 2022) upsample minority groups identified as those misclassified
by an initial ERM model and upsample the minority groups. JTT trains the second robust model
using ERM, and CNC applies contrastive learning to pull misclassified examples towards their class.
EIIL (Creager et al., 2021) and PGI (Ahmed et al., 2020) also split data based on an ERM model
by finding an assignment that maximizes the Invariant Risk Minimization (IRM) objective (Arjovsky
& Bottou, 2017), i.e., the variance of the model on the two groups. Then, EIIL trains the second
robust model with GDRO, and PGI minimizes the KL divergence of softmaxed logits for same-class
samples across groups. CIM (Taghanaki et al., 2021) learns input-space transformations of the data
to ensure that the transformation preserves task-relevant information. If some group-labeled data is
available, SSA (Nam et al., 2021) applies semi-supervised learning with extra group-labeled data to
infer the training group labels and then uses GDRO to train a robust model. DFR (Kirichenko et al.,
2023) first trains the model with ERM, and then retrains the last layer on the group-balanced data.

State-of-the-art methods heavily rely on an extra group-labeled data (Nam et al., 2021; Kirichenko
et al., 2023) to tune their group inference method in a wider range of hyperparameters, or require to
directly train on a group-labeled data. Besides, they often significantly increase training time during
group-inference or robust training (Liu et al., 2021; Nam et al., 2021; Zhang et al., 2022). In contrast,
SPARE can provably and accurately separate groups of examples with spurious features early in
training, thus does not require extensive hyperparameter tuning, and yields a superior performance
on minority groups without increasing the training time.

Simplicity Bias. Recent work has revealed the simplicity bias in (stochastic) gradient methods
towards learning linear functions early in training, progressing to more complex functions later
(Hermann & Lampinen, 2020; Hu et al., 2020; Nakkiran et al., 2019; Neyshabur et al., 2014; Pezeshki
et al., 2021; Shah et al., 2020). This is empirically observed in various network architectures,
including MobileNetV2, ResNet50, and DenseNet121 (Sandler et al., 2018; He et al., 2016; Shah
et al., 2020). Hu et al. (2020) formally proved that initial learning dynamics of a two-layer FC
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Figure 1: Training LeNet-5 on Colored MNIST containing colored handwritten digits. (a) Each digit
is a class; the majority of digits in a class have a particular color, and the remaining digits are in 4
other colors. Models trained with ERM learn spurious features (colors) that exist in the majority of
examples in a class instead of the core feature (digits) and thus do not perform well on the minority. (b)
The network output is almost exclusively indicated by the color of the majority group, early in training.
That is, the color alone results in the same prediction as that of the entire image around 0.6 epoch into
training, while the digit alone yields a very different prediction. (c) Majority and minority groups are
separable based on the network output. Figure 1b in Appendix shows similar results on Waterbirds.

network can be mimicked by a linear model and extended this to multi-layer FC and convolutional
networks. Simplicity bias is suggested to explain the good generalization of overparameterized
networks but is also conjectured to produce models that rely on the simplest feature at the expense
of more complex ones, even when the simplest feature has less predictive power (Shah et al., 2020;
Teney et al., 2022). However, the exact notion of the simplicity of features and the mechanism by
which they are learned remain poorly understood except in certain simplistic settings (Nagarajan
et al., 2020; Shah et al., 2020). Here, we build on Hu et al. (2020) and rigorously specify the required
conditions and mechanism of learning spurious features by a two-layer FC network.

3 PROBLEM FORMULATION

Let D={(xxxi, yi)}ni=1⊂ Rd× R be n training data with features xxxi∈Rd, and labels yi∈C={1,−1}.
Features & Groups. We assume every class c ∈ C has a core feature vvvc, which is the invariant feature
of the class that appears in both training and test set. Besides, there is a set of spurious features vvvs ∈ A
that are shared between classes but may not be present at test time. For example, in the CMNIST
dataset containing images of colored hand-written digits (Figure 1a), the digit is the core feature, and
its color is the spurious feature. Assuming w.l.o.g. that all vvvc, vvvs ∈ Rd are orthogonal vectors, the
feature vector of every example xxxi in class c can be written as xxxi = vc + vs + ξi, where vs ∈ A, and
each ξi is a noise vector drawn i.i.d. fromN (0,Σξ). We assume the noise along each feature is inde-
pendent, and denoted by σ2

c , σ
2
s variance of the noise in the directions of vc, vs, respectively. Training

examples can be partitioned into groups gc,s based on the combinations of their core and spurious
features (vvvc, vvvs). If a group gc,s contains the majority of examples in class c, it is called a majority
group. A class may contain multiple minority groups, corresponding to different spurious features.

Neural Network & Training. We consider a two-layer FC neural network with m hidden neurons:

f(xxx;WWW,zzz) =
1√
m

m∑
r=1

zrϕ(www
T
r xxx/
√
d) =

1√
m
zzzTϕ(WWWxxx/

√
d), (1)

where xxx ∈ Rd is the input, WWW = [www1, · · · ,wwwm]T ∈ Rm×d is the weight matrix in the first layer, and
zzz = [zzz1, · · · , zzzm]T ∈ Rm is the weight vector in the second layer. Here ϕ : R→ R is a smooth or
piece-wise linear activation function (including ReLU, Leaky ReLU, Erf, Tanh, Sigmoid, Softplus,
etc.) that acts entry-wise on vectors or matrices. We consider the following ℓ2 training loss:

L(WWW,zzz) =
1

2n

n∑
i=1

(f(xxxi;WWW,zzz)− yi)
2. (2)

We train the network by applying gradient descent on the loss (2) starting from random initialization1:
WWW t+1 =WWW t − η∇WWWL(WWW t, zzzt), zzzt+1 = zzzt − η∇zzzL(WWW t, zzzt), (3)

Worst-group error. We quantify the performance of the model based on its highest test error across
groups G = {gc,s}c,s in all classes. Formally, worst-group test error is defined as:

Errwg = max
g∈G

E
(xxxi,yi)∈g

[yi ̸= yf (xxxi;WWW,zzz)], (4)

1Detailed assumptions on the activations, and initialization can be found in Appendix A.2
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where yf (xxxi;WWW,zzz) is the label predicted by the model. In other words, Errwg measures the highest
fraction of examples that are incorrectly classified across all groups.

While for simplicity, we consider binary classification with ℓ2 loss, our analysis generalizes to multi-
class classification with CE loss, and other model architectures, as we also confirm experimentally.

4 INVESTIGATING SPURIOUS FEATURE LEARNING IN NEURAL NETWORKS

We start by investigating how spurious features are learned during training a two-layer fully-connected
neural network. Our analysis reveals two phases in early-time learning. First, in the initial training iter-
ations, the contribution of a spurious feature to the network output increases linearly with the amount
of the spurious correlation. Interestingly, if the majority group is sufficiently large, majority and mi-
nority groups are separable at this phase by the network output. Second, if the noise-to-signal ratio of
the spurious feature of the majority group is smaller than that of the core feature, the network’s output
on the majority of examples in the class will be almost exclusively determined by the spurious feature
and will remain mostly invariant to the core feature. Next, we will discuss the two phases in detail.

4.1 SPURIOUS FEATURES ARE LEARNED IN THE INITIAL TRAINING ITERATIONS

We start by analyzing the effect of spurious features on the learning dynamics of a two-layer FC
neural network trained with gradient descent in the initial training iterations. The following theorem
shows that if a majority group is sufficiently large, the contribution of the spurious feature of the
majority group to the model’s output is magnified by the network at every step early in training.
Theorem 4.1. Let α ∈ (0, 1

4 ) be a fixed constant. Suppose the number of training samples n and the
network width m satisfy n ≳ d1+α and m ≳ d1+α. Let nc be the number of examples in class c, and
nc,s= |gc,s| be the size of group gc,s with label c and spurious feature vs ∈ A. Then, under the setting

of Sec. 3 there exist a constant ν1 > 0, such that with high probability, for all 0 ≤ t ≤ ν1 ·
√

d1−α

η ,
the contribution of the core and spurious features to the network output can be quantified as follows:

f(vvvc;WWW t, zzzt) =

√
2

d
ηζc∥vc∥2t

(nc

n
±O(d−Ω(α))

)
, (5)

f(vvvs;WWW t, zzzt)=

√
2

d
ηζc∥vs∥2t

(
nc,s − nc′,s

n
±O(d−Ω(α))

)
, (6)

where c′= C\c, and ζ is the expected gradient of activation functions at random initialization.

The proof can be found in Appendix B.2. Note that the width requirement in Theorem 4.1 is very
mild as it only requires to be larger than d1+α for some small constant α, but can be much smaller
than the number of samples. The proof of Theorem 4.1 builds on the bound on the difference between
training dynamics of a two-layer fully-connected neural network trained with gradient descent and
that of a linear model (Hu et al., 2020) early in training, with a modest generalization that this bound
holds for isolated core and spurious features, as we justify in Appendix A.1. At a high level, as the
model is nearly linear in the initial ν1 · d log d

η iterations, the contribution of the spurious feature vvvs to
the network output grows almost linearly with (nc,s− nc′,s)∥vvvs∥2, at every iteration in the initial
phase of training. Note that nc,s− nc′,s is the correlation between the spurious feature and the label
c. When nc,s ≫ nc′,s, the spurious feature exists almost exclusively in the majority group of class
c, and thus has a high correlation only with class c. In this case, if the magnitude of the spurious
feature is significant, the contribution of the spurious feature to the model’s output grows very rapidly,
early in training. In particular, if (nc,s− nc′,s)∥vvvs∥2 ≫ nc∥vvvc∥2, the model’s output is increasingly
determined by the spurious feature, but not the core feature.

Remember from Sec. 3 that every example consists of a core and a spurious feature. As the effect of
spurious features of the majority groups is amplified in the network output, the model’s output will dif-
fer for examples in the majority and minority groups. The following corollary shows that the majority
and minority groups are separable based on the network’s output early in training. Notably, multiple
minority groups with spurious features contained in majority groups of other classes are also separable.
Corollary 4.2 (Separability of majority and minority groups). Suppose that for all classes, a
majority group has at least K examples and a minority group has at most k examples. Then, under
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the assumptions of Theorem 4.1, examples in the majority and minority groups are separable based

on the model’s output, early in training. That is, for all 0 ≤ t ≤ ν1 ·
√

d1−α

η , with high probability,

the following holds for at least 1−O(d−Ω(α)) fraction of the training examples xi in group gc,s:

If gc,s is in a majority group in class c = 1:

f(xxxi;WWW t, zzzt) ≥
2ηζ2t

d

(
∥vs∥2(K − k)

n
+ ξ ±O(d−Ω(α))

)
+ ρ(t, ϕ,Σ), (7)

If gc,s is in a minority group in class c = 1, but gc′,s is a majority group in class c′ = −1:

f(xxxi;WWW t, zzzt) ≤
2ηζ2t

d

(
−∥vs∥

2(K − k)

n
+ ξ ±O(d−Ω(α))

)
+ ρ(t, ϕ,Σ), (8)

where ρ is constant for all examples in the same class, ξ ∼ N (0, κ) with κ = 1
n (
∑

c n
2
cσ

2
c∥vc∥2)1/2+

1
n (
∑

s(nc,s−nc′,s)
2σ2

s∥vs∥2)1/2 is the total effect of noise on the model.

Analogous statements holds for the class c=−1 by changing the sign and direction of the inequality.

The proof can be found in Appendix B.2. Corollary 4.2 shows that when the majority group is
considerably larger than the minority groups (K ≫ k), the prediction of examples in the majority
group move toward their label considerably faster, due to the contribution of the spurious feature.
Hence, majority and minority groups can be separated from each other, early in training. Importantly,
multiple minority groups can be also separated from each other, if their spurious feature exists in
majority groups of other classes. Note that K > k+|ξ| is the minimum requirement for the separation
to happen. Separation is more significant when K ≫ k and when ∥vvvs∥ is significant.

4.2 NETWORK RELIES ON SIMPLE SPURIOUS FEATURES FOR MAJORITY OF EXAMPLES

Next, we analyze the second phase in early-time learning of a two-layer neural network. In particular,
we show that if the noise-to-signal ratio of the spurious feature of the majority group of class c, i.e.,
Rs = σs/∥vvvs∥ is smaller than that of the core feature Rc = σc/∥vvvc∥, then the neural network’s
output is almost exclusively determined by the spurious feature and remain invariant to the core
feature at T = ν2 · d log d

η , even though the core feature is more predictive of the class.

Theorem 4.3. Under the assumptions of Theorem 4.1, if the classes are balanced, and the total size
of the minority groups in class c is small, i.e., O(n1−γ) for some γ > 0, then there exists a constant
ν2 > 0 such that at T = ν2 · d log d

η , for an example xxxi in a majority group gc,s, the contribution of
the core feature to the model’s output is at most:

|f(vvvc;WWWT , zzzT )| ≤
√
d
Rs

ζRc
+O(n−γ

√
d) +O(d−Ω(α)). (9)

In particular if min{Rc, 1} ≫ Rs, then the model’s output is mostly indicated by the spurious feature
instead of the core feature:

|f(vvvs;WWWT , zzzT )| ≥
√
d

2ζ
≫ |f(vvvc;WWWT , zzzT )|. (10)

The proof can be found in Appendix B.3. The proof of Theorem 4.3 shows that at T = ν2 · d log d
η

where the linear model that closely mimics early-time learning dynamics of a two-layer FC neural
network converges to its optimum parameters, the network has fully learned the spurious feature of
the majority groups. At the same time, the contribution of the core feature to the network’s output is
at most proportional to Rs/Rc. Hence, if Rs ≪ Rc, the core feature does not considerably contribute
to the output of the neural network at T . That is, the network almost exclusively relies on the spurious
feature of the majority group instead of the core feature which is more predictive of the class.

We note that our results in Theorem 4.1, Corollary 4.2, and Theorem 4.3 generalize to more than two
classes and hold if the classes are imbalanced, as we will confirm by our experiments. Similar results
can be shown for multi-layer fully connected and convolutional networks, following (Hu et al., 2020).
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Empirical Evidence of Theoretical Results. In Figure 1, we empirically illustrate the above results
during early-time training of LeNet-5 (LeCun et al., 1998) on the Colored MNIST (Alain et al., 2015)
dataset containing colored handwritten digits. Figure 1b shows that the prediction of the network
on the majority group is almost exclusively indicated by the color of the majority group, confirming
Theorem 4.3. An analogous result is shown on the Waterbirds dataset in Figure 6 in the Appendix.
Figure 1c shows that the majority and minority groups are separable based on the network output,
confirming Corollary 4.2.

Finally, note that by only learning the spurious feature, the neural network can shrinks the training
loss on the majority of examples in class c to nearly zero and correctly classify them. Hence, the
contribution of the spurious feature of the majority group of class c to the model’s output is retained
throughout the training. On the other hand, if minority groups are small, higher complexity functions
that appear later in training overfit the minority groups, as observed by (Sagawa et al., 2020). This
results in a small training error but a poor worst-group generalization performance on the minorities.

5 SPARE: ELIMINATING SPURIOUS BIAS EARLY IN TRAINING

Algorithm 1 SePArate early and REsample (SPARE)

Input: Network f(.,WWW ), data D = {(xxxi, yi)}ni=1,
loss function L, iteration numbers TN , Tinit.

Output: Model f trained without bias
Stage 1: Early Bias Identification
for t = 0, · · · , Tinit do
WWW t+1 ←WWW t − η∇L(WWW t;D)

end for
for every class c ∈ C with examples Vc do

Identify λ, # of clusters k via Silhouette analysis
Cluster Vc into {Vc,j}kj=1 based onf(xxxi;WWW t)
Weight every xxxi ∈ Vc,j by wi = 1/|Vc,j |,
pi = wλ

i /
∑

i w
λ
i

end for
Stage 2: Learning without Bias
for t = 0, · · · , TN do

Sample a mini-batch Mt = {(xxxi, yi)}i with
probabilities pi
WWW t+1 =WWW t − η∇L(WWW t;Mt).

end for

Drawing on the theoretical foundations out-
lined in Section 4, we develop a principled
pipeline, SPARE, to discover and mitigate
spurious correlations early in training.

Discovering Spurious Correlations:
Separating the Groups Early in Training.
Corollary 4.2 shows that majority and
minority groups are separable based on the
network’s output. To identify the majority
and minority groups, we cluster examples Vc

in every class c ∈ C based on the output of
the network, during the first few epochs. We
determine the number of clusters via silhou-
ette analysis (Rousseeuw, 1987). In doing so,
we can separate majority and minority groups
in each class of examples with different
spurious features. Any clustering algorithm
such as k-means or k-median clustering can
be applied to separate the groups.

Mitigation after Discovery: Balancing
Groups via Importance Sampling. To al-
leviate the spurious correlations and enable effective learning of the core features, we employ an
importance sampling method on examples in each class to upsample examples in the smaller clusters
and downsample examples in the larger clusters. To do so, we assign every example i ∈ Vc,j a
weight given by the size of the cluster it belongs to, i.e., wi = 1/|Vc,j |. Then we sample examples in
every mini-batch with probabilities equal to pi = wλ

i /
∑

i w
λ
i , where λ can be determined based on

the average silhouette score of clusters in each class, without further tuning. See Appendix G for a
detailed explanation and ablation study on choosing λ. Note that our importance sampling method
does not increase the size of the training data, and only changes the data distribution. Hence, it does
not increase the training time. The pseudocode is illustrated in Algorithm 1.

6 EXPERIMENTS

In this section, we first demonstrate that SPARE effectively discovers and mitigates naturally existing
spurious correlations early in training, on Restricted ImageNet—a realistic dataset not previously
studied for spurious correlations. Then, we confirm that SPARE outperforms state-of-the-art baselines
in inferring and mitigating spurious correlations across multiple curated benchmark datasets.

6.1 DISCOVERING NATURAL SPURIOUS CORRELATIONS IN RESTRICTED IMAGENET

We first show the applicability of SPARE to discover and mitigate spurious correlations with Restricted
ImageNet (Taghanaki et al., 2021), a 9-superclass subset of ImageNet, to train ResNet-50 from scratch.
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(a) Insects in ImageNet, Epoch 8.
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(c) SPARE corrects spurious correlation.

Figure 2: SPARE-discovered spurious correlation between “green leaf” & “insect” in Restricted
ImageNet. (a) SPARE can separate the majority groups whose predictions are dominated by spurious
features early in training. (b) According to the GradCAM, the model’s outputs rely heavily on
spurious features if present, as suggested by Theorem 4.3. (c) Models trained with SPARE do not
learn the spurious correlations that would otherwise learned with ERM.

Table 1: Mitigating spurious correlations in Restricted ImageNet. SPARE infers groups more
accurately and improves the model’s performance on both minority groups over ERM.

Test Acc Insect Minority Acc Frog Minority Acc Spurious Recall
ERM 96.0% 91.7% 80.8% -
CB 95.9% 93.7% ↑ 80.8%− -

JTT 92.8% 75.0% ↓ 92.3% ↑ 77.9%
EIIL 93.1% 88.3% ↓ 69.2% ↓ 75.8%

SPARE 95.4% 92.9% ↑ 92.3% ↑ 83.1%

We applied SPARE to cluster the model’s output every 2 epochs in the first 10 epochs and inspected
the clusters as described below. See Appendix F for more details on the dataset and experiment.

SPARE Discovers Spurious Correlations in Insect and Frog Classes Early in Training. By
inspecting the clusters with the highest fraction of misclassified examples to another class, we find
that many Frog images are misclassified as Insects. Figure 2a shows examples from the two groups
SPARE finds for the Insect class at epoch 8, where clusters with spurious feature are visually evident
(we visually inspected epochs 4, 6, 8)2. GradCAM reveals an obvious spurious correlation between
“green leaf” and the insect class that is maintained until the end of the training, as illustrated in
Figure 2b. We also observe a large gap between the confidence of examples in the two groups. This
indicates that the model has learned the spurious feature early in training.

SPARE Discovers Spurious Correlations Without Reliance on Group-labled Validation. We
compare SPARE with state-of-the-art group inference baselines. However, these methods heavily rely
on a group-labeled validation set to identify the time of group inference during training with ERM.
This covers a wide range from epoch 1 to 60 for Waterbirds and CelebA datasets. While SPARE can
also benefit from a group-labeled validation, this is not essential. In fact, our theoretical results limit
the range for inference time to the initial epochs. This sets SPARE apart as a more generally applicable
method for discovering and mitigating spurious correlations, even in the absence of a validation set.

SPARE Achieves State-of-the-art Accuracy on Minority Groups. Based on the spurious
correlations SPARE discovered, we manually labeled the background of both training and test data
for the insect and frog classes. We used these group labels to tune the baseline group inference
methods. Table 1 shows SPARE separates the insect majority group with the spurious correlation
better than other group inference methods and improves both insect and frog minority accuracy by
1.2% and 11.5% respectively, with only a minor drop in total accuracy. CB only improves insect
minority accuracy. JTT decreases the model’s accuracy on the insect minority a lot while improving

2Since the model is not pretrained, it is expected that the spurious clusters form slightly later. For pretrained
models, spurious clusters form very early, as we will confirm in Table 2
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Table 2: Worst-group and average accuracy (%) of training with SPARE vs. state-of-the-art algorithms,
on datasets with spurious correlations. CB, GB indicate balancing classes and groups, respectively.
SPARE achieves a superior performance much faster. The range provided for the training cost
encompasses all three datasets, which accounts not only for the number of epochs during which the
group identification model was trained, but also for the number of training examples involved in
robust training (excluding tuning cost). Baseline results are from (Zhang et al., 2022). ♦ marks using
group-labeled validation set for tuning group inference, and△ means the validation set is needed for
robust training. (E#) shows the early group inference epoch for SPARE. SPARE is the only method
that does not heavily rely on a validation set (♢) or incur additional training costs.

Group labels Train CMNIST Waterbirds CelebA
required cost Worst-group Average Worst-group Average Worst-group Average

ERM - - 1x 0.0±0.0 20.1±0.2 62.6±0.3 97.3±1.0 47.7±2.1 94.9±0.3

CB - - 1x 0.0±0.0 23.7±3.1 62.8±1.6 97.1±0.1 46.1±1.5 95.2±0.4

PGI ♦− 1x 73.5±1.8 88.5±1.4 79.5±1.9 95.5±0.8 85.3±0.3 87.3±0.1

EIIL ♦− 1x 72.8±6.8 90.7±0.9 83.5±2.8 94.2±1.3 81.7±0.8 85.7±0.1

GEORGE - - 2x 76.4±2.3 89.5±0.3 76.2±2.0 95.7±0.5 54.9±1.9 94.6±0.2

LfF ♦△ 2x 0.0±0.0 25.0±0.5 78.0N/A 91.2N/A 77.2N/A 85.1N/A

CIM ♦△ 2x 0.0±0.0 36.8±1.3 77.2N/A 95.6N/A 83.6N/A 90.6N/A

JTT ♦△ 5x-6x 74.5±2.4 90.2±0.8 83.1±3.5 90.6±0.3 81.5±1.7 88.1±0.3

CnC ♦△ 2x-12x 77.4±3.0 90.9±0.6 88.5±0.3 90.9±0.1 88.8±0.9 89.9±0.5

SPARE ♢− 1x (E2) 83.0±1.7 91.8±0.7 (E2) 91.6±0.8 96.2±0.6 (E1) 90.3±0.3 91.1±0.1

SSA validation 1.5x-5x 0.0±0.0 47.9±14.4 89.0±0.6 92.2±0.9 89.8±1.3 92.8±0.1

DFR training sub. 1x - - 90.4±1.5 94.1±0.5 80.1±1.1 89.7±0.4

GB training full 1x 82.2±1.0 91.7±0.6 86.3±0.3 93.0±1.5 85.0±1.1 92.7±0.1

GDRO training full 1x 78.5±4.5 90.6±0.1 89.9±0.6 92.0±0.6 88.9±1.3 93.9±0.1

the frog minority. EIIL decreases both minority and total accuracy as it finds the least majority.
Unlike the baselines, SPARE effectively balances groups, mitigating spurious correlations.

6.2 MITIGATING CURATED SPURIOUS CORRELATIONS IN BENCHMARK DATASETS

Next, we evaluate the effectiveness of SPARE in alleviating spurious correlations on spurious
benchmarks. The reported results are averaged over three runs with different model initializations.

Benchmark Datasets & Models. (1) CMNIST (Alain et al., 2015) contains colored handwritten
digits derived from MNIST (LeCun et al., 1998). We follow the challenging 5-class setting in Zhang
et al. (2022) where every two digits form one class and 99.5% of training examples in each class are
spuriously correlated with a distinct color. We use a 5-layer CNN (LeNet-5 (LeCun et al., 1998))
for CMNIST. (2) Waterbirds (Sagawa et al., 2019) contains two classes (landbird vs. waterbird) and
the background (land or water) is the spurious feature. Majority groups are (waterbird, water) and
(landbird, land). (3) CelebA (Liu et al., 2015) is another most commonly used benchmark for spurious
correlations. Following Sagawa et al. (2019), we consider the hair color (blond vs. non-blond) as
the class labels and gender (male or female) as the spurious feature. The majority groups are (blond,
female) and (non-blond male). For both Waterbirds and CelebA, we follow the standard settings used
in the previous work to train a ResNet-50 model (He et al., 2016) pretrained on ImageNet provided
by the Pytorch library (Paszke et al., 2019). More details about the datasets and the experimental
settings are in Appendix D.

Baselines. We compare SPARE with the state-of-the-art methods for eliminating spurious correlations
in Table 2, in terms of both worst-group accuracy, i.e., the minimum accuracy across all groups, and
average accuracy. We use adjusted average accuracy for Waterbirds, i.e., the average accuracy over
groups weighted by their size. This is consistent with prior work, and is done because the validation
and test sets are group-balanced while the training set is skewed. GB (Group Balancing) and GDRO
(Sagawa et al., 2019) use the group label of all training examples, and SSA (Nam et al., 2021) uses the
group labels of the validation data. DFR (Kirichenko et al., 2023) uses a group-balanced data drawn
from training data. The rest of the methods infer the group labels without using such information.

SPARE outperforms SOTA algorithms, including those that require group information. Table 2
shows that compared to baselines that do not use the group labels, SPARE obtains the highest
worst-group accuracy, while maintaining high average accuracy. In particular, SPARE consistently
outperforms the best baselines, CnC (Zhang et al., 2022) and JTT (Liu et al., 2021), on worst-group
and average accuracy while having up to 12x lower computational cost (k-means/total wall-clock
runtimes are in Appendix Table 7 and Table 8). Notably, SPARE performs comparably to those that
use the group information, and even achieves a better worst-group accuracy on CMNIST and CelebA
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Figure 3: GradCAM Visualization. Warmer colors correspond to the pixels that are weighed more in
making the final classification. SPARE allows learning the core features instead of spurious ones.

and has a comparable worst-group but higher average accuracy on the Waterbirds. As group labels
are unavailable in real-world datasets, methods that do not rely on group labels are more practical.
Among such methods, SPARE has a superior performance and easily scales to large datasets. Notably,
SPARE finds the groups, at epoch 2 for CMNIST and Waterbirds, and at epoch 1 for CelebA.

Table 3: Ablation of using different combinations of group infer-
ence and robust training methods on the Waterbirds benchmark.

Group inference Robust training Worst-group Avg Acc

JTT SPARE 80.1± 1.3 94.6± 0.4
GEORGE/CnC SPARE 84.4± 2.2 87.1± 1.0

SPARE JTT 86.2± 3.6 92.0± 0.8
SPARE GDRO(/GEORGE/EIIL) 87.6± 0.8 89.4± 1.3
EIIL SPARE 88.6± 0.1 95.2± 0.1

SPARE SPARE 91.6± 0.8 96.2± 0.6

Ablation on Two Stages. We
conducted an ablation study to
examine (1) group inference and
(2) robust training with SPARE
vs. other techniques. Hyperpa-
rameters were tuned similarly for
all variants, as detailed in Ap-
pendix D.2. Both components
of SPARE are essential for its
superior performance and using
groups found by SPARE usually leads to better performance even when combined with other robust
training methods. The second best group inference method, EIIL decides when to find groups by
hyperparameter tuning while SPARE finds groups early guided by our theory in Section 4. Ablation
study on using the silhouette score to determine λ can be found in Appendix G.

GradCAM visualizations: SPARE helps the learning of core features. Fig. 3 compares GradCAM
(Selvaraju et al., 2017) visualizations depicting saliency maps for samples from Waterbirds with
water and land backgrounds (left), and from CelebA with different genders (right), when ResNet50
is trained by ERM vs. SPARE. Warmer colors indicate the pixels that the model considered more
important for making the final classification, based on gradient activations. We see that training with
SPARE allows the model to learn the core feature, instead of the spurious features.

Noise-to-signal Ratio To study the effect of noise-to-signal ratio on the performance of SPARE (c.f.
Theorem 4.3), we conduct experiments on a version of CMNIST where we added color patches to
the background instead of the digits which allows us to control the noise-to-signal ratio better via
the size and locations of the patch. Results in Table 4 and Table 5 in the Appendix demonstrate
the effectiveness of SPARE in handling spurious correlations in different scenarios. We see that
ERM easily learns a spurious feature with a small variance and/or a large signal and obtains a poor
worst-group accuracy. Under large spurious noise, JTT cannot infer the groups well and performs
poorly. Besides, EIIL performs poorly when the spurious signal is large. In all cases, SPARE archives
state-of-the-art worst-group accuracy, and outperforms the other group-inference methods. Notably,
SPARE performs better or comparable to GB and GDRO that use the group labels and thus are not
affected by noise-to-signal ratio during group inference.

7 CONCLUSION

In this work, we studied how neural networks trained with gradient methods learn simple spurious
features. In particular, we analyzed a two-layer fully-connected neural network and showed that
spurious features can be identified early in training based on model output. If these features have a
low noise-to-signal ratio, they dominate the network’s output, overshadowing core features. Based on
the above theoretical insights, we proposed SPARE, which separates majority and minority groups
by clustering the model output early in training. Then, it applies importance sampling based on the
cluster sizes to make the groups relatively balanced. Importantly, unlike existing group inference
methods, SPARE does not require extensive hyperparameter tuning and hence can discover spurious
correlations in realistic scenarios like Restricted ImageNet early in training. In also outperforms state-
of-the-art methods in worst-group accuracy on benchmark datasets with carefully curated spurious
correlations. SPARE is also highly scalable, making it suitable for large-scale applications.

Limitations. To our knowledge, simplicity bias has been mainly studied for vision models, and
applicability of our method to other data modalities requires further investigations.
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A APPENDIX

A.1 SIMPLICITY BIAS

A recent body of work revealed that the neural network trained with (stochastic) gradient methods
can be approximated on the training data by a linear function early in training (Hermann & Lampinen,
2020; Hu et al., 2020; Nakkiran et al., 2019; Neyshabur et al., 2014; Pezeshki et al., 2021; Shah et al.,
2020). We hypothesize that a slightly stronger statement holds, namely the approximation still holds
if we isolate a core or spurious feature from an example and input it to the model.
Assumption A.1 (simplicity bias on core and spurious features, informal). Suppose that f lin

is a linear function that closely approximates f(x;W , z) on the training data. Then f lin also
approximates f on input either a core feature or a spurious feature corresponding to a majority group
in some class, that is

f lin(vc) ≈ f(vc;W , z) ∀c ∈ C
f lin(vs) ≈ f(vs;W , z) ∀s ∈ A

Intuitively, every core feature and every spurious feature corresponding to a majority group is well
represented in the training dataset, and since it is known that the linear model and the full neural
network agree on the training dataset, we can expect them to agree on such features as well. Note that
spurious features that do not appear in majority groups may not be well represented in the training
dataset, hence we do not require that the linear model approximates the neural network well on such
features.

Moreover, we verify assumption A.1 empirically on CMNIST in Figure 5, which shows that a two
layer neural network and the approximating linear model are close even when isolating a core or
spurious feature.

The formal statement is provided below as Assumption A.6.

A.2 SETTING

We now introduce the formal mathematical setting for the theory.

Let D = {(xi, yi)}ni=1 ⊂ Rd × R, be a dataset with covariance Σ. Define the data matrix X =

[x1 . . . xn]
⊤ and the label vector y = [y1 . . . yn]

⊤. We use ∥ · ∥ to refer to the Euclidean
norm of a vector or the spectral norm of the data.

Following Hu et al. 2020, we make the following assumptions:
Assumption A.2 (input distribution). The data has the following properties (with high probability):

∥xi∥2

d
= 1±O(

√
log n

d
),∀i ∈ [n]

| ⟨xi,xj⟩ |
d

= O(

√
log n

d
),∀i, j ∈ [n], i ̸= j

∥XX⊤∥ = Θ(n)

Assumption A.3 (activation function). The activation ϕ(·) satisfies either of the following:

• smooth activation: ϕ has bounded first and second derivative

• piecewise linear activation:

ϕ(z) =

{
z z ≥ 0

az z < 0

Assumption A.4 (initialization). The weights (W ,v) are initialized using symmetric initialization:

w1, . . . ,wm
2
∼ N (0d, Id), wi+m

2
= wi(∀i ∈ 1, . . . ,

m

2
)

v1, . . . , vm
2
∼ Unif({−1, 1}), vi+m

2
= −vi(∀i ∈ 1, . . . ,

m

2
)
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It is not hard to check that the concrete scenario we choose in our analysis satisfies the above
assumptions. Now, given the following assumptions, we leverage the result of Hu et al. (2020):
Theorem A.5 (Hu et al. 2020). Let α ∈ (0, 1/4) be a fixed constant. Suppose d is the input

dimensionality, ⟨xi,xj⟩
d = 1i=j ±O(

√
logn
d ),∀i, j ∈ [n], the data matrix XXX={xxxi}ni=1 has spectral

norm
∥∥XXXXXX⊤

∥∥ = Θ(n), and for the labels we have |yi| ≤ 1 ∀yi. Assume the number of training
samples n and the network width m satisfy n,m = Ω(d1+α), n,m ≤ dO(1), and the learning rate
η ≪ d. Then, there exist a universal constant C, such that with high probability for all 0 ≤ t ≤ T =
C · d log d

η , the network f(wwwt,XXX) trained with GD is very close to a linear function f lin(βββ,XXX):

1

n

n∑
i=1

(f lin(βββt,XXX)−f(wwwt,XXX))2 ≤ η2t2

d2+Ω(α)
≤ 1

dΩ(α)
. (11)

In particular, the linear model f lin(βββ,XXX) operates on the transformed data ψ(x), where

ψ(x) =


√

2
dζx√
3
2dν

ϑ0 + ϑ1(
∥x∥√

d
− 1) + ϑ2(

∥x∥√
d
− 1)2


ζ = E

g∼N (0,1)
[ϕ′(g)]

ν = E
g∼N (0,1)

[gϕ′(g)]

√
Tr[Σ2]

d

ϑ0 = E
g∼N (0,1)

[g]

ϑ1 = E
g∼N (0,1)

[gϕ′(g)]

ϑ2 = E
g∼N (0,1)

[(
1

2
g3 − g)ϕ′(g)]

Note that ψ(x) consists of a scaled version of the data, a bias term, and a term that depends on the
norm of the example. We will adopt the notation f(ψ;β) = ψ⊤β for the linear model.

We can now formally state A.1:
Assumption A.6 (formal version of A.1). Suppose that Theorem A.5 holds. Then with high
probability, for all such t the following also holds for all c ∈ C and for all s ∈ A:

|f lin(βββt,vc)−f(wwwt,vc)| ≤
ηt

d1+Ω(α)
,

|f lin(βββt,vs)−f(wwwt,vs)| ≤
ηt

d1+Ω(α)
.

We will assume the former holds in the proof of the following theorems, although as we will see the
assumption is unnecessary for Theorem. 4.2.

B PROOF FOR THEOREMS

B.1 NOTATION

For the analysis, we split β into its components corresponding to the data, bias and norm parts of ψ;

that is β =

(
β′

βbias

βnorm

)
for β′ ∈ Rd, βbias ∈ R, βnorm ∈ R. We use the inner product between β′

and a feature v to understand how well the linear model learns a feature v ∈ Rd. With slight abuse of
notation, we will simply write ⟨β,v⟩ to mean ⟨β′,v⟩.

We also define the matrix Φ = [ϕ1 . . . ϕn]
⊤.
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B.2 PROOF OF THEOREM 4.1 AND 4.2

Theorem 4.1. Let α ∈ (0, 1
4 ) be a fixed constant. Suppose the number of training samples n and the

network width m satisfy n ≳ d1+α and m ≳ d1+α. Let nc be the number of examples in class c, and
nc,s= |gc,s| be the size of group gc,s with label c and spurious feature vs ∈ A. Then, under the setting

of Sec. 3 there exist a constant ν1 > 0, such that with high probability, for all 0 ≤ t ≤ ν1 ·
√

d1−α

η ,
the contribution of the core and spurious features to the network output can be quantified as follows:

f(vvvc;WWW t, zzzt) =

√
2

d
ηζc∥vc∥2t

(nc

n
±O(d−Ω(α))

)
, (5)

f(vvvs;WWW t, zzzt)=

√
2

d
ηζc∥vs∥2t

(
nc,s − nc′,s

n
±O(d−Ω(α))

)
, (6)

where c′= C\c, and ζ is the expected gradient of activation functions at random initialization.

Corollary 4.2 (Separability of majority and minority groups). Suppose that for all classes, a
majority group has at least K examples and a minority group has at most k examples. Then, under
the assumptions of Theorem 4.1, examples in the majority and minority groups are separable based

on the model’s output, early in training. That is, for all 0 ≤ t ≤ ν1 ·
√

d1−α

η , with high probability,

the following holds for at least 1−O(d−Ω(α)) fraction of the training examples xi in group gc,s:

If gc,s is in a majority group in class c = 1:

f(xxxi;WWW t, zzzt) ≥
2ηζ2t

d

(
∥vs∥2(K − k)

n
+ ξ ±O(d−Ω(α))

)
+ ρ(t, ϕ,Σ), (7)

If gc,s is in a minority group in class c = 1, but gc′,s is a majority group in class c′ = −1:

f(xxxi;WWW t, zzzt) ≤
2ηζ2t

d

(
−∥vs∥

2(K − k)

n
+ ξ ±O(d−Ω(α))

)
+ ρ(t, ϕ,Σ), (8)

where ρ is constant for all examples in the same class, ξ ∼ N (0, κ) with κ = 1
n (
∑

c n
2
cσ

2
c∥vc∥2)1/2+

1
n (
∑

s(nc,s−nc′,s)
2σ2

s∥vs∥2)1/2 is the total effect of noise on the model.

Analogous statements holds for the class c=−1 by changing the sign and direction of the inequality.

As in Hu et al. (2020), we will conduct our analysis under the high probability events that ∥Ψ⊤Ψ∥ =
O(nd ) and for all training data x, ∥x∥√

d
= 1±O(

√
logn
d ).

Starting from the rule of gradient descent

β(t+ 1) = β(t)− η

n
Ψ⊤(Ψβ(t)− y)

=
(
I − η

n
Ψ⊤Ψ

)
β(t) +

η

n
Ψ⊤y

Let A = I − η
nΨ

⊤Ψ, b = η
nΨ

⊤y. Also, A can be diagonalized as A = V DV ⊤. Since
∥Ψ⊤Ψ∥ = O(nd ), the eigenvalues ofA, call them λ1, . . . , λd, are of order 1−O(ηd ). For t ≥ 1, the
previous recurrence relation admits the solution

β(t) = (I +A+ · · ·+At−1)b

= V (I +D + · · ·+Dt−1)V ⊤b

When t = O(
√

d1−α

η ), the eigenvalues of I +D + · · ·+Dt−1 are on the order of

1 + λi + · · ·+ λt−1
i =

1− λt
i

1− λi

= 1 +O(d−
α
2 )
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Thus we can approximate I +D + · · ·+Dt−1 = tI +∆, where ∥∆∥ = O(d−
α
2 ). Then

β(t) = V (tI +∆)V ⊤b = tb+∆1b

where ∆1 = V∆V ⊤ also satisfies ∥∆∥ = O(d−
α
2 ).

From here we may calculate the following: the alignment of β with a core feature vc is

⟨vc,β⟩ =
√

2

d

ηζc∥vc∥
n

(t±O(d−
α
2 ))(∥vc∥nc ±O(σc

√
n)) (12)

=

√
2

d
ηζc∥vc∥2t

(nc

n
±O(d−Ω(α))

)
(13)

and the alignment with a spurious feature vs is

⟨vs,β⟩ =
√

2

d

ηζc∥vs∥
n

(t±O(d−
α
2 ))(∥vs∥(nc,s − nc′,s)±O(σs

√
n)) (14)

=

√
2

d
ηζc∥vs∥2t

(
nc,s − nc′,s

n
±O(d−Ω(α))

)
(15)

The effect of the noise is captured by the O(σ
√
n) terms, following standard concentration inequali-

ties, and we used the fact that 1√
n
= O(d−Ω(α)). The result transfers to the full neural network under

assumption A.6, namely

f(vvvc;WWW t, zzzt) =

√
2

d
ηζc∥vc∥2t

(nc

n
±O(d−Ω(α))

)
, (16)

f(vvvs;WWW t, zzzt)=

√
2

d
ηζc∥vs∥2t

(
nc,s − nc′,s

n
±O(d−Ω(α))

)
, (17)

This proves Theorem 4.1.

In addition, we calculate that

βnorm(t) = (tI +∆1)

n∑
i=1

yi

(
ϑ0 + ϑ1(

∥xi∥√
d
− 1) + ϑ2(

∥xi∥√
d
− 1)2

)
= O(

ηt√
n
)

Then for the predictions at time t for an example in class c = 1, group g1,s:

ψ(x)⊤β(t) =

√
2

d
ζx⊤β′ +

√
3

2d
νβbias(t) + βnorm(t)

(
ϑ0 + ϑ1(

∥x∥√
d
− 1) + ϑ2(

∥x∥√
d
− 1)2

)
=

√
2

d
ζ(v1 + vs + ξ)

⊤β′ +

√
3

2d
νβbias(t) + ϑ0βnorm(t)±O

(
ηt

√
log n

nd

)

We have a few cases

1. g1,k is a majority group. In this case

ψ(x)⊤β(t) ≥ 2ηζ2t

d

(
n1∥vc∥2

n
+
∥vs∥2(K − k)

n
+

〈
ξ,

1

n
X⊤y

〉
±O(d−Ω(α))

)
+

√
3

2d
νβbias(t) + ϑ0βnorm(t)±O

(
ηt

√
log n

nd

)
2. g1,k is a minority group and g−1,k is a majority group. In this case

ψ(x)⊤β(t) ≤ 2ηζ2t

d

(
n1∥vc∥2

n
− ∥vs∥

2(K − k)

n
+

〈
ξ,

1

n
X⊤y

〉
±O(d−Ω(α))

)
+

√
3

2d
νβbias(t) + ϑ0βnorm(t)±O

(
ηt

√
log n

nd

)
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3. g1,k is such that no majority groups have the spurious feature. In this case

ψ(x)⊤β(t) =
2ηζ2t

d

(
n1∥vc∥2

n
+
∥vs∥2k̃

n
+

〈
ξ,

1

n
X⊤y

〉
±O(d−Ω(α))

)

+

√
3

2d
νβbias(t) + ϑ0βnorm(t)±O

(
ηt

√
log n

nd

)
, |k̃| ≤ k

Now〈
ξ,

1

n
X⊤y

〉
=

∑
c∈{±1}

∥vc∥nc

n
⟨ξ,vc⟩+

∑
s

∥vs∥(n1,s − n−1,s)

n
⟨ξ,vs⟩+

〈
ξ,

1

n

n∑
i=1

ξiyi

〉
(18)

=
∑

c∈{±1}

∥vc∥nc

n
⟨ξ,vc⟩+

∑
s

∥vs∥(n1,s − n−1,s)

n
⟨ξ,vs⟩ ±O

(√
d

n

)
(19)

∼ N (0, κ)±O(d−Ω(α)) (20)

Finally, observe that O
(
ηt
√

logn
nd

)
= O(d−1−Ω(α)). Combining all these results and setting

ρ1 = 2ηζ2ct
d , ρ2 = ρ1n1∥vc∥2

n +
√

3
2dνβbias(t) + ϑ0βnorm(t) shows Theorem 4.2 when looking at

the prediction of the linear model. Recall that Hu et al. (2020) showed that the average squared error
in predictions between the linear model and the full neural network is O( η2t2

d2+Ω(α) ). Then by Markov’s
inequality, we can guarantee that the predictions of the linear model differ by at most O( ηt

d1+Ω(α) ) for
at least 1−O(d−Ω(α)) proportion of the examples. This error can be factored into the existing error
term. Hence the result holds for the full neural network.

We can apply the same argument for the class c′. Thus Theorem 4.2 is proven.

Notably, Theorem 4.2 only depends on the closeness of the neural network and the initial linear
model on the training data, hence does not rely on assumption A.6.

B.3 PROOF OF THEOREM 4.3

Theorem 4.3. Under the assumptions of Theorem 4.1, if the classes are balanced, and the total size
of the minority groups in class c is small, i.e., O(n1−γ) for some γ > 0, then there exists a constant
ν2 > 0 such that at T = ν2 · d log d

η , for an example xxxi in a majority group gc,s, the contribution of
the core feature to the model’s output is at most:

|f(vvvc;WWWT , zzzT )| ≤
√
d
Rs

ζRc
+O(n−γ

√
d) +O(d−Ω(α)). (9)

In particular if min{Rc, 1} ≫ Rs, then the model’s output is mostly indicated by the spurious feature
instead of the core feature:

|f(vvvs;WWWT , zzzT )| ≥
√
d

2ζ
≫ |f(vvvc;WWWT , zzzT )|. (10)

Let gmaj be the total number of majority groups among all classes. Note that by the definition of
majority groups, gmaj is at most the number of classes, namely 2 in the given analysis.

Since the classes are balanced with labels±1, it is not hard to see that the bias term in the weights will
always be zero, hence we may as well assume that we do not have the bias term. Abusing notation,
we will still denote quantities by the same symbol, even though now the bias term has been removed.

First consider a model f̃ = ψ⊤β̃ trained on the dataset Dmaj, which only contains examples from
the majority groups. Further, assume Dmaj has infinitely many examples so that the noise perfectly
matches the underlying distribution. We prove the results in this simplified setting then extend the
result using matrix perturbations.
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We have

L =
1

2
E

Dmaj
[(ψ⊤

i β̃ − yi)
2]

∇L = E
Dmaj

[(ψ⊤
i β̃ − yi)ψi]

and the optimal β̃∗ satisfies

β̃∗ =

(
E

Dmaj
[ψiψ

⊤
i ]

)†

E
Dmaj

[yiψi]

where † represents the Moore-Penrose pseudo-inverse.

Since the noise is symmetrical with respect to the classes, the bias and norm terms of βββ must be zero.
Thus the loss becomes

L =
1

2
E

(xi,yi)∼Dmaj

[
(

√
2

d
ζx⊤

i β̃
′ − yi)

2

]
(21)

=
1

2
E

Dmaj

[
(

√
2

d
ζ(vci + vsi + ξi)

⊤β̃′ − yi)
2

]
(22)

=
1

2
E

Dmaj

[
(

√
2

d
ζ(vci + vsi)

⊤β̃′ − yi)
2 + (

√
2

d
ζξ⊤i β̃

′)2

]
(23)

=
1

2
E

Dmaj

[
(

√
2

d
ζ(vci + vsi)

⊤β̃′ − yi)
2

]
+

ζ2

d
β̃′⊤Σξβ̃

′ (24)

Consider the model βs which only learns the spurious features of majority groups

β′
s =

√
d

2

1

ζ

∑
gc,sis a majority group

cvs
∥vs∥2

.

Note that for any example in a majority group, (vci + vsi)
⊤β′

s − yi = 0. Thus

L =
ζ2

d
β̃′⊤Σξβ̃

′

=
∑

vsis spurious

σ2
s

2∥vs∥2

≤
gmajR

2

2

The loss for the optimal model must be smaller. But the loss due to the last term in equation 24 along
a core feature alone is

ζ2σ2
c

∥vc∥2d
⟨vc,β′

∗⟩
2 ≤

gmajR
2

2

Rearranging gives

⟨vc,β′
∗⟩

2 ≤
dgmajR

2∥vc∥2

2ζ2σ2
c

(25)

Now consider the loss from the first term in equation 24 due to a majority group. It must be at least

K

n

(
1−

√
2

d
ζ ⟨vs,β′

∗⟩ −
√
gmajR∥vc∥

σc

)2

≤
gmajR

2

2

1−
√

2

d
ζ ⟨vs,β′

∗⟩ −
√
gmajR∥vc∥

σc
≤
√

ngmajR2

2K

1−√gmajR(
∥vc∥
σc

+

√
n

2K
) ≤

√
2

d
ζ ⟨vs,β′

∗⟩
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Note that
√

n
2K ≤

√
gmaj

2 . Now if we have R sufficiently smaller than σc√
gmaj∥vc∥ and 2

gmaj
, we can

guarantee that the RHS is at least some constant less than 1, say 1√
2

. In this case, we have

⟨vs,β∗⟩2 ≥
d

4ζ2
(26)

Under these assumptions it is clear from equation 25 that we will also have

d

4ζ2
≫ ⟨vc,β∗⟩2 (27)

Now we return to the original dataset, which contains minority groups and only a finite number of
examples. Again, we have

β∗ = (Ψ⊤Ψ)†Ψ⊤y

Since we have removed the bias term, it is not hard to show that the matrix 1
nΨ

⊤Ψ has all eigenvalues
of order Θ( 1d ). Now consider the difference between ∥ 1nΨ

⊤Ψ∥ and ∥EDmaj [ψiψ
⊤
i ]∥. With high

probability it will be of order O(nmino
nd + 1

d
√
n
) = O(n

−γ

d ), where the first term corresponds to the
inclusion of minority groups and the second term corresponds having a finite sample size. It follows
that ∥∥∥∥( 1nΨ⊤Ψ)† − ( E

Dmaj
[ψiψ

⊤
i ])

†
∥∥∥∥ = O

(
d− d

d−O(n−γ)

)
= O(dn−γ)

A similar argument shows that

∥Ψ⊤y − E
Dmaj

[yiψi]∥ = O(d−
1
2n−γ)

Thus the change in alignment with a feature v is∥∥∥〈β̃∗,v
〉
− ⟨β∗,v⟩

∥∥∥ =

∥∥∥∥∥(Ψ⊤Ψ)†Ψ⊤y −
(

E
Dmaj

[ψiψ
⊤
i ]

)†

E
Dmaj

[yiψi]

∥∥∥∥∥ ∥v∥
≤

∥∥∥∥∥
(
(Ψ⊤Ψ)† −

(
E

Dmaj
[ψiψ

⊤
i ]

)†
)
Ψ⊤y

+

(
E

Dmaj
[ψiψ

⊤
i ]

)†

(Ψ⊤y − E
Dmaj

[yiψi])

∥∥∥∥∥∥v∥
≤ O

(
(dn−γ)(d−

1
2 ) + d(d−

1
2n−γ)

)
≤ O(n−γ

√
d)

Replacing gmaj with 2,and combining equations 25, 26 28, and ASsumption A.6, we get

|f(vvvs;WWWT , zzzT )| ≥
√
d

2ζ
≫
√
d
Rs

ζRc
+O(n−γ

√
d) +O(d−Ω(α)) ≥ |f(vvvc;WWWT , zzzT )|. (28)

which proves the theorem.

C SIGNAL-TO-NOISE RATIO

The noise-to-signal ratio of the spurious affects the group inference to a great extent. Methods such
as GDRO and GB rely on the underlying group information and a larger noise-to-signal ratio of
the spurious feature (which makes it much harder to infer the groups) does not affect their group
information at all. They only provide an upper bound on robust learning with group information.
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Table 4: Effect of spurious variance (noise) on worst-group accuracy. Learning a spurious feature
with a small variance is easy and yields a poor worst-group accuracy for ERM. Under large spurious
noise, JTT cannot infer the groups well and performs poorly. In both cases, SPARE achieves the
SOTA worst-group accuracy, and outperforms not only the other group-inference methods, but also
GDRO and GB. This shows the remarkable performance of SPARE in inferring the groups.

Noise Small Noise Large
Worst-group Average Worst-group Average

ERM 44.6± 4.1 99.8± 0.1 86.4± 0.4 95.1± 1.2

GDRO 84.3± 1.7 98.3± 1.2 92.3± 0.6 97.2± 0.1
Group Balancing 86.3± 2.2 97.3± 1.2 92.2± 0.5 96.2± 0.6

JTT 82.7± 7.8 97.4± 1.1 85.7± 16.3 97.3± 0.9
EIIL 81.8± 1.6 94.8± 1.5 92.7± 3.5 97.1± 0.8
SPARE 86.3± 2.9 97.9± 0.4 94.1± 1.6 97.7± 0.3

Table 5: Effect of spurious magnitude (signal) on worst-group accuracy. Learning a spurious feature
with a larger magnitude is easy and yields a poor worst-group accuracy for ERM. For large spurious
signal, EIIL cannot infer the groups well and performs poorly. In both cases, SPARE archives
the SOTA worst-group accuracy, and outperforms not only the other group-inference methods, but
also GB and is comparable to GDRO. Again, this shows the remarkable performance of SPARE in
inferring the groups.

Signal Large Signal Small
Worst-group Average Worst-group Average

ERM 0.0± 0.0 99.5± 0.0 97.0± 0.5 98.7± 0.2

GDRO 74.8± 2.8 98.8± 0.3 96.6± 0.4 98.7± 0.3
Group Balancing 76.8± 2.8 97.3± 0.3 95.8± 0.6 98.2± 0.4

JTT 76.4± 6.1 97.6± 1.3 94.8± 1.0 98.4± 0.4
EIIL 58.8± 4.9 97.1± 4.9 89.1± 4.0 94.7± 2.4
SPARE 78.6± 4.6 97.2± 0.6 95.5± 1.0 97.9± 0.4

Only JTT, SPARE and EIIL infer the groups, and hence are affected by noise-to-signal ratio during
their group inference.

Table 4 shows the results for small and large noise (variance) of the spurious feature. We see that
SPARE outperforms JTT and EIIL in terms of worst-group accuracy by up to 8.4% and 4.5% with
a better average accuracy. Table 5 shows the results for small and large magnitude of the spurious
feature. We see that SPARE outperforms JTT and EIIL in terms of worst-group accuracy by up to
2.2% and 19.8% with a better average accuracy.

The very similar or sometimes even better worst-group performance of SPARE over GDRO and GB in
both tables, confirms how effective SPARE is in inferring the underlying groups for spurious features
with various learning difficulties.

D EXPERIMENTATION DETAILS

D.1 DATASETS

CMNIST We created a colored MNIST dataset with spurious correlations by using colors as spuri-
ous attributes following the settings in Zhang et al. (2022). First, we defined an image classification
task with 5 classes by grouping consecutive digits (0 and 1, 2 and 3, 4 and 5, 6 and 7, 8 and 9) into
the same class. From the train split, we randomly selected 50,000 examples as the training set, while
the remaining 10,000 samples were used as the validation set. The test split follows the official test
split of MNIST.

For each class yi, we assigned a color vvvs from a set of colors A={#ff0000, #85ff00, #00fff3,
#6e00ff, #ff0018} as the spurious attribute that highly correlates with this class, represented
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(a) t-SNE visualization of the linear model
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separable based on the outputs of the linear
model.
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Figure 4: Comparing a linear model and a neural network at early stage of training on CMNIST.
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Figure 5: A comparison between the losses of a two-
layer network and a simple linear model on the training
set, spurious features (color only), and core feature
(digit only).
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Figure 6: Replicate of Figure 1b on Waterbirds. In-
putting only the background (orange line) does not
change the model output much (indicating that the back-
ground is learned by the model) while inputting only
the bird changes the output to a large extent (indicating
that the bird is not learned by the model).

by their hex codes, to the foreground of a fraction pcorr of the training examples. This fraction
represents the majority group for class yi. The stronger the spurious correlation between class yi and
the spurious attribute vvvs, the higher the value of pcorr. The remaining 1− pcorr training examples
were randomly colored using a color selected from A \ vvvs. In our experiments, we set pcorr = 0.995
to establish significant spurious correlations within the dataset.

Waterbirds is introduced by Sagawa et al. (2019) to study the spurious correlation between the
background (land/water) and the foreground (landbird/waterbird) in image recognition. Species in
Caltech-UCSD Birds-200-2011 (CUB-200-2011) dataset (Wah et al., 2011) are grouped into two
classes, waterbirds and landbirds. All birds are then cut and pasted onto new background images,
with waterbirds more likely to appear on water and landbirds having a higher probability on land.
There are 4795 training examples in total, 3498 for landbirds with land background, 184 for landbirds
with water background, 56 for waterbirds with land background, and 1057 for waterbirds with water
background.

CelebA is a large-scale face attribute dataset comprised of photos of celebrities. Each image is
annotated with 40 binary attributes, in which “blond hair" and “male" are commonly used for studying
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spurious correlations. Specifically, gender is considered a spurious feature for hair color classification.
The smallest group is blond male.

D.2 HYPERPARAMETERS

We used SGD as the optimization algorithm to maintain consistency with the existing literature. The
hyperparameters employed in our experiments on spurious benchmarks are detailed in Table 6. For
the Waterbirds and CelebA datasets, we tuned the learning rate within the range of {1e-4, 1e-5} and
weight decay within the range of {1e-1, 1e-0}. These ranges were determined based on the ranges of
optimal hyperparameters used by the current state-of-the-art algorithms Creager et al. (2021); Liu
et al. (2021); Sagawa et al. (2019); Nam et al. (2021); Zhang et al. (2022). The batch sizes and total
training epochs remained consistent with those used in these prior studies. To determine the epoch
for separating groups, we performed clustering on the validation set while training the model on the
training set to maximize the minimum recall of SPARE’s clusters with the groups in the validation
set. As mentioned in Section 5, we decided the number of clusters and adjusted the sampling power
for each class based on Silhouette scores. Specifically, when the Silhouette score was below 0.9,
a sampling power of 2 or 3 was applied, while a sampling power of 1 was used otherwise. It is
important to note that other algorithms tuned hyperparameters, such as epochs to separate groups
and upweighting factors, by maximizing the worst-group accuracy of fully trained models on the
validation set, which is more computationally demanding than the hyperparameter tuning of SPARE.

Table 6: Hyperparameters used for the reported results on different datasets.

DATASET CMNIST WATERBIRDS CELEBA

LEARNING RATE 1E-3 1E-4 1E-5
WEIGHT DECAY 1E-3 1E-1 1E-0
BATCH SIZE 32 128 128
TRAINING EPOCHS 20 300 50

GROUP SEPARATION EPOCH 2 2 1
SILHOUETTE SCORES [0.997,0.978,0.996,0.991,0.996] [0.886,0.758] [0.924,0.757]
SAMPLING POWER [1,1,1,1,1] [3,3] [1,2]

D.3 CHOICES OF MODEL OUTPUTS

In our experiments, we found the worst-group accuracy gets the most improvement when SPARE
uses the outputs of the last linear layer to separate the majority from the minority for CMNIST and
Waterbirds and use the second to last layer (i.e., the feature embeddings inputted to the last linear
layer) to identify groups in CelebA. We speculate that this phenomenon can be attributed to the
increased complexity of the CelebA dataset compared to the other two datasets, as employing a higher
output dimension help identify groups more effectively.

D.4 DEPENDENCY ON THE CLUSTERING ALGORITHM

The performance of SPARE is not sensitive to the clustering algorithm. The key to SPARE is clustering
the entire model output early in training. While k-means easily scales to medium-sized datasets, k-
median is more suitable for very large datasets, as it can be formulated as a submodular maximization
problem (Wolsey, 1982) for which fast and scalable distributed (Mirzasoleiman et al., 2013; 2015)
and streaming (Badanidiyuru et al., 2014) algorithms are available.

D.5 CLUSTERING DETAILS

Clustering was performed on all data samples within the same class. It’s important to note that
k-means doesn’t require loading all the data into memory and operates in a streaming manner. As
an alternative, we also discussed the possibility of using the k-medoids clustering algorithm and
its distributed implementation which uses submodular optimization and easily scales to millions
of examples in Section 5. In Table 7, we present the wall-clock times for k-means clustering on
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Table 7: Wall-clock times for k-means clustering on Waterbirds, CelebA, CMNIST, and Restricted
ImageNet datasets.

CMNIST Celeba Waterbirds Restricted ImageNet
0.46s 31.8s 0.07s 2s

Table 8: Wall-clock runtime comparison of SPARE and SOTA 2-stage algorithms.

ERM JTT CnC SSA SPARE

1h12m 9h5m 4h25m 2h15m 1h16m

Waterbirds, CelebA, CMNIST, and Restricted ImageNet. It shows that the cost of clustering is
negligible when compared to the cost of training.

D.6 TRAINING COST

Table 8 shows a all-clock runtime comparison of SPARE and SOTA 2-stage algorithms. JTT initially
trains the identification model for a specific number of epochs and then upsamples misclassified
examples by a substantial factor to train the robust model. As a result, the training cost is influenced
not just by the training of the identification model but also by the considerable volume of upsampled
training data used in the robust model’s training. For instance, in the case of CelebA, JTT trains the
identification model for just one epoch but then upsamples all misclassified examples (approximately
1/10 of the training set) by a factor of 50. This leads to a training set roughly six times the original
size. In this scenario, the large volume of upsampled training data significantly increases the training
cost, while the training time for the identification model is almost negligible.

E SPARE REACHES SOTA PERFORMANCE UNDER EXTREME GROUP
IMBALANCE.

Many state-of-the-art algorithms that can successfully eliminate spurious correlations in the
Waterbirds and CelebA, severely fail on CMNIST, by providing as low as 0% worst-group accuracy.
In CMNIST, every class has a very large majority and four very small minority groups, and there
is a very strong spurious correlation between the color of the majority group and the corresponding
class. Here, the small size of the minority groups makes it difficult to infer the groups based on
loss (LfF (Nam et al., 2020)), data augmentation (CIM (Taghanaki et al., 2021)), or semi-supervised
learning (SSA (Nam et al., 2021)). Besides, state-of-the-art methods that partition every class into
only two groups, namely EIIL (Creager et al., 2021), PGI (Ahmed et al., 2020), and JTT (Liu et al.,
2021), fail to balance the minority groups. This is because the minority groups need to be extensively
upweighted or upsampled to make a balance with the majority group due to their small sizes, and
extensive upweighting or upsampling them as a whole exaggerates the small differences between
the original size of the minority groups and makes them imbalanced w.r.t. each other. This yields
an inferior worst-group accuracy. In contrast, SPARE finds multiple minority clusters (see Figure 1c).
By importance sampling from each cluster based on its size, SPARE can successfully balance the
groups and achieve state-of-the-art worst-group and average accuracy.

F DISCOVERING SPURIOUS FEATURES

F.1 RESTRICTED IMAGENET

We use Restricted ImageNet proposed in Tsipras et al. (2019) which contains 9 superclasses of
ImageNet. The classes and the corresponding ImageNet class ranges are shown in Table 9.
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Table 9: Classes included in Restricted ImageNet and their corresponding ImageNet class ranges.

Restricted ImageNet Class ImageNet class range

dog 151-268
cat 281-285
frog 30-32
turtle 33-37
bird 80-100

primate 365-382
fish 389-397
crab 118-121

insect 300-319

F.2 EXPERIMENTAL SETTINGS

When training on Restricted ImageNet, we use ResNet50 He et al. (2016) from the PyTorch library
Paszke et al. (2019) with randomly initialized weights instead of pretrained weights. We followed
the hyperparameters specified in Goyal et al. (2017): the model was trained for 90 epochs, with an
initial learning rate of 0.1. The learning rate was reduced by a factor of 0.1 at the 30th, 60th, and 80th
epochs. During training, we employed Nesterov momentum of 0.9 and applied a weight decay of
0.0001.

F.3 INVESTIGATION ON GROUPS IDENTIFIED BY EIIL VS. SPARE

Evaluation setup. As no group-labeled validation set is available to tune the epoch in which the
groups are separated, we tried separating groups using ERM models trained for various numbers
of epochs. Since both EIIL and SPARE identify the groups early (EIIL infers groups on models
trained with ERM for 1 epoch for both Waterbirds and CelebA, as shown in Table 14 and Table 13,
and 5 epochs for CMNIST; the group separation epochs for SPARE are epoch 1 or 2 for the three
datasets, as shown in Table 6), we tuned the epoch to separate groups in the range of {2,4,6,8} for
both algorithms. This tuning was based on the average test accuracy achieved by the final model,
as the worst-group accuracy is undefined without group labels. Interestingly, while SPARE did not
show sensitivity to the initial epochs on Restricted ImageNet, EIIL achieved the highest average
test accuracy when the initial models were trained for 4 epochs using ERM. We manually labeled
examples with their groups for test data.

EIIL finds groups of misclassified examples while SPARE finds groups with spurious features.
We observed that EIIL effectively separates examples that have 0% classification accuracy as the
minority group, as demonstrated in Table 10. This separation is analogous to the error-splitting
strategy employed by JTT Liu et al. (2021) when applied to the same initial model. This similarity in
behavior is also discussed in Creager et al. (2021). Instead of focusing on misclassified examples,
SPARE separates the examples that are learned early in training. Table 11 shows that the first cluster
found by SPARE have almost 100% accuracy, indicating that the spurious feature is learned for such
examples. Downweighting examples that are learned early allows for effectively mitigating the
spurious correlation.

SPARE upweights outliers less than EIIL. Heavily upweighting misclassified examples can be
problematic for this more realistic dataset than the spurious benchmarks as the misclassified ones are
likely to be outliers, noisy-labeled or contain non-generalizable information. Table 10 shows that
groups inferred by EIIL are more imbalanced, which makes EIIL upweights misclassified examples
more than SPARE. As shown in Table 1, this heavier upweighting of misclassified examples with
EIIL drops accuracy not only for the minority groups but also for the overall accuracy. Therefore,
we anticipate that this effect would persist or become even more pronounced for methods like JTT,
which directly identify misclassified examples as the minority group. In contrast, SPARE separates
groups based on the spurious feature that is learned early, and upweights the misclassified examples
less than other methods due to the more balanced size of the clusters. This allows SPARE to more
effectively mitigate spurious correlations than others.
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Table 10: Accuracy (%) of training examples in different classes of Restricted ImageNet in the two
environments inferred by EIIL. EIIL trains models with Group DRO on the inferred environments,
resulting in up-weighting misclassified examples in Env 2.

Class dog cat frog turtle bird primate fish crab insect

Env 1 ERM acc 98 37 26 62 76 78 78 71 90
Env 2 ERM acc 0 0 0 0 0 0 0 0 0

Env 1 size 144378 488 457 2875 17157 11233 6817 2172 21112
Env 2 size 3495 6012 3443 3625 9984 12167 4417 3028 4888

Table 11: Accuracy (%) of training examples in different classes of Restricted ImageNet in the two
groups inferred by SPARE at epoch 8.

Class dog cat frog turtle bird primate fish crab insect

Cluster 1 ERM acc 100 100 100 100 100 99 100 100 100
Cluster 2 ERM acc 64 9 11 14 28 13 27 16 36

Cluster 1 size 130541 3236 1578 2684 18870 12158 7331 2566 18974
Cluster 2 size 17332 3264 2322 3816 8271 11242 3903 2634 7026

G ABLATION STUDIES

Importance Sampling Power (λ). Next, we explain how we determine the importance of different
clusters using silhouette scores. A higher average silhouette score indicates that clusters are more
separated. In this case, groups can be accurately identified and we can balance the groups using
λ = 1. However, when clusters are not well separated (lower silhouette score), some examples from
the majority group are spread in smaller clusters. In this case, sampling less from the large clusters
is enough to balance the groups, as the majority groups are sampled when we upsample the small
clusters. Here, we can balance the groups using λ ≥ 2. Empirically, we found that λ = 1/2/3 is
enough to effectively mitigate the spurious correlation in all our experiments.

Table 12 presents the average silhouette score for each class in different datasets. A higher average
silhouette score indicates that clusters are well separated, such as in CMNIST and the female class
in CelebA. This means we can accurately identify both the majority and minority groups. However,
when clusters are not clearly separated (lower silhouette scores), some examples from the majority
group get mixed up with the smaller clusters. As a result, we sample even fewer examples from
the larger clusters. When clusters are well separated, we use λ = 1 to ensure equal treatment of
groups. However, for less separable clusters, using λ ≥ 2 helps achieve group balance.

H COMPARING INFERRED WITH GROUND-TRUTH GROUPS

In Table 13 and Table 14, we compare the clusters found by SPARE vs. (1) misclassified examples
found by JTT, (2) environments inferred by EIIL, and (3) pseudo-labels learned by SSA.

Table 12: Average Silhouette scores of clusters in different classes, and the corresponding importance
sampling power (λ) used for each class.

Dataset Silhouette score Sampling power (λ)
CMNIST between 0.991-0.997 [1, 1, 1, 1, 1]

Waterbirds [0.886, 0.758] [3, 3]
CelebA [0.924, 0.757] [1, 2]
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H.1 IMPLEMENTATION OF BASELINES

Both JTT Liu et al. (2021) and EIIL Creager et al. (2021) require training an ERM model to identify
groups of examples for upweighting or downweighting. For clarity, we will refer to this ERM model
as the reference model, which is equivalent to the identification models defined in Liu et al. (2021).

JTT. We train the reference model from ImageNet-pre-trained weights with ERM based on the
optimal hyperparameters reported in Liu et al. (2021) and upsample training examples misclassified
by the identification models. For Waterbirds, we train the identification model for 60 epochs with a
learning rate 1e-5 and weight decay 1. For CelebA, the identification model is trained for 1 epoch
with a learning rate 1e-5 and weight decay 0.1.

EIIL. For Waterbirds, we follow the environment inference steps explained in Creager et al. (2021):
we use an ERM model trained for 1 epoch as the reference model and optimize the EI objective of
EIIL with learning rate 0.01 for 20, 000 steps using the Adam optimizer. As no experiment was
conducted on CelebA in the original paper Creager et al. (2021), we follow the proposal in Nam et al.
(2021), which took the same EI procedure for CelebA as for Waterbirds.

SSA. We implement SSA based on the pseudo-code and experimental details explained in Nam
et al. (2021). Please refer to Nam et al. (2021) for details of the setups. As the pseudo-attribute
predictor shares the same architecture as the robust model but is trained on the validation set, to
make the inference cost comparable across all methods, we report the inference cost of SSA by
converting the number of training-on-validation steps for the pseudo-attribute predictor to the number
of training-on-train epochs that involve the same total number of gradient backward steps.

H.2 COMPARISON OF GROUPS.

CelebA. We start from the CelebA dataset, where we observed more significant disparities among
the groups identified by different algorithms, as demonstrated in Table 13. JTT simply upweights the
smaller class (i.e., blond hair), as most examples from that class are misclassified due to the strong
class imbalance. Similarly, EIIL assigns higher weights to more examples from the smaller class.

On the other hand, when examining the confusion matrices, we found that both SSA and SPARE
successfully discover groups that closely align with the ground-truth groups in CelebA. Note that
SPARE requires much less training than SSA. However, upon visualizing the samples, we noticed that
the upweighted examples identified by SSA exhibit some characteristics learned from the validation
set that are more correlated with a certain gender. For instance, 11.4% of the upweighted examples of
blonde females and only 1.2% of the downweighted examples wear sunglasses, which is a feature
that is correlated more with males in the validation set (13.5% of males vs. only 2.3% of females
in the validation set wear sunglasses). Importantly, when examining the correlation between hair
colors (actual class labels) and sunglasses, we observe a milder correlation between non-blond hair
and sunglasses: 7.3% of non-blond haired wear sunglasses compared to only 1.7% of those with
blond hair. Therefore, the pseudo-attribute predictor has likely learned to correlate blond males with
sunglasses, resulting in the potential to amplify other (potentially spurious) correlations learned from
the validation set while mitigating the targeted spurious correlations.

Waterbirds. In line with our observations on CelebA, as shown in Table 14, the groups identified
by JTT are similar to those identified by EIIL, and the groups identified by SSA share similarities
with the groups identified by SPARE, which requires less training. Specifically, JTT and EIIL focus on
upweighting noisy and outlier examples, SSA upweights examples that may possess certain (spurious)
features (i.e., yellow feathers), and SPARE prioritizes upweighting minority groups that do not share
the spurious features with the majority groups.

I REPRODUCIBILITY

Each experiment was conducted on one of the following GPUs: NVIDIA A40 with 45G memory,
NVIDIA RTX A6000 with 48G memory, and NVIDIA RTX A5000 with 24G memory.
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Table 13: Comparison of groups found by different methods for CelebA.

Inference Method
(Cost) Samples Confusion Matrix

JTT (1 epoch)

dark-female
 upweight

dark-female
 downweight

dark-male
 upweight

dark-male
 downweight

blonde-female
 downweight

blonde-female
 upweight

blonde-male
 downweight

blonde-male
 upweight

Dark
upsample

Dark
downsample

Blonde
downsample

Blonde
upsample

Predicted groups

Da
rk
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m

al
e

Da
rk

m
al

e
Bl

on
de
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m

al
e

Bl
on

de
m

al
e
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ue
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s

3 71626 0 0

0 66874 0 0

0 0 170 22710

0 0 0 1387

EIIL (1 epoch)

dark-female
 upweight

dark-female
 downweight

dark-male
 upweight

dark-male
 downweight

blonde-female
 downweight

blonde-female
 upweight

blonde-male
 downweight

blonde-male
 upweight

Dark
upsample

Dark
downsample

Blonde
downsample

Blonde
upsample

Predicted groups

Da
rk

fe
m

al
e

Da
rk

m
al

e
Bl

on
de
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e
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on
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m
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e

Tr
ue
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s

3128 68501 0 0

331 66543 0 0

0 0 4404 18476

0 0 1028 359

SSA (53 epochs)

dark-female
 upweight

dark-female
 downweight

dark-male
 upweight

dark-male
 downweight

blonde-female
 downweight

blonde-female
 upweight

blonde-male
 downweight

blonde-male
 upweight

Dark
upsample

Dark
downsample

Blonde
downsample

Blonde
upsample

Predicted groups

Da
rk

fe
m

al
e

Da
rk

m
al

e
Bl

on
de
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m

al
e

Bl
on

de
m
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e
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ue
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s

68642 2987 0 0

2105 64769 0 0

0 0 22547 333

0 0 102 1285

SPARE (1 epoch)

dark-female
 upweight

dark-female
 downweight

dark-male
 upweight

dark-male
 downweight

blonde-female
 downweight

blonde-female
 upweight

blonde-male
 downweight

blonde-male
 upweight

Dark
upsample

Dark
downsample

Blonde
downsample

Blonde
upsample

Predicted groups

Da
rk

fe
m

al
e

Da
rk

m
al

e
Bl

on
de

fe
m

al
e

Bl
on

de
m

al
e

Tr
ue

 g
ro

up
s

61568 10061 0 0

5440 61434 0 0

0 0 21135 1745

0 0 257 1130
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Table 14: Comparison of groups found by different methods for Waterbirds.

Inference Method
(Cost) Samples Confusion Matrix

JTT (60 epochs)

landbird-land
 downweight

landbird-land
 upweight

waterbird-water
 downweight

waterbird-water
 upweight Landbird

downweight
Landbird
upweight

Waterbird
upweight

Waterbird
downweight

Predicted groups

La
nd

bi
rd

la
nd

La
nd

bi
rd

wa
te

r
W

at
er

bi
rd

la
nd

W
at

er
bi

rd
wa

te
r

Tr
ue

 g
ro

up
s

3489 9 0 0

114 70 0 0

0 0 51 5

0 0 171 886

EIIL (1 epoch)

landbird-land
 downweight

landbird-land
 upweight

waterbird-water
 downweight

waterbird-water
 upweight Landbird

downweight
Landbird
upweight

Waterbird
upweight

Waterbird
downweight

Predicted groups

La
nd

bi
rd

la
nd

La
nd

bi
rd

wa
te

r
W

at
er

bi
rd

la
nd

W
at

er
bi

rd
wa

te
r

Tr
ue

 g
ro

up
s

3477 21 0 0

86 98 0 0

0 0 41 15

0 0 74 983

SSA (40 epochs)

landbird-land
 downweight

landbird-land
 upweight

waterbird-water
 downweight

waterbird-water
 upweight Landbird

downweight
Landbird
upweight

Waterbird
upweight

Waterbird
downweight

Predicted groups

La
nd

bi
rd

la
nd

La
nd

bi
rd

wa
te

r
W

at
er

bi
rd

la
nd

W
at

er
bi

rd
wa

te
r

Tr
ue

 g
ro

up
s

3301 197 0 0

11 173 0 0

0 0 53 3

0 0 83 974

SPARE (1 epoch)

landbird-land
 downweight

landbird-land
 upweight

waterbird-water
 downweight

waterbird-water
 upweight Landbird

downweight
Landbird
upweight

Waterbird
upweight

Waterbird
downweight

Predicted groups

La
nd

bi
rd

la
nd

La
nd

bi
rd

wa
te

r
W

at
er

bi
rd

la
nd

W
at

er
bi

rd
wa

te
r

Tr
ue

 g
ro

up
s

3431 67 0 0

45 139 0 0

0 0 50 6

0 0 126 931
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