
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ASYNCSPADE: EFFICIENT TEST-TIME SCALING WITH
ASYNCHRONOUS SPARSE DECODING

Anonymous authors
Paper under double-blind review

ABSTRACT

Test-time scaling (TTS) boosts LLM reasoning via long chain-of-thought (CoT),
but the linear KV-cache growth amplifies the memory-bound bottleneck of LLM
decoding. Query-aware page-level sparse decoding can achieve state-of-the-art
performance under constrained FLOPs budgets, but is limited by both sequential-
dependent page filtering and coarse-grained token selection, hampering serving
efficiency and model performance on TTS tasks under high concurrency and long
CoT scenarios (consuming even higher runtime than the forward pipeline itself).
In this paper, we first find that the current-step query state can be accurately
approximated in a unified manner from a short window of recent queries, en-
abling training-free query-aware sparsity without waiting in the decoding loop.
We propose AsyncSpade, an asynchronous framework for efficient TTS built
on two core components: (1) a novel light-weight temporal-regressive mod-
ule that predicts the next-token query state; (2) an asynchronous and disaggre-
gated framework that decouples the KV cache filtering from the auto-regressive
decoding loop, overlapping the token-level KV selection with the forward infer-
ence computation through asynchronism. To our knowledge, AsyncSpade is
the first to eliminate the sequential dependence without sacrificing model perfor-
mance. We validate the effectiveness of AsyncSpade on common LLM serv-
ing setups with an A100 node, where AsyncSpade fully overlaps KV-cache
operations with the inference pipeline, achieving theoretical optimal time-per-
output-token (TPOT). Specifically, AsyncSpade delivers over 20% reduction
on TPOT compared to SoTA baseline (i.e. Quest) and at least 50% TPOT re-
duction compared to full attention on Qwen3-8B and Qwen3-32B models, while
matching or surpassing their accuracy on various TTS benchmarks (AIME-24/25,
GPQA-Diamond, MATH-500).

1 INTRODUCTION

67 80 93 106 119 132
GFLOPs of Decoding one Token

0.70

0.72

0.75

0.78

0.80

AI
M

E2
4

Pa
ss

@
1

Qwen3-32B Model Decoding 32k Tokens
Full Attention
TOVA
Quest
Async SPADE

Figure 1: Performance of Qwen3-
32B on AIME24 with Long De-
coding. AsyncSpade minimizes
the decoding FLOPs while main-
taining high performance.

Recent advances in large language models (LLMs) Jaech
et al. (2024); Ren et al. (2025) have demonstrated remarkable
capabilities in tackling complex reasoning tasks across mul-
tiple domains, including mathematical problem solving Ren
et al. (2025); Wang et al. (2025); Huang & Yang (2025), code
generation Ahmad et al. (2025); Huang & Yang (2025); Guo
et al. (2025), and scientific discovery Huang et al. (2025);
Wu et al. (2025), marking a pivotal advancement in the AI
frontier. One of the most powerful paradigms that drives
these advances is Test-time scaling (TTS), which signifi-
cantly unleashed the reasoning capabilities of LLM. Lead-
ing exemplars such as GPT-o1 Jaech et al. (2024), DeepSeek-
R1 Guo et al. (2025), and QwQ Team (2024) have established
that, by allocating additional computation during inference,
most notably through extended chain-of-thought (CoT) Wei
et al. (2022) reasoning, TTS can unlock state-of-the-art per-
formance on a broad spectrum of challenging tasks.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 4 16 32 64 128 256 512
Batch Size

0

2

4

6

R
un

tim
e

(m
s)

Qwen3-1.7B
Cache Selection
Attention Core
Model Parameters

1 4 16 32 64 128 256 512
Batch Size

0.0

2.5

5.0

7.5

10.0
Qwen3-4B

Cache Selection
Attention Core
Model Parameters

1 4 16 32 64 128 256 512
Batch Size

0.0

2.5

5.0

7.5

10.0
Qwen3-8B

Cache Selection
Attention Core
Model Parameters

1 4 16 32 64 128 256 512
Batch Size

0

5

10

15

Qwen3-32B
Cache Selection
Attention Core
Model Parameters

(a) Latency Breakdown for Varied Concurrency. Context length is fixed to 32k in all cases.

4K 8K 16K 32K 64K 128K 256K 512K
Context Length

0

2

4

6

R
un

tim
e

(m
s)

Qwen3-1.7B
Cache Selection
Attention Core
Model Parameters

4K 8K 16K 32K 64K 128K 256K 512K
Context Length

0.0

2.5

5.0

7.5

10.0
Qwen3-4B

Cache Selection
Attention Core
Model Parameters

4K 8K 16K 32K 64K 128K 256K 512K
Context Length

0.0

2.5

5.0

7.5

10.0
Qwen3-8B

Cache Selection
Attention Core
Model Parameters

4K 8K 16K 32K 64K 128K 256K 512K
Context Length

0

5

10

15

Qwen3-32B
Cache Selection
Attention Core
Model Parameters

(b) Latency Breakdown for Varied Context Length. The batch size is fixed to 32 in all cases.
Figure 2: Runtime Profiling for Page-level Sparse Decoding. We benchmark the latency break-
down of a single Transformer block in the decoding stage on Qwen3 dense models Yang et al.
(2025) with an NVIDIA A100 GPU with configurations in Fig. 3. We set page size to 16 following
the default setting of FlashInfer Ye et al. (2025b), and select 1/16 tokens from the full KV cache.
(a) reports results for varied batch sizes (1–512) to emulate different serving concurrency, while (b)
reports results for varied context lengths (4k–512k) to emulate long chain-of-thought decoding.

A critical challenge, however, is that TTS substantially prolongs the decoding stage. Each newly
generated token must attend to the key-value (KV) cache of all previous tokens, resulting in the
cost of attention computation growing linearly with the increase in decoding length. This linear
expansion of the KV cache and memory footprint also intensifies the I/O pressure between GPU
high bandwidth memory (HBM) and shared memory (SRAM), becoming a critical performance
bottleneck and leading to exacerbated time-per-output-token (TPOT). In long-CoT reasoning tasks,
this results in attention core Dao et al. (2022), rather than the parameter computation, emerging as
the dominant performance bottleneck Sadhukhan et al. (2025), hindering the deployment of LLM in
TTS scenarios under high concurrency Agrawal et al. (2024).

Figure 3: Configurations of the profiled Qwen3 dense models.

Model Hidden
Size

Attn
Heads

KV
Heads

Intermediate
Size # Layers

Qwen3-1.7B 2048 16 8 6144 28
Qwen3-4B 2560 32 8 9728 36
Qwen3-8B 4096 32 8 12288 36
Qwen3-32B 5120 64 8 25600 64

One promising solution is
sparse decoding, i.e., ap-
proximating full attention by
retaining only a small, critical
fraction of tokens in the KV
cache during the prolonged
LLM decoding process. Pre-
vious approaches exploit fixed
structural heuristics, such as
preserving the “attention-sink” token Xiao et al. (2024b) or leveraging historical patterns, exem-
plified by accumulated attention scores in H2O Zhang et al. (2023). Despite their simplicity, these
query-agnostic strategies cannot fully capture factual token relevance. Recent work has highlighted
that the criticality of a token strongly depends on the current query Tang et al. (2024), leading to
query-aware sparsity methods Xiao et al. (2024a); Ribar et al. (2024); Tang et al. (2024). By directly
leveraging current query embedding to dynamically filter relevant KV entries, these methods can
achieve superior accuracy. However, they exhibit an inherent drawback, i.e., KV selection creates a
sequential dependence before attention computation, as it depends on the current query state. Fig. 2
demonstrates that cache selection turns out to be the dominant bottleneck of TPOT under either high
concurrency or long context scenarios. Furthermore, current leading query-aware sparse attention
approaches, such as Quest Tang et al. (2024) and MoBA Lu et al. (2025), adopt page or block-level
selection strategies rather than token-level fine-grained granularity, which may ignore critical tokens
and hamper model performance. This design stems from the deployment constraints. As the KV
cache is stored on the same GPU for inference, modern GPU kernels such as FlashInfer Ye et al.
(2025b) are highly optimized for reading and writing large, contiguous chunks of memory, which
makes block- or page-wise access efficient. In contrast, token-level selection incurs massive, small,
and irregular memory accesses that hamper runtime performance, emphasizing the necessity to
advance both runtime efficiency and reasoning performance on TTS tasks.

In this paper, we propose AsyncSpade, a novel asynchronous sparse decoding framework for ulti-
mate test-time scaling efficiency through decoupling the KV cache management & filtering from the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

inference pipeline. To manage these two operations separately, we introduce two specialized ranks:
Inference Rank dedicated for forward computation, and Cache Rank exclusively responsible for KV
management and fine-grained token selection. During inference, the Inference Rank asynchronously
transmits query, key, and value embeddings to the Cache Rank. Upon receiving these embeddings,
the Cache Rank effectively regresses the next query embedding from a sliding window of previous
queries, thus enabling token-level KV selection to be prepared ahead of use. The selected KV entries
are then immediately transferred back to the Inference Rank for efficient attention computation. This
duo-rank architecture brings dual benefits. First, it eliminates the sequential selection bottleneck of
existing approaches. By properly batching the inter-rank communications, both the communication
and the selection operation overhead can be fully pipelined with forward inference computation.
Second, it unlocks the finest possible granularity through token-level selection by delegating token
selection to a dedicated Cache GPU. This is because the associated memory reorganization overhead
can be handled asynchronously and fully overlapped, without blocking the critical inference path.

In summary, our contributions are as follows:
• Asynchronous and disaggregated design for efficient test-time scaling: AsyncSpade

first parallelizes the forward inference pipeline with token-level KV cache selection, en-
abling theoretically optimal TPOT within the context of query-aware sparse decoding.

• Simple and effective next-query prediction: Based on the insights of locality and lin-
ear correlation for adjacent consecutive query states, we introduce a lightweight, temporal
locality-aware query-prediction algorithm that effectively forecasts the next query state.

• High performance on both efficiency and test-time scaling tasks: AsyncSpade
achieves comparable performance compared to full attention while consistently reducing
the TPOT across common LLM serving scenarios by over 20% compared to the strong
baseline of Quest and over 50% compared to the full-attention baseline.

2 RELATED WORKS

Test-Time Scaling is a effective paradigm to substantially improved the reasoning ability of LLMs
by allocating extra computation at inference Zhang et al. (2025). Existing efforts mainly follow
two strategies: (1) Sequential scaling prolongs reasoning trajectories before producing final an-
swers, exemplified by Long-CoT Wei et al. (2022), and widely adopted in models such as GPT-
o1 Jaech et al. (2024), DeepSeek-R1 Guo et al. (2025), QwQ Team (2024), Qwen3 Yang et al.
(2025), GPT-OSS Agarwal et al. (2025), and LIMO Ye et al. (2025a). (2) Parallel scaling instead
expands the solution space via multiple generations. Multi-sample decoding Sun et al. (2024) and
self-consistency Wang et al. (2023) instantiate this strategy by sampling diverse reasoning paths.
Beyond sampling-based methods, search-based algorithms (e.g., tree search, Monte Carlo Tree
Search) Chaffin et al. (2022); Yao et al. (2023) explicitly structure reasoning into combinatorial
trajectories. While effective at boosting reasoning quality, these approaches increase inference la-
tency and memory cost, motivating complementary strategies from the system side.

Dynamic KV Cache Sparsity exploits context-aware strategies to approximate attention scores.
H2O Zhang et al. (2023) utilize accumulated history attention scores to select the critical tokens.
FastGen Ge et al. (2024) adaptively compresses the KV cache by profiling attention heads and
evicting tokens according to their contextual focus. Loki Singhania et al. (2024) employs offline
principal component analysis calibration to reduce key vector dimensions along with top-k selection.
However, these approaches may still prune truly important tokens, since they approximate relevance
without conditioning on the actual query at the current decoding step.

Query-aware KV Cache Sparsity addresses this limitation by explicitly leveraging the query em-
bedding. SparQ Ribar et al. (2024) instantiates this method by selecting top-r dimensions of the
query and pruning tokens accordingly. Quest Tang et al. (2024) exploits query-aware estimates of
attention score bounds to selectively load relevant KV cache pages and improve efficiency. Moba Lu
et al. (2025)introduces a mixture-of-experts inspired block-wise attention that dynamically routes
queries to different blocks. However, these methods either suffer from sequential dependency be-
tween token selection and inference computation, which incurs non-trivial latency, or adopt block-
level coarse granularity that limits accuracy. In contrast, AsyncSpade achieves token-level se-
lection without sequential dependency through a novel asynchronous and disaggregated KV cache
selection mechanism.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 OBSERVATION

In this section, we present two key observations on query embeddings and KV cache that motivate
our approach. To quantify the similarity between two query states, we use their selectivity on the
KV cache as a proxy, and introduce a metric called overlap ratio. For two queries qi and qj , we use
S(qi) and S(qj) to denote their respective selected token sets, where |S(q)| denotes the number of
tokens in the set S(q). The overlap ratio is then defined as

Oi,j =
|S(qi) ∩ S(qj)|

|S|
(1)

where |S| is the fixed number of selected tokens for each query. We assert that both qi and qj select
the same number of tokens in the KV cache, i.e., |S|=|S(qi)|=|S(qj)|.

3.1 TEMPORAL LOCALITY OF QUERY STATES

ShadowKV Sun et al. (2025) demonstrates that the KV cache exhibits strong temporal locality, i.e.,
the sets of KV entries retrieved by consecutive query states share a high proportion of intersection.
Inspired by this, we conduct additional profiling experiments using the proposed metric of overlap
ratio to analyze the temporal locality of the KV cache on test-time reasoning tasks.

We illustrate in Fig. 4 that there is strong temporal locality in the filtered KV sets, where the most re-
cent 16 tokens consistently maintain high overlap ratios of over 40% throughout the generation pro-
cess. The tendency of queries at adjacent decoding steps to select similar KV subsets demonstrates
that attention patterns of nearby queries are highly correlated. These empirical results imply that the
attention distribution of a query carries predictive information about its successors, suggesting the
feasibility of approximating the future query attention patterns by historical query information.

1000 2000 3000 4000
Context length

0.40

0.45

0.50

0.55

Ov
er

la
p

ra
tio

Layer 0

1000 2000 3000 4000
Context length

0.45

0.50

0.55

0.60

Layer 21

1000 2000 3000 4000
Context length

0.70

0.75

0.80

0.85
Layer 42

1000 2000 3000 4000
Context length

0.40

0.45

0.50

0.55

0.60
Layer 63

Distance 1 Distance 2 Distance 4 Distance 8 Distance 16 Distance 32
Figure 4: Overlap ratio for query states across different token distances. The overlap ratio for
distance d and token t is examined withOt−d,t. We use Qwen3-32B and AIME24 with full attention
for the profiling experiments, where the overlap ratio is averaged over the sample and attention head
dimensions, and 4 layers are examined. 1/8 tokens from the KV cache are selected.

3.2 LINEAR CORRELATION OF ADJACENT QUERIES

We further investigate whether this temporal locality can be modeled in a unified perspective and find
that the historical query states possess a strong linear correlation with the current query state. We
denote the sliding query states as {Qt−W , . . . , Qt}, where W is the window size. To demonstrate
the linear correlation between Qt and its adjacent queries {Qt−W , . . . , Qt−1}, we regress Qt from
the W predecessors by solving a ridge regression problem. Assuming that Qt can be expressed with
a group of softmax-normalized weights {ωt−W , . . . , ωt−1} from the windowed historical queries:

ω⋆ = arg min
ω∈RW

∥∥∥∥∥
W∑
i=1

exp
(
ω⋆
t−i

)∑W
j=1 exp

(
ω⋆
t−j

) Qt−i − Qt

∥∥∥∥∥
2

2

+ ϵ

W∑
i=1

ω2
t−i, (2)

where ϵ > 0 is used for regularization and ωt−i corresponds to the historical query state Qt−i. To
demonstrate the effectiveness of this approximation, we further apply ω⋆ also on the inputs:

Q̃t =

W∑
i=1

exp
(
w⋆

t−i

)∑W
j=1 exp

(
w⋆

t−j

) ·Qt−i, i = 1, . . . ,W. (3)

We then compare the attention score distribution induced by Q̃t and the ground-truth Qt by visual-
izing the overlap ratio of their top-k token selection within the full KV cache, as demonstrated in

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

1000 2000 3000 4000
Context length

0.56

0.58

0.60

Ov
er

la
p

ra
tio

Layer 0

1000 2000 3000 4000
Context length

0.57

0.58

0.59

0.60

0.61
Layer 21

1000 2000 3000 4000
Context length

0.78

0.80

0.82

0.84
Layer 42

1000 2000 3000 4000
Context length

0.56

0.58

Layer 63

Linear Regression (w/o Single Token Shifting) Linear Regression (w/ Single Token Shifting)
Figure 5: Overlap ratio for linear regression w/ & w/o single-token shifting. We follow the same
settings as Fig. 4. Given window size W , the overlap ratio of token t for linear regression w/o single
token shifting is examined by first regressing token t with token {t−W, . . . , t− 1} and then apply
the solved weights also on token {t −W, . . . , t − 1}, while the overlap ratio of token t w/ single
token shifting is examined by first regressing token t − 1 with token {t −W − 1, . . . , t − 2} and
then apply the solved weights on token {t−W, . . . , t− 1}. W = 16 is used for profiling.

the green line in Fig. 5. The relatively high overlap ratio indicates that the attention pattern of Qt is
possible to be modeled by a linear combination of its consecutive preceding query states.

4 METHODOLOGY

Embedding Pack-0 Pack-1 Lm_HeadPack-2 of current step

Decoding Step Decoding Step

filtered for next step

Figure 6: Workflow of AsyncSpade. We illustrate the overall workflow of AsyncSpade with
2 consecutive decoding steps, where LLM parameters are assembled into 3 packs, with fully over-
lapped cross-device communication and cache management, delivering theoretically optimal TPOT.

In this section, we introduce AsyncSpade, an algorithm-system co-design approach that optimizes
TPOT for serving LLM on test-time scaling tasks through rank disaggregation, asynchronism, and
fine-grained sparsity. Sec. 4.1 introduces the overall design principles of AsyncSpade, includ-
ing the proposed disaggregated architecture and the workflow. Sec. 4.2 describes the algorithmic
design for asynchronous cache selection with token-level granularity. Sec. 4.3 further provides the
implementation details that support the ultimate decoding efficiency of AsyncSpade.

4.1 ASYNCHRONOUS AND DISAGGREGATED FRAMEWORK FOR SPARSE DECODING

In conventional query-aware sparse decoding methods, KV selection must wait for the current query
embedding to be computed, and the attention core can only be launched after the selected KV is
obtained. AsyncSpade first breaks this dependency by decoupling the KV selection operation
from the inference pipeline, eliminating redundant operations in the inference pipeline. To achieve
this, AsyncSpade predicts the query state of the next token and filters KV entries at token-level
granularity based on it. This process can prepare the most relevant KV candidates for the next
decoding step in advance, and is conducted in parallel with the inference computation pipeline.

Inference Rank and Cache Rank To fully overlap the KV cache filtering operations, we employ
two specialized logical ranks to handle separate operations: Inference Rank for the forward inference
pipeline, including attention core and parameter computation, and Cache Rank for managing and
filtering the KV caches, coordinated through P2P asynchronous communication for efficient LLM
decoding. Inference Rank transmits the computed query, key, and value states to the Cache Rank for
management and selection, while Cache Rank returns the filtered KV cache to the Inference Rank,
enabling parallelized execution and fine-grained cache granularity.

Communication and Computation Workflow During LLM inference, once the generation
length exceeds a predefined threshold (denoted as step θt), the model transitions to sparse decod-
ing mode. At step θt − 1, immediately after computing the query state, the Inference Rank transfers

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Average
Pooling

Shifted
Input

Predicted QueryInput Target

Solved
Weights

R
id

ge
 R

eg
re

ss
io

n

Apply with Single-

Token Shifting

A
ssem

bled Prediction

Figure 7: Assembled Regression with Average Pooling in AsyncSpade. We use ridge regression
to learn from each historical query window. Here we set the window size to 4 for illustration.

all previous KV entries along with several recent query embeddings to the Cache Rank for initializa-
tion. While the Inference Rank continues processing forward inference for the token at step θt − 1,
the Cache Rank operates in parallel to predict the query embedding for the next step θt using a sliding
window over recent queries, and applies this predicted query to filter the KV cache. The selected
KV pairs are subsequently transferred back to the Inference Rank and participate in the attention
computation of the decoding step θt. For the subsequent decoding steps, the query & key & value
states of the current step are packed and passed to the Cache Rank. The Cache Rank appends KV
states to the KV cache and enqueues the query state to the sliding window, then proactively performs
token-level KV cache filtering required for the next decoding step.

4.2 TOKEN CRITICALITY ESTIMATION WITH HISTORICAL SLIDING QUERY

A central challenge in sparse decoding is identifying the most critical set of key-value (KV) pairs
to maintain model performance. Conventional query-aware methods Tang et al. (2024); Lu et al.
(2025) directly use the query state at the current decoding step for cache selection to adhere to
the definition of attention core Vaswani et al. (2017). However, this sequential dependency and
coarse-grained granularity can hamper both LLM serving efficiency under heavy concurrency and
the model reasoning performance on TTS tasks Łańcucki et al. (2025). To tackle these drawbacks,
AsyncSpade effectively predicts the query in advance to approximate the token criticality.

Temporal-Regressive Prediction with Adjacent Query States Based on the insights in Sec. 3,
AsyncSpade exploits the observation that consecutive query states exhibit strong temporal local-
ity and can be well approximated as a linear combination of their predecessors. Based on these
observations, we directly apply the solved weights to a single-token-shifted sliding query window
to predict the query states for the next token. At current decoding step t, we first obtain the re-
gression weights {ωt−W , . . . , ωt−1} by solving the ridge regression problem in Eq. (2), also with
the softmax-normalization in Eq. (3). Each weight ωt−i corresponds to the historical query Qt−i,
reflecting its contribution to regressing Qt. These weights are then applied to the shifted query
sequence {Qt−W+1, . . . , Qt} to predict the next query state Q̂t+1 at step t+ 1:

Q̂t+1 =

W∑
i=1

wt−i Qt+1−i. (4)

Fig. 5 demonstrates the practicality of this temporal-regressive prediction strategy, where the overlap
ratio with single-token shifting can even surpass that of the counterpart without shifting.

Assembled Regression with Average Pooling To better integrate the historical queries within a
certain temporal range in a unified manner, we further extend the ridge regression by first assembling
the solved weights from multiple window sizes and then pooling the obtained states. Rather than
relying on a single window size, we perform regression across all window sizes k ∈ {1, . . .W}.
For each window size k, we use the states {Qt−k, . . . , Qt−1} to regress Qt by first solving the ridge
regression problem defined in Eq. (2), followed by the softmax normalization in Eq. (3) to yield the
corresponding weights Wk = {w(k)

t−k, . . . , w
(k)
t−1}. Each weight w(k)

t−i corresponds to the historical
query Qt−i These weights are then applied to the shifted sequence {Qt−k+1, . . . , Qt} and yield a

candidate estimation of the next query embedding Q̂
(k)
t+1 =

k∑
i=1

w
(k)
t−iQt+1−i. This process generates

m complementary estimates {Q̂(1)
t+1, . . . , Q̂

(m)
t+1}, each capturing temporal locality at different scales.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Query Group 0

Query Group 1

Query Head 0
Query Head 1
Query Head 2
Query Head 3

Query Head 4
Query Head 5
Query Head 6
Query Head 7

... ...

Key Cache for
Key Head 0

GeMM
G

ro
up

ed
 Q

ue
ry

 A
ttn

(G
Q

A)

Query Group

Query Head 0
Query Head 1
Query Head 2
Query Head 3
Query Head 4
Query Head 5
Query Head 6
Query Head 7

... ...

GeMM

Key Cache

M
ulti Q

uery Attn
(M

Q
A)

M
ul

ti
H

ea
d

At
tn

(M
H

A)

Query Head 0
Query Head 1
Query Head 2
Query Head 3
Query Head 4
Query Head 5
Query Head 6
Query Head 7

Key Cache for
Key Head 0

...

GeMV

Key Cache for
Key Head 1

...

GeMV

Key Cache for
Key Head 2

...

GeMV

Key Cache for
Key Head 3

...

GeMV

Key Cache for
Key Head 4

...

GeMV

Key Cache for
Key Head 5

...

GeMV

Key Cache for
Key Head 6

...

GeMV

Key Cache for
Key Head 7

...

GeMV

... ...

Key Cache for
Key Head 1

GeMM

Figure 8: Apply AsyncSpade to Different Attention Architectures through Batched MatMul.
While conventional Multi-Head Attention (MHA) is restricted to implementing criticality estimation
only through GeMV, the Group Query Attention (GQA) and Multi-Query Attention (MQA/MLA)
architectures prevalent in modern LLMs can achieve this through GeMM.

Finally, these estimates are aggregated through average pooling to obtain the final estimation of the
next query embedding:

Q̂t+1 =
1

m

m∑
k=1

Q̂
(k)
t+1 (5)

Since this assembled regression problem is very simple and lightweight, it can be efficiently solved
on GPUs with negligible runtime.

4.3 HARDWARE-EFFICIENT IMPLEMENTATION

Depth-wise Parallelism on Cache Rank To fully overlap the communication overhead across
Inference & Cache Ranks as well as better utilize the parallel computation resources on the Cache
Rank, we assemble several consecutive transformer decoder blocks in the LLM into a packed unit
to conduct asynchronous transmission between the Inference and Cache Ranks at unit granularity
rather than performing separate communications for each layer. In this way, we can reduce the
launch times for cross-device communication and better utilize the bandwidth. Upon receiving the
bundled states from multiple blocks sent by the Inference Rank, the Cache Rank can perform filtering
operations with parallelism along the depth dimension.

Batched Matmul for Different Attention Architectures We investigate the adaptation of
AsyncSpade on all the softmax attention variants in modern LLMs, including Multi-Head At-
tention (MHA Vaswani et al. (2017)), Grouped Query Attention (GQA Ainslie et al. (2023)), and
Multi-Query Attention (MQA Shazeer (2019)). Specifically, the Multi-Head Latent Attention in the
DeepSeek series Liu et al. (2024a;b); Guo et al. (2025) and Kimi-K2 Team et al. (2025) can be
exactly transformed into MQA during the inference stage through matrix absorption. Here, we treat
all these architectures as variants of GQA. Denoting the number of attention (query) heads as Nq
and the number of key & value heads as Nkv. To be specific,

• MHA possesses Nq query groups, and Nq = Nkv.
• GQA possesses Nq/Nkv query groups, and Nq should be divisible by Nkv.
• MQA/MLA possesses only 1 query group, and Nkv = 1.

We present a comprehensive investigation on applying AsyncSpade to these attention variants
using native PyTorch interfaces in Fig. 8. Denoting the batch size as bs, head dimension as Dh,
and the number of tokens in the KV cache as Nt. Since the query state only contains one token
during the decoding stage, the tensor shape can be formulated as (bs,Nkv, Nq/Nkv, Dh), and the key
states can be correspondingly formulated as (bs,Nkv, Nt, Dh). AsyncSpade for MHA can only
be implemented with flattened GeMV, while other architectures can be implemented with flattened
GeMM, which can better utilize the tensor core, the matrix computation unit on NVIDIA GPUs, for
better runtime efficiency. Since most of the modern LLMs are built on GQA or MLA, the Cache
Rank GPUs can therefore be effectively utilized for token criticality estimation.

Communication-Computation Overlap We illustrate the overall workflow in Fig. 6, which
presents the communication-computation overlapping strategies in AsyncSpade. The hardware
requirements for AsyncSpade lie in two aspects:

• The latency of a P2P communication cycle, including (1) sending the packed
key & value (& query) states from Inference Rank to Cache Rank, and (2) sending the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5
GFLOPs of Decoding one Token

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

AI
M

E2
4

Pa
ss

@
1

DeepSeek-R1-0528-Qwen3-8B (32k)

Full Attention
TOVA
Quest
Async Spade

15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5
GFLOPs of Decoding one Token

0.10

0.20

0.30

0.40

0.50

AI
M

E2
5

Pa
ss

@
1

DeepSeek-R1-0528-Qwen3-8B (32k)

Full Attention
TOVA
Quest
Async Spade

16.0 18.0 20.0 22.0 24.0
GFLOPs of Decoding one Token

0.25

0.30

0.35

0.40

0.45

0.50

0.55

GP
QA

-D
ia

m
on

d
Pa

ss
@

1

DeepSeek-R1-0528-Qwen3-8B (16k)

Full Attention
TOVA
Quest
Async Spade

16.0 18.0 20.0 22.0 24.0
GFLOPs of Decoding one Token

0.50

0.60

0.70

0.80

0.90

M
AT

H5
00

 P
as

s@
1

DeepSeek-R1-0528-Qwen3-8B (16k)

Full Attention
TOVA
Quest
Async Spade

70.0 80.0 90.0 100.0 110.0 120.0 130.0
GFLOPs of Decoding one Token

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

AI
M

E2
4

Pa
ss

@
1

Qwen3-32B (32k)

Full Attention
TOVA
Quest
Async Spade

70.0 80.0 90.0 100.0 110.0 120.0 130.0
GFLOPs of Decoding one Token

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

AI
M

E2
5

Pa
ss

@
1

Qwen3-32B (32k)

Full Attention
TOVA
Quest
Async Spade

67.5 70.0 72.5 75.0 77.5 80.0 82.5
GFLOPs of Decoding one Token

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

GP
QA

-D
ia

m
on

d
Pa

ss
@

1

Qwen3-32B (8k)

Full Attention
TOVA
Quest
Async Spade

66.0 68.0 70.0 72.0 74.0 76.0 78.0 80.0 82.0
GFLOPs of Decoding one Token

0.65

0.70

0.75

0.80

0.85

0.90

0.95

M
AT

H5
00

 P
as

s@
1

Qwen3-32B (8k)

Full Attention
TOVA
Quest
Async Spade

Figure 9: Performance Comparison on TTS Benchmarks. We examine the Pass@1 (y-axis) and
the FLOPs of decoding one token (x-axis) for 8B and 32B models with 2k selected tokens for sparse
methods, and AsyncSpade consistently outperforms the strong baselines and achieves the highest
performance while consuming the least FLOP budgets.

packed filtered KV cache from Cache Rank to Inference Rank, should be less than the
corresponding forward computing latency on the Inference Rank.

• The latency of processing a packed state on the Cache Rank, including (1) token criticality
estimation, (2) top-k selection, and (3) KV cache re-organization for filtered tokens, should
also be less than the corresponding forward computing latency on the Inference Rank.

5 EXPERIMENTS

5.1 SETUPS

Table 1: Hardware Specs for the 2 Nodes.

Node Specs N1 N2

GPU 8×A100 SXM 8×H100 SXM
GPU Memory 80GB 80GB
Inter-GPU Bandwidth 250 GB/s 350 GB/s
PCIe 4.0 ×16 5.0 ×16
NVLink Generation 3rd 4th

Models, Datasets, and Baselines We eval-
uate AsyncSpade across four popular and
challenging test-time reasoning benchmarks:
AIME24, AIME25 Art of Problem Solving
(2025), GPQA-Diamond Rein et al. (2024) and
MATH500 Hendrycks et al. (2021). We em-
ploy state-of-the-art open-source LLMs in our ex-
periments, specifically Qwen3-32B Yang et al.
(2025) and DeepSeek-R1-0528-Qwen3-8B Guo
et al. (2025). To make a rational and comprehensive comparison, we benchmark against leading
query-aware sparse attention algorithms, including TOVA Oren et al. (2024) and Quest Tang et al.
(2024). Our experiments are conducted on two nodes: N1 equipped with 8× NVIDIA A100 (80 GB)
GPUs and N2 with 8× NVIDIA H100 (80 GB) GPUs. The hardware specs are provided in Table. 1.

5.2 PERFORMANCE COMPARISON

We systematically evaluate the performance of AsyncSpade on popular test-time scaling bench-
marks, using three strong baselines: Quest Tang et al. (2024) with a page size of 16, TOVA Oren
et al. (2024), and vanilla full attention. We present the comprehensive performance comparison in
Fig. 9, where the Pass@1 solving rate is used as the y-axis and the FLOPs of decoding one token is
used as the x-axis. We provide the definition details of Decoding FLOPs in appendix B. We select 2k
tokens for each sparse decoding method. AsyncSpade consistently outperforms other approaches
with minimized FLOPs budget and comparable or better solving rate.

5.3 EFFICIENCY COMPARISON

We benchmark the TPOT performance of AsyncSpade and other baselines under the same decod-
ing context length and concurrency level, visualized in Fig. 10. AsyncSpade achieves theoreti-
cally minimized TPOT on cutting-edge data-center GPUs. To be specific, (1) Compared to Quest,
AsyncSpade can fully overlap the KV cache filtering overheads; meanwhile, AsyncSpade can
also be deployed with any LLM inference backends rather than restricted to the paged inference

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Full
Attention

TOVA Quest Async
Spade

0

20

40

60

80

TP
O

T
(m

s)

88.2

66.0

50.9
42.8

Qwen3-8B on A100

Full
Attention

TOVA Quest Async
Spade

0

20

40

60

80

100

120

140

160

180 170.4

152.4

117.4

98.0

Qwen3-32B on A100

Full
Attention

TOVA Quest Async
Spade

0

20

40

44.0

53.3

37.2
33.0

Qwen3-8B on H100

Full
Attention

TOVA Quest Async
Spade

0

20

40

60

80

100

120

140

91.3

131.5

85.0
73.3

Qwen3-32B on H100

Full Attention TOVA Quest Async Spade

Figure 10: Runtime Comparison Across Multiple Configurations. TPOT is examined with batch
size 8 on 32k decoding context. AsyncSpade consistently outperforms other strong baselines with
minimized TPOT under concurrent serving and long decoding scenarios.

Table 2: Ablation Studies for AsyncSpade. We investigate the cache management latency and
inter-GPU communication bandwidth required for fully overlapping communication overheads on
both Qwen3-8B and 32B models, using both A100 and H100 nodes.

Device Packing Config Inference Cache Management Minimal Bandwidth
Batch Size 8
Qwen3-8B
32k tokens
select 2k

A100 Packing 6 Layers 7.13 ms 6.42 ms 107.71 GB/s
Packing 12 Layers 14.26 ms 12.75 ms 107.71 GB/s

H100 Packing 6 Layers 5.47 ms 3.92 ms 140.40 GB/s
Packing 12 Layers 10.94 ms 7.85 ms 140.40 GB/s

Batch Size 16
Qwen3-8B
16k tokens
select 1k

A100 Packing 6 Layers 7.30 ms 7.02 ms 105.20 GB/s
Packing 12 Layers 14.60 ms 14.43 ms 105.20 GB/s

H100 Packing 6 Layers 5.91 ms 5.18 ms 129.94 GB/s
Packing 12 Layers 11.82 ms 11.14 ms 129.94 GB/s

Batch Size 8
Qwen3-32B
32k tokens
select 2k

A100 Packing 4 Layers 6.30 ms 5.16 ms 159.49 GB/s
Packing 8 Layers 12.60 ms 8.32 ms 159.49 GB/s

H100 Packing 4 Layers 4.39 ms 3.74 ms 228.88 GB/s
Packing 8 Layers 8.78 ms 7.48 ms 228.88 GB/s

Batch Size 16
Qwen3-32B
16k tokens
select 1k

A100 Packing 4 Layers 7.77 ms 7.02 ms 129.32 GB/s
Packing 8 Layers 15.54 ms 14.01 ms 129.32 GB/s

H100 Packing 4 Layers 4.37 ms 3.72 ms 229.93 GB/s
Packing 8 Layers 8.74 ms 7.48 ms 229.93 GB/s

engine Ye et al. (2025b) in Quest. (2) Compared to TOVA, which can achieve better performance
than Quest but is significantly less practical, AsyncSpade makes this fine-grained strategy deploy-
able through the innovative asynchronous and disaggregated design.

5.4 ABLATION ON THE LATENCY AND BANDWIDTH

We tests overheads of different components in AsyncSpade. Table. 2 shows that the cache man-
agement latency is consistently lower than inference time across all configurations. We also compute
the minimal bandwidth required to achieve a fully overlapped workflow for each configuration. Our
analysis shows that all the bandwidth requirements can fall well within the capabilities of the corre-
sponding hardware specifications listed in Table. 1. This demonstrates that AsyncSpade can ef-
fectively overlap communication and KV selection overheads under practical hardware constraints.

6 CONCLUSIONS AND FUTURE WORK

We introduce AsyncSpade, an algorithm-system co-design approach to optimize TPOT for test-
time-scaled LLM decoding. By asynchronously disaggregating KV-cache management from the
forward pass, AsyncSpade eliminates redundant operations within the model inference pipeline,
delivering both heavy concurrency support and high performance on test-time scaling tasks, espe-
cially achieving theoretically optimal TPOT on common LLM serving scenarios. As a preliminary
work on training-free, high-performance, and efficient test-time scaling, AsyncSpade opens mul-
tiple avenues to further boost LLM decoding efficiency without sacrificing model performance.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

We provide all implementation details necessary to reproduce our results. All experiments use pub-
licly available models (DeepSeek-R1-0528-Qwen3-8B and Qwen3-32B) and public benchmarks
(AIME24, AIME25, GPQA-Diamond, MATH500). Hardware configurations, detailed pseudocode
for the core algorithms and experimental settings are specified in the paper.

8 ETHICS STATEMENT

This work does not involve human subjects, sensitive personal data, or information that could raise
privacy concerns. The datasets and benchmarks we use are publicly available, and our methods do
not introduce discrimination or unfair bias. We believe our research poses no foreseeable ethical
risks and adheres to the ICLR Code of Ethics.

REFERENCES

Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus, Rahul K
Arora, Yu Bai, Bowen Baker, Haiming Bao, et al. gpt-oss-120b & gpt-oss-20b model card. arXiv
preprint arXiv:2508.10925, 2025.

Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun Kwatra, Bhargav Gulavani,
Alexey Tumanov, and Ramachandran Ramjee. Taming {Throughput-Latency} tradeoff in {LLM}
inference with {Sarathi-Serve}. In 18th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 24), pp. 117–134, 2024.

Wasi Uddin Ahmad, Sean Narenthiran, Somshubra Majumdar, Aleksander Ficek, Siddhartha Jain,
Jocelyn Huang, Vahid Noroozi, and Boris Ginsburg. Opencodereasoning: Advancing data distil-
lation for competitive coding. arXiv preprint arXiv:2504.01943, 2025.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron, and Sumit
Sanghai. GQA: Training generalized multi-query transformer models from multi-head check-
points. In The 2023 Conference on Empirical Methods in Natural Language Processing, 2023.
URL https://openreview.net/forum?id=hmOwOZWzYE.

Art of Problem Solving. Aime problems and solutions. https://artofproblemsolving.
com/wiki/index.php/AIME_Problems_and_Solutions, 2025. Accessed: Septem-
ber 18, 2025.

Antoine Chaffin, Vincent Claveau, and Ewa Kijak. Ppl-mcts: Constrained textual generation through
discriminator-guided mcts decoding. In NAACL 2022-Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Technologies, pp. 1–15,
2022.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in neural information processing systems,
35:16344–16359, 2022.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells
you what to discard: Adaptive KV cache compression for LLMs. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=uNrFpDPMyo.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2), 2021. URL https://openreview.net/forum?id=7Bywt2mQsCe.

10

https://openreview.net/forum?id=hmOwOZWzYE
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=7Bywt2mQsCe

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Xiaoke Huang, Juncheng Wu, Hui Liu, Xianfeng Tang, and Yuyin Zhou. m1: Unleash the potential
of test-time scaling for medical reasoning with large language models. CoRR, 2025.

Yichen Huang and Lin F Yang. Gemini 2.5 pro capable of winning gold at imo 2025. arXiv preprint
arXiv:2507.15855, 2025.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. CoRR, 2024.

Adrian Łańcucki, Konrad Staniszewski, Piotr Nawrot, and Edoardo M Ponti. Inference-time hyper-
scaling with kv cache compression. arXiv preprint arXiv:2506.05345, 2025.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-
of-experts language model. arXiv preprint arXiv:2405.04434, 2024a.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024b.

Enzhe Lu, Zhejun Jiang, Jingyuan Liu, Yulun Du, Tao Jiang, Chao Hong, Shaowei Liu, Weiran He,
Enming Yuan, Yuzhi Wang, et al. Moba: Mixture of block attention for long-context llms. arXiv
preprint arXiv:2502.13189, 2025.

Matanel Oren, Michael Hassid, Nir Yarden, Yossi Adi, and Roy Schwartz. Transformers are multi-
state rnns. arXiv preprint arXiv:2401.06104, 2024.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. GPQA: A graduate-level google-proof q&a
benchmark. In First Conference on Language Modeling, 2024. URL https://openreview.
net/forum?id=Ti67584b98.

ZZ Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue Zhang,
Zhe Fu, Qihao Zhu, Dejian Yang, et al. Deepseek-prover-v2: Advancing formal mathematical rea-
soning via reinforcement learning for subgoal decomposition. arXiv preprint arXiv:2504.21801,
2025.

Luka Ribar, Ivan Chelombiev, Luke Hudlass-Galley, Charlie Blake, Carlo Luschi, and Douglas Orr.
Sparq attention: Bandwidth-efficient LLM inference. In ICLR 2024 Workshop on Mathematical
and Empirical Understanding of Foundation Models, 2024. URL https://openreview.
net/forum?id=Ue8EHzaFI4.

Ranajoy Sadhukhan, Zhuoming Chen, Haizhong Zheng, Yang Zhou, Emma Strubell, and Beidi
Chen. Kinetics: Rethinking test-time scaling laws. In ICML 2025 Workshop on Long-Context
Foundation Models, 2025.

Noam Shazeer. Fast transformer decoding: One write-head is all you need, 2019.

Prajwal Singhania, Siddharth Singh, Shwai He, Soheil Feizi, and Abhinav Bhatele. Loki: Low-
rank keys for efficient sparse attention. Advances in Neural Information Processing Systems, 37:
16692–16723, 2024.

Hanshi Sun, Momin Haider, Ruiqi Zhang, Huitao Yang, Jiahao Qiu, Ming Yin, Mengdi Wang, Peter
Bartlett, and Andrea Zanette. Fast best-of-n decoding via speculative rejection. Advances in
Neural Information Processing Systems, 37:32630–32652, 2024.

Hanshi Sun, Li-Wen Chang, Wenlei Bao, Size Zheng, Ningxin Zheng, Xin Liu, Harry Dong, Yuejie
Chi, and Beidi Chen. ShadowKV: KV cache in shadows for high-throughput long-context LLM
inference. In Forty-second International Conference on Machine Learning, 2025. URL https:
//openreview.net/forum?id=oa7MYAO6h6.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest: query-
aware sparsity for efficient long-context llm inference. In Proceedings of the 41st International
Conference on Machine Learning, pp. 47901–47911, 2024.

11

https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ue8EHzaFI4
https://openreview.net/forum?id=Ue8EHzaFI4
https://openreview.net/forum?id=oa7MYAO6h6
https://openreview.net/forum?id=oa7MYAO6h6

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv
preprint arXiv:2507.20534, 2025.

Qwen Team. Qwq: Reflect deeply on the boundaries of the unknown. Hugging Face, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqi Liu, Marco Dos Santos, Flood
Sung, Marina Vinyes, Zhenzhe Ying, Zekai Zhu, et al. Kimina-prover preview: Towards large
formal reasoning models with reinforcement learning. arXiv preprint arXiv:2504.11354, 2025.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=1PL1NIMMrw.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Juncheng Wu, Wenlong Deng, Xingxuan Li, Sheng Liu, Taomian Mi, Yifan Peng, Ziyang Xu,
Yi Liu, Hyunjin Cho, Chang-In Choi, et al. Medreason: Eliciting factual medical reasoning
steps in llms via knowledge graphs. arXiv preprint arXiv:2504.00993, 2025.

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan
Liu, and Maosong Sun. InfLLM: Training-free long-context extrapolation for LLMs with an effi-
cient context memory. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024a. URL https://openreview.net/forum?id=bTHFrqhASY.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning Rep-
resentations, 2024b. URL https://openreview.net/forum?id=NG7sS51zVF.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809–11822, 2023.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more
for reasoning. arXiv preprint arXiv:2502.03387, 2025a.

Zihao Ye, Lequn Chen, Ruihang Lai, Wuwei Lin, Yineng Zhang, Stephanie Wang, Tianqi Chen,
Baris Kasikci, Vinod Grover, Arvind Krishnamurthy, et al. Flashinfer: Efficient and customiz-
able attention engine for llm inference serving. In Eighth Conference on Machine Learning and
Systems, 2025b.

Qiyuan Zhang, Fuyuan Lyu, Zexu Sun, Lei Wang, Weixu Zhang, Wenyue Hua, Haolun Wu, Zhihan
Guo, Yufei Wang, Niklas Muennighoff, et al. A survey on test-time scaling in large language
models: What, how, where, and how well? arXiv preprint arXiv:2503.24235, 2025.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36:34661–34710, 2023.

12

https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=bTHFrqhASY
https://openreview.net/forum?id=NG7sS51zVF

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A LLM USAGE CLARIFICATION

Large Language Models were used in this work solely for grammatical correction and language
editing purposes.

B DEFINITION OF DECODING FLOPS FOR ONE TOKEN

FLOPs for Different Decoding Strategies We provide the theoretical computation cost in terms
of floating-point operations (FLOPs) for different decoding strategies, following the parameter set-
tings of DeepSeek-R1-0528-Qwen3-8B and Qwen3-32B. The total computation cost is decomposed
into two parts: (1) parameter compute cost Cparam, which comes from the dense linear layers (atten-
tion projection, key/value projection, and feed-forward network), and (2) attention-related cost Cattn,
which varies with the decoding strategy.

The parameter compute cost can be written as

Cparam = l ·
(
2 · 2 ·H · q · h+ 2 · 2 · kv · h ·H + 3 · 2 ·H · i

)
, (6)

where l is the number of layers, H is the hidden size, q is the number of attention heads, kv is
the number of KV heads, h is the head dimension, and i is the intermediate dimension of the feed-
forward network.

The attention cost depends on the sparsity strategy:

• Full Attention:
Cattn = l · (4 · q · h · T), (7)

where T is the total sequence length.
• TOVA:

Cattn = l · (4 · q · h · C + 2 · q · h · T), (8)
where C is the number of selected tokens.

• Quest:
Cattn = l · (4 · q · h · C + 2 · q · h · (T/P)), (9)

where P is the page size for block-level sparsity.
• AsyncSpade (Our Method):

Cattn = l · (4 · q · h · C). (10)

Finally, the total FLOPs is obtained as

CFLOPs = Cparam + Cattn. (11)

Theoretically Optimal TPOT If the cache management & filtering operations in AsyncSpade
can be fully overlapped by the forward inference pipeline on the Inference Rank, then we only
need to take (1) the parameter computation and (2) the attention core computation with the selected
tokens into consideration, which consumes exactly fewer FLOPs than all the other counterparts, i.e.,
achieving theoretically optimal TPOT performance.

C SOLVING SOFTMAX-NORMALIZED RIDGE REGRESSION

We provide the detailed pseudo code for solving the softmax-normalized ridge regression problem
in AsyncSpade in algorithm 1. This solving program consumes negligible runtime even under
heavy concurrency because it is very lightweight.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm 1 Assembled KV Cache Filtering

Require:
1: Cached query window: Qcache ∈ RB×H×W×D

2: Current query: qcurr ∈ RB×H×1×D

3: Key states: K ∈ RB×H×L×D

4: Regularization parameter: ϵ
5: Window size: W

Ensure: Attention logits: L ∈ RB×H×L

6: procedure ASSEMBLEDFILTER(Qcache,qcurr,K, ϵ,W)
7: Step 1: Input Preparation
8: Qhist ← reshape(Qcache[:, :, : W − 1, :], [B ·H,W − 1, D])
9: qprev ← reshape(Qcache[:, :,−1 :, :], [B ·H, 1, D])

10: Step 2: Mask Construction
11: M← lower triangular mask(W) ∈ {0, 1}W×W

12: M← broadcast(M, [B ·H,W,W])
13: Step 3: Ridge Regression
14: G← QhistQ

⊤
hist + ϵI ▷ Gram matrix with regularization

15: b← Qhistq
⊤
prev

16: wbase ← softmax(−G−1b) ▷ Solve ridge regression problem
17: Step 4: Weight Matrix Construction
18: Wmatrix ← broadcast(wbase, [B ·H,W,W − 1])
19: Wmatrix ←Wmatrix ⊙M ▷ Apply mask
20: Wmatrix ← softmax(Wmatrix) ▷ Normalize
21: Step 5: Query Prediction
22: for j = 1 to W do
23: Qj ← Qcache[:, :,−1− j : −1, :]
24: wj ←Wmatrix[:, j, : j]

25: qj
candidate ←

∑j
k=1 w

k
j · qk

j ▷ Shifted weighted sum
26: end for
27: Step 6: Query Average Pooling
28: qfinal ← 1

W

∑W
j=1 q

j
candidate ▷ Average over all candidate next query

29: Step 7: KV Cache Selection
30: L← qfinalK

⊤ ▷ Select significant KV pairs
31: L← reshape(L, [B,H,L])
32: return L
33: end procedure

14

	Introduction
	Related Works
	Observation
	Temporal Locality of Query States
	Linear Correlation of Adjacent Queries

	Methodology
	Asynchronous and Disaggregated Framework for Sparse Decoding
	Token Criticality Estimation with Historical Sliding Query
	Hardware-Efficient Implementation

	Experiments
	Setups
	Performance Comparison
	Efficiency Comparison
	Ablation on the Latency and Bandwidth

	Conclusions and Future Work
	Reproducibility Statement
	Ethics Statement
	LLM Usage Clarification
	Definition of Decoding FLOPs for one Token
	Solving Softmax-Normalized Ridge Regression

