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ABSTRACT

Test-time scaling (TTS) boosts LLM reasoning via long chain-of-thought (CoT),
but the linear KV-cache growth amplifies the memory-bound bottleneck of LLM
decoding. Query-aware page-level sparse decoding can achieve state-of-the-art
performance under constrained FLOPs budgets, but is limited by both sequential-
dependent page filtering and coarse-grained token selection, hampering serving
efficiency and model performance on TTS tasks under high concurrency and long
CoT scenarios (consuming even higher runtime than the forward pipeline itself).
In this paper, we first find that the current-step query state can be accurately
approximated in a unified manner from a short window of recent queries, en-
abling training-free query-aware sparsity without waiting in the decoding loop.
We propose AsyncSpade, an asynchronous framework for efficient TTS built
on two core components: (1) a novel light-weight temporal-regressive mod-
ule that predicts the next-token query state; (2) an asynchronous and disaggre-
gated framework that decouples the KV cache filtering from the auto-regressive
decoding loop, overlapping the token-level KV selection with the forward infer-
ence computation through asynchronism. To our knowledge, AsyncSpade is
the first to eliminate the sequential dependence without sacrificing model perfor-
mance. We validate the effectiveness of AsyncSpade on common LLM serv-
ing setups with an A100 node, where AsyncSpade fully overlaps KV-cache
operations with the inference pipeline, achieving theoretical optimal time-per-
output-token (TPOT). Specifically, AsyncSpade delivers over 20% reduction
on TPOT compared to SoTA baseline (i.e. Quest) and at least 50% TPOT re-
duction compared to full attention on Qwen3-8B and Qwen3-32B models, while
matching or surpassing their accuracy on various TTS benchmarks (AIME-24/25,
GPQA-Diamond, MATH-500).

1 INTRODUCTION
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Figure 1: Performance of Qwen3-
32B on AIME24 with Long De-
coding. AsyncSpade minimizes
the decoding FLOPs while main-
taining high performance.

Recent advances in large language models (LLMs) Jaech
et al. (2024); Ren et al. (2025) have demonstrated remarkable
capabilities in tackling complex reasoning tasks across mul-
tiple domains, including mathematical problem solving Ren
et al. (2025); Wang et al. (2025); Huang & Yang (2025), code
generation Ahmad et al. (2025); Huang & Yang (2025); Guo
et al. (2025), and scientific discovery Huang et al. (2025);
Wu et al. (2025), marking a pivotal advancement in the AI
frontier. One of the most powerful paradigms that drives
these advances is Test-time scaling (TTS), which signifi-
cantly unleashed the reasoning capabilities of LLM. Lead-
ing exemplars such as GPT-o1 Jaech et al. (2024), DeepSeek-
R1 Guo et al. (2025), and QwQ Team (2024) have established
that, by allocating additional computation during inference,
most notably through extended chain-of-thought (CoT) Wei
et al. (2022) reasoning, TTS can unlock state-of-the-art per-
formance on a broad spectrum of challenging tasks.
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(a) Latency Breakdown for Varied Concurrency. Context length is fixed to 32k in all cases.
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(b) Latency Breakdown for Varied Context Length. The batch size is fixed to 32 in all cases.
Figure 2: Runtime Profiling for Page-level Sparse Decoding. We benchmark the latency break-
down of a single Transformer block in the decoding stage on Qwen3 dense models Yang et al.
(2025) with an NVIDIA A100 GPU with configurations in Fig. 3. We set page size to 16 following
the default setting of FlashInfer Ye et al. (2025b), and select 1/16 tokens from the full KV cache.
(a) reports results for varied batch sizes (1–512) to emulate different serving concurrency, while (b)
reports results for varied context lengths (4k–512k) to emulate long chain-of-thought decoding.

A critical challenge, however, is that TTS substantially prolongs the decoding stage. Each newly
generated token must attend to the key-value (KV) cache of all previous tokens, resulting in the
cost of attention computation growing linearly with the increase in decoding length. This linear
expansion of the KV cache and memory footprint also intensifies the I/O pressure between GPU
high bandwidth memory (HBM) and shared memory (SRAM), becoming a critical performance
bottleneck and leading to exacerbated time-per-output-token (TPOT). In long-CoT reasoning tasks,
this results in attention core Dao et al. (2022), rather than the parameter computation, emerging as
the dominant performance bottleneck Sadhukhan et al. (2025), hindering the deployment of LLM in
TTS scenarios under high concurrency Agrawal et al. (2024).

Figure 3: Configurations of the profiled Qwen3 dense models.

Model Hidden
Size

# Attn
Heads

# KV
Heads

Intermediate
Size # Layers

Qwen3-1.7B 2048 16 8 6144 28
Qwen3-4B 2560 32 8 9728 36
Qwen3-8B 4096 32 8 12288 36
Qwen3-32B 5120 64 8 25600 64

One promising solution is
sparse decoding, i.e., ap-
proximating full attention by
retaining only a small, critical
fraction of tokens in the KV
cache during the prolonged
LLM decoding process. Pre-
vious approaches exploit fixed
structural heuristics, such as
preserving the “attention-sink” token Xiao et al. (2024b) or leveraging historical patterns, exem-
plified by accumulated attention scores in H2O Zhang et al. (2023). Despite their simplicity, these
query-agnostic strategies cannot fully capture factual token relevance. Recent work has highlighted
that the criticality of a token strongly depends on the current query Tang et al. (2024), leading to
query-aware sparsity methods Xiao et al. (2024a); Ribar et al. (2024); Tang et al. (2024). By directly
leveraging current query embedding to dynamically filter relevant KV entries, these methods can
achieve superior accuracy. However, they exhibit an inherent drawback, i.e., KV selection creates a
sequential dependence before attention computation, as it depends on the current query state. Fig. 2
demonstrates that cache selection turns out to be the dominant bottleneck of TPOT under either high
concurrency or long context scenarios. Furthermore, current leading query-aware sparse attention
approaches, such as Quest Tang et al. (2024) and MoBA Lu et al. (2025), adopt page or block-level
selection strategies rather than token-level fine-grained granularity, which may ignore critical tokens
and hamper model performance. This design stems from the deployment constraints. As the KV
cache is stored on the same GPU for inference, modern GPU kernels such as FlashInfer Ye et al.
(2025b) are highly optimized for reading and writing large, contiguous chunks of memory, which
makes block- or page-wise access efficient. In contrast, token-level selection incurs massive, small,
and irregular memory accesses that hamper runtime performance, emphasizing the necessity to
advance both runtime efficiency and reasoning performance on TTS tasks.

In this paper, we propose AsyncSpade, a novel asynchronous sparse decoding framework for ulti-
mate test-time scaling efficiency through decoupling the KV cache management & filtering from the
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inference pipeline. To manage these two operations separately, we introduce two specialized ranks:
Inference Rank dedicated for forward computation, and Cache Rank exclusively responsible for KV
management and fine-grained token selection. During inference, the Inference Rank asynchronously
transmits query, key, and value embeddings to the Cache Rank. Upon receiving these embeddings,
the Cache Rank effectively regresses the next query embedding from a sliding window of previous
queries, thus enabling token-level KV selection to be prepared ahead of use. The selected KV entries
are then immediately transferred back to the Inference Rank for efficient attention computation. This
duo-rank architecture brings dual benefits. First, it eliminates the sequential selection bottleneck of
existing approaches. By properly batching the inter-rank communications, both the communication
and the selection operation overhead can be fully pipelined with forward inference computation.
Second, it unlocks the finest possible granularity through token-level selection by delegating token
selection to a dedicated Cache GPU. This is because the associated memory reorganization overhead
can be handled asynchronously and fully overlapped, without blocking the critical inference path.

In summary, our contributions are as follows:
• Asynchronous and disaggregated design for efficient test-time scaling: AsyncSpade

first parallelizes the forward inference pipeline with token-level KV cache selection, en-
abling theoretically optimal TPOT within the context of query-aware sparse decoding.

• Simple and effective next-query prediction: Based on the insights of locality and lin-
ear correlation for adjacent consecutive query states, we introduce a lightweight, temporal
locality-aware query-prediction algorithm that effectively forecasts the next query state.

• High performance on both efficiency and test-time scaling tasks: AsyncSpade
achieves comparable performance compared to full attention while consistently reducing
the TPOT across common LLM serving scenarios by over 20% compared to the strong
baseline of Quest and over 50% compared to the full-attention baseline.

2 RELATED WORKS

Test-Time Scaling is a effective paradigm to substantially improved the reasoning ability of LLMs
by allocating extra computation at inference Zhang et al. (2025). Existing efforts mainly follow
two strategies: (1) Sequential scaling prolongs reasoning trajectories before producing final an-
swers, exemplified by Long-CoT Wei et al. (2022), and widely adopted in models such as GPT-
o1 Jaech et al. (2024), DeepSeek-R1 Guo et al. (2025), QwQ Team (2024), Qwen3 Yang et al.
(2025), GPT-OSS Agarwal et al. (2025), and LIMO Ye et al. (2025a). (2) Parallel scaling instead
expands the solution space via multiple generations. Multi-sample decoding Sun et al. (2024) and
self-consistency Wang et al. (2023) instantiate this strategy by sampling diverse reasoning paths.
Beyond sampling-based methods, search-based algorithms (e.g., tree search, Monte Carlo Tree
Search) Chaffin et al. (2022); Yao et al. (2023) explicitly structure reasoning into combinatorial
trajectories. While effective at boosting reasoning quality, these approaches increase inference la-
tency and memory cost, motivating complementary strategies from the system side.

Dynamic KV Cache Sparsity exploits context-aware strategies to approximate attention scores.
H2O Zhang et al. (2023) utilize accumulated history attention scores to select the critical tokens.
FastGen Ge et al. (2024) adaptively compresses the KV cache by profiling attention heads and
evicting tokens according to their contextual focus. Loki Singhania et al. (2024) employs offline
principal component analysis calibration to reduce key vector dimensions along with top-k selection.
However, these approaches may still prune truly important tokens, since they approximate relevance
without conditioning on the actual query at the current decoding step.

Query-aware KV Cache Sparsity addresses this limitation by explicitly leveraging the query em-
bedding. SparQ Ribar et al. (2024) instantiates this method by selecting top-r dimensions of the
query and pruning tokens accordingly. Quest Tang et al. (2024) exploits query-aware estimates of
attention score bounds to selectively load relevant KV cache pages and improve efficiency. Moba Lu
et al. (2025)introduces a mixture-of-experts inspired block-wise attention that dynamically routes
queries to different blocks. However, these methods either suffer from sequential dependency be-
tween token selection and inference computation, which incurs non-trivial latency, or adopt block-
level coarse granularity that limits accuracy. In contrast, AsyncSpade achieves token-level se-
lection without sequential dependency through a novel asynchronous and disaggregated KV cache
selection mechanism.
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3 OBSERVATION

In this section, we present two key observations on query embeddings and KV cache that motivate
our approach. To quantify the similarity between two query states, we use their selectivity on the
KV cache as a proxy, and introduce a metric called overlap ratio. For two queries qi and qj , we use
S(qi) and S(qj) to denote their respective selected token sets, where |S(q)| denotes the number of
tokens in the set S(q). The overlap ratio is then defined as

Oi,j =
|S(qi) ∩ S(qj)|

|S|
(1)

where |S| is the fixed number of selected tokens for each query. We assert that both qi and qj select
the same number of tokens in the KV cache, i.e., |S|=|S(qi)|=|S(qj)|.

3.1 TEMPORAL LOCALITY OF QUERY STATES

ShadowKV Sun et al. (2025) demonstrates that the KV cache exhibits strong temporal locality, i.e.,
the sets of KV entries retrieved by consecutive query states share a high proportion of intersection.
Inspired by this, we conduct additional profiling experiments using the proposed metric of overlap
ratio to analyze the temporal locality of the KV cache on test-time reasoning tasks.

We illustrate in Fig. 4 that there is strong temporal locality in the filtered KV sets, where the most re-
cent 16 tokens consistently maintain high overlap ratios of over 40% throughout the generation pro-
cess. The tendency of queries at adjacent decoding steps to select similar KV subsets demonstrates
that attention patterns of nearby queries are highly correlated. These empirical results imply that the
attention distribution of a query carries predictive information about its successors, suggesting the
feasibility of approximating the future query attention patterns by historical query information.
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Figure 4: Overlap ratio for query states across different token distances. The overlap ratio for
distance d and token t is examined withOt−d,t. We use Qwen3-32B and AIME24 with full attention
for the profiling experiments, where the overlap ratio is averaged over the sample and attention head
dimensions, and 4 layers are examined. 1/8 tokens from the KV cache are selected.

3.2 LINEAR CORRELATION OF ADJACENT QUERIES

We further investigate whether this temporal locality can be modeled in a unified perspective and find
that the historical query states possess a strong linear correlation with the current query state. We
denote the sliding query states as {Qt−W , . . . , Qt}, where W is the window size. To demonstrate
the linear correlation between Qt and its adjacent queries {Qt−W , . . . , Qt−1}, we regress Qt from
the W predecessors by solving a ridge regression problem. Assuming that Qt can be expressed with
a group of softmax-normalized weights {ωt−W , . . . , ωt−1} from the windowed historical queries:

ω⋆ = arg min
ω∈RW

∥∥∥∥∥
W∑
i=1

exp
(
ω⋆
t−i

)∑W
j=1 exp

(
ω⋆
t−j

) Qt−i − Qt

∥∥∥∥∥
2

2

+ ϵ

W∑
i=1

ω2
t−i, (2)

where ϵ > 0 is used for regularization and ωt−i corresponds to the historical query state Qt−i. To
demonstrate the effectiveness of this approximation, we further apply ω⋆ also on the inputs:

Q̃t =

W∑
i=1

exp
(
w⋆

t−i

)∑W
j=1 exp

(
w⋆

t−j

) ·Qt−i, i = 1, . . . ,W. (3)

We then compare the attention score distribution induced by Q̃t and the ground-truth Qt by visual-
izing the overlap ratio of their top-k token selection within the full KV cache, as demonstrated in
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Figure 5: Overlap ratio for linear regression w/ & w/o single-token shifting. We follow the same
settings as Fig. 4. Given window size W , the overlap ratio of token t for linear regression w/o single
token shifting is examined by first regressing token t with token {t−W, . . . , t− 1} and then apply
the solved weights also on token {t −W, . . . , t − 1}, while the overlap ratio of token t w/ single
token shifting is examined by first regressing token t − 1 with token {t −W − 1, . . . , t − 2} and
then apply the solved weights on token {t−W, . . . , t− 1}. W = 16 is used for profiling.

the green line in Fig. 5. The relatively high overlap ratio indicates that the attention pattern of Qt is
possible to be modeled by a linear combination of its consecutive preceding query states.

4 METHODOLOGY

Embedding Pack-0 Pack-1 Lm_HeadPack-2  of current step

Decoding Step Decoding Step

filtered  for next step

Figure 6: Workflow of AsyncSpade. We illustrate the overall workflow of AsyncSpade with
2 consecutive decoding steps, where LLM parameters are assembled into 3 packs, with fully over-
lapped cross-device communication and cache management, delivering theoretically optimal TPOT.

In this section, we introduce AsyncSpade, an algorithm-system co-design approach that optimizes
TPOT for serving LLM on test-time scaling tasks through rank disaggregation, asynchronism, and
fine-grained sparsity. Sec. 4.1 introduces the overall design principles of AsyncSpade, includ-
ing the proposed disaggregated architecture and the workflow. Sec. 4.2 describes the algorithmic
design for asynchronous cache selection with token-level granularity. Sec. 4.3 further provides the
implementation details that support the ultimate decoding efficiency of AsyncSpade.

4.1 ASYNCHRONOUS AND DISAGGREGATED FRAMEWORK FOR SPARSE DECODING

In conventional query-aware sparse decoding methods, KV selection must wait for the current query
embedding to be computed, and the attention core can only be launched after the selected KV is
obtained. AsyncSpade first breaks this dependency by decoupling the KV selection operation
from the inference pipeline, eliminating redundant operations in the inference pipeline. To achieve
this, AsyncSpade predicts the query state of the next token and filters KV entries at token-level
granularity based on it. This process can prepare the most relevant KV candidates for the next
decoding step in advance, and is conducted in parallel with the inference computation pipeline.

Inference Rank and Cache Rank To fully overlap the KV cache filtering operations, we employ
two specialized logical ranks to handle separate operations: Inference Rank for the forward inference
pipeline, including attention core and parameter computation, and Cache Rank for managing and
filtering the KV caches, coordinated through P2P asynchronous communication for efficient LLM
decoding. Inference Rank transmits the computed query, key, and value states to the Cache Rank for
management and selection, while Cache Rank returns the filtered KV cache to the Inference Rank,
enabling parallelized execution and fine-grained cache granularity.

Communication and Computation Workflow During LLM inference, once the generation
length exceeds a predefined threshold (denoted as step θt), the model transitions to sparse decod-
ing mode. At step θt − 1, immediately after computing the query state, the Inference Rank transfers

5
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Figure 7: Assembled Regression with Average Pooling in AsyncSpade. We use ridge regression
to learn from each historical query window. Here we set the window size to 4 for illustration.

all previous KV entries along with several recent query embeddings to the Cache Rank for initializa-
tion. While the Inference Rank continues processing forward inference for the token at step θt − 1,
the Cache Rank operates in parallel to predict the query embedding for the next step θt using a sliding
window over recent queries, and applies this predicted query to filter the KV cache. The selected
KV pairs are subsequently transferred back to the Inference Rank and participate in the attention
computation of the decoding step θt. For the subsequent decoding steps, the query & key & value
states of the current step are packed and passed to the Cache Rank. The Cache Rank appends KV
states to the KV cache and enqueues the query state to the sliding window, then proactively performs
token-level KV cache filtering required for the next decoding step.

4.2 TOKEN CRITICALITY ESTIMATION WITH HISTORICAL SLIDING QUERY

A central challenge in sparse decoding is identifying the most critical set of key-value (KV) pairs
to maintain model performance. Conventional query-aware methods Tang et al. (2024); Lu et al.
(2025) directly use the query state at the current decoding step for cache selection to adhere to
the definition of attention core Vaswani et al. (2017). However, this sequential dependency and
coarse-grained granularity can hamper both LLM serving efficiency under heavy concurrency and
the model reasoning performance on TTS tasks Łańcucki et al. (2025). To tackle these drawbacks,
AsyncSpade effectively predicts the query in advance to approximate the token criticality.

Temporal-Regressive Prediction with Adjacent Query States Based on the insights in Sec. 3,
AsyncSpade exploits the observation that consecutive query states exhibit strong temporal local-
ity and can be well approximated as a linear combination of their predecessors. Based on these
observations, we directly apply the solved weights to a single-token-shifted sliding query window
to predict the query states for the next token. At current decoding step t, we first obtain the re-
gression weights {ωt−W , . . . , ωt−1} by solving the ridge regression problem in Eq. (2), also with
the softmax-normalization in Eq. (3). Each weight ωt−i corresponds to the historical query Qt−i,
reflecting its contribution to regressing Qt. These weights are then applied to the shifted query
sequence {Qt−W+1, . . . , Qt} to predict the next query state Q̂t+1 at step t+ 1:

Q̂t+1 =

W∑
i=1

wt−i Qt+1−i. (4)

Fig. 5 demonstrates the practicality of this temporal-regressive prediction strategy, where the overlap
ratio with single-token shifting can even surpass that of the counterpart without shifting.

Assembled Regression with Average Pooling To better integrate the historical queries within a
certain temporal range in a unified manner, we further extend the ridge regression by first assembling
the solved weights from multiple window sizes and then pooling the obtained states. Rather than
relying on a single window size, we perform regression across all window sizes k ∈ {1, . . .W}.
For each window size k, we use the states {Qt−k, . . . , Qt−1} to regress Qt by first solving the ridge
regression problem defined in Eq. (2), followed by the softmax normalization in Eq. (3) to yield the
corresponding weights Wk = {w(k)

t−k, . . . , w
(k)
t−1}. Each weight w(k)

t−i corresponds to the historical
query Qt−i These weights are then applied to the shifted sequence {Qt−k+1, . . . , Qt} and yield a

candidate estimation of the next query embedding Q̂
(k)
t+1 =

k∑
i=1

w
(k)
t−iQt+1−i. This process generates

m complementary estimates {Q̂(1)
t+1, . . . , Q̂

(m)
t+1}, each capturing temporal locality at different scales.
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Figure 8: Apply AsyncSpade to Different Attention Architectures through Batched MatMul.
While conventional Multi-Head Attention (MHA) is restricted to implementing criticality estimation
only through GeMV, the Group Query Attention (GQA) and Multi-Query Attention (MQA/MLA)
architectures prevalent in modern LLMs can achieve this through GeMM.

Finally, these estimates are aggregated through average pooling to obtain the final estimation of the
next query embedding:

Q̂t+1 =
1

m

m∑
k=1

Q̂
(k)
t+1 (5)

Since this assembled regression problem is very simple and lightweight, it can be efficiently solved
on GPUs with negligible runtime.

4.3 HARDWARE-EFFICIENT IMPLEMENTATION

Depth-wise Parallelism on Cache Rank To fully overlap the communication overhead across
Inference & Cache Ranks as well as better utilize the parallel computation resources on the Cache
Rank, we assemble several consecutive transformer decoder blocks in the LLM into a packed unit
to conduct asynchronous transmission between the Inference and Cache Ranks at unit granularity
rather than performing separate communications for each layer. In this way, we can reduce the
launch times for cross-device communication and better utilize the bandwidth. Upon receiving the
bundled states from multiple blocks sent by the Inference Rank, the Cache Rank can perform filtering
operations with parallelism along the depth dimension.

Batched Matmul for Different Attention Architectures We investigate the adaptation of
AsyncSpade on all the softmax attention variants in modern LLMs, including Multi-Head At-
tention (MHA Vaswani et al. (2017)), Grouped Query Attention (GQA Ainslie et al. (2023)), and
Multi-Query Attention (MQA Shazeer (2019)). Specifically, the Multi-Head Latent Attention in the
DeepSeek series Liu et al. (2024a;b); Guo et al. (2025) and Kimi-K2 Team et al. (2025) can be
exactly transformed into MQA during the inference stage through matrix absorption. Here, we treat
all these architectures as variants of GQA. Denoting the number of attention (query) heads as Nq
and the number of key & value heads as Nkv. To be specific,

• MHA possesses Nq query groups, and Nq = Nkv.
• GQA possesses Nq/Nkv query groups, and Nq should be divisible by Nkv.
• MQA/MLA possesses only 1 query group, and Nkv = 1.

We present a comprehensive investigation on applying AsyncSpade to these attention variants
using native PyTorch interfaces in Fig. 8. Denoting the batch size as bs, head dimension as Dh,
and the number of tokens in the KV cache as Nt. Since the query state only contains one token
during the decoding stage, the tensor shape can be formulated as (bs,Nkv, Nq/Nkv, Dh), and the key
states can be correspondingly formulated as (bs,Nkv, Nt, Dh). AsyncSpade for MHA can only
be implemented with flattened GeMV, while other architectures can be implemented with flattened
GeMM, which can better utilize the tensor core, the matrix computation unit on NVIDIA GPUs, for
better runtime efficiency. Since most of the modern LLMs are built on GQA or MLA, the Cache
Rank GPUs can therefore be effectively utilized for token criticality estimation.

Communication-Computation Overlap We illustrate the overall workflow in Fig. 6, which
presents the communication-computation overlapping strategies in AsyncSpade. The hardware
requirements for AsyncSpade lie in two aspects:

• The latency of a P2P communication cycle, including (1) sending the packed
key & value (& query) states from Inference Rank to Cache Rank, and (2) sending the

7
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Figure 9: Performance Comparison on TTS Benchmarks. We examine the Pass@1 (y-axis) and
the FLOPs of decoding one token (x-axis) for 8B and 32B models with 2k selected tokens for sparse
methods, and AsyncSpade consistently outperforms the strong baselines and achieves the highest
performance while consuming the least FLOP budgets.

packed filtered KV cache from Cache Rank to Inference Rank, should be less than the
corresponding forward computing latency on the Inference Rank.

• The latency of processing a packed state on the Cache Rank, including (1) token criticality
estimation, (2) top-k selection, and (3) KV cache re-organization for filtered tokens, should
also be less than the corresponding forward computing latency on the Inference Rank.

5 EXPERIMENTS

5.1 SETUPS

Table 1: Hardware Specs for the 2 Nodes.

Node Specs N1 N2

GPU 8×A100 SXM 8×H100 SXM
GPU Memory 80GB 80GB
Inter-GPU Bandwidth 250 GB/s 350 GB/s
PCIe 4.0 ×16 5.0 ×16
NVLink Generation 3rd 4th

Models, Datasets, and Baselines We eval-
uate AsyncSpade across four popular and
challenging test-time reasoning benchmarks:
AIME24, AIME25 Art of Problem Solving
(2025), GPQA-Diamond Rein et al. (2024) and
MATH500 Hendrycks et al. (2021). We em-
ploy state-of-the-art open-source LLMs in our ex-
periments, specifically Qwen3-32B Yang et al.
(2025) and DeepSeek-R1-0528-Qwen3-8B Guo
et al. (2025). To make a rational and comprehensive comparison, we benchmark against leading
query-aware sparse attention algorithms, including TOVA Oren et al. (2024) and Quest Tang et al.
(2024). Our experiments are conducted on two nodes: N1 equipped with 8× NVIDIA A100 (80 GB)
GPUs and N2 with 8× NVIDIA H100 (80 GB) GPUs. The hardware specs are provided in Table. 1.

5.2 PERFORMANCE COMPARISON

We systematically evaluate the performance of AsyncSpade on popular test-time scaling bench-
marks, using three strong baselines: Quest Tang et al. (2024) with a page size of 16, TOVA Oren
et al. (2024), and vanilla full attention. We present the comprehensive performance comparison in
Fig. 9, where the Pass@1 solving rate is used as the y-axis and the FLOPs of decoding one token is
used as the x-axis. We provide the definition details of Decoding FLOPs in appendix B. We select 2k
tokens for each sparse decoding method. AsyncSpade consistently outperforms other approaches
with minimized FLOPs budget and comparable or better solving rate.

5.3 EFFICIENCY COMPARISON

We benchmark the TPOT performance of AsyncSpade and other baselines under the same decod-
ing context length and concurrency level, visualized in Fig. 10. AsyncSpade achieves theoreti-
cally minimized TPOT on cutting-edge data-center GPUs. To be specific, (1) Compared to Quest,
AsyncSpade can fully overlap the KV cache filtering overheads; meanwhile, AsyncSpade can
also be deployed with any LLM inference backends rather than restricted to the paged inference
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Figure 10: Runtime Comparison Across Multiple Configurations. TPOT is examined with batch
size 8 on 32k decoding context. AsyncSpade consistently outperforms other strong baselines with
minimized TPOT under concurrent serving and long decoding scenarios.

Table 2: Ablation Studies for AsyncSpade. We investigate the cache management latency and
inter-GPU communication bandwidth required for fully overlapping communication overheads on
both Qwen3-8B and 32B models, using both A100 and H100 nodes.

Device Packing Config Inference Cache Management Minimal Bandwidth
Batch Size 8
Qwen3-8B
32k tokens
select 2k

A100 Packing 6 Layers 7.13 ms 6.42 ms 107.71 GB/s
Packing 12 Layers 14.26 ms 12.75 ms 107.71 GB/s

H100 Packing 6 Layers 5.47 ms 3.92 ms 140.40 GB/s
Packing 12 Layers 10.94 ms 7.85 ms 140.40 GB/s

Batch Size 16
Qwen3-8B
16k tokens
select 1k

A100 Packing 6 Layers 7.30 ms 7.02 ms 105.20 GB/s
Packing 12 Layers 14.60 ms 14.43 ms 105.20 GB/s

H100 Packing 6 Layers 5.91 ms 5.18 ms 129.94 GB/s
Packing 12 Layers 11.82 ms 11.14 ms 129.94 GB/s

Batch Size 8
Qwen3-32B
32k tokens
select 2k

A100 Packing 4 Layers 6.30 ms 5.16 ms 159.49 GB/s
Packing 8 Layers 12.60 ms 8.32 ms 159.49 GB/s

H100 Packing 4 Layers 4.39 ms 3.74 ms 228.88 GB/s
Packing 8 Layers 8.78 ms 7.48 ms 228.88 GB/s

Batch Size 16
Qwen3-32B
16k tokens
select 1k

A100 Packing 4 Layers 7.77 ms 7.02 ms 129.32 GB/s
Packing 8 Layers 15.54 ms 14.01 ms 129.32 GB/s

H100 Packing 4 Layers 4.37 ms 3.72 ms 229.93 GB/s
Packing 8 Layers 8.74 ms 7.48 ms 229.93 GB/s

engine Ye et al. (2025b) in Quest. (2) Compared to TOVA, which can achieve better performance
than Quest but is significantly less practical, AsyncSpade makes this fine-grained strategy deploy-
able through the innovative asynchronous and disaggregated design.

5.4 ABLATION ON THE LATENCY AND BANDWIDTH

We tests overheads of different components in AsyncSpade. Table. 2 shows that the cache man-
agement latency is consistently lower than inference time across all configurations. We also compute
the minimal bandwidth required to achieve a fully overlapped workflow for each configuration. Our
analysis shows that all the bandwidth requirements can fall well within the capabilities of the corre-
sponding hardware specifications listed in Table. 1. This demonstrates that AsyncSpade can ef-
fectively overlap communication and KV selection overheads under practical hardware constraints.

6 CONCLUSIONS AND FUTURE WORK

We introduce AsyncSpade, an algorithm-system co-design approach to optimize TPOT for test-
time-scaled LLM decoding. By asynchronously disaggregating KV-cache management from the
forward pass, AsyncSpade eliminates redundant operations within the model inference pipeline,
delivering both heavy concurrency support and high performance on test-time scaling tasks, espe-
cially achieving theoretically optimal TPOT on common LLM serving scenarios. As a preliminary
work on training-free, high-performance, and efficient test-time scaling, AsyncSpade opens mul-
tiple avenues to further boost LLM decoding efficiency without sacrificing model performance.
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7 REPRODUCIBILITY STATEMENT

We provide all implementation details necessary to reproduce our results. All experiments use pub-
licly available models (DeepSeek-R1-0528-Qwen3-8B and Qwen3-32B) and public benchmarks
(AIME24, AIME25, GPQA-Diamond, MATH500). Hardware configurations, detailed pseudocode
for the core algorithms and experimental settings are specified in the paper.

8 ETHICS STATEMENT

This work does not involve human subjects, sensitive personal data, or information that could raise
privacy concerns. The datasets and benchmarks we use are publicly available, and our methods do
not introduce discrimination or unfair bias. We believe our research poses no foreseeable ethical
risks and adheres to the ICLR Code of Ethics.
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A LLM USAGE CLARIFICATION

Large Language Models were used in this work solely for grammatical correction and language
editing purposes.

B DEFINITION OF DECODING FLOPS FOR ONE TOKEN

FLOPs for Different Decoding Strategies We provide the theoretical computation cost in terms
of floating-point operations (FLOPs) for different decoding strategies, following the parameter set-
tings of DeepSeek-R1-0528-Qwen3-8B and Qwen3-32B. The total computation cost is decomposed
into two parts: (1) parameter compute cost Cparam, which comes from the dense linear layers (atten-
tion projection, key/value projection, and feed-forward network), and (2) attention-related cost Cattn,
which varies with the decoding strategy.

The parameter compute cost can be written as

Cparam = l ·
(
2 · 2 ·H · q · h+ 2 · 2 · kv · h ·H + 3 · 2 ·H · i

)
, (6)

where l is the number of layers, H is the hidden size, q is the number of attention heads, kv is
the number of KV heads, h is the head dimension, and i is the intermediate dimension of the feed-
forward network.

The attention cost depends on the sparsity strategy:

• Full Attention:
Cattn = l · (4 · q · h · T ), (7)

where T is the total sequence length.
• TOVA:

Cattn = l · (4 · q · h · C + 2 · q · h · T ), (8)
where C is the number of selected tokens.

• Quest:
Cattn = l · (4 · q · h · C + 2 · q · h · (T/P )), (9)

where P is the page size for block-level sparsity.
• AsyncSpade (Our Method):

Cattn = l · (4 · q · h · C). (10)

Finally, the total FLOPs is obtained as

CFLOPs = Cparam + Cattn. (11)

Theoretically Optimal TPOT If the cache management & filtering operations in AsyncSpade
can be fully overlapped by the forward inference pipeline on the Inference Rank, then we only
need to take (1) the parameter computation and (2) the attention core computation with the selected
tokens into consideration, which consumes exactly fewer FLOPs than all the other counterparts, i.e.,
achieving theoretically optimal TPOT performance.

C SOLVING SOFTMAX-NORMALIZED RIDGE REGRESSION

We provide the detailed pseudo code for solving the softmax-normalized ridge regression problem
in AsyncSpade in algorithm 1. This solving program consumes negligible runtime even under
heavy concurrency because it is very lightweight.

13
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Algorithm 1 Assembled KV Cache Filtering

Require:
1: Cached query window: Qcache ∈ RB×H×W×D

2: Current query: qcurr ∈ RB×H×1×D

3: Key states: K ∈ RB×H×L×D

4: Regularization parameter: ϵ
5: Window size: W

Ensure: Attention logits: L ∈ RB×H×L

6: procedure ASSEMBLEDFILTER(Qcache,qcurr,K, ϵ,W )
7: Step 1: Input Preparation
8: Qhist ← reshape(Qcache[:, :, : W − 1, :], [B ·H,W − 1, D])
9: qprev ← reshape(Qcache[:, :,−1 :, :], [B ·H, 1, D])

10: Step 2: Mask Construction
11: M← lower triangular mask(W ) ∈ {0, 1}W×W

12: M← broadcast(M, [B ·H,W,W ])
13: Step 3: Ridge Regression
14: G← QhistQ

⊤
hist + ϵI ▷ Gram matrix with regularization

15: b← Qhistq
⊤
prev

16: wbase ← softmax(−G−1b) ▷ Solve ridge regression problem
17: Step 4: Weight Matrix Construction
18: Wmatrix ← broadcast(wbase, [B ·H,W,W − 1])
19: Wmatrix ←Wmatrix ⊙M ▷ Apply mask
20: Wmatrix ← softmax(Wmatrix) ▷ Normalize
21: Step 5: Query Prediction
22: for j = 1 to W do
23: Qj ← Qcache[:, :,−1− j : −1, :]
24: wj ←Wmatrix[:, j, : j]

25: qj
candidate ←

∑j
k=1 w

k
j · qk

j ▷ Shifted weighted sum
26: end for
27: Step 6: Query Average Pooling
28: qfinal ← 1

W

∑W
j=1 q

j
candidate ▷ Average over all candidate next query

29: Step 7: KV Cache Selection
30: L← qfinalK

⊤ ▷ Select significant KV pairs
31: L← reshape(L, [B,H,L])
32: return L
33: end procedure
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