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ABSTRACT
Quality, diversity, and size of training data are critical factors
for learning-based gaze estimators. We create two datasets
satisfying these criteria for near-eye gaze estimation under
infrared illumination: a synthetic dataset using anatomically-
informed eye and face models with variations in face shape,
gaze direction, pupil and iris, skin tone, and external con-
ditions (2M images at 1280x960), and a real-world dataset
collected with 35 subjects (2.5M images at 640x480). Using
these datasets we train neural networks performing with sub-
millisecond latency. Our gaze estimation network achieves
2.06(±0.44)� of accuracy across a wide 30� ⇥40� �eld of view
on real subjects excluded from training and 0.5� best-case
accuracy (across the same FOV) when explicitly trained for
one real subject. We also train a pupil localization network
which achieves higher robustness than previous methods.
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1 INTRODUCTION
Computer interaction has expanded to include microphone,
camera, body tracking-based input and hand-held, wind-
shield, or head-mounted displays–or even systems with no
visual display at all. Richer interaction scenarios demand
richer input, including a better comprehension of the user
through real-time tracking of the user’s visual attention for
such input and for creating context-aware output.

This new context for interactive computing requires
robust gaze estimation and gaze tracking in real time to
power applications such as gaze selection [31], attention
monitoring [47], gaze communication cues on desktop and
in VR [46, 48], active foveated rendering [2, 17, 41], gaze-
contingent displays [27], saccadic redirected walking [51],
as well as traditional gaze tracking applications for percep-
tion research and usability tests in our own human factors
community.
Gaze estimation is the process of identifying the line of

sight for each eye of a human user at a single instant whereas
gaze tracking de�nes the continuous process for following
the user’s line of sight over time, which typically involves
�ltering results from individual frames. This paper describes
a neural network for gaze estimation that outperforms previ-
ous approaches, and presents two novel datasets for training
other such networks.
Gaze estimation must run at extremely low latency, in

the order of milliseconds, to be useful for real-time inter-
action [2, 35]. For example, foveated displays and accurate
motion blur rendering require the tracking system to return
a result faster than the frame duration, or the image can be
displayed incorrectly. Ideally, the results should also exhibit
less than one degree of error across a wide �eld of view while
being robust to variation in appearance [24]. Commercially
available gaze trackers and research systems have recently
begun to approach this goal. This work extends previous
methods to surpass state-of-the-art results.

As shown by former work, the quality of a neural network-
based gaze estimator depends on the combined quality of
the training data, training regime, and network structure.

⇤Joint �rst authors.
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We enhance the previous state of the art [16, 50, 60, 62] for
producing training data by incorporating many additional
anatomical features such as pupil constriction shift and line
of sight axis correction. We generate a new public dataset
of synthetic images that is larger and more realistic than
any of the previously available ones. It is also substantially
higher in resolution; previous datasets feature images that
are typically on the order of 200⇥200 pixels, whereas ours are
1280 ⇥ 960. We then leverage our dataset under an improved
network and training regime to produce an e�ective gaze
estimator when evaluated against real data.

There are two common camera scenarios for gaze estima-
tors: remote images captured from a monitor or dashboard-
mounted camera, and near-eye cameras, which are often
intended for use with head-mounted displays. We focus on
near-eye image data, an increasingly important use case for
augmented and virtual reality headsets. However, we demon-
strate the �exibility of our method by successfully training
our network on remote image data in a supplemental experi-
ment. Cameras are further divided into on-axis and o�-axis
con�gurations as shown in Fig. 1. We exclusively use on-axis
camera con�gurations in this paper because they are known
to provide higher quality data. However, our approach is
applicable to any camera con�guration. We assume the com-
mon head-mounted case of monochrome infrared images
under active LED illumination that produces glints (corneal
re�ections) but are not explicitly using the glints for tracking.

We present the following contributions:

• A large, novel dataset of synthetic eye images based on a
parametric, anatomically-informed model with variations
on face shape, gaze direction, pupil and iris, skin tone, and
external conditions. (Sec. 3);

• A large, novel dataset of real eye images matching the
on-axis setup of the synthetic ones (Sec. 4);

• An optimized neural network and training regime for gaze
and pupil estimation (Sec.5);

• A careful evaluation showing that our estimator achieves
higher accuracy and lower latency under real conditions
than previous methods (Sec. 5).

Both our real and synthetic images for near-eye gaze tracking
with active infrared illumination capture the challenging case
of a camera that can slip, transform, or misfocus.

2 RELATEDWORK
We focus on recent work directly related to synthetic data
and machine learning for gaze estimation. Curious readers
can read a detailed up-to-date survey of gaze tracking sys-
tems and gaze estimations algorithms found in the work of
Kar and Corcoran [24]. Relevant anatomy work with respect
to human eyes is covered in Sec. 3.
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Figure 1: Near-eye display camera con�gurations.O�- and on-
axis placements of gaze tracking cameras inside near-eye displays.
(a) The o�-axis strategy occupies less space at the cost of accuracy
in gaze estimation. (b) The on-axis con�guration requires more
space but provides frontal view of the eye, which is better for an
accurate gaze estimation. Typical locations for display panels in
head-mounted displays are denoted by dashed lines.

Eye Rendering and Anatomical Models
Adamo-Villani et al. describe an early simulator for eye mo-
tion including eye ball motion and pupil size change [1].
Świrski and Dodgson [52] were the �rst to apply realistic
eye appearance rendering to gaze tracking. They proposed
synthetic images for evaluating traditional gaze trackers,
whereas the typical approach is to train on synthetic im-
ages and validate on real ones. Shrivastava et al. improve
the quality of synthetic eye images using a generative ad-
versarial network (GAN) [44]. Our work builds directly on
Wood et al.’s SynthesEyes dataset [60], which used a realistic
eye model and rendering system for neural network training.
We extend their model with additional anatomical detail in-
formed by research on eye glass rendering [30], pupil center
shift due to pupil constriction and dilation [58, 59, 63, 64],
camera slip/miscalibration, and more sophisticated shading
and higher resolution rendering enabled by a modern multi-
GPU supercomputer.

Feature-Based Gaze Estimation
Feature-based gaze estimation methods locate the pupil and
then map the pupil location to a screen location using user-
speci�c calibration. There are many approaches for locating
the pupil. A sampling is discussed in this section.
The Starburst algorithm [33] iteratively locates the pupil

center as the mean of points which exceed a di�erential lumi-
nance threshold along the rays extending from the last best
guess. In the SET method [21], the convex hull segments of
thresholded regions are �t to sinusoidal components. Swirski
et al. [52] and Pupil Labs [25] both start with coarse position-
ing using Haar features. Swirski et al. then re�ne by k-means
clustering the intensity histogram and a modi�ed RANSAC
ellipse �t, while Pupil Labs use ellipse �tting on connected
edges. ExCuSe [12], ElSe [14] all use morphological edge



�ltering followed by ellipse �tting. ExCuSe and ElSe provide
alternative approaches for cases when edge detection is not
applicable. Fuhl et al. [11] use circular binary features (CBF)
to learn conditional distributions of pupil positions for the
datasets on which they test. These distributions are indexed
by binary feature vectors and looked up at inference time.
This approach is further discussed in Sec. 5.

Machine Learning Gaze Estimation
Balujal et al. [4] and Tew et al. [54] were among the �rst to
research combining near-eye images, neural networks, and
synthetic images for gaze tracking. Our work also uses ma-
chine learning for gaze estimation as it has been shown to be
the most promising approach. The state of the art are mostly
based on convolutional neural networks, and include results
validated on real images as accurate as 10� [60], 9.44� in sec-
onds1 [61], 7.9� [62], 4.5� in 38 ms [39, 40], 2.6� in 45 ms for
remote images with continuous training and calibration [19],
4.8± 0.8� [67], and 6.5± 1.5� [50]. The lower error rates tend
to be after per-subject calibration during validation, training
with a mixture of real and synthetic images that contain the
subject, or �ne-tuning on real data.
Work on pupil tracking using remote-camera systems is

often reported in the metrics of percent-correct inferences
within a �xed pixel radius with respect to the screen size or
the eye tracking camera frame size instead of angular accu-
racy. Hence, it is not directly comparable, but it is on roughly
the same order: 74% accuracy at 5 pixels in 7 ms [13], 89.2%–
98.2% accuracy at pupil diameter radius [16], 1.7–2.5 cm on a
mobile phone screen (66 ms) [29], and 0.20 mm median error
on a mobile phone screen (2 ms) [37].
Our gaze estimation network is an optimization of previ-

ous methods as we operate at lower weight precision, with-
out max pooling, and with fewer layers. These types of net-
works are derived from the VGG16 network topology [45].

Several broad trends appear from the previous work. More
realistic synthetic datasets (both in model and rendering)
with more images, as well as higher-resolution data in many
cases, appear to improve quality [60]. Improved training
quality allows to use simpler and thus faster networks. Near-
eye input avoids the problems of head pose and eye-region
estimation, and allows use of high-resolution images of the
eye. Networks with more layers generally outperform shal-
lower ones, and VGG16 is emerging as consensus topology
to be wrapped with preprocessing or context-aware layers
[68]. Our datasets and estimation method were designed un-
der these considerations. Our results demonstrate that the
improved dataset, network, and training we describe can con-
tribute 2–5x better angular accuracy than the state of the art

1For all cited methods, we provide runtimes where available.

at throughput that is 10–100x faster, even on an embedded
processor.

Remote Gaze Estimation and Multi-Camera Systems
We perform a supplemental experiment on remote images,
but otherwise focus exclusively on near-eye images in this
paper. Themost recent related work on remote images covers
training across multiple cameras [65], using the screen as
a glint source [20], and machine learning for calibrating
trackers [42].

Another interesting multi-camera approach is by Tonsen
et al. [55], which employs multiple 25-pixel cameras near the
eye and trains a tracker for which they report 1.79� accuracy.
Feit et al. [9] describe strategies for accommodating the

error in previous trackers, and sources of error for them; the
lighting and camera slip variation in our dataset help address
this problem by increasing robustness and accuracy of gaze
estimation.
Zhang et al. use full-face images and provide a convo-

lutional network architecture that leverages additional in-
formation from di�erent facial regions for gaze estimation
[67]. Wood et al. use a morphable eye region model with an
analysis-by-synthesis approach to extract facial expression
and gaze direction simultaneously [61].

Gaze Datasets
Some key publicly-available labelled gaze datasets are: Eye-
Chimera [10] RGB images of 40 subjects at 1920⇥1080 with
manual markers; Columbia Gaze [46] 5,880 head images of 56
subjects with 320⇥240 eye regions; Świrski and Dodgson [53]
158 synthetic, near-eye IR passive illumination images at
640⇥480; EYEDIAP [15] 16 subjects with eye images 192⇥168;
UT Multi-view [50] 64k near-eye images of 50 subjects and
1.1M synthetic images, both at 60⇥36; SynthesEyes [60] 11.4k
synthetic near-eye RGB images with passive illumination
at 120⇥80; GazeCapture [29] crowd-sourced 2.5M mobile
phone images from 1474 subjects; LPW [56] 131k near-eye
IR images with active illumination of 22 subjects at 640⇥480;
MPIIGaze [68] 214k webcam images of 15 subjects with 60⇥36
eyes; PupilNet 2.0 [13] 135k IR near-eye images with 384⇥288
eyes in varying lighting conditions; BioID [23] 1521 images
of 23 subjects with 32⇥20 eyes; InvisibleEye [55] 280k images
of 17 subjects from four 5⇥5 pixel cameras;WebGazer [38]
webcam video of 51 subjects with eye images at 640⇥480.

We contribute two novel datasets with millions of near-
eye, IR, active illumination synthetic (2M images at 1280⇥960)
and real (2.5M images at 640⇥480) images, with continuous
variation in gaze direction, region maps, and gaze labels. This
greatly expands the available quantity and quality of public
gaze data. We also use the PupilNet 2.0 and MPIIGaze data
sets in evaluating our estimators.
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Figure 2: (a) Elements of the eye and axis disparity. (b) Nasal-
superior shift under pupil constriction. Red cross-hairs mark iris
center; green cross-hairs mark pupil center.

3 SYNTHETIC DATASET
We rendered 2M infrared images of eyes at 1280 ⇥ 960 reso-
lution under active illumination (with 4 simulated IR LEDs)
from the view of a virtual, axis-aligned, near-eye gaze track-
ing camera. Each image is labeled with the exact 2D gaze
vector, 3D eye location, 2D pupil location, and a segmentation
of pupil, iris, and sclera, skin and glints (corneal re�ections)
allowing novel training strategies. This is the highest resolu-
tion and most diverse such dataset available. Publishing it is
one of our main contributions.
Wood et al. [60] previously developed a good synthetic

model for pupil tracking under daylight conditions, which
includes face shape variation, eye lashes, pupil diameter ani-
mation, eyelid motion, and eyeball rotation. To produce even
more realistic images with further variation (e.g., Fig. 3), we
extended their parametric model with additional anatomical
accuracy and detail for infrared lighting conditions as de-
scribed in this section. Our results of higher accuracy than
Wood et al. [62] give evidence that these improvements re-
duce error during training, as described in Sec. 5.
Due to the level of detail of the model and resolution

of the images, each image took about 30 seconds to ray
trace on a single GPU with shadows, subsurface scattering,
re�ection, refraction, and anti-aliasing. It took the equivalent
of 3.8 years of single-machine processing time to produce
the dataset, using a supercomputer continuously for a week.

Geometry and Animation
We begin with ten geometric models of real human faces
(5 females and 5 males of various ages and ethnic groups)
generated by 3D scans2 with manual retouching by Wood et
al. [60] to represent a variety of face shapes.We rescaled each
head to accommodate a human-average 24 mm-diameter

2Purchased from http://www.3dscanstore.com/.

Figure 3: Samples from our synthetic image dataset. The
bottom-right image is a composite of the two region maps cor-
responding to the image on its left, illustrating skin, sclera, visible
sclera, iris, pupil, and corneal glints. We augment them in training
to vary skin tone, exposure, and environment.

eyeball, giving a more realistic �t than the original work. We
inserted the average eyeball, modeling a 7.8 mm radius of
curvature at the apex of cornea and approximately 10 mm
radius at the boundary with the sclera [34, 54].

For each sample in our synthetic dataset, we displaced the
head including the eye by a small, random o�set to model
the slippage of a head-mounted camera during use. This
kind of shift after calibration is a signi�cant and common
source of error in gaze trackers [7, 63]. We then chose a
randomly selected point of regard on a �xed screen at 1 m
from the virtual head. This de�ned the line of sight, which
passes through the geometrical center of the eye.
For the selected gaze direction, we modeled the ⇠5� dis-

parity between the line of sight and pupillary axis of the
eye [26, p.74] by rotating the virtual eyeball in the temporal
direction (side of the head). We randomly selected eyelid po-
sitions ranging from fully open to roughly two-thirds closed
[60]. For each position, the top lid covers approximately 4x
more eye surface area than the lower lid in order to simulate
physically correct eye appearance during a blink [18, 49].

We selected the pupil size from the useful range of 2 mm
to 8 mm and modeled the nasal-superior (i.e., towards the
forehead above the nose) shift of the pupil under constriction
due to illumination [26, p.511]. We used key frames of about
0.1 mm, nasal and superior, for a dilated 8 mm pupil in dim
light, about 0.2 mm nasal, 0.1 mm superior for a typical 4 mm
pupil, and 0.25 mm nasal, 0.1 mm superior for a constricted 2
mm pupil in bright light (Fig. 2). We allowed the iris texture
to randomly rotate around the center of the pupil to provide
additional variation of the eye appearance.

http://www.3dscanstore.com/


Materials
The original textures were designed for visible light. Wemod-
i�ed the skin and iris textures in both pattern and intensity
to match the observed properties of those surfaces under
monochromatic (� = 950 nm) infrared imaging. Accordingly,
we modeled air with a unit refractive index and the cornea
with an index of refraction n = 1.38 [43], yielding the real-
istic highly-re�ective corneal surface on which LED glints
appear.
The ten face models provide di�erent skin textures. Al-

though there is much less tonal and pigment variation be-
tween individuals in near-infrared wavelengths than in visi-
ble light [3, 69], we recommend varying the skin tone using
our provided skin region masks to amplify the e�ective data
size as commonly done for neural network training.

Region Maps and Labels
We provide the 2D gaze vector (point of regard on a screen,
described as horizontal and vertical gaze angle from a con-
stant reference eye position), head position, eye lid states,
and pupil size used to generate each image and the 2D iris
center and pupil center (for comparison to older work) in
the image. For each sample we produce two exact region
maps. The �rst one identi�es skin, pupil, iris, sclera, and LED
glints on the cornea. In the second region map, we render the
non-skin structures with the face geometry removed, so that
pixel-accurate data is provided for the remaining features
even when parts of the eye are occluded by eyelids or rest of
the face (see Fig. 3, bottom right).

4 REAL-WORLD DATASET
We captured a novel binocular dataset consisting of 1M la-
belled frames from two high-speed (120 Hz) on-axis near-eye
infrared cameras of the eyes of real humans at 640 ⇥ 480 res-
olution per eye (Fig. 4). The resolution is lower than in our
synthetic data due to the limitations of near-eye gaze track-
ing cameras. This is still a signi�cantly higher resolution than
the eye images of previous pupil estimation datasets [13]
and two orders of magnitude more pixels per image than
previous gaze estimation datasets [68]. This is also the �rst
binocular gaze dataset captured during an acuity task to
increase precision.

Environment and Subjects
We captured images from 30 subjects with variation in gen-
der, ethnicity, age, eye shape, and face shape. We induced in-
cidental factors of eyeliner, eyeshadow, mascara, eyeglasses,
and contact lenses. These data have comparable active in-
frared LED characteristics and camera parameters to the
synthetic set. For each subject, the data includes varying

Figure 4: Samples from our real image dataset containing
varying pupil size and lighting. The pupil locations estimated
by our pupil estimation network are red pixels. The soft dots present
in the upper regions of each frame are camera aberrations.

gaze direction, pupil size (due to ambient visible illumination
changes), and infrared illumination (Fig. 4).

Two hardware setups were used. The �rst setup emulates
the use case of virtual reality headsets with a constant in-
frared illumination, where we gathered data from 10 subjects.
The second setup emulates a more general use case such as
augmented reality with changing infrared illumination to
cover uncalibrated lighting conditions, where we gathered
data from 20 subjects. We randomly decide for constant light-
ing or vary the infrared LED intensity by using pulse-width
modulation and oscillating the intensity between de�ned
min/max values with a sine wave of 1 Hz frequency.

Task and Stimulus
To ensure precise gaze direction labels for the captured
images, subjects performed an acuity task during capture,
which requires accurate �xation and can reduce occurrence
of microsaccades [5, 28]. We placed the subject in a quiet
and dimmed o�ce environment, wearing a VR headset with
integrated infrared cameras or looking at a computer moni-
tor (27” inches at 53cm distance) with a face stabilizer and
mounted cameras.

For each trial, we displayed at a random location on screen
a capital letter ‘E’ that subtended 5 arcmin on its long axis,
which by de�nition is the smallest size discernible to a viewer
with 20/20 vision, and rotated it to a random multiple of 90�
orientation. The subject attempted to identify the orienta-
tion, which requires looking directly at the target, and then
(without looking) selected an appropriate button. When the
subject gave an incorrect response, we rejected the image
and ran an additional randomized trial.
When the subject responded correctly, a video recording

of 2 seconds duration window began and we instructed the



subject to remain �xated until the target disappeared, pro-
viding frames that di�er in blink and micro-saccades. Three
hundred milliseconds after the video began, we induced fur-
ther variation in pupil center shift and diameter by ramping
screen background intensity (including ambient re�ection)
from 400 lumens (“white”) to 2 lumens (“black”).

Labels
Gaze direction was labeled as de�ned in Sec. 3. For the bene�t
of future work, we also computed the pupil position and
blink labels using the pupil estimator described in Sec. 5 and
provide those as additional labels.

5 EXPERIMENTAL RESULTS
We trained neural networks with the proposed dataset and
evaluated their performance for practical applications such
as gaze estimation and pupil detection. The network archi-
tecture that we used was a convolutional neural network
motivated by Laine et al. [32], which was optimized for speed
and accuracy in performing gaze estimation (see details in
the supplemental material).

Evaluation of Proposed Synthetic Dataset
We conducted an ablation study to assess the contribution of
our extensions to the original SynthesEyes model of Wood
et al. [60] for the case of near-eye gaze estimation under IR
lighting. We created 5 synthetic datasets as below. The �rst
two datasets directly compared our dataset and the original
SynthesEyes model. For the additional three datasets, we
individually removed one of the following features from our
model: geometrical correction of eye model, texture adjust-
ment for infrared lighting, and pupil center shift. To evaluate
how well a trained network generalizes on a novel subject,
we de�ned generalization error as the absolute error between
the test labels and inferred values transformed according
to a per-subject a�ne calibration transform, computed be-
tween the set of inferred values and the set of test labels. We
rendered 16K images across 10 synthetic subjects for each
condition, trained gaze networks for them and evaluated
them on real data from 9 subjects. We repeated training for
each condition 10 times and performed a two-way ANOVA
to identify the statistically signi�cant e�ects.
For the main e�ects, we observed statistically signi�cant

di�erences between the various training data sets (p<0.05),
but not between the testing subjects. No interaction between
training data sets and testing subjects was found. Further-
more, pairwise comparisons between the di�erent training
sets (after Bonferroni correction) revealed that our proposed
dataset (with and without the pupil constriction shift, rows
1 and 5 in Table 1) resulted in a signi�cant improvement
(p<0.05) over the original SynthesEyes model (row 2). Ad-
ditionally, both our eye model and infrared textures (rows

Dataset Generalization Error (°)
1 Our model 3.51
2 SynthesEyes model 3.87
3 Our model without geometrical correction of eye 3.62
4 Our model without texture adjustment for IR 3.82
5 Our model without pupil-center shift 3.50

Table 1: Ablation study to assess bene�t of proposed
synthetic dataset.When trained with our synthetic dataset,
the neural network could estimate gaze of unseen, real sub-
jects more accurately. The ablation study suggests that most
of the advantage of our synthetic model comes from geomet-
rical correction of the eye model and texture adjustment for
the IR lighting condition.

3 and 4 in Table 1 vs. 1) showed a trend towards improv-
ing accuracy with the latter being more signi�cant (p<0.1).
While further experimentation with more data would help to
understand the individual e�ects more clearly, it is clear that
all factors together lead to the improved gaze performance of
our synthetic model versus the existing SynthesEyes model
in the near-eye infrared setting.

Near-Eye Gaze Estimation
Using our synthetic and real-world VR headset datasets, we
evaluated the gaze estimation accuracy of our neural network
architecture with 6 convolutional layers, input resolution of
127x127, and 8 channels in the �rst layer. We chose this net-
work architecture as it resulted in a reasonable compromise
between accuracy and computational cost (see supplemental
material for more details). We evaluated three training meth-
ods: 1) training speci�cally on data from one real subject and
testing on the same subject, 2) training exclusively on data
consisting of synthetic images and testing on real subjects,
and 3) training on data consisting of both synthetic and real
images and testing on real subjects. We achieve remarkable
accuracy in all three scenarios.

Training and Testing on One Real Subject. For each subject,
a training set consisted of about 5,000 to 7,400 images col-
lected for 45 to 50 gaze directions and varying pupil sizes.
The test set consisted of about 1,400 to 1,900 images taken
for 11 to 13 gaze directions, which were not present in the
training set. The details of the training procedure are in the
supplemental material. On average, across all subjects, our
network achieved an absolute estimation error of 0.84� with
the best-case accuracy being 0.50�.

Training on Synthetic Data and Testing on Real Subjects. The
training set consisted of 240k images rendered using 10 syn-
thetic subjects. To e�ectively increase the size of data, we
augmented the training inputs by using region maps; we
applied random amounts of blur, intensity modulation, and



contrast modulation to the iris, sclera, and skin regions in-
dependently. The test set was all the images acquired from
7 real subjects. We achieved 3.1� generalization error on av-
erage across all subjects with the best-case accuracy being
2.3�.

Training on Synthetic and Real Data and Testing on Real Sub-
jects. The training set consisted of all previously used syn-
thetic images and real images from 3 real subjects. We tested
on the remaining 7 real subjects (same as in the previous
test). We achieved 2.1� generalization error on average, the
best accuracy being 1.7�.

Remote Gaze Estimation
We also evaluated the e�cacy of our proposed neural net-
work architecture for remote gaze tracking. Note that this is a
harder task than near-eye gaze estimation, as low-resolution
eye images are captured with a remote camera placed 0.5–1
meters away from the subject, under highly variable ambient
lighting conditions and with the presence of the full range
of motion of the subject’s head. Recently, Park et al. [40]
proposed a top-performing method, containing several hour-
glass networks, for unconstrained eye landmark detection
and gaze estimation. They used millions of synthetic eye im-
ages generated by the UnityEyes model [62], of size 90⇥ 150,
to train their network and reported an error of 8.3� on the
real-world benchmark MPIIGaze dataset [66] when no im-
ages from the MPIIGaze data were used for training or cal-
ibration (con�rmed via personal communication with the
author).

To directly compare the performance of our CNN against
their approach, we trained it with one million synthetic im-
ages generated from the UnityEyes model and evaluated
its performance on all the 45K images from the MPIIGaze
dataset. Our network, for this task, was identical to the one
that we used in the previous experiment for near-eye gaze
estimation, with the exception that we normalized the ac-
tivations of the �rst four convolutional layers via instance
normalization [8, 57] and used leaky ReLU [36] with � = 0.1
instead of ReLU as the non-linearity. We empirically deter-
mined these to be useful for stabilizing training and con-
vergence. For training, we used the Adam optimizer with a
learning rate of 10�4, �1 = 0.9, �2 = 0.999, � = 10�8, batch
size of 64, and trained for 300 epochs. We also used all the
data augmentation steps employed previously by Park et
al. [40], except for random image rotations during training.
Our network resulted in an error of 8.4�, which is equiva-
lent to that of Park et al., but our network was 100x faster
(2000Hz vs. 26Hz theirs’). Considering accuracy and latency
together, our network is superior for remote gaze tracking.

Figure 5: Samples for pupil estimation network. The �rst row
shows augmented images during training. Our network performs
well even for challenging samples including bad lighting conditions,
dark eye lashes and re�ections (second row). Unsuccessful cases
due to strong pupil occlusion are shown in the third row.

Pupil Location Estimation
Most existing high-quality video-based gaze tracking sys-
tems initially perform pupil estimation in the eye tracking
camera frame followed by mapping the pupil position to a
screen location with a polynomial calibration function [24].
To compare against such approaches, we trained our network
to estimate the pupil center from infrared eye images.

As input we use a subset of 16,000 images of our synthetic
dataset containing 1,600 of each headmodel (Fig. 3) combined
with 7,128 images from 3 real subjects from our second real-
world dataset (Fig. 4), yielding a synthetic to real image ratio
of approximately 2:1. Labels for pupil location are given for
our synthetic images whereas initial labels for the real-world
data set are computed using the PupilLabs pupil tracker [25]
and validated by manual inspection.

Network Architecture and Training. The network architecture
is equivalent to the previous experiment, except that we use
7 convolutional layers. To compensate for signi�cant noise
in the tested images representing challenging augmented
reality conditions, we increased the kernel sizes of the �rst 4
convolutional layers to 9,7,5,5 and added one additional layer
with respect to our baseline architecture in order to increase
robustness against image noise, such as re�ections and bad
lighting conditions. This slightly enlarged network can be
still evaluated very quickly on the GPU (see next section). In
comparison to the 6-layer network used for gaze estimation,
the slightly bigger 7-layer network performs more robust,
particularly in the case of strong re�ections covering the eye.
We again use 2⇥2 stride at each convolutional layer, add

dropout layers after each convolutional layer, and apply no
padding or pooling. The input image size is 293⇥293 pixels.
Because we are not estimating the line of sight with this
network, no per-subject post-process transformation is ap-
plied after the fully-connected �nal layer. During training
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Figure 6: Average pupil estimation error on PupilNet
datasets. Top: We compare the average detection rate of our pupil
estimation network against Starburst [33], Set [21], Swirski et
al. [52], ExCuSe [12], ElSe [14], PupilNet [13], Park et al. [40] and
CBF [11]. Bottom: The 5-pixel error is averaged across individual
PupilNet datasets (bold marker) and bounded by best and worst er-
ror values for all datasets (upper and lower markers). Our approach
reaches highest robustness. Note that for CBF only the average
detection rates over all datasets were published, not the detection
rate for individual datsets [11].

we always rescale the image to the network input resolution
using bicubic �ltering. We then perform various augmenta-
tion steps during training as we did for the gaze estimation
network, making a subset of our synthetic data su�cient
for convergence in training of the network. Speci�cally, we
randomize image samples using a�ne image transformation,
pixel-wise intensity noise, global intensity o�set, Gaussian
�ltering, image shrinking followed by upscaling, histogram
equalization, and normalization with mean shift. We also
simulate environment re�ections in the eye by randomly
overlaying the image with images out of a dataset of 326
natural photographs [22]. For details about the training pro-
cedure we refer the reader to the supplementary material.
Augmented images are shown in Fig. 5 (�rst row).

Pupil Estimation Accuracy. Accuracy of pupil estimation is
usually given in form of a probability of estimating the
pupil location with a maximum distance of 5 pixels from
the ground truth pupil location (”5-pixel error” or ”detection
rate”) [13]. When training on 10 synthetic and 3 real sub-
jects we reach very high pupil estimation accuracy across all
remaining subjects of our second real-world dataset. Fig. 5
shows that our network is able to estimate the pupil center
even for very challenging cases such as bad lighting condi-
tions, dark eye lashes, partly occluded pupils, and re�ections.

Pupil estimation during blinks and in case of other strong oc-
clusions are ill-posed problems and typically result in higher
estimation error. However, since we include pupil labels even
for occluded pupils in our synthetic data we e�ectively limit
the o�set from the ground truth pupil location during a blink
(Fig. 5, third row). Note that our pupil localization network is
trained on on-axis images and performs well for this camera
con�guration (Fig. 1, on-axis). For other camera con�gura-
tion, respective images must be included in training or the
network will perform suboptimal.
Recent pupil estimation methods [12–14, 21, 33, 40, 52]

have been evaluated on the PupilNet dataset containing 29
individual datasets with 135,000 frames each with di�erent
challenges such as di�erent geometric con�gurations, strong
environment re�ections, camera noise, di�cult lighting, and
even incomplete frames [13]. Following Fuhl et al., we trained
with images from the PupilNet datasets in addition to our
synthetic dataset excluding images from the PupilNet dataset
that we use for validation. For a fair comparison to values
given in previous papers we compute results with respect
to the native dataset resolution of 384x288. This means our
293x293 network has to deliver sub-5-pixel accuracy. For
Park et al. we test on 180x108 cropped images centered on
the pupil location given by the label, allowing their network
to e�ectively work on the full native resolution while making
sure that the pupil is still contained.

We reach a 5-pixel error of 83.1% which is signi�cantly su-
perior to other CNN-based approaches such as PupilNet.v2
with 76.7% and Park et al. 43.7% and higher than ExCuse
67.1%, ElSe 54.2% (see Fig. 6, top). We reason that our network
architecture in combination with image augmentation helps
signi�cantly to increase robustness against noise visible in
challenging real-world images. In Fig. 6 (bottom) we plot the
best case and worst case value over all individual datasets of
PupilNet. The graph shows that our network reaches con-
sistently high robustness with low variance from dataset to
dataset (69.1% worst case, 96.3% best case). Using the net-
work of Park et al. overall shows a much higher variance
and lower performance across the PupilNet dataset. These
results are worse in comparison to numbers reported in their
paper when testing on the MPIIGaze real-world dataset [40].
We reason that Park et al. do not augment with random
re�ections during training which signi�cantly lowers the
detection rate on the PupilNet dataset.

CBF-20 exceeds our performance on the PupilNet dataset
below 8 pixels of error and CBF-15 below 3 pixels. However,
our trainedmodel requires only 8MB ofmemorywhereas the
CBF models consumes 3 orders of magnitude more (3 GB and
9.5 GB respectively). Therefore, CBF may be used in the case
where best case accuracy with high memory consumption is
an acceptable tradeo� over robust worst-case performance
and low memory footprint.



Real-Time Performance
We implemented our trained network in cuDNN [6], a frame-
work of optimized GPU kernels for deep learning built on
NVIDIA CUDA. We tested inference times for di�erent net-
works on desktop and mobile class GPUs as shown in Ta-
ble 2. The Near-Eye Gaze Estimation and Pupil Localization
networks refer to the networks described earlier in this sec-
tion. The times reported are averages for a single frame over
100,000 inferences using 16 bit �oating point (half) preci-
sion.3

On NVIDIA Titan V, our networks run at well over 1,000
Hz. On Jetson TX2, our Gaze Estimation network again runs
at over 1,000 Hz, while our slightly larger Pupil Location
network achieves over 260 Hz.

Network Titan V Jetson TX2
G��� E��������� 0.496 ms 0.659 ms
P���� L����������� 0.914 ms 3.781 ms

Table 2: Inference performance on tested hardware.

6 DISCUSSION
Accurate synthetic data is essential for training machine
learning systems within practical resource limits. Our novel
synthetic dataset is accurate and comprehensive for the im-
plemented model components. It enables training for in-
formation which is hard to obtain and control in the real
world, and our novel real image dataset improves accuracy
and provides real-world validation. We demonstrated the
e�ectiveness of these datasets in contributing to one of the
best-performing gaze estimation networks, and have shown
that adaptation to new hardware con�gurations is simple,
fast, and robust.
Our eye model does not include eyeball elongation com-

mon inmyopic eyes, the complicated optical elements behind
the pupil such as the crystalline lens, rotational movements
of the eyeball according to Listing’s Law, or the movement of
�uid within the eye during gaze changes. We did not model
these because we hypothesized that they have milder impact
on gaze and pupil estimation compared to what we incorpo-
rated in our dataset. Having addressed the challenging larger
sources of error by our improved anatomical model and ren-
dering shaders, the previously mentioned smaller sources of
error are now good candidates for follow-up study.
We include the region maps to promote future research

with region-wise augmentation of our synthetic dataset. For
example, extended iris texture, eye lash variation, alterna-
tive environment re�ections, additional physiological struc-
tures in the sclera, alternative camera lens distortion and
vignetting properties, and more diverse makeup application

3For both networks, we veri�ed that inference accuracy is identical (to
1/1,000th of a degree/pixel) for 32 and 16 bit �oating point precision.

can now be explored as 2D imaging operations during train-
ing without the immense computing power required to path
trace millions of high-resolution images from 3D models.
Including head slippage in training data is essential for

robust and accurate gaze estimation. Our approach was to
randomize head positions, thereby covering a space encom-
passing typical head positions encountered when using a
headset. This strategy is simple to implement but can pos-
sibly include head positions never encountered in real use
cases. While this approach may generalize better for unseen
subjects, a more realistic slippage modeling based on mea-
surements could enhance accuracy even further for speci�c
real-world scenarios. We hope to explore this approach in
future work.
Robust, accurate gaze tracking enables novel gaze-based

HCI methodologies, particularly in VR. The methodologies
that have been explored for VR are limited by the accuracy
of gaze trackers, leading to approximations of both the VR
headset[2][3] and the gaze tracker[4]. Even those setups
using a real VR headset with a real gaze tracker cite the ac-
curacy of the tracker as a confounding factor in their experi-
ments[6][7]. Methods that overcome gaze tracker inaccuracy
by “snapping to locations” or other approximations are con-
founded by nearly-overlapping objects, limiting test scene
complexity, and requiring heuristics to separate items[5].
Clearly, gaze tracker accuracy and robustness is a limitation
in HCI research on gaze-based interaction.
Our presented network, training technique, and datasets

compose amethod for training a robust, accurate gaze tracker
for arbitrary head-mounted setups. Previously, experiments
were limited to the accuracy achievable by o�-the-shelf track-
ers which, though capable of high accuracy in the ideal case,
do not achieve robust accuracy for all experimental setups,
let alone all experiment participants. Our result provides the
best of both worlds: experimenters can use our robust, pre-
trained gaze tracking network, or follow our method to train
their own using the datasets and eye model that we publish
with the paper. Based on our experience constructing our
network and dataset, we make the following recommenda-
tions to experimenters in the HCI community seeking to
implement our technique:

• Despite their simplicity, stacked convolutional network
architectures are very accurate once trained to conver-
gence, provide low-latency inference on modern GPUs,
and are easy to implement. They should be preferred mod-
els for VR gaze tracking setups. We provide analysis of
training parameters (number of convolutional layers, fea-
ture counts, etc.) in the supplementary material to assist
researchers in creating stacked convolutional networks
that �t their experimental setups.



• The most important physical properties of synthetic eye
models are accurate representation of anatomical structure
and re�ectance in the given lighting condition, a�ecting
size and brightness of features in images. Experimenters
should take this into account both when using synthetic
data and when using real data/training on live participants.

• The most important hardware setup properties to simulate
are lighting condition and camera parameters (view, sensor
properties, exposure, noise). Experimenters should take
this into account when synthesizing images and when
designing experiments.
Finally, though many gaze-based interaction methodolo-

gies are enabled by our approach, we �nd blink-based inter-
actions to be of particular interest [10]. A robust blink de-
tection technique combined with our gaze tracking network
would enable robust and precise blink interaction, allow-
ing researchers to di�erentiate blink events (e.g. voluntary
vs. involutary blinks), thus enlarging the space of possible
interaction techniques.

7 CONCLUSION
We have presented 1) a robust, accurate gaze estimation net-
work, 2) a general method for training image-based gaze
estimators from custom hardware setups, and 3) the NVGaze
datasets containing millions of real and synthetic images of
high quality augmented with an eye model and rendering
pipeline to create highly realistic eye images. Our network
achieves state-of-the-art accuracy for gaze estimation and
pupil detection and is more robust (in terms of worst case
performance) than all previous methods. Our approach is
easily adaptable to arbitrary hardware con�gurations, and
we include recommendations for training based on our ex-
perience implementing our presented network. We share
dataset, our eye model, and rendering and animation code
with the community to allow researchers to easily render
synthetic data speci�c to their hardware setup. Our network,
method, and datasets constitute a signi�cant advance in the
state of the art for image-based head-mounted gaze tracking,
enabling numerous opportunities for research in gaze-based
rendering and HCI. With this work we hope to make an
impetus for novel research topics covering gaze interaction,
visual perception, gaze-contingent displays and gaze-based
rendering.
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