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ABSTRACT

Developing successful artificial intelligence systems in practice depends both on
robust deep learning models as well as large high quality data. Acquiring and la-
beling data can become prohibitively expensive and time-consuming in many real-
world applications such as clinical disease models. Self-supervised learning has
demonstrated great potential in increasing model accuracy and robustness in small
data regimes. In addition, many clinical imaging and disease modeling applica-
tions rely heavily on regression of continuous quantities. However, the applicabil-
ity of self-supervised learning for these medical-imaging regression tasks has not
been extensively studied. In this study, we develop a cross-domain self-supervised
learning approach for disease prognostic modeling as a regression problem using
3D images as input. We demonstrate that self-supervised pre-training can im-
prove the prediction of Alzheimer’s Disease progression from brain MRI. We also
show that pre-training on extended (but not labeled) brain MRI data outperforms
pre-training on natural images. We further observe that the highest performance
is achieved when both natural images and extended brain-MRI data are used for
pre-training.

1 INTORDUCTION

Developing reliable and robust artificial intelligence systems requires advanced and efficient deep
learning techniques, as well as the creation and annotation of large volumes of data for training.
However, the construction of a labeled dataset is often time-consuming and expensive, such as in the
medical imaging domain, due to the complexity of annotation tasks and the high expertise required
for the manual interpretation of medical images. To alleviate the lack of annotations in medical
imaging, transfer learning from natural images is becoming popular ((Liu et al., 2020b), (McKin-
ney et al., 2020), (Menegola et al., 2017), (Xie et al., 2019)). Although numerous experimental
studies indicate the effectiveness of fine-tuning from either supervised or self-supervised ImageNet
models ((Alzubaidi et al., 2020), (Graziani et al., 2019), (Heker & Greenspan, 2020), (Zhou et al.,
2021),(Hosseinzadeh Taher et al., 2021),(Azizi et al., 2021)), it does not always improve the perfor-
mance due to domain mismatch problem ((Raghu et al., 2019)).

In the meantime, self-supervised learning has demonstrated great success in many down-
stream applications in computer vision, where the labeling process is quite expensive and time-
consuming((Doersch et al., 2015), (Gidaris et al., 2018), (Noroozi & Favaro, 2016), (Zhang et al.,
2016),(Ye et al., 2019), (Bachman et al., 2019),(Tian et al., 2020a), (Henaff, 2020), (Oord et al.,
2018)]. Medical research and healthcare are especially well-poised to benefit from self-supervised
learning approaches, given the prevalence of unprecedented amounts of medical images generated
by hospital and non-hospital settings. Despite demand, the use of self-supervised approaches in
the medical image domain has received limited attention. Only few studies have investigated the
impact of self-supervised learning in the medical image analysis domain for limited applications
including classification ((Liu et al., 2019), (Sowrirajan et al., 2021),(He et al., 2020b),(Azizi et al.,
2022),(Zhu et al., 2020),(Liu et al., 2020a)) and segmentation ((Ronneberger et al., 2015),(Bai et al.,
2019),(Chaitanya et al., 2020),(Spitzer et al., 2018)).
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In this study, we focus on developing a self-supervised deep learning model for predicting the pro-
gression of Alzheimer’s disease (AD). AD is a slowly progressing disease caused by the degen-
eration of brain cells, with patients showing clinical symptoms years after the onset of the dis-
ease. Therefore, accurate prognosis and treatment of AD in its early stage is critical to prevent
non-reversible and fatal brain damage. Prognostic prediction, modeled as a regression task rather
than a classification, helps provide more granular estimates of disease progression. However, little
progress has been made because of the difficult design requirements and, lack of large-scale and
homogeneous datasets, and noisy endpoints that are potentially hard to predict.

We establish a cross-domain self-supervised transfer learning approach for medical image analysis
that leverages self-supervised learning on both unlabeled large-scale natural images and domain-
specific medical imaging to learn transferable and generalizable representations for medical im-
ages. Such representations can be further fine-tuned and deployed for downstream tasks such as
disease progress prediction using limited labeled data from the clinical setting. Our transfer learn-
ing strategy benefits from both large-scale self-supervised representations and domain-specific self-
supervised representations in a unified deep learning framework. We develop a detailed and exten-
sive framework to evaluate the performance of our model fine-tuned from different supervised and
self-supervised models pre-trained on either natural images or medical images, or both. Our ex-
tensive experimental results reveal that (1) self-supervised pre-training on natural images followed
by intermediate self-supervised learning on unlabeled domains-specific medical data outperforms
all other transfer learning techniques, which is very promising because replacing supervised ap-
proaches with self-supervised learning can significantly reduce the need for data annotation (2)
self-supervised models pre-trained on medical images outperform same models pre-trained on nat-
ural images indicating that self-supervised learning on medical images yield discriminative feature
representations for regression task.

2 RELATED WORKS

The recent development and success of self-supervised learning techniques, including contrastive
learning ((Wu et al., 2018),(He et al., 2020a),(Chen et al., 2020c),(Chen et al., 2020b),(Chen et al.,
2020a),(Grill et al., 2020),(Misra & Maaten, 2020)), mutual information reduction ((Tian et al.,
2020b)), clustering ((Caron et al., 2020),(Li et al., 2020)), and redundancy-reduction methods
((Zbontar et al., 2021), (Bardes et al., 2021)) in computer vision indicate their effectiveness in im-
proving the performance of AI systems. These methods train models on different pretext tasks to
enable the network to learn high-quality representations without label information. SimCLR (Chen
et al., 2020c) maximizes agreement between representations of different augmentations of the same
image by using a contrastive loss in the latent space. Barlow Twins (Zbontar et al., 2021) measure
the cross-correlation matrix between the embedding of two identical networks and its goal is to
make this cross-correlation close to the identity matrix. SwAV (Caron et al., 2020) simultaneously
clusters the images while enforcing consistency between cluster assignments produced for differ-
ently augmented views of the same image, instead of comparing features directly as in contrastive
learning.

Subsequently, self-supervised learning has been employed for medical imaging applications includ-
ing classification and segmentation to learn visual representations of medical images by incorpo-
rating unlabeled medical images. While some approaches have designed domain-specific pretext
tasks (Bai et al., 2019), (Spitzer et al., 2018),(Zhuang et al., 2019),(Zhu et al., 2020)], others have
adjusted well-known self-supervised learning methods to medical data (He et al., 2020b),(Li et al.,
2021),(Zhou et al., 2020),(Sowrirajan et al., 2021). Very recently (Azizi et al., 2022) has applied
SimCLR on a combination of unlabeled ImageNet dataset and task specific medical images for
medical image classification; their experiments and improved performance suggest that pre-training
on ImageNet is complementary to pre-training on unlabeled medical images.

Although aforementioned approaches demonstrate improvement of the performance on challenging
medical datasets, all of them are limited to classification and segmentation tasks and their benefits
and potential effects for the prognosis prediction tasks, as regression tasks, have not been studied.
Formulating progress prediction as a regression rather than a traditional classification problem leads
to a more fine-grained measurement scale which is crucial for real-world applications. Therefore, the
development of self-supervised networks is in great demand for efficient data-utilization in medical
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imaging for disease prognosis. To the best of our knowledge, this is the first study of developing a
self-supervised deep convolution neural network on medical data images from various cross-domain
datasets to predict a granular understanding of disease progression.

3 METHODOLOGY

3.1 TASK AND DATA

In Alzheimer’s Disease clinical trials, the most important cognitive test that is performed to assess
current patient function and the likelihood of AD progression is Clinical Dementia Rating Scale
Sum of Boxes (CDRSB). Our goal is to predict the progression of Alzheimer’s Disease 12 months
after the first patient visit. Specifically, our model uses 2D slice stacks of an MRI volume (which
are collected at the first visit) as an input and predicts the CDRSB value, which is computed at
month 12 (i.e., after one year). All individuals included in our analysis are around 8k from seven
external datasets, including ADNI (Petersen et al., 2010), BIOFINDER (Mattsson-Carlgren et al.,
2020), FACEHBI (Moreno-Grau et al., 2018), AIBL (Ellis et al., 2009), HABs (Dagley et al., 2017),
BIOCARD (Moghekar et al., 2013), and WRAP (Langhough Koscik et al., 2021), and four internal
studies including A, B, C, and D (dataset names are anonymized in order to allow for blind review).
We only include the axial view of MR images for this paper analysis. MR volumes are standardized
using standard preprocessing steps (Appendix A.1) and are cropped or padded to (224 × 224) to
make them compatible with the ResNet-50 input size. Furthermore, using the predefined SynthSeg
model ((Billot et al., 2021)), we generate segmented images from raw images in order to evaluate
the information of different brain parts. The segmentation results only contain the brain region and
masked out other details such as skull, etc. The results of segmented images are provided in the
Appendix A.2.

We provide two datasets of medical images referred to as center-slice and 5-slice datasets. In the
5-slice dataset, for each subject, we prepare a 5-slice stack from its corresponding 3D MRI volume
by taking the center slices of the brain sub-volumes and four adjacent slices at intervals equal to 5
(two to the right, two to the left). The center-slice imaging dataset only contains the center slice,
while the 5-slice dataset includes the 5-slice stack. The number of unlabeled images in the center-
slice dataset is 43, 740, and the number of unlabeled images in the 5-slice dataset equals 218, 700.
Both of these datasets are used to train self-supervised models. During the self-supervised learning
process, 92% and 8% of the data are assigned for the training and validation, respectively. Following
the common practice in self-supervised learning, based on the minimum self-supervised validation
loss, we select the best model and transfer its backbone weights to the supervised model. For the
purpose of creating labeled datasets, we use MR images of participants’ first visits. The participants
are selected from five datasets, including ADNI, A, B, C, and D. For supervised training, we only
consider the 2D center slice. The number of labeled data in this dataset is 935 for the train and
validation sets, as well as 360 for the independent test set.

3.2 SELF-SUPERVISED LEARNING PLATFORM FOR REGRESSION PROBLEM

Following are the experiments that comprise our approach. 1) We assign our model with self-
supervised pre-trained representations on unlabeled natural images in ImageNet. 2) We initialize the
weights of model randomly then do self-supervised pre-training on medical images (Figure 1(a)).
3) We initialize weights with supervised pre-trained weights on labeled ImageNet and then self-
supervised pre-training on medical images (Figure 1(b)). 4) We initialize the weights with self-
supervised pre-trained weights on unlabeled ImageNet and then self-supervised pre-training on all
layers on unlabeled medical images (Figure 1(c)). A number of data augmentations have been per-
formed for all the self-supervised learning models discussed in this paper, including random gray
scaling, random cropping with resizing, random Gaussian blurring, random rotation, and random
flipping. We use a batch size of 50 and epoch of 1000 and implement an early-stop mechanism
based on the validation data in order to prevent over-fitting.
After we have pre-trained the weights of self-supervised frameworks, we use their CNN backbone
(in our experiments, this is ResNet-50) to fine-tune the regression task (Figure 1(d)) and then cal-
culate the results on an independent set of data (Figure 1(e)). For supervised learning models, we
perform data augmentation including random vertical and horizontal rotation, as well as random
flipping. For supervised learning, a batch size of 25 and an epoch of 500 are used.
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Self-supervised pre-training on natural images

There are a wide variety of self-supervised learning (SSL) models that are pre-trained on large-scale
natural image datasets, such as ImageNet, that are commonly used for transfer learning. Such
SSL pre-training techniques surpass supervised ImageNet models in several computer vision tasks.
To exploit these benefits, in this experiment, we initialize the backbone encoder with weights
from SSL models trained on ImageNet. While several types of self-supervised learning methods
exist, in this work, we focus on three self-supervised learning methods, one contrastive approach
including SimCLR, one redundancy reduction approach including BarLow Twins (BLT), and one
clustering-based contrastive learning approach including SwAV which have yielded impressive
results on natural image benchmarks. There are several other self-supervised learning strategies,
but their performance on ImageNet yields comparable results.

Self-supervised pre-training on medical images

Although representations learned from natural images perform well on medical imaging tasks
((Mustafa et al., 2021)), they may not be optimal for the medical imaging domain due to the large
distribution shift from natural images. Generally, medical images are monochromatic and have sim-
ilar anatomical structures. This discrepancy could be minimized by further pre-training on medical
data, either supervised or unsupervised. Due to the time and cost associated with the annotation of
medical data, self-supervised learning can be considered a more practical and realistic alternative.
Similar to self-supervised pre-training on natural images, we employ SimCLR, Barlow Twins, and
SwAV to learn distinctive representations of unlabeled medical images effectively. These methods
have all demonstrated good performance in the classification and segmentation of medical images.
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Figure 1: These figures demonstrate different strategies for preparing using in-domain images and
how fine-tuning and independent testing are conducted. (a) Show a self-supervised pre-training pro-
cess with random initialization for in-domain medical imaging. (b) Shows an in-domain pre-training
procedure with supervised ImageNet initialization. (c) demonstrates in-domain self-supervised
training with self-supervised ImageNet initialization. (d) illustrates in-domain fine-tuning following
the transfer of backbone from one of the scenarios (a), (b) or (c). (e) demonstrates the application of
the trained model on an independent test set within the domain.
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Pre-training Initialization R2

- Random 0.06
Supervised ImageNet 0.06

Self-supervised
SimCLR 0.10
SwAV 0.08

Barlow Twins 0.14

(a) pre-training on natural images

Pre-training Initialization R2

- Random 0.06

Self-supervised
SimCLR 0.17
SwAV 0.10

Barlow Twins 0.13

(b) pre-training on medical images

Table 1: Comparison of different pre-training schemes on downstream task.

Fine Tuning

During fine-tuning, we train the model using the weights of the pre-trained network as initialization
for the downstream supervised task. For progress prediction, the standard ResNet-50 backbone ((He
et al., 2016)) is followed by a linear layer head, where the backbone is initialized either randomly or
with the pre-trained models. Training ResNet-50 involves freezing backbone parameters and only
training the head. The mean square error (MSE) is used as a criterion for calculating model loss.

4 RESULTS

We propose the first benchmarking analysis to evaluate the efficacy of different pre-training models
for disease progression prediction as a regression problem. (1) We examine the transferability of
both supervised and self-supervised ImageNet models pre-trained on natural images for the purpose
of assessing their performance on medical tasks; (2) we investigate the efficacy of pre-training mod-
els on domain specific medical images for transfer learning performance on medical tasks; and (3)
we evaluate cross-domain self-supervised pre-training on both natural and medical datasets to ex-
plore the efficacy of the proposed platform for bridging the domain gap between natural and medical
images. In order to evaluate the performance of our model, we used the coefficient of determination,
which is indicated as R2.

4.1 SELF-SUPERVISED MODELS ON NATURAL IMAGES PROVIDE MORE GENERALIZABLE
REPRESENTATIONS

Experimental setup. This experiment evaluates the transferability of standard supervised ImageNet
models with three popular SSL methods using officially released models including SimCLR, Barlow
Twins, and SwAV. All SSL models are pre-trained on the ImageNet dataset and employ a ResNet-50
backbone. To establish a baseline, we train the target model using random initialization (i.e., without
pre-training).

Results. Table 1a displays the results, from which we draw the following indications: (1) trans-
fer learning from the supervised ImageNet model does not improve over random initialization. We
attribute this performance to the significant domain shift between the pre-training and regression
target task. In particular, supervised ImageNet models tend to capture domain-specific semantic
features, which can be inefficient if the pre-training and target data distributions differ. This finding
is consistent with recent studies on other medical tasks that demonstrate that transfer learning from
supervised ImageNet pre-training does not always correlate with performance on either classifica-
tion or segmentation of medical images((Dippel et al., 2021),(Vendrow & Schonfeld, 2022),(Hos-
seinzadeh Taher et al., 2021)). (2) Transfer learning from self-supervised ImageNet models provides
superior performance compared with both random initialization and transfer learning from the super-
vised ImageNet model. The best self-supervised model (i.e., Barlow Twins) achieves performance
improvement of 8% and 8% over random initialization and the supervised ImageNet model, respec-
tively. As opposed to supervised pre-trained models, self-supervised pre-trained models, encode
semantic features that are not biased toward any particular task, which can improve generalizbility
cross domains.
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4.2 SELF-SUPERVISED PRE-TRAINING ON MEDICAL IMAGES OUTPERFORMS IMAGENET
MODELS

Experimental setup. We investigate the impact of pre-training medical datasets on self-supervised
learning. We train three SSL methods, SimCLR, Barlow Twins, and SwAV on 11 cross-domain
unlabeled medical imaging datasets (referred to as in-domain dataset). All of the SSL models are
initialized randomly and later are fine tuned by using our labeled dataset.

Results. Table 1b shows the performance accuracy measured by the R2 when SSL methods are
pre-trained using the center slice dataset. We observe that (1) SimCLR pre-training on in-domain
dataset achieves the highest performance and provides 7% and 4% performance boost compared
to SwAV and Barlow Twins respectively. This observation may offer the superiority of contrastive
learning for identifying significant MRI features for predicting progression of Alzheimer’s disease
in terms of CDRSB (2) SimCLR pre-training on in-domain dataset yields higher performance than
either supervised or self-supervised pre-training on only the ImageNet dataset (as seen in Table 1a).
Intuitively, pre-training on in-domain dataset encodes domain-specific features that reflect unique
characteristics of medical images.

The Barlow Twins pre-training on in-domain data, however, does not improve the performance over
the Barlow Twins pre-training on ImageNet. This performance suggests that features learned by
Barlow Twins pre-trained on ImageNet are generalizable enough to medical images; And therefore
pre-training on a limited number of unlabeled images compared with the ImageNet dataset (40k
vs. 1.3 M) may offer limited performance gain for Barlow Twins method, which is a redundancy
reductions based model.

4.3 IMPACT OF THE SIZE OF THE UNLABELED IN-DOMAIN DATASET

Experimental setup. We conduct further experiments to evaluate the advantages of increasing the
number of unlabeled images for self-supervised pre-training. For each one of SSL methods, we train
two separate models by pre-training on either center-slice or 5-slice datasets.

Results. As observed in Table 2, all three SSL models pre-training on 5-slice imaging dataset
results in an improvement over pre-training on center-slice dataset, indicating that the SSL models
can benefit from larger pre-training in-domain unlabeled datasets. Specifically, Barlow Twins pre-
training on the 5-slice dataset provides 1% performance improvement over pre-training on center-
slice dataset which may confirm our previous assumption that Barlow Twins, in contrast to SimCLR,
needs more unlabeled in-domain images to constrain the ImageNet-based features for medical tasks.

Self-supervised Model Dataset R2

center-slice 0.17
SimCLR 5-slice 0.19

center-slice 0.10
SwAV 5-slice 0.12

center-slice 0.13
Barlow Twins 5-slice 0.14

Table 2: A comparison of the performance of self-supervised pre-training models in the fine-tuning
step with datasets of different sizes.

4.4 CROSS-DOMAIN SELF-SUPERVISED LEARNING BRIDGES THE DOMAIN GAP BETWEEN
NATURAL AND MEDICAL IMAGES

Experimental setup. We investigate the impact of self-supervised pre-training on both natural im-
ages and domain-specific medical images. To do so, we pre-train SimCLR on our 5-slice in-domain
dataset with two different initialization schemes including (1) Supervised ImageNet (referred to as
Labeled ImageNet→In-domain), (2) Barlow Twins on the ImageNet dataset (referred to as Unla-
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beled ImageNet→In-domain). We select SimCLR and Barlow Twins because as indicated in Ta-
bles 1a and 1b, they provide the best results on natural and medical images.

We fine-tune all pre-trained models for the progress prediction task using the labeled 1k images
in the training data. Figure 1 shows the cross-domain self-supervised learning employed for the
regression problem.

Results. The results are shown in Table 3a. We observe that the best performance is achieved
when both unlabeled ImageNet and in-domain datasets are utilized for pre-training. Specifically,
Unlabeled ImageNet→In-domain pre-training surpasses both in-domain and ImageNet pre-trained
best performing models. It achieve 15%, 7%, and 2% performance boosts compared to Random
initialization, pre-training only on ImageNet, and pre-training only on in-domain dataset, respec-
tively. These results, in line with previous studies ((Hosseinzadeh Taher et al., 2021) ,(Azizi
et al., 2021)), imply that pre-training on ImageNet is complementary to pre-training on in-domain
datasets, resulting in more powerful representations for medical applications. We also note that
Labeled ImageNet→In-domain pre-training is inferior to Unlabeled ImageNet→In-domain. These
observations restate the efficacy of self-supervised models in delivering more generic representa-
tions that can be used for target tasks with limited data, resulting in reduced annotation costs. Ap-
pendix A.3 also includes the analysis of these cross-domain experiments but for center-slice dataset.

Pre-training Method Pre-training Dataset R2

Random - 0.06

Barlow Twins ImageNet 0.14

SimCLR In-domain 0.19

Barlow Twins → SimCLR Unlabeled ImageNet → In-domain 0.21
Supervised ImageNet → SimCLR Labeled ImageNet → In-domain 0.18

(a) This table shows best performance model in each domain and their combination in
cross-domain self-supervised learning setting

Pre-training Method Pre-training Dataset R2 on Independent test set

Random - 0.04

Barlow Twins ImageNet 0.06

SimCLR In-domain 0.10

Barlow Twins → SimCLR Unlabeled ImageNet → In-domain 0.16
Supervised ImageNet → SimCLR Labeled ImageNet → In-domain 0.12

(b) Results on independent dataset

Table 3: Results of different pre-training schemes on both (a) validation R2 and (b) independent test
R2

4.5 PERFORMANCE ON TEST SET

Experimental setup. The robustness of our best model, i.e. Barlow Twins→SimCLR on the 5-slice
dataset is evaluated and compared with best performing models initialized by either ImageNet or
in-domain dataset. Our test set includes 360 unseen patient images.

Results. As presented in Table 3a, the best performance is achieved when both unlabeled Ima-
geNet and in-domain dataset are utilized for pre-training. In particular Unlabeled ImageNet→In-
domain pre-training yields a significant improvement of 10% and 6% over in-domain and Im-
ageNet pre-trained models, respectively. These results confirm our previous observation that
supervised pre-trained models on natural images encode semantic features that are generaliz-
able across domains. Moreover, Labeled ImageNet→In-domain pre-training is inferior to Unla-
beled ImageNet→In-domain indicating that supervised ImageNet models encode domain-specific
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semantic features, which may be inefficient when the pre-training and target data distributions are
far apart.

5 DISCUSSION

We present a cross-domain self-supervised learning framework for predicting the progression of
Alzheimer’s disease, which is formulated as a regression problem. This formulation helps to provide
more granular estimations of disease progression but can be very noisy and subjective across studies
– making it challenging to establish treatment efficacy in small patient populations. The goal of this
problem is to predict CDRSB score as an endpoint for defining the stage of Alzheimer’s disease. This
framework is enforced to use pre-training on natural images followed by pre-training on domain-
specific medical images to alleviate domain shift and improve generalization of pre-trained features.
Our extensive experiments demonstrates the effectiveness of our approach to combat the lack of
large-scale annotated data for training deep models for progression prediction. Our results show
an improvement in prediction accuracy and more robust prediction performance for patients with
Alzheimer’s disease. The proposed framework has potentials to identify patients at higher risk of
progressing to AD and help develop better therapies at lower cost to society. As future works, we
will expand our dataset to include more than 5-slice from each image, as well as other views such as
coronals and/or sagittals, allowing us to introduce more in-domain information to our pre-training
model. We also hope to deploy this pre-training strategy on other medical-domain regression tasks.
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A APPENDIX

A.1 PREPROCESSING

MR volumes are standardized using the following preprocessing steps. First, a brain mask is inferred
for each volume using SynthSeg (https://github.com/BBillot/SynthSeg), a deep learning segmenta-
tion package. During training, the volumes and segmentations are resampled isotropically to 1mm
voxel size, standardized to canonical (RAS+) orientation, intensity rescaled to 0,1 and Z-score nor-
malized.

A.1.1 SELF-SUPERVISED MODELS

SimCLR
In this method, the learning rate is 1e−4, Adam is used as an optimizer and NT-Xent loss is used as
a loss function. We use an implementation of SimCLR in Pytorch-lightning repository for creating
our framework. https://github.com/Lightning-AI/lightning-bolts.git
Barlow Twins
This method utilizes LARS as an optimizer and 1e − 4 as a learning rate scheduler, with
CosineWarmup serving as the learning rate scheduler. This repository is used as a basis https:
//github.com/SeanNaren/lightning-barlowtwins.git].
SwAV
For this method, we use Adam as the optimizer, with a learning rate of 1e − 4. Like SimCLR,
we use the SwAV base model implementation from the Pytorch-lightning repository https:
//github.com/Lightning-AI/lightning-bolts.git.

A.2 ABLATION STUDIES ON BRAIN SEGMENTATION

In order to find how much information we can use from all parts of brain. We also run some of our
early experiments using segmented slices instead of raw slices. Table 4 and Table 5These results
shows that although in some experiments using segmentation achieve slightly higher performance,
their results in components of cross-domain setting is lower than raw images. Also, results indicate
that in 5-slice dataset, results on raw images are higher than segmented images.

Pre-training Initialization R2

- Random 0.05
Supervised ImageNet 0.05

Self-supervised
SimCLR 0.08
SwAV 0.08

Barlow Twins 0.07

(a) pre-training on natural images

Pre-training Initialization R2

- Random 0.05

Self-supervised
SimCLR 0.18
SwAV 0.11

Barlow Twins 0.15

(b) pre-training on medical images

Table 4: Comparison of different pre-training schemes on downstream task using segmented images.

A.2.1 EXAMPLE OF SEGMENTATION OF ONE BRAIN SLICE

Figure 2 shows an example of brain segmentation which mask out all parts of head including skull
and etc. and only keep the brain tissue.
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Self-supervised Model Dataset R2

center-slice 0.18
SimCLR 5-slice 0.16

center-slice 0.10
SwAV 5-slice 0.09

center-slice 0.15
Barlow Twins 5-slice 0.15

Table 5: Comparison between self-supervised models performance in different dataset size

Brain
Segmentation

Figure 2: Example of extracting brain tissue from raw 2D MRI slices. In this figure left-side image
shows raw(original) slice and right-side image shows segmented image

A.3 ABLATION STUDIES ON AFFECT OF DATASET SIZE ON SIMCLR PRE-TRAINING
SETTINGS

The purpose of conducting this ablation study is to additionally analyse the effect of in-domain
database size on 3 experiments of SimCLR. We partially shows Table 6 in section 4.4 with the
exception of adding center-slice results as well. We observe when there is a higher number of avail-
able in-domain unlabeled images, SSL pre-training on natural images is likely complementary to
SSL pre-training on in-domain dataset and it can reduce the domain shift between the pre-training
and target tasks. However by using less unlabeled in-domain images i.e. center-slice dataset, Un-
labeled ImageNet→In-domain, yields worse performance, restating that features learned by natural
images are not always transferable to down-stream tasks in different domains. Moreover by look-
ing only at center-slice results Labeled ImageNet is able to boost performance higher compare to
Unlabeled ImageNet. But this observation is vice versa in 5-slice dataset which has more data.

Pre-training Method Pre-training Dataset R2 R2 on Independent test set

SimCLR In-domain center-slice 0.17 0.11

5-slice 0.19 0.10

Barlow Twins → SimCLR Unlabeled ImageNet → In-domain center-slice 0.16 0.06

5-slice 0.21 0.16

Supervised ImageNet → SimCLR Labeled ImageNet → In-domain center-slice 0.18 0.13

5-slice 0.18 0.12

Table 6: Comparison between R2 results of different SimCLR pre-training settings using different
size of dataset
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