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Abstract

Model-based reinforcement learning has shown great results
when using deep neural networks for learning world mod-
els. However, these results are not directly applicable to
many real-world problems that require explainable models
and where training data is limited. A more suitable prob-
lem setting that can address these issues is relational model-
based reinforcement learning where a logical world model
is learned. In this setting, we propose to use Logical Neural
Networks (LNN) which enable the scalable learning of log-
ical rules. Our method builds around the LNN by creating a
framework for learning lifted logical operator models. This is
used together with object-centric perception modules and AI
planners that reason about the learned logical world model.
We first test our agent by comparing the LNN-learned models
against the existing handcrafted models which are available in
the PDDLGym environments. For these tests, we show that
our agent performs optimally and is on-par with planning on
expert-crafted models. We then further test our agent in a text-
based game domain called TextWorld-Commonsense where
expert-crafted models are not available. For this domain, deep
reinforcement learning agents are the state-of-the-art and we
showed that we significantly outperform all of the existing
agents.

Introduction
Reinforcement learning (RL) with deep neural networks
(NN) is an effective method for solving complex sequential-
decision-making problems as evidenced by great results in
Atari (Mnih et al. 2015) and Go (Silver et al. 2016) to name
a few. In recent years, a lot of research was focused on
model-based RL (MBRL), wherein an explicit world model
is learned for planning (Schrittwieser et al. 2020; Łukasz
Kaiser et al. 2020; Hafner et al. 2021; Ye et al. 2021). These
methods showed significant improvements over the previ-
ous model-free systems and they all leverage deep neural
networks for their world model. Although these are very ef-
fective for the end results, these methods also inherit the is-
sues of deep NNs such as a lack of explainability and a need
for a huge amount of training data. These are required for
several real-world applications so we seek to address these
issues by instead learning world models which are explicitly
represented by logic.

Relational RL (Džeroski, De Raedt, and Driessens 2001)
is a subset of RL where the states and actions of the en-

vironment are in a relational logic form. It uses relational
learning or inductive logic programming (ILP) resulting in
explainable logic rules. Relational MBRL (Croonenborghs
et al. 2007) is the MBRL form of this where the world
model being learned also has a logic form. Although rela-
tional RL was demonstrated well in these works, it has two
major drawbacks - the need for logical representations of the
environment and the brittleness and difficulty in scaling ILP
to large datasets. We believe it is a good time to revisit these
issues because we can leverage the recent advances of NNs
directly relating to both of these.

We envision an agent consisting of two modules: First, an
object-centric perception module which converts raw obser-
vations into relational logic. Ideally, this module perfectly
converts an RL environment into a relational RL environ-
ment. Recently, deep NNs have shown to be very effective
at this task which is named differently in different litera-
ture sources according to modality (e.g. semantic parsing for
text; scene graph prediction for images). The second module
is the relational MBRL agent which is the focus of this pa-
per. We concentrate on the second problem of learning the
logical world model but we incorporate into our design a
consideration about the first issue. In particular, we can as-
sume that logical states are very accurate but imperfect. This
requires learning from noisy data which classical ILP meth-
ods cannot provide.

In recent years, ILP has also advanced by using NNs
which has increased its scalability and allowed it to learn
with noisy data (Evans and Grefenstette 2018). This opens
new research directions, one of which is relational RL
agents. In this direction, we propose to use the Logical Neu-
ral Networks (LNN) (Riegel et al. 2020) as the core building
block because it provides a solid foundation in the theory of
real-valued logics. We then leverage the work of (Sen et al.
2021) which provides ILP functionality with the LNN. This
Neuro-Symbolic ILP (NS-ILP) method will be used to learn
the logical world model in our agent. Moreover, we design
our framework such that our logical world model can be con-
verted directly into STRIPS-like operators or a basic PDDL
(Planning Domain Definition Language). Doing this allows
us to use AI-planning systems compatible with this standard.

The contributions of our work are as follows:

• We design a novel framework using the LNN and NS-ILP
for relational MBRL. The design is such that the learned



model can be converted into the standard format used by
classical planning (PDDL).

• We extend our classical planning framework for partial
observable environments by adding novelty-guided ex-
ploration and replanning.

• We designed experiments and evaluated our framework.
In the experiments on the TextWorld-Commonsense do-
main we also show that we significantly outperform all
of the existing agents.

Background
This section outlines the necessary theoretical foundations
to describe our work in relational model-based RL. We for-
mally describe it starting from the building blocks required
to describe MDPs and ILP. These subsections serve as an
overview to recall important topics.

Markov Decision Processes
RL environments are often formalized as Markov Decision
Processes (MDP) which are defined as ⟨S,A, T,R⟩. An
agent interacts with an MDP by perceiving the state, s ∈ S,
and then taking action, a ∈ A. By doing this at a certain
time, t, a transition of the state occurs according to the con-
ditional transition probabilities, T (st+1|st, at). This satis-
fies the Markov property of being conditionally independent
from the full history of states and actions. During the inter-
action, the agent also receives scalar rewards, r, according
to a reward function, R, such that rt = R(st, at).

The Partially Observable Markov Decision Process
(POMDP) is an extension of the MDP defined as
⟨S,A, T,O, R⟩. In a POMDP, the state is hidden from the
agent. Instead, the agent perceives observations, o, accord-
ing to the conditional obervation probabilities, O(ot|st). To
solve POMDPs, it is necessary to keep track of the history
of states and actions in some way. This may be done for ex-
ample by keeping track over a belief over the set of states.

Relational Logic
Relational logic expands upon propositional logic. Here,
we are mainly interested in variables and the abstraction
it allows. To recall these concepts, let us use the example
on(book,table), which means that a book is on a
table. The predicate on describes the relation between the
objects book and table. The example proposition can be
abstracted or lifted into on(x,y) with the variables, (x, y)
replacing the object groundings. Since our predicate on car-
ries a consistent meaning, reasoning about lifted statements
allows an abstraction of concepts that is useful for general-
ization.

Relational Markov Decision Processes
A relational MDP further specifies an MDP by using rela-
tional logic. A state is decomposed as a set of the logical
atoms which are true, f , such that s = {f0, . . . , fn}. Each
atom is composed of a predicate, p, and one or more objects,
σ, such that f = p(σ0, . . . , σm). The arity, m is fixed ac-
cording to each predicate. Actions are also represented with

this same predicate calculus but only as a single atom. Us-
ing the predicates and objects, the relational MDP can be
defined as ⟨Sp,Ap,Σ, T,R⟩ where the state predicates, Sp,
action predicates Ap and set of objects, Σ, replace the state
and action space of the MDP.

Inductive Logic Programming
An ILP problem can be defined formally as ⟨B,P,N , T ⟩
where B is a background knowledge, P is a set of positive
examples,N is a set of negative examples. The task is to find
a rule that entails all elements of P and none of the elements
in N . A rule (or clause) is defined as h ← b0 ∧ b1 . . . ∧ bn,
where the head atom h is true if the conjunction of all atoms
in the body b is true. For practical applications, the search
space of the rule is limited by a given rule template, T .

Relational Model-Based RL
The main objective in relational MBRL is to allow an agent
to learn and solve a relational MDP through interaction with-
out knowing the model of the world beforehand. At each
time step, an agent can explore the MDP by taking an ac-
tion to obtain a data tuple (st, at, st+1, rt). This is repeated
several times after which an agent then uses a batch of data
to try to estimate the world model ⟨T,R⟩. This is usually
done iteratively but can possibly be done in a single batch
within the offline RL framework. We assume that our world
model has some underlying structure which can be learned.
The general problem then becomes that of formulating this
learning problem into the ILP form. This means that the
world model needs to be broken down into rules and the data
needs to be classified into positive and negative examples.
Doing these requires design choices which will be specific
to the methods. After the learning process, a world model
is available which we can use to plan on the environment to
maximize the reward or to reach a given goal.

Learning World Models with LNN
In this section we outline the core of our algorithm and the
design choices we make throughout. We assume that we are
in the relational MBRL setting already. Here, the main de-
sign choice pertains to how the world model will be broken
down into a set of rules and how these rules will be learned.

To start with, we concentrate on the transition model, T ,
where the general learning problem can be written as:

T =argmin
T

L(T, st, st+1, at)

s.t. st+1 = T (st, at).
(1)

The most common instantiation of this for continuous states
is to define the loss, L, as:

L :=
∑
t

∥st+1 − T (st, at)∥ .

However, we cannot use this as we have logical states, ac-
tions and transition models. Instead of using Eq.(1) directly,
we break it down into finding components of T . First, we
decompose T into smaller logical components. For this, we



propose to use the most well-known action model defini-
tion which is the STRIPS operator. This has an added ben-
efit later on with the ease of converting it to PDDL which
gives us access to powerful planning systems. In STRIPS,
each action operator is a quadruple of ⟨α, β, γ, δ⟩. Each el-
ement is a set of logical conditions where α are conditions
that must be true for the action to be executable, β are ones
that must be false, γ are ones made true by the action and δ
are ones made false. Collectively, α and β make up the pre-
conditions while γ and δ are the postconditions/effects. So,
with n actions the transition function is:

T = {⟨α, β, γ, δ⟩0, ⟨α, β, γ, δ⟩1, . . . , ⟨α, β, γ, δ⟩n}. (2)

Each of the elements of the operator are clauses in lifted
logic statements. So, for example, with m different condi-
tions, α is:

α← b0 ∧ b1 . . . ∧ bm, (3)

where β, γ and δ are similarly defined so we only write out
α for the next few steps. All the conditions are lifted logic
statements which means that we need to abstract our data
into the lifted logic before the ILP process. This means that
we remove the association of the atoms to objects and oper-
ate on abstracted variables. The differentiable ILP process
can be expressed by first expanding Eq.(3) with weights,
w = {w0, w1, . . . , wm}, such that:

α← w0b0 ∧ w1b1 . . . ∧ wmbm, (4)

which can then be used in an optimization problem to find
the weights:

w =argmin
w

L(α,b)

s.t. w ∈ W,
(5)

where the loss, L, is defined to minimize the discrepancy
in the dataset containing both positive and negative exam-
ples, P and N . A loss function here can simply be a count
of misclassified rules compared to the dataset. For classical
ILP,W is defined such that the weights are constrained to be
boolean (either zero or one). However, in this case, Eq.(5) is
a difficult combinatorial optimization problem. In our case,
W is relaxed such that individual weights are continuous
valued between zero and one. This specification allows us to
use LNNs as outlined in (Sen et al. 2021).

With this formulation, we will have 4 rules to be learned
for n action predicates and each head of the rule corresponds
to a part of the STRIPS operator. The body of the rules all
have an exhaustive list of m lifted atoms. This means that
we need to learn 4× n×m weights to fully reconstruct the
transition function, T . An example of this is shown in Fig-
ure 1. Each of these rules can be constructed using a combi-
nation of the LNN−pred and LNN-∧ as described in section
4 of (Sen et al. 2021). Negations are also added for β and γ.

Although the rules are structurally similar, the training is
done differently for preconditions (α and β) and effects (γ
and δ). The difference lies in transforming the data samples
(containing st, at, st+1) into the positive examples, P , and
negative examples, N of the rules to be learned which are
defined by the input conditions, b. For the LNNs of α and
β, the inputs are given the corresponding logical values of

the atoms in the state, s, that is, b := s. This is a slight
abuse of notation for clarity but to be precise, the logical
values of b are set to be true if (with a value 1.0) if they are
present in s otherwise it is set to be false (with a value 0.0).
The output (head of the rule) is true when two conditions are
met. First if action, a, in the data sample corresponds to the
action predicate being modeled by α and β, and second if
s ̸= s′ (a change in state occurred). Otherwise, it is false.
For the LNNs of γ and δ, the inputs are given the logical
values corresponding to the difference in the atoms of s and
s′ such that γ are the the conditions made true and δ those
that are made false. Again, with a slight notation abuse we
can write that for γ, we have b := st+1−s and for δ we have
b := s − st+1. Similarly, the output is true when action, a,
corresponds otherwise it is false.

Once the LNN structure and data/rule examples are set,
we can take advantage of the machinery of gradient-based
optimization in a supervised learning setting (Riegel et al.
2020; Sen et al. 2021). When learning converges, we have
a set of weights for each of the corresponding elements that
correspond to real-valued logic. These may be interpreted
as probabilistic transitions but we can also threshold these
when we are expecting a deterministic structure from the
environment (Sen et al. 2021). The pseudocode for training
the LNN such that it will learn STRIPS operators is shown
in Algorithm 1. This assumes that from from RL exploration
there exists a dataset, D, of interactions with the environ-
ment.

Algorithm 1: LNN training for learning STRIPS operators
Input:
Dataset, D = {(s, a, s′)1, . . . , (s, a, s′)t}
Parameters:
LNN parameter for logic thresholding, LNNth

LNN paramater for maximum training epochs, LNNep

Outputs:
STRIPS Operator in real-valued logic, ⟨α, β, γ, δ⟩
PDDL actions

1: D = variable abstraction(D)
2: Sp = get unique state predicates(D)
3: Ap = get unique action predicates(D)
4: ⟨P,N⟩ = transform dataset(D)
5: for ap in Ap

6: Svar = permute variables(Sp, get arity(ap))
7: Spos = LNN-PRED(Svar)
8: Sneg = LNN-PRED(LNN-NOT(Svar))
9: αap = LNN-AND(Spos)

10: βap = LNN-AND(Sneg)
11: γap = LNN-AND(Spos)
12: δap = LNN-AND(Sneg)
13: ⟨αap, βap⟩ = train precond(P , N , LNNth, LNNep)
14: ⟨γap, δap⟩ = train postcond(P ,N , LNNth, LNNep)
15: ⟨α, β, γ, δ⟩.append(αap, βap, γap, δap)
16: end for
17: PDDL actions = threshold(⟨α, β, γ, δ⟩, LNNth)
18: return ⟨α, β, γ, δ⟩, PDDL actions

The remaining design choice pertains to the reward func-



Figure 1: An example of an LNN operator. This correso-
ponds to the move operator for the tower of hanoi game.
This is a simplified diagram where negations and pred oper-
ators are not shown

tion model. It is possible to model it into logic in a similar
manner as the transition model. However, we think that be-
ing given logical goals is a good feature for our agent. In
fact, this is already a common and well-accepted assumption
in several RL works whether the goal appears as a separate
parameter in goal-conditioned RL or is incorporated as part
of the state. Because of this, we consider this to be a weak
assumption that is already used in current RL research. This
has even been expanded in recent research with more ex-
plicit forms of the reward function being given as an input
such as the reward machines (Icarte et al. 2018).

Enhancements
This section details some important components surround-
ing our RL agent which gives significant performance in-
crease or new functionality.

Exploration for Relational RL
Exploration is a key part of any RL agent and it is no dif-
ferent even in the relational RL setting (Lang, Toussaint,
and Kersting 2012). For our agent, we implemented a stan-
dard count-based exploration method but we implemented
changes that take into account the nature of the relational
logic state. Specifically, our exploration counts are based
on the abstracted lifted state-action pairs instead of the
grounded ones. This simple change gives a significant boost
in data-efficiency and takes advantage of the generalization
inherent in relational representations. A more nuanced and
detailed implementation of this idea was presented in (Lang,
Toussaint, and Kersting 2012).

Enabling our agent for POMDP Settings
Planning in the most general POMDP settings is intractable.
However, it has been shown that if some assumptions can
be made about the environment then classical replanning
will be effective (Bonet and Geffner 2011). This is the main
assumption. It can be further extended by considering in-
formation gathering actions as in (Yang et al. 2021). This
is another exploration-related enhancement. Specifically, we

Figure 2: Illustrations of the domains for our experiments:
PDDLGym (Silver and Chitnis 2020) and TextWorld Com-
monsense (Murugesan et al. 2021)

propose to designate as information gathering actions those
which reveal more information about the world in the form
of new atoms in the state. We also implement a belief-state-
tracker that is standard with POMDP planning.

Experimental Setup
To evaluate our agent, we chose two different sets of do-
mains as shown in Figure 2. The first one uses classical plan-
ning domains and is aimed at comparing and contrasting
our results against models of well-studied domains crafted
by human experts. The second is a text-based game and it
was chosen to be able to compare and contrast our approach
against contemporary deep RL methods. Another major con-
sideration for choosing both types of domains is that these
both have underlying relational representations that can be
accessed. This allows us to test and experiment with our re-
lational RL agent before tackling complex interactions with
the object-centric perception modules.

In either domain, once we have a logical world model in
the form of STRIPS operators, we can use this with a clas-
sical planner to complete our game-playing agent. For our
convenience, we convert the STRIPS operators into PDDL
operators by combining (α, β) into the preconditions and
(γ, δ) into the effects. The PDDL allows us to take ad-
vantage of modern AI planning systems such as the Fast-
Downward Planner (Helmert 2006) which we used through-
out the experiments.

Classical Planning Environments
Relational RL methods have historically been tested and
targeted towards classical planning environments (Croonen-
borghs et al. 2007; Džeroski, De Raedt, and Driessens 2001;
Lang, Toussaint, and Kersting 2012). A modern implemen-
tation of such domains is collected in the PDDLGym (Sil-



Domain Source Solved % # Rules

Hanoi Handcrafted 100 % 8
Learned 100 % 17

Blocks Handcrafted 100 % 37
Learned 100 % 49

Slidetile Handcrafted 100 % 48
Learned 100 % 288

Table 1: Results on the classical planning environments and
a comparison of the number of rules for modeling the world.

ver and Chitnis 2020). This enables the use of many differ-
ent domains from the classical planning literature within the
modern gym framework of RL environments.

Among the available options, we chose 3 well-known do-
mains: the towers of hanoi, blocksworld and slidetile/slide
puzzle. These were chosen for their popularity and diversity
in the size and complexity of the expert-crafted PDDL mod-
els which are available in PDDLGym.

Text-Based Games
Text-Based Games began as a form of entertainment in
the 1980s where players could read a narrative and imag-
ine the state of the game world from text. They can then
interact with this world through text input as well. In re-
cent years, text-based games have become an interesting
benchmark in the intersection of natural language process-
ing and sequential decision making. Recently, several sets
of benchmarks and game environments were proposed such
as TextWorld (TW) (Côté et al. 2018), Jericho (Hausknecht
et al. 2020) and TextWorld Commonsense (TWC) (Muruge-
san et al. 2021). Among these, we first chose the TextWorld-
based games due to the availability of the relational logic
state (Côté et al. 2018). In this paper, we specifically chose
TWC among the different TW datasets as it had another
neuro-symbolic method that we can compare against.

Text-based games are inherently POMDPs (Côté et al.
2018). As such all the enhancements we described in sec-
tion 4.2 are required for these tests.

Results and Discussions
This section shows the results of our experiments. The clas-
sical planning environments are meant to compare against
expert-crafted models and text-based games are meant to
compare against other agents, in particular deep RL meth-
ods.

Classical Planning Environments
Our results are summarized in Table 1. This compares the
human-handcrafted PDDL domain to the operators learned
by the LNN in 3 well-known planning domains - the towers
of hanoi, blocksworld and slidetile. These are well-studied
games so the handcrafted PDDL works on 100% of the prob-
lem instances. Our results show that the LNN-learned model
can do the same, verifying the correctness of our approach.

The more interesting result is shown in the last column
where our method always learns more rules. Most of these

Figure 3: Comparison between the LNN-learned model
and expert-crafted model for one of the actions of the
blocksworld domain. Green indicates rules that correspond
on both sides. Blue indicates rules that are unique to the
LNN-learned model

are in the preconditions which indicates a smaller state-
transition-graph, which is better. On inspecting the extra
rules, we see that a lot of these are mutex conditions. For
example, in Hanoi, one of the handcrafted preconditions is
on(disc, from). This was also learned by the LNN along with
a related extra precondition: not(on(from, disc)). Another
example can be seen in Figure 3 which shows one of the
actions in the blocksworld domain. We can see in this exam-
ple the matching rules in green and the extra rules in blue.
Using this, we can appreciate the level of inherent explan-
ability that our model possessess.

One limitation of our work can be found in the result for
the slidetile domain. Here, there is a significant difference
in the number of rules learned. One can imagine that this
becomes a hindrance to the explanability - although all the
rules may be correct and can be followed, it becomes tedious
to check each of the 288 rules. In this case, perhaps more
rules are not necessarily better. Indeed, our current method
has no mechanism that pushes it towards parsimonious mod-
els. For applications requiring such, this may be the subject
of future research.

Text-Based Games
For our results, we first show some examples of the learned
rules in our logical world model in Figure 4. This is in the
converted PDDL form. Here, we can visually inspect the va-
lidity of the rules. For example, for the take action the effect
would be that the object v0 is no longer at(v1) but now it is
in the inventory v3. This level of explanability is inherent in
logical models although it requires careful inspection.

It would be tedious to inspect the rules individually, but
what would be more interesting is if taken altogether can
these rules allow us to plan optimal actions in the world. To
answer this, we present our results in Table 2. Here, each
row corresponds to the results of a different agent for this
benchmark environment. Our method appears on the bot-
tom row and the top row shows the best possible metrics
(labeled optimal). Of note, we show the two best perform-
ing deep RL agents in (Murugesan et al. 2021) which is the



Figure 4: Examples of the learned action models for
TextWorld

KG-A2C and DRRN. We also show a model-free neuro-
symbolic agent (NeSA). The TWC games are categorized
into Easy-Medium-Hard with a validation and testing set for
each as shown in the columns. Our results show that plan-
ning on our learned model can produce the same optimal
actions for all the Easy and Medium games and for the val-
idation set of the Hard games. An interesting limitation ap-
pears in the test set of the Hard games wherein novel pred-
icates appear in the test set that do not appear in any of the
training or validation set. This is a current limitation of our
system which does not have any mechanism for handling
such novel predicates. These results show that our method
clearly outperformed the 2 best deepRL agents and even
clearly outperformed the Note however that we have addi-
tional assumptions differing from the plain deep RL setting
of the original setup in (Murugesan et al. 2021). We give
this comparison as a reference on the potential improvement
our overall approach might provide. The comparison to the
model-free NeuroSymbolic approach is a bit fairer as they
also look to use relational logic. in terms of the number of
steps.

Related Work
The most pertinent works were cited and discussed through-
out the previous sections. This section collects other relevant
works that concentrate on specific but important topics that
were not mentioned in enough detail.

Model-Free RL for Text-based Games
Text-based games (Côté et al. 2018; Murugesan et al. 2021;
Hausknecht et al. 2020) are a testbed for tackling challenges
in reinforcement learning and natural language processing.
LSTM-DQN (Narasimhan, Kulkarni, and Barzilay 2015)
is a study on an LSTM-based encoder for feature extrac-
tion from observations and Q-learning for action policies.

LSTM-DQN++ (Yuan et al. 2018) extended exploration, and
LSTM-DRQN was proposed for adding memory units in the
action scorer. KG-DQN (Ammanabrolu and Riedl 2019) and
GATA (Adhikari et al. 2020) extended the language under-
standing. LeDeepChef (Adolphs and Hofmann 2020) uses
recurrent feature extraction along with A2C (Mnih et al.
2016). CREST (Chaudhury et al. 2020) was proposed for
pruning observation information. These methods tackled the
solving of games with deep methods, not neuro-symbolic
method.

Since these methods do not have interpretability in
trained rules, recent studies (Kimura et al. 2021b; Chaud-
hury et al. 2021; Kimura et al. 2021a) introduced neuro-
symbolic methods. FOL-LNN (Kimura et al. 2021b) intro-
duced the training of first-order logic for increasing the train-
ing speed and interpretability in LNN (Riegel et al. 2020).
SLATE (Chaudhury et al. 2021) trains interpretable action
policy rules from symbolic abstractions of textual obser-
vations for improving generalization. LOA (Kimura et al.
2021a) is a demo for a neuro-symbolic method with simple
rules without showing/editing an actual network from the
training.

Other approaches to learning planning models
In this paper, we advocated for the formalism of relational
RL but many other works also propose methods to learn
models for AI planning. For example, a representative work
is (Pasula, Zettlemoyer, and Kaelbling 2007) which uses
greedy search for learning the rule sets. Older literature also
exists such as (Benson 1995) and much more recent works
such as (Silver et al. 2021) follows a similar procedure.
These works are along the same line as using classical ILP
approaches for relational RL. Although these are shown to
work well for smaller to medium-sized problems, we believe
that a fundamental limitation exists due to the discrete and
combinatorial nature of the problem formulation. In con-
trast, we showed in our method how differentiable logic
can be used. Furthermore, we showed in this paper that this
branching out from classical ILP can be cleanly described as
the choice of constraint in the optimization problem which
then leads to the choice of available optimization methods.
Becasue of these differences, we believe our work is orthog-
onal and worth investigating in parallel.

Another related line of work is presented in (Asai and
Fukunaga 2018) which leveraged deep NNs for the model
such that their method plans in the latent space. Such works
are also orthogonal to our main concern of bringing explicit
logical models which are explainable and grounded in the
theory of logics.

Conclusion
We outlined and proposed a framework that centers around
the relational model-based RL setting and advocates for
the using a neuro-symbolic ILP module for learning logi-
cal world models. This can be used with classical planning
systems to produce optimal actions in several different game
worlds. We believe this approach shows promise and we pre-
sented results and experiments on the key component which



Easy Medium Hard
Valid Test Valid Test Valid Test

Optimal 2.4 steps 2.4 steps 4.4 steps 3.6 steps 13.6 steps 14.0 steps
(Upper Bound) 100% score 100% score 100% score 100% score 100% score 100% score
KG-A2C [1] 17.65 ± 3.62 18.00 ± 3.24 37.18 ± 4.86 43.08 ± 4.13 49.36 ± 7.5 49.96 ± 0.0

85% ± 7% 87% ± 5% 72% ± 7% 54% ± 17% 46% ± 10% 22% ± 0%
DRRN [1] 18.88 ± 2.69 19.49 ± 4.89 33.41 ± 2.81 40.49 ± 4.41 46.20 ± 4.86 50.00 ± 0.0

81% ± 8% 84% ± 8% 73% ± 6% 56% ± 7% 44% ± 1% 18% ± 10%
Model-free NeSA [2] - 15.0 ± 0.0 - 28.6 ± 0.0 - -

- 100% - 100% - -
LNN-MBRL 2.4 ± 0.0 2.4 ± 0.0 4.4 ± 0.0 3.6 ± 0.0 13.6 ± 0.0 28.4 ± 0.0
(Ours) 100% 100% 100% 100% 100% 60.6%

Table 2: Scores on the TextWorld Commonsense(TWC) set of games. The top row numbers are the number of steps an agent
takes (lower is better) and the bottom row is the normalized score (higher is better) [1] indicates the results are taken directly
from (Murugesan et al. 2021) [2] indicates work that was extended from (Kimura et al. 2021a)

learns the logical world models. The natural progression of
this work is to use real object-centric perception modules.
Although our method is designed with noisy logical states in
mind, the extent of the tolerable noise might differ in prac-
tice and new innovations may be required.
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