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Figure 1: RoboTube covers a wide range of household manipulation tasks. RoboTube constructs a human video
dataset and a suite of simulated twin environments for reproducible research. The first row shows the examples
of the real-world video frames; the second row shows the simulated twin environments.

Abstract: We aim to build a useful, reproducible, democratized benchmark for
learning household robotic manipulation from human videos. To realize this goal, a
diverse, high-quality human video dataset curated specifically for robots is desired.
To evaluate the learning progress, a simulated twin environment that resembles
the appearance and the dynamics of the physical world would help roboticists
and AI researchers validate their algorithms convincingly and efficiently before
testing on a real robot. Hence, we present RoboTube, a human video dataset, and
its digital twins for learning various robotic manipulation tasks. RoboTube video
dataset contains 5,000 video demonstrations recorded with multi-view RGB-D
cameras of human-performing everyday household tasks including manipulation
of rigid objects, articulated objects, granular objects, deformable objects, and
bimanual manipulation. RT-sim, as the simulated twin environments, consists of
3D scanned, photo-realistic objects, minimizing the visual domain gap between the
physical world and the simulated environment. After extensively benchmarking
existing methods in the field of robot learning from videos, the empirical results
suggest that knowledge and models learned from the RoboTube video dataset
can be deployed, benchmarked, and reproduced in RT-sim and be transferred
to a real robot. We hope RoboTube can lower the barrier to robotics research
for beginners while facilitating reproducible research in the community. More
experiments and videos can be found in the supplementary materials and on the
website: https://sites.google.com/view/robotube.

Keywords: Learning from Videos, Video Demonstration Dataset, Real2Sim,
Self-supervised Reward Learning, Robotic Simulation Benchmark

1 Introduction
Conceptualizing robotic manipulation tasks by diverse human videos unlocks the potential to enable
general household robots [1–4]. Prior works have made fruitful progress on manipulation tasks such
as pick-and-place by learning from offline video datasets [5–9]. As these video datasets facilitate
the pioneer exploration of robotic manipulation learning, they have several limitations for further
exploration:
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(1) Scale up task complexity. Previous datasets and frameworks in robot learning from videos
mainly focus on the simple manipulation tasks, e.g., grasping [5], pushing [6], relocating rigid
objects [7], etc. While a practical robotic manipulation system should be able to handle more complex
tasks. RoboTube involves household manipulation tasks of articulated objects, deformable objects,
granular objects, as well as bimanual coordination.

(2) Balance Data diversity & relevance. It is difficult, if not impossible to learn everyday household
tasks from video datasets that are collected on a static lab table with limited object instances [7, 10–12].
A robotics-oriented video dataset that contains more diverse content is missing and needed. Recently,
research has been conducted on how massive-scale open-world video datatsets from computer vision
community [8, 9] contributes to generalization in robotic manipulation tasks [1, 2, 13]. However, as
they are not originally designed for robotics, they introduce unnecessary challenges for manipulation
tasks with irrelevant or even misleading content. For example, in Ego4D dataset [9], the video frames
may have content beyond human manipulation including a crowd in a live concert, human walking,
etc. Collecting a video dataset that balances diversity and relevance remains an open problem in this
area.

(3) Function on comparing baselines. The video dataset alone is not enough. The lack of a standard
testing environment paired with the dataset makes the meaningful, reproducible, democratized
comparison among different baseline methods extremely hard. For example, [1, 13] both learned
reward functions and induced policies from the same something-something dataset [8] but applied
the learned models to different robotic experiments. We aim to build a simulated benchmark that
would help roboticists and AI researchers validate their algorithms convincingly and efficiently before
testing on a real robot, thus, encouraging future research in the area of robot learning from videos.

To address the limitations mentioned above, we introduce RoboTube (Fig. 2), a human video dataset
of around 5,000 RGB-D video demonstrations and a suite of simulated twin environments.

1) To ensure the task complexity, RoboTube setups 5 task families, namely drawer-closing (articulated
object with prismatic joint), mug-pouring (granular object), cabinet-opening (articulated object with
revolute joint), bimanual-pot-lifting (bimanual coordination), and cloth-folding (deformable object).

2) To take the data diversity into consideration, for each task family, we ask 9 demonstrators to conduct
the task with diverse but natural hand poses upon different objects of the same category which have
variations in shapes, materials, and textures. We collect the videos in both clean and cluttered scenes.
To support the reproduction and comparisons of different algorithms and enable wider applicability,
the RoboTube video dataset contains multiple functionalities. We collect both successful (expert
video demonstrations) and failed (negative video demonstrations) episodes, concerning 50 tasks and
60 objects. Two temporally synchronized video streams are recorded from a first-person viewpoint
(FPV) and a third-person viewpoint (TPV).

3) To benchmark the baseline methods, we construct a simulated twin environment, RT-sim, for the
tasks and objects. With RT-sim, researchers can make a fair comparison of their approaches with the
baseline methods and can validate their algorithms convincingly and efficiently before conducting
more complex experiments on real robots.

We conduct extensive experiments to benchmark existing methods on RoboTube. We select three
self-supervised reward learning methods, namely goal classifier [14, 15], TCN [4], and XIRL [16],
and evaluate them on unseen tasks via reinforcement learning. Besides, we also conduct visual
pretraining on RoboTube videos, and use the learned models on RT-sim. The empirical results
elucidate that the models learned from the RoboTube video dataset can be transferred, used for policy
learning, and benchmarked in RT-sim. Finally, we evaluate the successfully trained models on a real
robot, the experiment results show performance consistency on RT-sim and real robot setups.

We summarize our contributions as follows:

1) We identify the issues in existing human video datasets for robot learning, and curate a benchmark,
RoboTube, which is designed by jointly considering the human video dataset and the evaluation
platform. RoboTube not only introduces more complex tasks with diverse object types, but also
supports meaningful, reproducible, democratized comparisons among different baseline methods.

2) We conduct extensive experiments to benchmark existing methods with the RoboTube. The
empirical results suggest that the models learned from RoboTube video dataset can be deployed,
benchmarked, and reproduced in RT-sim. The real world robotics experiments also show the sim2real
transfer ability of RT-sim.
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XIRL(real) [16] 5 5 5 5 Diverse N.A 1X 100 videos
G-in-W [5] 3 5 5 5 DemoAT gripper open/close 1X 12 hours
TCN-pour [4] 3 5 5 3 Human hands N.A 1X 300 videos
RLV [3] 5 5 5 5 Human hands N.A 2X 300 videos
DexMV [7] 3 3 3 5 Human hands 6 object models 3X 700 videos
VIME [6] 5 3 5 5 DemoAT gripper transition 2X 2000 videos

RoboTube 3 3 3 3 Human hands 60 object models 5X 5000 videos

Table 1: Comparison of video demonstration datasets. We compare the features of RoboTube video dataset
with related video demonstration datasets. In this table, DemoAT means demonstration assistive tools. In the
number of tasks section, n X meams n groups of tasks.

2 Related Work
2.1 Offline Datasets for Robotic Manipulation
Leveraging offline datasets to learn diverse manipulation behaviors has been studied by previous
researchers.

Video datasets for perception tasks. The computer vision community has curated many human-
object-interaction (HOI) video datasets for different perception tasks [8, 9, 17]. [1, 13] have proved
that it is effective to learn a generalizable reward function from the something-something dataset [8].
R3M [2] also exploited Ego4D [9] to improve efficiency in downstream motor control tasks. Despite
the rich prior knowledge that HOI videos have provided, such datasets are not originally designed for
robotics. For example, Ego4D dataset [9] contains content beyond human manipulation including
crowd in a concert live, human walking, etc.

Action-included demonstrations for robotic manipulation. An action-included demonstration
usually contains both the visual observation and the corresponding actions of the robots, which
provides strong supervision for a robot to learn complex behaviors. Previous works collect demon-
strations on a static lab table [10–12]. Recently, several works [18, 19] take an effort to enrich the
data diversity and show better generalization ability in imitation learning of everyday household
tasks. Despite the tremendous progress in learning from action-included demonstrations has been
made, such datasets suffer a key problem: it is time-consuming and expensive to collect everyday
household activities by guiding and/or teleoperating a real robot entity. In contrast, one can record
videos anywhere and anytime with a portable camera.

Video-only demonstrations for robotic manipulation. Consider the issues of other two kinds of
datasets, roboticists have also constructed video-only datasets for robotic manipulation [3–7, 16].
These datasets can be divided into two mainstreams: robot-friendly video demonstrations [5, 6],
human-friendly video demonstrations (human videos) [3, 4, 7, 16]. Song et al. [5] propose a robot-
friendly interface for collecting video demonstrations anywhere using assistive tools (DemoAT).
Besides DemoAT, researchers also propose to collect videos with human hands for robotic manipula-
tion. DexMV [7] conducts a novel pipeline to bridge 3D vision and dexterous manipulation. A more
detailed comparison of RoboTube’s features to those of related datasets can be found in Table ??.

2.2 Algorithms for Robot Learning from Videos
Endowing robots with the ability to learn skills by simply observing humans has been an emblematic
north star problem in robotics [14–16, 20–24]. Several directions have been proposed to achieve this
goal:

Reward learning from videos. Recent works demonstrate impressive manipulation skills learned
from human videos by inverse reinforcement learning [4, 13–16]. For example, previous works [13,
14] train a goal classifier as a reward function on human videos for policy learning. Later, Xie
et al. propose DVD [1], a domain-agnostic video discriminator for generalizable reward learning.
More recently, XIRL [16] leverages temporal cycle-consistency constraints [25] to learn deep visual
embeddings that are aware of task progress.

Visual pre-training for motor control. Recent works also discussed how to connect computer
vision to policy learning by leveraging self-supervised pre-training. A line of works [2, 26, 27] has
shown that pre-trained vision models from diverse real-world data can be effective to improve policy
learning. For example, Nair et al. [2] prove that vision-language pre-training on diverse egocentric
datasets, e.g., Ego4D [9].
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Figure 2: Overview of RoboTube. When building the video dataset, we ask demonstrators to collect manipula-
tion video demonstrations recorded by multi-view RGB-D cameras. Meanwhile, we scan the corresponding
objects into high-fidelity 3D models and construct simulated twin environments, RT-sim. After learning from
the video dataset, we test the learned models in the RT-sim.

3 RoboTube Benchmark: Pairing Human Videos with Digital Twins
RoboTube consists of a diverse human video dataset and a suite of simulated twin environments,
RT-sim. In this section, we will introduce the ideology of our design choice and the details of the
benchmark construction step by step.

3.1 Task Definitions in RoboTube.
Task Family. With the idea of task complexity in mind, we define 5 task families, with which we
hope to go beyond pick-and-place and cover common household manipulation tasks for diverse
objects with different levels of complexity. Specifically, the five task families are articulated object
manipulation (drawer-closing, cabinet-opening), granular object handling (mug-pouring), deformable
object manipulation (cloth-folding), and bimanual coordination (pot-lifting).

Two modes: Stuctured, cluttered. To ensure data diversity, we set up two task modes for video
dataset and RT-sim for each task family. As shown in Fig. 3(a), we design 1) the structured mode,
where we place only the object on a clean table as the easy level, and 2) the cluttered mode, the
hard level, where we place the objects in diverse real-world scenes without intentional clean-up, i.e.,
muliple distractors exist along with the objects in the scenes.

Diverse Object Selection Each task family contains multiple object instances of the same category
with variations in colors, shapes, and textures, but consistency in semantics and affordance. There are
10 drawers, 20 mugs, 10 cabinets, 10 pots, and 10 cloths, in total, 60 objects in RoboTube.

Train-Test Split We aim to learn a vision-based manipulation policy that generalizes to unseen
domains. In RoboTube, we split the objects in each task family into a training set (80%), and a testing
set (20%). For the RoboTube video dataset, the testing set is different from the training set videos not
only in terms of objects but also scenes, and viewpoints. We encourage the users to train the models
with training set videos, and test their performance on testing set videos and RT-sim with unseen
objects, viewpoints, and scenes,

3.2 Construction of the Video Dataset
We construct a collection of human video demonstrations for robotic manipulation. RoboTube video
dataset contains rich functionalities, equipping it with the capability as a benchmark for existing
algorithms with different settings. An overview of our RoboTube dataset is shown in Fig. 3.

Video Collection Setup. Collecting videos in everyday life with affordable and portable devices
boosts the data scale and diversity for robotics. We designed a portable video collection system with
two RealSense D435 cameras with a resolution of 640 × 480 and a frequency of 30 Hz. During
recording, two viewpoints are streamed: one is the first-person perspective from the camera mounted
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Figure 3: Preview of RoboTube videos dataset. (a): RoboTube designs the structured (stc) mode and the
cluttered (clt) mode for two levels of task difficulty. The first row shows the structured scenes of drawer-closing,
mug-pouring, pot-lifting, cabinet-opening, and cloth-folding tasks. The second row shows the cluttered scenes
of the five manipulation tasks. (b): Each frame in the RoboTube video dataset contains an RGB stream and
a depth stream. (c): A first-person viewpoint (FPV) camera and a third-person viewpoint (TPV) camera are
temporally synchronized. (d): RoboTube video dataset provides both successful episodes and failed episodes
for the same task. (e) given the example of the drawer closing task, human demonstrators are required to make
diverse poses to complete the tasks.

on the human head, and the other is the third-person perspective from the camera fixed on a tripod
placed near the scene. These two streams are temporally synchronized.

A Video Dataset with Rich Functionalities. To support the reproduction and comparisons of differ-
ent algorithms and enable wider applicability, we design multiple functionalities for the RoboTube
video dataset. For each task family, we ask 9 demonstrators to conduct the task with diverse but
natural hand poses upon different objects of the same category which have variations in shapes,
materials, and textures. 5,000 video demonstrations with both RGB and depth images are collected in
both clean and cluttered scenes. We collect both successful (expert video demonstrations) and failed
(negative video demonstrations) episodes. Two temporally synchronized video streams are recorded
from a first-person viewpoint (FPV) and a third-person viewpoint (TPV). We believe it encourages
future directions to leverage negative demonstrations and multi-viewpoint videos for self-supervised
learning.

3.3 RT-sim: Building Realistic Simulation Environments from Real-to-Sim.
To provide an accessible test platform for reproducible research of robot learning from videos, we
design RT-sim, a suite of simulation environments paired with RoboTube video dataset.

In RT-sim, we take special care to build visually realistic assets. Following the object scanning and
annotation procedures in [28], we scan high-fidelity textured mesh models for every single object
shown in the video dataset. The visually realistic assets serve as the digital twins of the objects shown
in real-world videos. The digital twins can be transferrable to other simulation environments as well.
To create realistic everyday household scenes, We import the scenes from Matterport3D [29] and use
google object scans [30] as the interactable distractors for cluttered mode. The visualization of the
RT-sim cluttered scenes can be found in Fig: 4.

To bridge the gap between the simulation and the real world, visual rendering and physics simulation
play important roles. We use uses Unity’s underlying physics engine technology which provides
photorealistic rendering quality for indoor scenes.

Moreover, RT-sim supports various robots (e.g. Franka, UR5, Kinova-gen3) and grippers (e.g.
Allegro Hand, Robotiq 85) for manipulation tasks.To enable robot learning algorithm training, RT-sim
provides a standard OpenAI Gym [31] API in Python language. The details of each task family can
be found in the appendix.

4 Experiments
As mentioned earlier, the mainstream of robot learning from videos adopts self-supervised reward
learning. In this section, we benchmark three self-supervised reward learning methods on RoboTube.
To validate the real-world generalization, we also deploy the learned reward models on a real robot.
More experiments on benchmarking visual pre-training for robotic manipulation on RoboTube can
be found in supplementary materials.
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Figure 4: Cluttered RT-sim gallery. We render all cluttered-mode scenes of RT-sim from the first-person
viewpoint.
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Figure 5: Performances of the learned reward models. To test the generalization ability of the learned reward
models, we train three self-supervised reward learning models on RoboTube dataset. At testing time, we use
two successful video trails for each of all five tasks to predict the reward. For each task, from top to bottom
are testing videos of human domain and structured mode in simulated robot domain. We also use a real robot
demonstration video, in which Franka successfully finishes drawer closing task, to predict the reward as shown
above.

4.1 Self-supervised Reward Learning
In this subsection, we benchmark three self-supervised reward learning approaches on RoboTube.
We aim to answer the question: can we learn reward models that effectively generalize from the
RoboTube video data (real) to RT-sim data (sim)?

Followed by the 1) Goal Classifier (GC) method used in Automated Visual Instructionfollowing
with Demonstrations (AVID) [14] and Learning by Watching (LbW) [15], we create self-supervised
signals by considering the last five frames of the video as the positive label and the rest as the
negative labels. We use the output probabilities as the reward by simply training a binary classifier.
We evaluate the single-view 2)Time Contrastive Network (TCN) [4] on RoboTube. TCN has been
demonstrated effective on several Imitation from Videos experiments as a standard baseline, including
pouring task [4], multi-stage coffee-making task [4], cross-embodiment video games [16]. We adapt
single-embodiment version of 3) Cross-embodiment Inverse Reinforcement Learning (XIRL) [16] in
our experiments. XIRL leverages Temporal Cycle-Consistency Learning (TCC) [25] constraints to
learn embeddings that are aware of task progress from offline videos. In TCN and XIRL, we take the
negative distance between the current state and goal state in embedding space as a reward function.
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DrawerClosing MugPouring CabinetOpening Bimanual-PotLifting ClothFolding

Max Success Rate
Env-rew 99.9% ±0.0% 2.6% ±0.3% 40.1% ±17.3% 63.5% ±25.0% 0.7% ±0.5%
GC 27.1% ±3.5% 1.7% ±0.5% 0.3% ±0.3% 1.3% ±0.3% 0.0% ±0.0%
TCN 98.2 % ±5.9% 0.4% ±0.5% 0.0% ±0.0% 1.0% ±0.5% 0.0% ±0.0%
XIRL 100.0% ±0.0% 3.6% ±1.1% 11.6% ±2.7% 0.3% ±0.3% 0.0% ±0.0%

Goal Metrics
Env-rew 0.999 ±0.000 1.617 ±0.262 33.001 ±10.880 0.038 ±0.011 -0.630 ±0.005
GC 0.271 ±0.035 0.696 ±0.150 3.666 ±0.398 0.007 ±0.002 -0.640 ±0.000
TCN 0.982 ±0.012 1.474 ±0.190 27.860 ±2.547 0.003 ±0.001 -0.640 ±0.002
XIRL 1.000 ±0.000 1.191 ±0.294 58.777 ±5.624 0.003 ±0.001 -0.637 ±0.002

Table 2: Max success rate and goal metric. We compare the max success rates and max goal metrics averaged
over three seeds of environment reward method and three baseline methods in this table.

Considering the structured mode, we leverage the RGB stream of the RoboTube dataset with third-
person viewpoints for reward model training. At testing time, we use two successful video episodes
to predict the reward from the learned reward models for each task family. we use the 1) human test
video, a sample from the test set of the RoboTube video dataset, we aim to verify if the reward models
can generalize to unseen objects in the human domain. We also investigate whether self-supervised
reward learning baselines can generalize to unseen objects in the simulated robot domain by testing
on 2) RT-sim test video, which is a successful video clip generated from RT-sim.

After benchmarking three self-supervised reward learning methods on five task families, as shown
in Fig. 5, we find that learned reward models achieve reasonable success on human test videos for
all five task families. For the testing on RT-sim test video, reward predictions produced by XIRL
are positively correlated with the testing on human test videos for the drawer closing, mug pouring,
and cabinet opening tasks. This indicates that XIRL successfully overcome the real-to-sim visual
gaps in RoboTube (human videos to RT-sim gap) with the photo-realistic rendering provided by
RT-sim. Hence, we prove that models learned from RoboTube video data can be evaluated in the
paired simulation environments (RT-sim) smoothly. However, with the increasing task difficulty of
bimanual pot-lifting and cloth folding, it still remains challenging for XIRL to accurately predict
the rewards on RT-sim test videos. GC has an obvious advantage on articulated object manipulation
tasks. However, it fails in other tasks. TCN performs well in drawer closing, mug pouring, and cloth
folding, but fails in the other two tasks.

4.2 Generalization to Unseen tasks via Reinforcement Learning
We consider the problem of reinforcement learning with pre-trained reward models. Particularly, we
are interested in whether the reward models learned from the RoboTube video dataset can be effective
for the downstream robotic manipulation tasks in the RT-sim compared with the hand-crafted reward
function. We use a low-level state as the input of the Soft-Actor-Critic [32] policy network, and
visual observation (an RGB image) as the input of the pre-trained reward model.

We compare the success rates and goal metric averaged over 3 seeds on unseen tasks of the five task
families for RL approaches of using hand-crafted reward functions (noted as Env-Rew), and using
learned reward models. Note that the objects and background scenes in RT-sim environments are
never seen during reward model training and objects are segmented into a training set and a testing
set.

We report the success rate and goal metric of the policy learning experiments as shown in Table 2.
Based on the observation of the decreasing performance of the RL with Env-rew and learned reward
models, the difficulty of the tasks gradually increases from drawer closing to cloth folding. Step-by-
step difficulty levels ensure RoboTube includes both easy tasks (drawer closing) and challenging
tasks, such as bimanual-pot lifting and cloth folding.

4.3 Real Robot Experiments
In this subsection, we are interested in whether we can generalize to real world environments with
RoboTube video dataset. We collect successful video episodes for each task under structured mode
using a Franka robot with a Robotiq85 gripper. We us a fixed Intel D435 camera to record the videos
from the third-person viewpoint. The models trained by self-supervised reward learning methods are
used to predict the learned reward. Note that during video collection with the real robot, we also use
unseen objects (i.e. objects in testing set). Under this overall setting, we aim to verify whether the
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Figure 6: Real robot experiments We show the visual observations of the real robot for the five unseen objects
from drawer closing task to cloth folding task.

reward models can generalize to 1) real-world setting where usually full of noise with unpredictable
lighting conditions, 2) morphology gap that caused by the difference between the robotic end-effector
and the human hand, and 3) unseen objects in the real world rather than only in the simulation.

As shown in Fig: 6. we can infer from the results that RoboTube has the potential to generalize to
real robotic manipulation tasks. Hence it indicates that RoboTube can serve as a testing platform for
helping researchers quickly validate the algorithms before testing on a real robot. Please find more
details about the real world experiments in the appendix.

5 Limitations
Though we have already extended the robot learning from video tasks to a larger scope with complex
task settings, diverse backgrounds, and object instances. And we also pay particular attention to
asking the demonstrators to operate in a natural way. Our dataset still has a gap towards the ultimate
“in-the-wild” setting where the videos from the internet can be much less structured or relevant.

6 Conclusion
We introduce RoboTube, a benchmark for robot learning from human videos. Our core contribution
lies in the joint design of the RoboTube video dataset and RT-sim. The models learned from RoboTube
videos can be tested, benchmarked, and reproduced in RT-sim. Extensive experimental results suggest
that RoboTube can be served as a benchmark that guides the future development of robot learning
from videos. Several potential future directions can be explored based on RoboTube: 1) The problem
of in-the-wild human-to-robot imitation is an exciting direction. To step further in this direction,
we plan to extend the data diversity of RoboTube to a larger scale. 2) RoboTube video dataset
provides multiple features for self-supervised representation learning, which encourages more future
algorithms in this direction. 3) Translating human videos into robotic demonstrations via explicit
pose estimation combined with 3D vision is another interesting direction. 4) Learning to simulate
by learning from observations. RoboTube has a collection of object models. It could be an exciting
future direction of learning to simulate the objects from human videos.
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