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Abstract

Out-of-distribution (OOD) problems commonly occur when models process data
with a distribution significantly deviates from the in-distribution (InD) training data.
In this paper, we hypothesize that a field or potential more essential than features
exists, and features are not the ultimate essence of the data but rather manifestations
of them during training. With this in mind, we first treat the output of the feature
extractor as charged particles and investigate their collective behavior dynamics
within a self-consistent electric field. Then, to characterize the relationship between
OOD problems and dynamical equations, we introduce the basin of attraction and
prove that its boundary can be represented as the zero level set of a differentiable
function of the potential, i.e., the spatial integral of field. We further demonstrate
that: i) InD and OOD inputs can be effectively separated based on whether they are
steady state solutions for specific field conditions, enabling robust OOD detection
and outperforming prior methods over three benchmarks. ii) the generalization
capability correlates positively with the basin of attraction. By analyzing the
dynamics of perturbations, we propose that the potential is well-characterized
by a Fourier-domain form of the Poisson equation. Evaluated on six benchmark
datasets, our method rivals the SoTA approaches for OOD generalization and can
be seamlessly integrated with them to deliver additional gains. The code is available
at https://github.com/wongzbb/CBD.

1 Introduction
Machine learning systems [15, 25, 70] have achieved significant success under the i.i.d. assumption,
where training and test data are drawn from the same distribution, known as in-distribution (InD).
However, this assumption is often violated in real-world scenarios [89, 95], as test data frequently
originate from different distributions, referred to as out-of-distribution (OOD) data, which causes
distribution shift and substantial performance degradation [20, 61, 21, 87]. Prior work on addressing
OOD challenges primarily follows two directions: 1) OOD detection [19, 27, 49], which aims to
identify test inputs that deviate from the training distribution to enhance model robustness and safety
on unknown or anomalous data; 2) OOD generalization [8, 57, 1], which seeks to improve model
performance on OOD data to enhance model transferability and adaptability. Despite extensive
prior works and diverse methodologies, recent study [72, 36] in the community inspired by other
disciplines is expected to provide new perspectives and insights into OOD problems.

Recent advancements witness the success of physics-inspired deep generative models, such as the
Poisson flow model derived from electrostatics [92, 93] and the model based on the stochastic reversed
heat equation [63]. The former abstracts data as charges and generates samples by evolving them
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Figure 1: Conceptual illustration of our collective behavior dynamics insight for addressing OOD
problems. High-level features are viewed as interacting particles within basin of attraction, transition-
ing from initial to steady states under the influence of a self-consistent electric field.

along electric field lines in an augmented space, while the latter interprets the solution of the forward
heat equation with added constant noise as a variational approximation to a diffusion-based latent
variable model. Overall, these approaches focus on learning the field of data using physical partial
differential equations (PDE), rather than directly modeling the data distribution. These impressive
achievements make us realize the fundamental nature of field or potential, with data are merely
external manifestations or inherent properties of these deeper underlying concepts. This motivates us
to model InD data using physical PDE. However, directly transferring prior work to OOD problems
is infeasible, as generative models primarily focus on the behavior of individual particles within a
field. In contrast, OOD problem center on determining field or potential boundaries, which requires
analyzing collective behavior rather than individual behaviors. This discrepancy motivates us to first
pose the following question:

Can we find a concise, theoretically grounded yet tractable PDE to model the collective
behavior of the high-level features and measure the boundary of the basin of attraction?

In pursuit of this, we introduce the Vlasov-Poisson system [67, 18], a dynamic physics model that
describes the evolution of collective particle behavior under self-consistent electric field. This system
captures the feedback loop where particle positions induce changes in the field, which, in turn,
influence particle positions, driving the system towards a steady state1. In this sence, we abstract
high-level features from the feature extractor as charged particles, with their values corresponding to
initial positions and assigned uniform initial velocities. Under the assumption that all InD features
correspond to a steady-state solution of the Vlasov-Poisson system, their dynamics will naturally
evolve toward that equilibrium. The region formed by such initial states is referred to as the basin
of attraction (as depicted in Figure 1). For OOD detection, we provide two principles: i) Vlasov-
Poisson systems modeled by collective particles with distinct initial positions but identical initial
velocities, typically yield unique steady-state solutions (Theorem 2.1), and ii) minor perturbations
outside the basin of attraction amplify during system evolution, sharpening gradients at the boundary
(Corollary 2.3). Thus, the basin of attraction is ideal for distinguishing InD and OOD features. Since
this process operates on pretrained high-level features, it is therefore a post-hoc detection method.
On the other hand, for OOD generalization, considering potential latent defects outside the basin of
attraction, we assume that network robustness improves as the basin’s range expands. So we next
seek to address the following question:

How can we enlarge basin of attraction’s boundary to enhance model generalization?
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Figure 2: As all plane-wave
modes reach steady state, cross-
frequency interactions dimin-
ish, leading to equilibrium.

To answer this, we decompose complex perturbations into super-
positions of simple plane waves2 and examine their collective
behavior in the Vlasov-Poisson system by giving a dispersion re-
lation that characterizes the stability of the wave modes. Through
this lens, if all wave modes converge to a common steady state, the
system ultimately stabilizes at that solution, regardless of the initial
perturbation, as illustrated in Figure 2. Therefore, by requiring the
potential in the random single-wave mode to satisfy the frequency
form of Poisson equation, we expand the basin of attraction to
include the perturbation points. We present Theorem 2.4 to support

1A steady state refers to a condition where the system’s macroscopic properties remain constant over time,
indicating a dynamic equilibrium between particle motion and the self-consistent field.

2A wave with uniform amplitude and phase across infinite, parallel wavefronts, propagating in fixed direction.
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Figure 3: Illustration of our CBD-based framework. CBD is derived from the Vlasov-Poisson system
and models the dynamics of high-level features under an electric field. The basin of attraction
quantifies the region where features from the InD training set X spontaneously converge to a steady
state. Based on CBD, we propose two methods targeting OOD detection and OOD generalization.

this design and discuss its impact on the model’s generalization ability, building on Theorem 2.5 and
Corollary 2.6.

In summary, the contributions of this work are three-fold: i) Theoretically, we introduce an application
of fields and potentials in OOD problems from two novel perspectives: the collective behavior
dynamics of high-level features and complex perturbations under self-consistent electric fields, with
supporting theories. ii) Methodologically, we propose physics-inspired Collective Behavior Dynamics
(CBD) framework for OOD problems. It is simple, effective, and compatible with other methods. iii)
Experimentally, our method outperforms or matches SoTA approaches across three OOD detection
benchmarks and six OOD generalization benchmarks, and can be integrated with them for further
improvement.
Prior Arts. We discuss related work and defer a concentrated account to Appendix A.

2 CBD: Collective Behavior Dynamics
LetX = {(x,y)} denote the training set, consisting of i.i.d. samples drawn from the joint distribution
P = X × Y , where X ∈ Rd represents the input space and Y = {1, 2, . . . , C} is the output space.
Consider a classification network parameterized by θ, where the network maps inputs x ∈ X to a
probability distribution over the output space Y . We illustrate our CBD-based approaches in Figure 3.
In the following, we first present the formulation of the Vlasov-Poisson system (Section 2.1), and
then introduce the details of basin of attraction (Section 2.2), followed by its application to OOD
detection. Finally, we formulate the dispersion relation (Section 2.3) and demonstrate how CBD can
be utilized for OOD generalization.

2.1 Formulation of Vlasov-Poisson System
The performance of classification networks typically relies on high-level feature extracted from
individual inputs. However, this overlooks the deep physical constraints that exist between high-
level features across InD data. To model the behavior of high-level features z=f̂θ(x), where f̂θ(·)
denotes a feature extractor, we treat these features extracted from InD data as charged particles
in the space RZ . Due to Coulomb interactions, these particles spontaneously move in space. In the
absence of collisions and external magnetic fields, their dynamics can be effectively described by the
Vlasov–Poisson system, which consists of two fundamental equations: the Vlasov equation and the
Poisson equation. Specifically, the Vlasov equation is given by:

∂F (z,v, t)

∂t
+ v · ∇zF (z,v, t) + E(z, t) · ∇vF (z,v, t) = 0. (1)

Eq.(1) preserves the Hamiltonian structure and energy conservation of the system, where F (z,v, t) ∈
RZ×RZ×R+→R+ is the particle distribution function at time t, defining the particle density at
position z and velocity v . E(z, t)∈RZ corresponds to the electric field generated by particle

distribution (assume all particles have the same charge). ∇z and ∇v represent the gradient with
respect to position and velocity, respectively. Eq.(1) describes macroscopic space-time changes.

The Poisson equation characterizes the relationship between the electric field E(z, t) and the particle
distribution F (z,v, t), and can be expressed as:

∇2ϕ(z, t) = − 1

ϵ0

( ∫
F (z,v, t)dv − ρion(z)

)
, E(z, t) = −∇ϕ(z, t). (2)

Here ϕ(z, t):RZ×R+→R+ denotes the electric potential,
∫
F (z,v, t)dv the charge density (i.e.,

the total charge at position z), and ϵ0>0 the permittivity constant. ρion(z) denotes Ion background
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density, assumed to be a spatially uniform constant. It serves to neutralize the system and ensure
potential solution. Eq.(1) and Eq.(2) together describe particle dynamics under the electric field.

Theorem 2.1. Consider N Vlasov-Poisson systems with steady state distributions Fi(z,v) =
ni(z) δ(v − v0), where each spatial density ni(z) ∈ L1(RZ) ∩ L∞(RZ) represents the spatial
density for the i-th system, and L1(R) and L∞(R) denote respectively the spaces of integrable
and essentially bounded functions on R. The Dirac delta distribution δ(v − v0) is centered at
v = v0, indicating a velocity distribution concentrated at that point. Assume that each ni(z) satisfies
v0 ·∇zni(z) = 0 and that the ion background density is given by ρion,i(z) = ni(z). If ni(z) ̸= nj(z)
for i ̸= j, then the solutions Fi are distinct.

We prove that in different multiple systems, where particles share identical mass and initial velocity
v0 but have distinct spatial density distributions, the steady state solutions (i.e., ∂F

∂t =0) are distinct.
Using the provided Vlasov-Poisson equations, a neutralizing ion background, and a density gradient
condition, we establish the result via distribution theory. The proof is deferred to the Appendix B.1.

2.2 Basin of Attraction and Application to OOD Detection
Building upon the concept of the Vlasov-Poisson system, we introduce the notion of a basin of attrac-
tion to characterize the system’s dynamical behavior under both InD and OOD inputs. Let F ∗(z,v) de-
note a steady state solution to the Vlasov–Poisson system. We define the basin of attraction B(F ∗)
as the set of initial distributions F0 such that the time-moved solution asymptotically approaches F ∗:

B(F ∗) =
{
F0 ∈ F | lim

t→∞
F (t, ·, ·) = F ∗ in some topology

}
. (3)

Here, F denotes the admissible function space (e.g., Sobolev or Wasserstein space). This asymptotic
behavior can be equivalently characterized by the steady state form of the Vlasov–Poisson system,{

v · ∇zF
∗(z,v) + E∗(z) · ∇vF

∗(z,v) = 0,
∇2ϕ∗(z) = − 1

ϵ0

(∫
F ∗(z,v) dv − ρion(z)

)
, E∗(z) = −∇ϕ∗(z). (time-independent) (4)

Definition 2.2. Under thermodynamic equilibrium, the steady-state electric potential ϕ∗(z) satisfies
the nonlinear Poisson–Boltzmann equation:

∇2ϕ∗(z) = − 1

ϵ0
(e−ϕ∗(z) − ρion(z)). (5)

Eq.(5) describes the equilibrium electrostatic potential resulting from a Boltzmann-distributed charge
density balanced against a fixed ion background. The derivation is provided in Appendix B.2.

Corollary 2.3. Consider ϕ∗(z) be the steady state electric potential satisfying the nonlinear Pois-
son–Boltzmann equation. Then the basin of attraction’s boundary ∂B can be implicitly represented
as the zero level set of a scalar functional over ϕ∗(z), i.e.,

∂B =
{
z ∈ RZ

∣∣ G(ϕ∗(z)) = 0
}
, (6)

where G is a differentiable function that depends on system configuration, such as energy thresholds,
local potential curvature, or external field geometry. This representation enables differentiable
modeling and learning of basin boundaries via neural function approximators.
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Figure 4: Electric field, poten-
tial, and basin of attraction’s
boundary. Particles inside con-
verge to steady state; those out-
side behave chaotically.

Corollary 2.3 establishes that the basin of attraction B associated
with the steady state dynamics is fully characterized by the solu-
tion ϕ∗(z) to the nonlinear Poisson–Boltzmann equation, through
a differentiable level-set condition G(ϕ∗(z))=0. It implies that
the geometric and topological structure of B, including its bound-
ary ∂B, is encoded in the electric potential ϕ∗. We defer the
formal to Appendix B.3. Given the challenges of directly solv-
ing high-dimensional nonlinear PDE of Eq.(4) and the need for
framework compatibility, we propose incorporating two parallel
MLP branches following the feature extractor: Fθ for predicting
the steady state distribution function F ∗ and ϕθ for estimating the
steady-state potential ϕ∗, both running in parallel with the linear
classifier fθ. As shown in Figure 3. This architecture ensures
CBD compatibility with most existing methods. Then we formu-
late a physics-informed loss, which enforces the consistency of
the learned potential with the steady state field equation. Because
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Figure 5: Effect of dispersion relation regularization on the learned potential field, its frequency
spectrum, and the recovered basin of attraction. Left column: Predicted potential fields with (left) and
without (right) dispersion relation loss. The regularized solution is smoother and more physically
consistent. Middle column: Corresponding frequency spectrum. Dispersion relation regularization
suppresses spurious high-frequency components, aligning the spectral structure with physical expecta-
tions. Right column: Estimated basin boundaries (contour of ϕθ(z)=const). Dispersion regularization
leads to a wider and smoother basin, indicating improved global consistency and robustness.

the Ion background density ρion(z) is constant, it introduces only a uniform offset and can be safely
omitted from derivation. Thus the resulting Poisson loss is

LPoisson(z; f̂θ, ϕθ) =
∥∥∇2ϕθ(z) +

1

ϵ0
e−ϕθ(z)

∥∥2. (7)

The steady state potential ϕ∗ encapsulates the overall geometric and topological structure of the InD
data, while also satisfying the Vlasov equation. So we get the following Vlasov loss:

LVlasov(z; f̂θ, ϕθ, Fθ) = ∥v · ∇zFθ(z,v)−∇ϕθ(z) · ∇vFθ(z,v)∥2 . (8)

Then we leverage LPoisson and LVlasov as a physically grounded uncertainty score to identify whether
z∗=f̂(x∗) lies inside the basin of attraction or corresponds to OOD behavior,

D(z∗; f̂θ, ϕθ, Fθ, X) =

{
InD if LPoisson(z

∗; f̂θ, ϕθ)≤λ1 and LVlasov(z
∗; f̂θ, ϕθ, Fθ)≤λ2

OOD otherwise
, (9)

where λ1>0 and λ2>0 is thresholds and x∗ is test data. This approach not only offers physical
interpretability, with the score directly quantifying deviation from the governing PDE. But also
geometric alignment with basin structure, as Corollary 2.3 demonstrates that G(ϕ∗(z)) exhibits
sharp gradient near the boundary ∂B, enabling robust OOD detection without statistical estimators.

2.3 Dispersion Relation and Application to OOD Generalization
OOD data’s high-level features may fall outside the basin of attraction of InD data, preventing
spontaneous transition from initial to steady states under given electric fields. From this perspective,
we hypothesize that network robustness is proportional to the range of the basin of attraction.As
the basin of attraction contracts, larger activity spaces emerge, increasing the probability of potential
defects. As illustrated in the second image of the right column in Figure 5, without additional regular-
ization, the learned boundary of the basin of attraction for exhibits fragmentation, demonstrating not
only sensitivity to input data but also a diminished area (green area). Enlarge this basin implies that
the system can accommodate larger initial deviations, without diverging or converging to alternative
equilibria, thereby improving the robustness of the steady state.

We define the set of initial perturbations (f0, ψ0)=(F−F ∗, ϕ−ϕ∗) . To investigate the collective
behavior dynamics of perturbations, we employ plane waves for decomposition. We define the plane
wave as ψ(z, t)=ψ̃ei(k·z−ωt) and f(z,v, t)=f̃(v)ei(k·z−ωt), where k∈RZ denotes the wave vector
specifying the spatial frequency and direction (we treat k as a random vector hyperparameter in our
experiments), and ω=ωr+iωi is the complex frequency. The scalar ψ̃ and f̃(v) represents the mode
amplitude. This representation enables any perturbation to be expressed as a superposition of
decoupled modes, and in systems exhibiting translational invariance, plane waves naturally arise as
eigenfunctions, transforming PDE into algebraic forms. Substituting ψ and f into Eq.(4), we get the
perturbation collective behavior dynamics equations:{

∂tf(z, t) + v · ∇zf(z, t) + E∗(z) · ∇vf(z, t) = (∇vF
∗(z,v)) · (∇zψ(z, t)),

∇2ψ(z, t) = − 1
ϵ0

∫
f(z, t) dv. (10)

Substituting the plane wave into Eq.(10), yielding{
−iωf̃(v) + ik · vf̃(v) +

(
−∇ϕ∗(z) · ∇vf̃(v)

)
= ψ̃(∇vF

∗(z,v)) · ik,
−∥k∥2ψ̃ = − 1

ϵ0

∫
f̃(v) dv.

(11)
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Assuming a homogeneous steady state for simplicity (i.e., ϕ∗(z) is constant and F ∗(z,v)=F ∗(v)),
the electric field E∗(z)=0, and Eq.(11) simplifies to:

−iωf̃(v) + ik · vf̃(v) = ψ̃(∇vF
∗(z,v)) · ik. (12)

Solving for f̃(v), we obtain:

f̃(v) =
ψ̃(∇vF

∗(v)) · k
ω − k · v

. (13)

Integrating over velocity space and substituting into the Poisson equation, we get:

D(ω,k) = 1 +
1

ϵ0

∫
k · ∇vF

∗(v)

ω − k · v
dv = 0. (14)

The solutions of D(ω,k) is ω(k)=ωr+iωi, which determine the stability of each mode. To assess
stability, we define an energy-like quantity as the squared magnitude of the perturbation, |ψ(z, t)|2 (or
alternatively |f(z,v, t)|2, with analogous derivation steps following). Substituting ω(k)=ωr+iωi,
this becomes |ψ(z, t)|2=|ψ̃|2e2ωit, since the exponential term ei(k·z−(ωr+iωi)t)=eik·ze−iωrteωit,
and the magnitudes of the complex phases eik·z and e−iωrt are unity. Thus, when ωi>0, the factor
e2ωit grows exponentially, causing the energy-like quantity to increase, potentially destabilizing the
system and contracting the basin of attraction. Conversely, when ωi<0, e2ωit decays exponentially,
reducing the energy-like quantity and facilitating recovery to the steady state. In the nonlinear regime,
perturbations decompose into multiple modes, and decaying modes (ωi<0) can mitigate the growth
of unstable modes (ωi>0) through modal interactions, such as energy redistribution. Therefore,
the imaginary part of ω can be used to evaluate the generalization ability of the model.

To enlarge the basin of attraction, we aim to suppress perturbations associated with positive growth
rates, i.e., those satisfying ωi > 0, as they contribute to instability and hinder recovery to equilibrium.
To this end, we introduce the following dispersion relation loss that regularizes the consistency
between the electric potential and the charge distribution in the frequency domain

Ldisp(z; f̂θ, ϕθ) =
∑

k

∥∥∥k∥2ϕ′k(z) + ρ′k(z)
∥∥2,

s.t. ϕ′k(z) = ϕθ(z)e
−ik·z, ρ′k(z) = e−ϕθ(z)e−ik·z.

(15)

This loss arises from the Fourier-domain formulation of the Poisson equation. Minimizing Eq.(15)
therefore enforces the constraint across sampled wavevectors k (see Figure 2). From a dynamical
perspective, satisfying this balance prevents the system from developing unstable frequency compo-
nents, which would otherwise drive the D(ω,k)=0 toward solutions with ωi>0, such imbalances
act as implicit forcing terms that require growing temporal responses. In contrast, minimizing
the dispersion relation loss encourages configurations where ωi<0, ensuring exponential decay of
perturbation energy and improved return to steady state. This regularization thus enhances stability
and expands the basin of attraction. Figure 5 presents a comparative analysis of predicted potential
fields, frequency spectra, and estimated basin boundaries before (right) and after (left) incorporating
the dispersion relation loss, demonstrating its superior efficacy in enlarging the basin of attraction.
According to Eq.(15), the underlying theoretical rationale can be formulated as follows.

Theorem 2.4. Define the approximate basin of attractor basin as the residual sublevel set

Bθ :=
{
z ∈ Ω | (∇2ϕθ(z) +

1

ϵ0
e−ϕθ(z))2 < λ

}
. (16)

Then, under mild regularity assumptions, increasing the spectral regularization strength λdisp>0
leads to a strictly larger basin measure:

meas
(
B(λdisp>0)
θ

)
≥ meas

(
B(λdisp=0)
θ

)
. (17)

Theorem 2.5. Let ϕθ, Fθ∈Hs(RZ), Hs(RZ×RZ), respectively, with s>Z/2, approximate the true
solutions ϕ∗, F ∗ of the Vlasov-Poisson system. Training data (z,v)∼D are i.i.d. from Ω×RZ . The
generalization error is: Egen(θ)=Ez,v∼D

[
∥ϕθ(z)−ϕ∗(z)∥2+∥Fθ(z,v)−F ∗(z,v)∥2

]
. The inclu-

sion of Ldisp reduces Egen(θ) by constraining the Sobolev norm of ϕθ, satisfying:

Ez,k[Ldisp] ≥ c∥ϕθ∥2H2 − C, (18)

for constants c, C > 0, thereby reducing the model complexity term in the generalization error bound.
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Table 1: OOD detection performance on CIFAR-10 and CIFAR-100 benchmarks, with the top three
results highlighted. Complete results for all baseline methods are provided in Appendix E.

Method
MINIST SSVHN Textures Places365 Average

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
CIFAR-10 Benchmark

OpenMax 23.33± 4.67 90.50± 0.44 25.40± 1.47 89.77± 0.45 31.50± 4.05 89.58± 0.60 38.52± 2.27 88.63± 0.28 29.69± 1.21 89.62± 0.19

ODIN 23.83± 12.34 95.24± 1.96 68.61± 0.52 84.58± 0.77 67.70± 11.06 86.94± 2.26 70.36± 6.96 85.07± 1.24 57.62± 4.24 87.96± 0.61

MDSEns 1.30± 0.51 99.17± 0.41 74.34± 1.04 66.56± 0.58 76.07± 0.17 77.40± 0.28 94.16± 0.33 52.47± 0.15 61.47± 0.48 73.90± 0.27

RMDS 21.49± 2.32 93.22± 0.80 23.46± 1.48 91.84± 0.26 25.25± 0.53 92.23± 0.23 31.20± 0.28 91.51± 0.11 25.35± 0.73 92.20± 0.21

Gram 70.30± 8.96 72.64± 2.34 33.91± 17.35 91.52± 4.45 94.64± 2.71 62.34± 8.27 90.49± 1.93 60.44± 3.41 72.34± 6.73 71.73± 3.20

ReAct 33.77± 18.00 92.81± 3.03 50.23± 15.98 89.12± 3.19 51.42± 11.42 89.38± 1.49 44.20± 3.35 90.35± 0.78 44.90± 8.37 90.42± 1.41

VIM 18.36± 1.42 94.76± 0.38 19.29± 0.41 94.50± 0.48 21.14± 1.83 95.15± 0.34 41.43± 2.17 89.49± 0.39 25.05± 0.52 93.48± 0.24

KNN 20.05± 1.36 94.26± 0.38 22.60± 1.26 92.67± 0.30 24.06± 0.55 93.16± 0.24 30.38± 0.63 91.77± 0.23 24.27± 0.40 92.96± 0.14

ASH 70.00± 10.56 83.16± 4.66 83.64± 6.48 73.46± 6.41 84.59± 1.74 77.45± 2.39 77.89± 7.28 79.89± 3.69 79.03± 4.22 78.49± 2.58

SHE 42.22± 20.59 90.43± 4.76 62.74± 4.01 86.38± 1.32 84.60± 5.30 81.57± 1.21 76.36± 5.32 82.89± 1.22 66.48± 5.98 85.32± 1.43

GEN 23.00± 7.75 93.83± 2.14 28.14± 2.59 91.97± 0.66 40.74± 6.61 90.14± 0.76 47.03± 3.22 89.46± 0.65 34.73± 1.58 91.35± 0.69

NAC-UE 15.14± 2.60 94.86± 1.36 14.33± 1.24 96.05± 0.47 17.03± 0.59 95.64± 0.44 26.73± 0.80 91.85± 0.28 18.31± 0.92 94.60± 0.50

CBD-De 15.20±0.59 97.48±1.29 14.22±1.50 97.85±0.68 18.44±1.82 97.03±0.95 22.75±2.21 93.18±0.73 17.65±1.03 96.39±0.81

CIFAR-100 Benchmark

OpenMax 53.82± 4.74 76.01± 1.39 53.20± 1.78 82.07± 1.53 56.12± 1.91 80.56± 0.09 54.85± 1.42 79.29± 0.40 54.50± 0.68 79.48± 0.41

ODIN 45.94± 3.29 83.79± 1.31 67.41± 3.88 74.54± 0.76 62.37± 2.96 79.33± 1.08 59.71± 0.92 79.45± 0.26 58.86± 0.79 79.28± 0.21

MDSEns 2.83± 0.86 98.21± 0.78 82.57± 2.58 53.76± 1.63 84.94± 0.83 69.75± 1.14 96.61± 0.17 42.27± 0.73 66.74± 1.04 66.00± 0.69

RMDS 52.05± 6.28 79.74± 2.49 51.65± 3.68 84.89± 1.10 53.99± 1.06 83.65± 0.51 53.57± 0.43 83.40± 0.46 52.81± 0.63 82.92± 0.42

Gram 53.53± 7.45 80.71± 4.15 20.06± 1.96 95.55± 0.60 89.51± 2.54 70.79± 1.32 94.67± 0.60 46.38± 1.21 64.44± 2.37 73.36± 1.08

ReAct 56.04± 5.66 78.37± 1.59 50.41± 2.02 83.01± 0.97 55.04± 0.82 80.15± 0.46 55.30± 0.41 80.03± 0.11 54.20± 1.56 80.39± 0.49

VIM 48.32± 1.07 81.89± 1.02 46.22± 5.46 83.14± 3.71 46.86± 2.29 85.91± 0.78 61.57± 0.77 75.85± 0.37 50.74± 1.00 81.70± 0.62

KNN 48.58± 4.67 82.36± 1.52 51.75± 3.12 84.15± 1.09 53.56± 2.32 83.66± 0.83 60.70± 1.03 79.43± 0.47 53.65± 0.28 82.40± 0.17

ASH 66.58± 3.88 77.23± 0.46 46.00± 2.67 85.60± 1.40 61.27± 2.74 80.72± 0.70 62.95± 0.99 78.76± 0.16 59.20± 2.46 80.58± 0.66

SHE 58.78± 2.70 76.76± 1.07 59.15± 7.61 80.97± 3.98 73.29± 3.22 73.64± 1.28 65.24± 0.98 76.30± 0.51 64.12± 2.70 76.92± 1.16

GEN 53.92± 5.71 78.29± 2.05 55.45± 2.76 81.41± 1.50 61.23± 1.40 78.74± 0.81 56.25± 1.01 80.28± 0.27 56.71± 1.59 79.68± 0.75

NAC-UE 21.97± 6.62 93.15± 1.63 24.39± 4.66 92.40± 1.26 40.65± 1.94 89.32± 0.55 73.57± 1.16 73.05± 0.68 40.14± 1.86 86.98± 0.37

CBD-De 27.93±7.73 96.29±1.81 18.72±6.12 95.80±2.05 37.34±2.30 90.02±1.52 55.23±0.88 81.50±1.16 34.81±1.60 90.90±0.68

Corollary 2.6. Under the same assumptions with Theorem 2.5, letH = {(ϕθ, Fθ) : θ ∈ Θ} be the
hypothesis class. The generalization bound is:

Egen(θ) ≤ Etrain(θ) + 2Rad(H) +O(
√

log(1/δ)/n), (19)

where Rad(H) is the Rademacher complexity, and n is the sample size. The inclusion of Ldisp reduces
Rad(H) by restricting ϕθ to a subsetHϕ ⊂ H2, tightening the generalization bound.

Theorem 2.4 proves that incorporating the loss Ldisp enlarges the basin of attraction. Theorem 2.5
further establishes that this loss term decreases the generalization error, and Corollary 2.6 presents
the resulting tightening generalization bound. Proofs are deferred to Appendix B.4, B.5 and B.6. For
OOD detection, the loss is defined as LDe≜LVlasov+LPoisson. For OOD generalization, we enhance
the training by incorporating Ldisp along with the standard classification loss [81], yielding the overall
loss LGen≜LClassify+α(LVlasov+LPoisson)+βLdisp, which ensures robust performance on the primary
task. For detailed pseudocode, refer to Appendix C.

3 Experiments
Steup. For OOD detection, following the latest OpenOOD [94], we evaluated our CBD-De on three
InD datasets: CIFAR-10, CIFAR-100 [38], and ImageNet-1k [12]. For CIFAR-10 and CIFAR-100, we
employed ResNet-18 and assessed performance against four OOD datasets: MNIST [13], SVHN [59],
Textures [10], and Places365 [101]. For ImageNet-1k, we utilized pre-trained ResNet-50
and Vit-b16 models, evaluating against three OOD datasets: iNaturalist [79], Textures,
and OpenImage-O [84]. We compared our approach with 22 SoTA OOD detection methods,
with comprehensive results provided in Appendix E. For OOD generalization, we adhere to the
Domainbed [23] in our experimental setup and use BCE as classification loss, evaluating our CBD-Gen
on five datasets: VLCS [16], PACS [45], OfficeHome [82], TerraInc [5], and DomainNet [60].
For each dataset, we report the leave-one-out test accuracy, averaged across splits where one domain
serves as the test set and the remaining domains as the training set. Our method is compared against
18 SoTA baselines, with comprehensive results available in Appendix F.

Metrics. For OOD detection, we employed two threshold-free evaluation metrics, consistent with
established conventions: i) FPR95, the false-positive-rate of OOD data when the true-positive-rate of
ID data is at 95%, and ii) AUROC, the area under the receiver operating characteristic curve. For
OOD generalization, we adhere to the standard practice of using accuracy as the evaluation metric.

Implementation Details. In the interest of brevity, we defer details such as training procedures,
hyperparameter configurations, and baseline methodologies to Appendix D.
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Table 2: Performance of OOD detection (AUROC) on ImageNet-1k, with full results in Appendix E.
Dataset Backbone OpenMax MDS RMDS ReAct VIM KNN ASH SHE GEN NAC-UE CBD-De

iNaturalist
ResNet-50 92.05 63.67 87.24 96.34 89.56 86.41 97.07 92.65 92.44 96.52 97.06
Vit-b16 94.93 96.01 96.10 86.11 95.72 91.46 50.62 93.57 93.54 93.72 97.26
Average 93.49 79.84 91.67 91.23 92.64 88.94 73.85 93.11 92.99 95.12 97.16

OpenImage-O
ResNet-50 87.62 69.27 85.84 91.87 90.50 87.04 93.26 86.52 89.26 91.45 92.65
Vit-b16 87.36 92.38 92.32 84.29 92.18 89.86 55.51 91.04 90.27 91.58 91.89
Average 87.49 80.83 89.08 88.08 91.34 88.45 74.39 88.78 89.77 91.52 92.27

Textures
ResNet-50 88.10 89.80 86.08 92.79 97.97 97.09 96.90 93.60 87.59 97.90 98.31
Vit-b16 85.52 89.41 89.38 86.66 90.61 91.12 48.53 92.65 90.23 94.17 94.30
Average 86.81 89.61 87.73 89.73 94.29 94.11 72.72 93.13 88.91 96.04 96.31

Table 3: OOD generalization performance on DomainBed, with complete results in Appendix F.
Algorithm Mixstyle MMD ARM MTL MLDG Mixup CORAL SAM SAGM GGA CBD-Gen
PACS 85.2±0.3 84.7±0.5 85.1±0.4 84.6±0.5 84.9±1.0 84.6±0.6 86.2±0.3 85.8±0.2 86.6±0.2 87.3±0.4 87.7±0.6

VLCS 77.9±0.5 77.5±0.9 77.6±0.3 77.2±0.4 77.2±0.4 77.4±0.6 78.8±0.6 79.4±0.1 80.0±0.3 79.9±0.4 80.5±0.5

OfficeHome 60.4±0.3 66.3±0.1 64.8±0.3 66.4±0.5 66.8±0.6 68.1±0.3 68.7±0.3 69.6±0.1 70.1±0.2 70.1±0.2 71.4±0.3

TerraInc 44.0±0.7 42.2±1.6 45.5±0.3 45.6±1.2 47.7±0.2 47.9±0.8 48.6±1.0 43.3±0.7 48.8±0.9 50.6±0.1 50.5±0.1

Avg. 66.9 67.7 68.3 68.5 69.2 69.5 70.3 69.3 71.4 71.7 72.5
DomainNet 34.0±0.1 23.4±9.5 35.5±0.2 40.6±0.1 41.2±0.1 40.3±0.1 41.5±0.1 44.3±0.2 45.0±0.2 45.2±0.2 45.9±0.4

Total 60.3 58.8 61.7 62.9 63.6 63.4 64.5 64.5 66.1 66.3 67.2

Table 4: Evaluation of CBD-Gen’s compatibility
with advanced OOD generalization methods.

Methods PACS VLCS OfficeHome TerraInc Avg.

SAM
baseline 85.8 79.4 69.6 43.3 69.3

with CBD-Gen 88.4 80.7 71.7 51.0 73.0
△ (+2.6) (+1.3) (+2.1) (+7.7) (+3.7)

SAGM
baseline 86.6 80.0 70.1 48.8 71.4

with CBD-Gen 88.2 80.7 71.5 50.8 72.8
△ (+1.6) (+0.7) (+1.4) (+2.0) (+1.4)

Quantitative results on OOD detection. Ta-
bles 1 and 2 present the results of our CBD-De
on the CIFAR and ImageNet datasets, com-
pared against 22 SoTA methods. Confidence in-
tervals in the tables reflect mean ± standard er-
ror over three independent test runs. Our CBD-
De consistently outperforms all SoTA meth-
ods in average performance, achieving record-
breaking results across three benchmarks. Specifically, on CIFAR-10 and CIFAR-100, CBD-De
reduces the FPR95 by 0.66% and 5.33%, respectively, and improves the AUROC by 1.79% and
3.92% compared to the most competitive baseline [52]. On the large-scale ImageNet-1k dataset,
CBD-De enhances AUROC scores across various backbones and OOD datasets, with average AUROC
improvements of 2.04%, 0.75%, and 0.27% over the strongest competitor.

Quantitative results on OOD generalization. Table 3 reports the average OOD accuracies of SoTA
generalization methods across five benchmarks. For fair comparison, all methods are trained on the
same amount of data. While additional data augmentations could further improve performance, they
are not applied to isolate the effect of the core methods. The average performance of CBD-Gen across
all evaluated datasets surpasses that of the most competitive benchmark by 0.9%. Specifically, on the
large-scale DomainNet dataset, comprising 586,575 images across six domains, CBD-Gen achieves a
0.7% improvement over the leading method. Furthermore, CBD-Gen significantly outperforms the
current SoTA on the OfficeHome dataset. We attribute this to its use of electric field modeling, which
enhances the network’s ability to capture discriminative features from limited data. In particular, the
electric potential exhibits sharp gradient transitions near the basin of attraction’s boundary, leading to
larger inter-class margins. This effect is beneficial for OfficeHome, where each class contains only
∼240 samples on average, and substantially fewer than the 1,400+ samples per class available in
other datasets, highlighting CBD-Gen’s strength in low-data regimes.

Compatibility results. We further investigated the potential of CBD-Gen by integrating it with
two advanced algorithms: SAM [17] and SAGM [86]. During training, we incorporated two MLP
branches after the feature extractor and incorporate additional LPoisson, LVlasov and Ldisp losses into
the existing algorithmic frameworks. These branches are removed during testing. Results are shown
in Table 4. Notably, CBD-Gen maintains consistent and superior performance across multiple datasets
when combined with other methods, further validating its strong generalizability and compatibility.
This demonstrates that CBD-Gen is not only effective within traditional training paradigms but can
also function as an enhancement module that integrates seamlessly with various advanced methods,
exhibiting extensive adaptation capabilities.

Text OOD Detection. To demonstrate the modality-agnostic nature of our post-hoc OOD detection
method CBD-De, we further conduct experiments on text classification benchmarks. Following
the evaluation protocol established in [4], we evaluate our method on standard text OOD detection
datasets. Specifically, we adopt the widely used SST-2 [71], IMDB [54], and Yelp [99] datasets,
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Table 4: Performance of OOD detection (AUROC) on text data.
ID OOD MSP Energy GradNorm KLM ReAct DICE KNN ViM CBD-De

SST-2 IMDB 83.2±1.4 82.7±2.2 70.3±2.3 55.0±2.7 83.3±2.4 34.5±10.7 87.2±1.7 83.9±3.3 89.0±2.2
SST-2 Yelp 75.7±2.2 75.0±3.1 61.3±2.7 51.3±3.0 75.7±3.4 35.4±8.4 87.8±0.4 80.1±2.8 89.3±1.4
Yelp IMDB 79.5±0.5 79.2±1.6 71.7±1.9 38.6±1.3 79.5±1.6 26.8±5.1 84.7±0.8 88.6±0.7 90.2±0.6
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Figure 6: Confidence calibration comparison and hyperparameter analysis on the OfficeHome dataset.

where each dataset alternates as InD and OOD data. As shown in Table 4, our method achieves
competitive performance compared to established baselines. These results confirm that CBD-De,
though originally designed for visual OOD detection, generalizes effectively to text modalities without
requiring any modality-specific adaptations.
Confidence calibration analysis. We evaluate the confidence calibration performance of
Mixstyle [102], SAGM [86], and our proposed CBD-Gen on the OfficeHome dataset, with re-
sults visualized via reliability histograms in Figure 6 (upper row). Predictions are divided into ten
bins based on confidence levels, and the mean accuracy is calculated for each bin. An optimally
calibrated model should exhibit a diagonal pattern in the reliability diagram, as highlighted by the
gray bars. We observe that Mixstyle exhibits poor calibration in low confidence intervals (0 to 0.5),
likely due to these data augmentation-based methods struggling to generate OOD samples with
significant distribution shifts. In contrast, while SAGM outperforms Mixstyle in these low intervals,
it underperforms in mid-confidence intervals (0.5 to 0.8), possibly because these sharpness-aware
minimization methods overly smooths samples with moderate gradients, skewing their probabilities
toward the extremes. Our proposed CBD-Gen, however, excels in both low and mid-confidence
intervals. This advantage may arise from decomposing perturbations into multiple plane waves,
enabling two key operations: i) perturbing random frequency components to indirectly create broader
OOD data, addressing calibration deficits in low-confidence regions, and ii) optimizing the basin of
attraction’s boundary, defined by a continuous PDE over InD data, ensuring smooth and consistent
parameter adjustments for accurate probability estimation in mid-confidence intervals.
Hyperparameter analysis. To maintain clarity, we primarily use the OfficeHome dataset to investi-
gate the impact of two loss-related hyperparameters in CBD-Gen, i.e., α and β, as well as the effect
of training batch size on model generalization. As shown in the bottom row of Figure 6, we first
vary α while fixing β = 0.01. The results indicate that model performance remains stable over a
broad range of α values (0.01 to 0.1), suggesting that CBD-Gen is robust to changes in the relative
weighting of Poisson and Vlasov losses within this interval. Next, fixing α=0.01, we examine the
influence of β and observe that generalization performance degrades slightly at both low (β=0.001)
and high (β=0.1) values. A small β may weaken the model’s ability to enlarge the basin of attrac-
tion’s boundary, limiting generalization, while an overly large β could lead to excessive emphasis on
matching plane wave modes, at the expense of accurate electric field modeling, ultimately impairing
classification performance. We also investigate the effect of batch size on CBD-Gen’s performance,
based on the assumption that accurate modeling of electric fields and potentials from InD data benefits
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Figure 7: Comparative analysis of wavenum-
ber N and scaling factor σ on OOD general-
ization task using the OfficeHome dataset.

from larger batches. As shown in Figure 6, general-
ization performance improves with increasing batch
size. Batch sizes between [32, 64] offer strong, po-
tentially optimal results, though hardware constraints
limit evaluation at larger scales.

Plane wave analysis. Experimentally, the wavevector
k in Eq(15) is sampled from a Gaussian distribution
k∼N (0, σ2I) for each batch (see pseudocode in Ap-
pendix C). The scaling factor σ controls the spread
of sampling in the frequency space and directly af-
fects the strength of dispersion relation regularization.
Additionally, the wavenumber N determines the dis-
cretization resolution in the frequency domain, signif-
icantly impacting both the stability of regularization
and computational efficiency. We conducted system-
atic ablation studies on different values of σ andN . As
shown in Figure 7, increasing N leads to consistent
improvements in generalization performance (from
blue to red/orange sample points). This is attributed
to a finer and more comprehensive frequency decomposition, enabling the model to better capture
and adapt to various domain shifts. However, excessively large N degrades training efficiency.
To balance performance and efficiency, we set N=250 in the above experiments. Furthermore,
comparative analysis of various scaling factors revealed that both insufficient and excessive sam-
pling ranges degrade model generalization performance. Smaller scaling factors preserve excessive
high-frequency components, introducing non-physical oscillations in the potential field, while larger
factors over-smooth the field, eliminating critical physical structural information. Experimental
results demonstrate that σ=0.5 yields optimal performance, balancing physical consistency with
discriminative feature preservation.

Limitations. We would like to discuss several limitations identified in our study. First, there is an
opportunity to enhance CBD by reformulating the distribution and potential prediction heads as a
multi-step PDE solver. Such a design could improve numerical stability and provide a more faithful
approximation of the underlying dynamics, potentially leading to greater precision compared to
directly solving for the steady state. However, this reformulation may introduce additional parameters,
hyperparameter sensitivity, and computational overhead, which should be carefully balanced against
the expected gains. We provide an illustrative experiment in the Appendix D.8 to demonstrate
this limitation. Second, the CBD algorithm requires extensive storage of first- and second-order
intermediate gradients, resulting in significant GPU memory demands. This not only increases
training costs but also restricts batch sizes and model scalability in practice. This constraint could
limit its applicability to large-scale or high-resolution tasks unless more memory-efficient optimization
strategies are developed, such as gradient checkpointing or mixed-precision computation.

4 Conclusion
In this work, we present a physics-inspired collective behavior dynamics perspective to address the
OOD problem. We conceptualize high-level features as charged particles and explicitly model their
collective behavior under a self-consistent electric field using a Vlasov-Poisson system of dynamical
equations. By solving for InD electric potential and distribution functions, we link the InD boundary
to the system’s steady-state basin of attraction, enabling effective OOD detection. Furthermore, we
analyze the collective behavior dynamics of perturbations within the system and resolve the OOD
generalization problem by enlarging the boundaries of the basin of attraction. Extensive experiments
across diverse tasks, benchmarks demonstrate our CBD’s advantages over current leading methods.
Following this line of thought, we hope our perspective inspires the community to consider physical
dynamical behaviors in OOD problems, which naturally aligns with principles of interpretability.
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A Prior Arts

OOD detection [27] aims to identify inputs that significantly deviate from the training data distri-
bution, a task critical to ensuring model reliability and safety in real-world applications. Existing
approaches can be broadly categorized into post-hoc and prior-based methods. Prior-based methods
integrate OOD awareness into the training phase by modifying training strategies [30], loss func-
tions [29, 55], or model architectures [78]. However, prior-based methods often require access to
OOD samples or carefully crafted synthetic anomalies during training, which may not be feasible
or generalizable across deployment scenarios. Additionally, such methods typically involve sub-
stantial modifications to the training pipeline or model architecture, increasing computational cost
and limiting applicability to pre-trained models. In contrast, post-hoc methods operate on models
already trained on InD data, making them more practical and flexible for real-world deployment.
These methods rely on analyzing model responses, such as confidence scores [27, 100], output
gradients [31], or intermediate activations [42], to estimate the likelihood that an input belongs to
the training distribution. Their plug-and-play nature and compatibility with existing models make
post-hoc approaches particularly appealing for scalable OOD detection. Our proposed CBD-De
builds upon a pre-trained model by training two additional MLP branches with InD data, while
freezing all parameters of the pre-trained model (including both feature extractor and classifier),
which categorizes it as a post-hoc method.

OOD generalization [48] focuses on improving model performance on unseen distributions without
requiring access to OOD data during training. It aims to learn representations that remain effective
under distributional shifts, enabling better generalization to unknown environments. Existing OOD
generalization approaches can be broadly categorized into three groups: data augmentation, represen-
tation learning, and model regularization. Data augmentation methods [102, 11] simulate distribution
shifts by applying input transformations or generating synthetic domains. Representation learning
methods [1, 69, 35, 90, 88] aim to learn domain-invariant or domain-discriminative features. Model
regularization methods [33, 64] introduce constraints during optimization to improve robustness.
While OOD generalization does not require OOD data, it often assumes access to multiple training
environments or sufficient data diversity, which may not always be available in practice. By modeling
the field or potential of InD data, our approach demonstrates superior performance over existing
methods on datasets with limited class samples, as substantiated by comprehensive experiments.

Vlasov–Poisson system [83] is a fundamental kinetic model describing the evolution of a collisionless
particle distribution under a self-consistent field. Originally proposed by Anatoly Vlasov in the 1930s
to overcome the limitations of collisional models like the Boltzmann equation, it was later coupled
with the Poisson equation to account for electrostatic interactions. Widely used in plasma physics,
astrophysics, and beam dynamics, the Vlasov–Poisson system models the collective behavior of
charged or gravitating particles in phase space. Unlike fluid-based models, it preserves full kinetic
information, allowing the study of fine-scale structures, non-equilibrium dynamics, and long-range
interactions. Phenomena such as phase mixing, filamentation, and Landau damping naturally arise
in this framework [56, 67]. Despite its compact formulation, the system remains analytically and
computationally challenging due to its high dimensionality and nonlinear coupling. Our propose
CBD integrating the Vlasov–Poisson system into OOD problems, harnessing the computational
efficiency of neural networks to address its high-dimensional solutions effectively.

Plane waves [22] are idealized solutions that propagate in a fixed direction with constant frequency
and uniformly spaced wavefronts. Despite their simplicity, they serve as fundamental basis functions
for representing complex perturbations. Leveraging Fourier analysis, any small perturbations can
be decomposed into a superposition of plane waves with varying frequencies and directions. In
this work, we represent initial perturbations as a set of independent wave modes, each evolving
according to the system dynamics. This decomposition is particularly effective in the linear regime,
where small-amplitude assumptions allow the neglect of mode interactions and enable independent
analysis of each component [40, 56]. By adopting a plane wave perspective, we obtain a tractable
and insightful view for understanding perturbation evolution in the Vlasov–Poisson system.

Contribution. In this paper, we introduce a novel solution to the OOD problems by harnessing
collective behavior dynamics modeled through the Vlasov-Poisson system. Departing from conven-
tional approaches, our method conducts a theoretical analysis of the basin of attraction’s boundary for
steady state solutions, elucidating its effectiveness in addressing OOD detection task. Additionally,
we examine perturbation evolution within dynamical systems and propose a strategy to expand the
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basin of attraction, thereby tackling OOD generalization challenges. Extensive empirical experiments
validate the efficacy of our approach.

B Proof

B.1 Formal Proof of Theorem 2.1

Consider the Vlasov-Poisson system in Z-dimensional space:

∂F (z,v, t)

∂t
+ v · ∇zF (z,v, t) +E(z, t) · ∇vF (z,v, t) = 0, (20)

∇2ϕ(z, t) = −
∫
F (z,v, t) dv

ϵ0
, E(z, t) = −∇ϕ(z, t), (21)

where:

• z,v ∈ RZ are the spatial and velocity coordinates, respectively.
• F (z,v, t) : RZ × RZ × R+ → R+ is the particle distribution function.
• E(z, t) ∈ RZ is the electric field.
• ϕ(z, t) : RZ × R+ → R is the electric potential.
• ϵ0 > 0 is the permittivity constant.

The particle density is:

ρ(z, t) =

∫
F (z,v, t) dv. (22)

We study N systems indexed by i = 1, . . . , N , each with:

• Particles of identical mass (normalized to 1) and velocity v0 ∈ RZ .
• Spatial density ni(z) ∈ L1(RZ) ∩ L∞(RZ), with ni(z) ̸= nj(z) for i ̸= j.
• Distribution Fi(z,v, t) = ni(z)δ(v − v0), where δ(v − v0) is the Dirac delta distribution

in RZ .
• Ion background density ρion,i(z) = ni(z).

A steady state solution satisfies ∂Fi

∂t = 0. We aim to prove that the steady state solutions Fi are
distinct for distinct ni(z).
Assumption B.1. For each system i:

1. ρion,i(z) = ni(z), ensuring E = 0.

2. v0 · ∇zni(z) = 0, ensuring Fi is steady state.

Proof. Let us consider two systems i and j with steady state distributions:

Fi(z,v) = ni(z)δ(v − v0), Fj(z,v) = nj(z)δ(v − v0). (23)

We need to show that if ni(z) ̸= nj(z), then Fi ̸= Fj in the sense of distributions.

First, verify that Fi and Fj are steady state solutions under the given assumptions. With ρion,i(z) =
ni(z), compute the particle density:

ρi(z) =

∫
Fi(z,v) dv =

∫
ni(z)δ(v − v0) dv = ni(z). (24)

The Poisson equation becomes:

∇2ϕi(z) = −
ρi(z)

ϵ0
= −ni(z)

ϵ0
. (25)

Since ρion,i(z) = ni(z), the total charge density is:

ρtotal,i(z) = ρion,i(z)− ρi(z) = ni(z)− ni(z) = 0. (26)
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Thus:

∇2ϕi(z) = −
ρtotal,i(z)

ϵ0
= 0. (27)

Assuming boundary conditions such that ϕi → 0 as |z| → ∞, the solution is ϕi(z) = 0, so:

Ei(z) = −∇ϕi(z) = 0. (28)

Similarly, Ej = 0 for system j.

With Ei = 0, the Vlasov equation for system i reduces to:

∂Fi

∂t
+ v · ∇zFi = 0. (29)

For steady state, ∂Fi

∂t = 0, requiring:
v · ∇zFi = 0. (30)

Compute the spatial gradient:

∇zFi = ∇z[ni(z)δ(v − v0)] = (∇zni(z))δ(v − v0), (31)

so:
v · ∇zFi = [v · ∇zni(z)]δ(v − v0). (32)

Evaluate at v = v0:
v0 · ∇zni(z) = 0, (33)

which holds by assumption. Thus, v · ∇zFi = 0, confirming that Fi is a steady state solution. The
same applies to Fj .

Now, address distinctness. Since ni(z) ̸= nj(z), there exists a set S ⊂ RZ of positive Lebesgue
measure where ni(z) ̸= nj(z). The velocity component δ(v − v0) is identical across systems.
Consider the action of Fi and Fj as distributions on a test function ψ(z,v) ∈ C∞

c (RZ × RZ):

⟨Fi, ψ⟩ =
∫
RZ

∫
RZ

ni(z)δ(v − v0)ψ(z,v) dv dz =

∫
RZ

ni(z)ψ(z,v0) dz. (34)

Similarly:

⟨Fj , ψ⟩ =
∫
RZ

nj(z)ψ(z,v0) dz. (35)

If Fi = Fj , then ⟨Fi, ψ⟩ = ⟨Fj , ψ⟩ for all ψ, implying:∫
RZ

[ni(z)− nj(z)]ψ(z,v0) dz = 0. (36)

Choose ψ(z,v) = χ(z)δϵ(v − v0), where χ(z) is a smooth function supported in S and δϵ is a
mollified delta function. As ϵ → 0, this forces ni(z) = nj(z) on S, contradicting the assumption
that ni ̸= nj on a set of positive measure. Thus, Fi ̸= Fj as distributions.

Remark. This theory posits that high-level features from different distributions correspond to distinct
steady state solutions, meaning that OOD features and InD features cannot share the same steady
state solution, thereby making it particularly applicable to OOD detection tasks.

B.2 Formal Proof of Theorem 2.2

We derive the nonlinear Poisson–Boltzmann equation for the steady state Vlasov–Poisson system
in thermodynamic equilibrium, where the background ion density ρion(z) : RZ → R+ varies
spatially. In thermodynamic equilibrium, the steady state distribution function F ∗(z,v) takes the
Maxwell–Boltzmann form, reflecting the energy distribution of particles at constant temperature.

Assume the steady state distribution is:

F ∗(z,v) = A exp

(
−1

2
m∥v∥2 − ϕ∗(z)

)
, (37)

where A > 0 is a normalization constant, m > 0 is the particle mass, and ϕ∗(z) is the steady-state
electric potential. The factor 1

2m∥v∥
2 represents the kinetic energy, and ϕ∗(z) is scaled such that
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the potential energy term qϕ∗(z)/(kT ) = ϕ∗(z), with q as the particle charge, k as the Boltzmann
constant, and T as the temperature.

Compute the particle density by integrating over velocity space:

ρ(z) =

∫
RZ

F ∗(z,v) dv = Ae−ϕ∗(z)

∫
RZ

exp

(
−1

2
m∥v∥2

)
dv. (38)

The velocity integral is a Z-dimensional Gaussian. For each dimension i = 1, . . . , Z, evaluate:∫ ∞

−∞
exp

(
−1

2
mv2i

)
dvi =

√
2π

m
, (39)

since
∫∞
−∞ e−ax2

dx =
√
π/a with a = m/2. Thus:∫

RZ

exp

(
−1

2
m∥v∥2

)
dv =

(√
2π

m

)Z

=

(
2π

m

)Z/2

. (40)

The particle density becomes:

ρ(z) = A

(
2π

m

)Z/2

e−ϕ∗(z) = Ce−ϕ∗(z), (41)

where C = A
(
2π
m

)Z/2
is a positive constant. To absorb C into the scaling of the charge density,

effectively setting C = 1 in the units used, so it becomes:

ρ(z) = e−ϕ∗(z). (42)

The steady state Poisson equation is:

∇2ϕ∗(z) = − 1

ϵ0
(ρ(z)− ρion(z)) . (43)

Substituting ρ(z), we obtain:

∇2ϕ∗(z) = − 1

ϵ0

(
e−ϕ∗(z) − ρion(z)

)
. (44)

This is the nonlinear Poisson–Boltzmann equation, capturing the relationship between the potential
and the charge densities in the presence of a spatially varying ion background.

To confirm that F ∗(z,v) is a steady state solution, verify the Vlasov equation with ∂F∗

∂t = 0:

v · ∇zF
∗(z,v) +E(z) · ∇vF

∗(z,v) = 0. (45)

Compute the spatial gradient:

∇zF
∗(z,v) = −F ∗(z,v)∇zϕ

∗(z), (46)

so:
v · ∇zF

∗(z,v) = −F ∗(z,v) (v · ∇zϕ
∗(z)) . (47)

For the velocity gradient:
∇vF

∗(z,v) = −mvF ∗(z,v), (48)
and with E(z) = −∇ϕ∗(z):

E(z) · ∇vF
∗(z,v) = (−∇ϕ∗(z)) · (−mvF ∗(z,v)) = mF ∗(z,v) (v · ∇zϕ

∗(z)) . (49)

Summing the terms:

−F ∗(z,v) (v · ∇zϕ
∗(z)) +mF ∗(z,v) (v · ∇zϕ

∗(z)) = (m− 1)F ∗(z,v) (v · ∇zϕ
∗(z)) . (50)

In the scaled units where the potential accounts for q/(kT ), the coefficients balance (effectively
setting m = 1 in the normalized system), yielding zero, confirming the steady-state condition.

Thus, the nonlinear Poisson–Boltzmann equation is:

∇2ϕ∗(z) = − 1

ϵ0

(
e−ϕ∗(z) − ρion(z)

)
, (51)

completing the proof.
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B.3 Formal Proof of Corollary 2.3

We establish the properties of a Lyapunov functional for the Vlasov–Poisson system in thermodynamic
equilibrium and characterize the boundary of the basin of attraction for the steady state (ϕ∗, F ∗),
where F ∗(z,v) = A exp

(
− 1

2m∥v∥
2 − ϕ∗(z)

)
and the particle density is scaled as ρ(z) = e−ϕ∗(z),

satisfying the Poisson–Boltzmann equation∇2ϕ∗(z) = − 1
ϵ0

(
e−ϕ∗(z) − ρion(z)

)
.

Define the total free-energy functional for a general state (ϕ(z, t), F (z,v, t)):

L (t) =
ϵ0
2

∫
RZ

∥∇ϕ(z, t)∥2 dz+
∫
RZ

∫
RZ

F (z,v, t)

(
1

2
m∥v∥2 + ϕ(z, t)

)
dv dz. (52)

To confirm L (t) as a Lyapunov functional, compute its time derivative. Using the Vlasov equation
∂F
∂t + v · ∇zF − (∇ϕ) · ∇vF = 0, the second term’s derivative is:

d

dt

∫
RZ

∫
RZ

F

(
1

2
m∥v∥2 + ϕ

)
dv dz =

∫
RZ

∫
RZ

(
∂F

∂t

(
1

2
m∥v∥2 + ϕ

)
+ F

∂ϕ

∂t

)
dv dz.

(53)
Substitute ∂F

∂t . The term with 1
2m∥v∥

2 becomes:∫
RZ

∫
RZ

(−v · ∇zF + (∇ϕ) · ∇vF ) ·
1

2
m∥v∥2 dv dz. (54)

Integration by parts, assuming F → 0 as |z|, |v| → ∞, nullifies the ∇z term, and since
∇v

(
1
2m∥v∥

2
)
= mv, the velocity term is:

−m
∫
RZ

∇ϕ ·
(∫

RZ

Fv dv

)
dz. (55)

The ϕ term contributes:∫
RZ

∫
RZ

(−v · ∇zF + (∇ϕ) · ∇vF )ϕ dv dz+

∫
RZ

ρ
∂ϕ

∂t
dz, (56)

with the ∇v term vanishing. For the electrostatic term, use the Poisson equation:

d

dt

(
ϵ0
2

∫
RZ

∥∇ϕ∥2 dz
)

= −
∫
RZ

(ρ− ρion)
∂ϕ

∂t
dz. (57)

Combining, dissipative terms ensure d
dtL (t) ≤ 0, with equality at (ϕ, F ) = (ϕ∗, F ∗), making L (t)

non-increasing and minimal at L ∗.

For the steady state, compute L ∗ using F ∗. The velocity integral is:∫
RZ

F ∗
(
1

2
m∥v∥2 + ϕ∗

)
dv = e−ϕ∗(z)

(
1

2
m

(
2π

m

)Z/2

· Z
2
+ ϕ∗(z)

(
2π

m

)Z/2
)
. (58)

Thus:
L ∗ =

∫
RZ

[ϵ0
2
∥∇ϕ∗(z)∥2 +

(
e−ϕ∗(z) − ρion(z)

)
ϕ∗(z)

]
dz. (59)

Define the energy density:

E(z) = ϵ0
2
∥∇ϕ∗(z)∥2 +

(
e−ϕ∗(z) − ρion(z)

)
ϕ∗(z), (60)

so L ∗ =
∫
RZ E(z) dz. Let z∗ be where ϕ∗(z) is minimal, with η = E(z∗). The energy defect is:

G(ϕ∗(z)) = E(z)− η =
ϵ0
2
∥∇ϕ∗(z)∥2 +

(
e−ϕ∗(z) − ρion(z)

)
ϕ∗(z)− η. (61)

Since L (t) is non-increasing, G is non-negative and decreases along non-stationary phase-space
characteristics (z(t),v(t)). At z∗, ∇ϕ∗(z∗) = 0, so G = 0.

For an initial point z0, if G(ϕ∗(z0)) < 0, the trajectory remains in the sub-level set containing z∗,
converging to the steady state, so z0 ∈ B. If G(ϕ∗(z0)) > 0, the trajectory cannot cross G = 0,
staying outside B. Thus, the basin boundary is:

∂B =
{
z ∈ RZ | G(ϕ∗(z)) = 0

}
. (62)
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Since ϕ∗ is smooth (by elliptic regularity), G is differentiable. Near ∂B, the gradient ∇zG(ϕ∗(z))
changes sharply, as the rapid transition from G > 0 to G < 0 implies a large magnitude of
∇zG = ∇zϕ

∗ ·
[
ϵ0∇2ϕ∗ +

(
e−ϕ∗ − ρion

)
− ϕ∗e−ϕ∗]

, driven by the nonlinear terms and the Pois-
son–Boltzmann equation. This sharp gradient reflects the boundary’s role as a critical separator,
making ∂B a differentiable level set, completing the proof.

B.4 Formal Proof of Theorem 2.4

Prior to proving the Theorem 2.4, we introduce two prerequisite lemmas:
Lemma B.A (Sobolev Embedding Theorem). Let Ω ⊂ RZ be a bounded domain with a smooth
boundary. For a function u ∈ Hs(Ω), where Hs(Ω) is the Sobolev space of order s, the following
embeddings hold:

• If s > Z/2, then u ∈ C0(Ω), the space of continuous functions on Ω.

• If s > Z/2 + k, for a positive integer k, then u ∈ Ck(Ω), the space of k-times continuously
differentiable functions on Ω.

Proof of Lemma B.A. We prove the Sobolev embedding theorem for a bounded domain Ω ⊂ RZ

with a smooth boundary, focusing on the cases relevant to our application: continuity (s > Z/2)
and C2 differentiability (s > Z/2 + 2). The Sobolev space Hs(Ω) consists of functions u ∈ L2(Ω)
whose weak derivatives up to order s are in L2(Ω), with the norm defined via the Fourier transform
of an extended function. Since Ω is bounded, we extend u ∈ Hs(Ω) to ũ ∈ Hs(RZ) with compact
support, using a standard extension operator that preserves the Sobolev norm up to a constant.

The Fourier transform of ũ is ˆ̃u(k) =
∫
RZ ũ(z)e

−ik·z dz. The Hs(RZ) norm is:

∥ũ∥2Hs =

∫
RZ

(1 + ∥k∥2)s|ˆ̃u(k)|2 dk <∞. (63)

To show continuity for s > Z/2, express ũ(z) via the inverse Fourier transform:

ũ(z) = (2π)−Z/2

∫
RZ

ˆ̃u(k)eik·z dk. (64)

We need to prove ũ is continuous, i.e., |ũ(z1)− ũ(z2)| → 0 as z1 → z2. Consider:

|ũ(z1)− ũ(z2)| = (2π)−Z/2
∣∣∣ ∫

RZ

ˆ̃u(k)(eik·z1 − eik·z2) dk
∣∣∣. (65)

Since |eik·z1 − eik·z2 | ≤ 2, and for small |z1 − z2|, we use |eik·z1 − eik·z2 | ≤ |k||z1 − z2|, split the
integral into low-frequency (∥k∥ ≤ R) and high-frequency (∥k∥ > R) parts:

|ũ(z1)− ũ(z2)| ≤ (2π)−Z/2

(∫
∥k∥≤R

|ˆ̃u(k)||k||z1 − z2|dk+ 2

∫
∥k∥>R

|ˆ̃u(k)|dk

)
. (66)

For the low-frequency part, apply Cauchy–Schwarz:∫
∥k∥≤R

|ˆ̃u(k)||k|dk ≤

(∫
∥k∥≤R

|ˆ̃u(k)|2(1 + ∥k∥2)s dk

)1/2(∫
∥k∥≤R

∥k∥2

(1 + ∥k∥2)s
dk

)1/2

.

(67)
The first integral is bounded by ∥ũ∥Hs . The second is finite if 2s − 2 > Z, i.e., s > Z/2, as the
integrand behaves like ∥k∥2−2s for large ∥k∥. For the high-frequency part:∫

∥k∥>R

|ˆ̃u(k)|dk ≤

(∫
∥k∥>R

|ˆ̃u(k)|2(1 + ∥k∥2)s dk

)1/2(∫
∥k∥>R

(1 + ∥k∥2)−s dk

)1/2

.

(68)
The second integral converges for s > Z/2, and the first is controlled by ∥ũ∥Hs . As R → ∞, the
high-frequency term vanishes, and the low-frequency term is proportional to |z1 − z2|, proving
continuity.
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For Ck differentiability, if s > Z/2 + k, consider the weak derivative Dαũ for |α| ≤ k. Its Fourier
transform is (ik)α ˆ̃u(k), and:

∥Dαũ∥2Hs−|α| =

∫
RZ

(1 + ∥k∥2)s−|α||k|2|α||ˆ̃u(k)|2 dk ≤
∫
RZ

(1 + ∥k∥2)s|ˆ̃u(k)|2 dk, (69)

since |k|2|α| ≤ (1 + ∥k∥2)|α|. If s− |α| > Z/2, then Dαũ ∈ Hs−|α| ⊂ C0, so ũ ∈ C |α|(RZ). For
|α| ≤ k, we need s− k > Z/2, i.e., s > Z/2 + k. Restricting to Ω, the extension operator ensures
u ∈ Ck(Ω), completing the proof.
Lemma B.B (Measure of Sublevel Sets). Let Ω ⊂ RZ be a bounded open set with a smooth
boundary, and let f, g ∈ Hs(Ω) for s > Z/2, with f ∈ Hs1(Ω), g ∈ Hs0(Ω), and s1 > s0. For a
fixed threshold δ > 0, define the sublevel sets:

Sf = {z ∈ Ω | |f(z)| < δ}, Sg = {z ∈ Ω | |g(z)| < δ}. (70)

If g has non-trivial high-frequency Fourier components, then the Lebesgue measure satisfies:

meas(Sf ) ≥ meas(Sg), (71)

with strict inequality if high-frequency components of g cause |g| to exceed δ in regions where |f | < δ.

Proof of Lemma B.B. We prove that the Lebesgue measure of the sublevel set Sf = {z ∈ Ω |
|f(z)| < δ} for a function f ∈ Hs1(Ω) is at least as large as that of Sg = {z ∈ Ω | |g(z)| < δ}
for g ∈ Hs0(Ω), where s1 > s0 > Z/2, and Ω ⊂ RZ is bounded with a smooth boundary. Since
s0 > Z/2, the Sobolev embedding theorem (cf. Lemma B.A) ensures f, g ∈ C0(Ω), so the sublevel
sets are well-defined, and their Lebesgue measures are finite as meas(Ω) <∞.

The smoothness of f and g is characterized by their Sobolev norms:

∥f∥2Hs1 =

∫
RZ

(1 + ∥k∥2)s1 |f̂(k)|2 dk, ∥g∥2Hs0 =

∫
RZ

(1 + ∥k∥2)s0 |ĝ(k)|2 dk, (72)

where f̂ , ĝ are the Fourier transforms of the extensions of f, g to RZ via a bounded extension operator.
Since s1 > s0, the decay of |f̂(k)| for large ∥k∥ is faster than that of |ĝ(k)|, implying f has fewer
high-frequency oscillations. High-frequency components in g can cause rapid fluctuations, potentially
pushing |g(z)| ≥ δ in regions where |f(z)| < δ.

Consider the sublevel sets. The complement Ω \ Sf = {z ∈ Ω | |f(z)| ≥ δ} has measure:

meas(Ω \ Sf ) =

∫
{z∈Ω||f(z)|≥δ}

1 dz. (73)

By Chebyshev’s inequality for |f |:

meas({z ∈ Ω | |f(z)| ≥ δ}) ≤ 1

δ2

∫
Ω

|f(z)|2 dz ≤ 1

δ2
∥f∥2L2(Ω). (74)

Since Hs1 ⊂ L2, and similarly for g, the L2-norm bounds the measure of the complement. However,
smoothness affects the distribution of |f |. For g ∈ Hs0 , high-frequency modes (larger |ĝ(k)| for
large ∥k∥) can create localized oscillations, increasing the set where |g(z)| ≥ δ. For f ∈ Hs1 , faster
Fourier decay reduces such oscillations, shrinking Ω \ Sf . To quantify, assume g has non-trivial
high-frequency components, i.e.,

∫
∥k∥>R

(1+∥k∥2)s0 |ĝ(k)|2 dk > 0 for largeR. These components
contribute to fluctuations in g, modeled as g = glow + ghigh, where ghigh corresponds to ∥k∥ > R. In
regions where |glow| < δ, oscillations in ghigh may push |g| ≥ δ, reducing meas(Sg). For f , with
s1 > s0, the high-frequency contribution is smaller, so meas(Ω \ Sf ) ≤ meas(Ω \ Sg), hence:

meas(Sf ) = meas(Ω)−meas(Ω \ Sf ) ≥ meas(Ω)−meas(Ω \ Sg) = meas(Sg). (75)

Strict inequality holds if ghigh causes |g| ≥ δ in a set of positive measure where |f | < δ, completing
the proof.

Proof of Theorem 2.4. We prove that increasing the spectral regularization strength λdisp > 0 (in
other words, β > 0) in the dispersion relation loss Ldisp results in a strictly larger Lebesgue measure
for the approximate attractor basin Bθ = {z ∈ Ω | (∇2ϕθ(z) +

1
ϵ0
e−ϕθ(z))2 < λ}, compared to the
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case with λdisp = 0. The proof relies on the smoothness induced by Ldisp on the potential ϕθ, which
reduces oscillations in the residual field, thereby expanding the sublevel set.

Consider the steady state Vlasov–Poisson system in thermodynamic equilibrium, where the distribu-
tion function is Fθ(z,v) = A exp

(
− 1

2m∥v∥
2 − ϕθ(z)

)
, and the particle density is scaled as ρ(z) =

e−ϕθ(z). The steady state Poisson–Boltzmann equation is ∇2ϕθ(z) = − 1
ϵ0

(
e−ϕθ(z) − ρion(z)

)
. The

approximate potential ϕθ is trained to minimize losses, including:

LPoisson(z; f̂θ, ϕθ) =

∥∥∥∥∇2ϕθ(z) +
1

ϵ0
e−ϕθ(z)

∥∥∥∥2 , (76)

and the dispersion relation loss:

Ldisp(z; f̂θ, ϕθ) =
∑
k

∥∥∥k∥2ϕ′k(z) + ρ′k(z)
∥∥2 ,

ϕ′k(z) = ϕθ(z)e
−ik·z, ρ′k(z) = e−ϕθ(z)e−ik·z.

(77)

The term Ldisp penalizes deviations from the equilibrium dispersion relation in Fourier space, with
the ∥k∥2 factor emphasizing high-frequency modes. Minimizing Ldisp enforces rapid decay of the
Fourier coefficients of ϕθ. For a fixed ρ′k, consider the Fourier transform ϕ̂k =

∫
Ω
ϕθ(z)e

−ik·z dz.
Minimizing

∑
k ∥k∥4|ϕ̂k|2 (from the ∥k∥2ϕ′k term) implies:∑

k

(1 + ∥k∥2)s|ϕ̂k|2 <∞, (78)

for some s > 0, placing ϕθ ∈ Hs(Ω), the Sobolev space of order s. With λdisp > 0, the penalty on
high-frequency modes increases s, enhancing the smoothness of ϕθ compared to λdisp = 0, where
only LPoisson and the Vlasov loss LVlasov are active.

By the Sobolev embedding theorem (cf. Lemma B.A), for Ω ⊂ RZ , if s > Z/2, then ϕθ ∈ Hs(Ω) is
continuous, and if s > Z/2 + 2, then ϕθ ∈ C2(Ω), ensuring the Laplacian ∇2ϕθ and the nonlinear
term e−ϕθ are well-defined and continuous. Increased smoothness reduces oscillations in ϕθ and its
derivatives. Define the residual field:

R(z) = ∇2ϕθ(z) +
1

ϵ0
e−ϕθ(z). (79)

Since R(z) depends on∇2ϕθ and e−ϕθ , both of which inherit the smoothness of ϕθ, a higher s (from
λdisp > 0) makes R(z) smoother, with fewer sharp spikes or oscillations.

The approximate basin is:

Bθ =
{
z ∈ Ω | R(z)2 < λ

}
=
{
z ∈ Ω | |R(z)| <

√
λ
}
. (80)

In measure theory (cf. Lemma B.B), the Lebesgue measure of a sublevel set {z ∈ Ω | |f(z)| < δ}
increases as the function f becomes smoother, because smoothness reduces regions where |f | exceeds
δ due to local oscillations. For R(z), high-frequency oscillations in ϕθ or∇2ϕθ can cause |R(z)| to
spike above

√
λ, shrinking Bθ. With λdisp > 0, the enhanced smoothness of ϕθ (higher s) reduces

such spikes, as the Fourier modes decay faster, leading to a more uniform R(z).

To formalize, consider two potentials: ϕ(1)θ trained with λdisp > 0, and ϕ(0)θ with λdisp = 0. Let
R(1)(z) and R(0)(z) be their residuals, with ϕ(1)θ ∈ Hs1(Ω), ϕ(0)θ ∈ Hs0(Ω), and s1 > s0. The
smoother R(1) has a larger sublevel set {z | |R(1)(z)| <

√
λ} because its fluctuations are less likely

to exceed
√
λ. Thus:

meas
(
B(λdisp>0)
θ

)
≥ meas

(
B(λdisp=0)
θ

)
. (81)

To ensure strict inequality, assume ϕ(0)θ has non-trivial high-frequency components (common in
numerical approximations without regularization), causing R(0) to exceed

√
λ in regions where R(1)

remains below due to damping. This yields a strictly larger measure for B(λdisp>0)
θ , completing the

proof.
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B.5 Formal Proof of Theorem 2.5

Prior to presenting the proof, we introduce the following lemma:
Lemma B.C (Standard Statistical Learning Theory for Error Bound). Let X ⊂ Rd be a bounded
domain with a smooth boundary. Let hθ : X → Rm, parameterized by θ, be a model in Hs(X),
s > d/2, approximating a true function h∗ ∈ Hs(X). Let x ∼ D be i.i.d. training data from X . For
a bounded, Lipschitz continuous loss function ℓ(x;hθ), the generalization error:

Egen(θ) = Ex∼D
[
∥hθ(x)− h∗(x)∥2

]
, (82)

is bounded by:
Egen(θ) ≤ Etrain(θ) + C∥hθ∥Hs , (83)

where Etrain(θ) = Ex∼D [ℓ(x;hθ)] is the training error, and C > 0 depends on the loss Lipschitz
constant and model class complexity.

Proof of Lemma B.C. We bound the generalization error for a model hθ ∈ Hs(X), s > d/2,
approximating h∗ ∈ Hs(X). The generalization error is:

Egen(θ) = Ex

[
∥hθ(x)− h∗(x)∥2

]
. (84)

The training error is:
Etrain(θ) = Ex [ℓ(x;hθ)] . (85)

In statistical learning theory, the generalization error is bounded by the training error plus a term
reflecting the function class complexity. Since s > d/2, the Sobolev embedding (similar to Theorem
2.4) ensures hθ, h∗ ∈ C0(X), so the squared error is well-defined. Assume ℓ(x;hθ) is Lipschitz
continuous with constant L, i.e., |ℓ(x;h1)− ℓ(x;h2)| ≤ L∥h1 − h2∥, and bounded, |ℓ| ≤M .

For n i.i.d. samples xi, the empirical risk is:

Êtrain(θ) =
1

n

n∑
i=1

ℓ(xi;hθ). (86)

By uniform convergence (e.g., via Rademacher complexity), for the function classH = {hθ | θ ∈ Θ}:∣∣Etrain(θ)− Êtrain(θ)
∣∣ ≤ C1Rn(H), (87)

where Rn(H) is the Rademacher complexity. For Hs(X), the Sobolev norm bounds the magnitude:

∥hθ∥L∞ ≤ C2∥hθ∥Hs . (88)

Thus:
Rn(H) ≤ C3 sup

hθ∈H
∥hθ∥Hs/

√
n. (89)

Assuming ℓ(x;hθ) ≈ ∥hθ(x)− h∗(x)∥2 or bounds it, the generalization error satisfies:

Egen(θ) ≤ Etrain(θ) + C4∥hθ∥Hs , (90)

where C4 depends on L, D, and sup ∥hθ∥Hs . Thus:

Egen(θ) ≤ Etrain(θ) + C∥hθ∥Hs , (91)

completing the proof.

Proof of Theorem 2.5. We prove that including the dispersion relation loss Ldisp reduces the
generalization error Egen(θ) by constraining the H2-norm of ϕθ, leveraging the Vlasov–Poisson
system in thermodynamic equilibrium where Fθ(z,v) = A exp

(
− 1

2m∥v∥
2 − ϕθ(z)

)
, ρ(z) =

e−ϕθ(z), and the true solutions ϕ∗, F ∗ satisfy the Poisson–Boltzmann equation.

The generalization error measures the expected squared deviation of the learned solutions ϕθ, Fθ

from the true solutions:

Egen(θ) = Ez

[
|ϕθ(z)− ϕ∗(z)|2

]
+ Ez,v

[
|Fθ(z,v)− F ∗(z,v)|2

]
. (92)

By standard statistical learning theory (cf. Lemma B.C), the generalization error is bounded by:

Egen(θ) ≤ Etrain(θ) + Complexity(ϕθ, Fθ), (93)
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where Etrain(θ) = Ez,v

[
LPoisson(z; f̂θ, ϕθ) + λ1LVlasov(z; f̂θ, ϕθ, Fθ) + λdispLdisp(z;ϕθ)

]
, and the

complexity term depends on the Sobolev norms ∥ϕθ∥Hs , ∥Fθ∥Hs . Small training errors imply
ϕθ ≈ ϕ∗, Fθ ≈ F ∗, but the complexity term, which measures model capacity, must be controlled to
prevent overfitting.

Expanding the squared norm of Ldisp(z; f̂θ, ϕθ):∥∥∥∥k∥2ϕθ(z)e−ik·z + e−ϕθ(z)e−ik·z
∥∥∥2 = ∥k∥4ϕθ(z)2 + e−2ϕθ(z) + 2∥k∥2ϕθ(z)e−ϕθ(z). (94)

Take the expectation over z ∼ D and k with a probability density p(k) (e.g., a Gaussian distribution
over wavevectors):

Ez,k[Ldisp] =
∑
k

(
Ez[ϕθ(z)

2]Ek

[
∥k∥4

]
+ Ez

[
e−2ϕθ(z)

]
+ 2Ez

[
ϕθ(z)e

−ϕθ(z)
]
Ek

[
∥k∥2

])
.

(95)
Since s > Z/2, Lemma B.A ensures ϕθ ∈ C0(Ω), so ϕθ(z) and e−ϕθ(z) are bounded. The cross
term is bounded by: ∣∣∣Ez

[
ϕθ(z)e

−ϕθ(z)
]
Ek

[
∥k∥2

] ∣∣∣ ≤ C1, (96)

where C1 = ∥ϕθ∥L∞∥e−ϕθ∥L∞Ek

[
∥k∥2

]
. The term Ez

[
e−2ϕθ(z)

]
≥ 0. For the first term, consider

the Fourier representation:

Ez

[
ϕθ(z)

2
]
Ek

[
∥k∥4

]
=

∫
Ω

|ϕθ(z)|2 dz · Ek

[
∥k∥4

]
= c1∥ϕθ∥2L2(Ω), (97)

where c1 = Ek

[
∥k∥4

]
> 0. In the Fourier domain, the term involving ∥k∥4 is:∑

k

∥k∥4|ϕ̂θ(k)|2 ≈
∫
RZ

∥k∥4|ϕ̂θ(k)|2 dk = ∥∇2ϕθ∥2L2 . (98)

Thus:
Ez,k[Ldisp] ≥ c1∥ϕθ∥2L2(Ω) + Ez

[
e−2ϕθ(z)

]
− C1. (99)

Since ∥ϕθ∥2H2 = ∥ϕθ∥2L2 + ∥∇ϕθ∥2L2 + ∥∇2ϕθ∥2L2 , and the dominant term is ∥∇2ϕθ∥2L2 , we
approximate:

Ez,k[Ldisp] ≥ c∥ϕθ∥2H2 − C, (100)
where c = c1, and C bounds the nonlinear and cross terms, since Ez

[
e−2ϕθ

]
≥ 0 and C1 is finite.

The Vlasov loss LVlasov constrains ∥∇ϕθ∥L2 , ∥∇zFθ∥L2 , and ∥∇vFθ∥L2 , but not directly ∥∇2ϕθ∥L2

or ∥ϕθ∥L2 . Thus, withoutLdisp, ∥ϕθ∥H2 may be large due to high-frequency components. Minimizing
Ldisp bounds:

∥ϕθ∥2H2 ≤
1

c
Ez,k[Ldisp] + C. (101)

For the generalization error, consider:
Ez

[
|ϕθ(z)− ϕ∗(z)|2

]
≤ Ez [LPoisson] + C2∥ϕθ∥Hs , (102)

since LPoisson measures the residual, and the Sobolev norm controls model complexity. Similarly,
LVlasov ensures Fθ ≈ F ∗, with complexity bounded by ∥Fθ∥Hs . Thus:

Egen(θ) ≤ Etrain(θ) + C3 (∥ϕθ∥Hs + ∥Fθ∥Hs) . (103)

Since Ldisp reduces ∥ϕθ∥H2 via its frequency-domain penalty, and Hs ⊂ H2 for s > 2, it lowers the
complexity term, reducing Egen(θ), completing the proof.

B.6 Formal Proof of Corollary 2.6

Before proceeding with the proof, we first introduce two lemmas.
Lemma B.D (McDiarmid’s Inequality). LetX ⊂ Rd be a bounded domain, and let x1, . . . , xn ∼ D
be i.i.d. samples from X . Let f : Xn → R be a function such that for all i, changing one sample
xi to x′i alters f by at most ci, i.e., |f(x1, . . . , xi, . . . , xn)− f(x1, . . . , x′i, . . . , xn)| ≤ ci. Then, for
any δ ∈ (0, 1), with probability at least 1− δ:

E[f(x1, . . . , xn)] ≤ f(x1, . . . , xn) +
√∑n

i=1 c
2
i log(2/δ)

2
. (104)
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Proof of Lemma B.D. Let f : Xn → R satisfy the bounded difference condition: for each
i, |f(x1, . . . , xi, . . . , xn) − f(x1, . . . , x

′
i, . . . , xn)| ≤ ci. Define the random variable Z =

f(x1, . . . , xn), where xi ∼ D. Z is concentrated around its expectation. The variance proxy
is bounded by the sum of squared differences:

∑n
i=1 c

2
i . Applying McDiarmid’s inequality, for any

t > 0:

P (Z − E[Z] ≥ t) ≤ exp

(
− 2t2∑n

i=1 c
2
i

)
. (105)

Set the right-hand side to δ/2:

exp

(
− 2t2∑n

i=1 c
2
i

)
=
δ

2
. (106)

Solving:

t =

√∑n
i=1 c

2
i log(2/δ)

2
. (107)

Similarly, P (E[Z]− Z ≥ t) ≤ δ/2. By the union bound, with probability at least 1− δ:

|E[Z]− Z| ≤
√∑n

i=1 c
2
i log(2/δ)

2
. (108)

Thus:

E[f ] ≤ f +

√∑n
i=1 c

2
i log(2/δ)

2
, (109)

completing the proof.

Lemma B.E (Rademacher Complexity Bound). Let X ⊂ Rd be a bounded domain, and let
x1, . . . , xn ∼ D be i.i.d. samples from X . Let H = {hθ : X → Rm} be a hypothesis class
in Hs(X), s > d/2, and let ℓ : Rm × X → R be a loss function bounded by M and Lipschitz
continuous with constant L. The generalization error Ex[ℓ(hθ, x)] for hθ ∈ H is bounded, with
probability at least 1− δ, by:

Ex[ℓ(hθ, x)] ≤
1

n

n∑
i=1

ℓ(hθ, xi) + 2Rad(LH) +O

(√
log(1/δ)

n

)
, (110)

where Rad(LH) = Eσ,x

[
suphθ∈H

1
n

∑n
i=1 σiℓ(hθ, xi)

]
is the Rademacher complexity of the loss

class LH = {x 7→ ℓ(hθ, x) : hθ ∈ H}.

Proof of Lemma B.E. For H ⊂ Hs(X), s > d/2, the loss ℓ(hθ, x) is bounded, |ℓ| ≤ M , and
Lipschitz continuous, |ℓ(hθ1 , x)− ℓ(hθ2 , x)| ≤ L∥hθ1(x)− hθ2(x)∥. The empirical risk is:

Ê(hθ) =
1

n

n∑
i=1

ℓ(hθ, xi). (111)

The expected risk is E(hθ) = Ex[ℓ(hθ, x)]. By standard results in statistical learning, the generaliza-
tion gap is bounded using Rademacher complexity:

Rad(LH) = Eσ,x

[
sup
hθ∈H

1

n

n∑
i=1

σiℓ(hθ, xi)

]
, (112)

where σi ∼ Unif({−1, 1}). For any hθ, with probability at least 1− δ:

E(hθ) ≤ Ê(hθ) + 2Rad(LH) + C1

√
log(2/δ)

n
, (113)

using Talagrand’s lemma and concentration. Since ℓ is bounded, apply Lemma B.D to the function
f(x1, . . . , xn) = suphθ

1
n

∑n
i=1 ℓ(hθ, xi), with ci = 2M/n. The additional term is:

C1

√∑n
i=1(2M/n)2 log(2/δ)

2
= C1

√
4M2 log(2/δ)

2n
≈ O

(√
log(1/δ)

n

)
. (114)
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Thus:

E(hθ) ≤ Ê(hθ) + 2Rad(LH) +O

(√
log(1/δ)

n

)
, (115)

completing the proof.

Proof of Corollary 2.6. We derive the generalization bound for the Vlasov–Poisson system under the
assumptions of Theorem 2.5, where ϕθ, Fθ ∈ Hs(RZ), Hs(RZ × RZ), s > Z/2, approximate the
true solutions ϕ∗, F ∗, and training data (zi,vi) ∼ D are i.i.d. from Ω× RZ . The hypothesis class is
H = {(ϕθ, Fθ) : θ ∈ Θ}, and the generalization error is Eq.(92). We aim to bound Egen(θ) and show
that Ldisp reduces the Rademacher complexity Rad(H).
Define the loss function for a hypothesis hθ = (ϕθ, Fθ) ∈ H:

ℓ(hθ, (z,v)) = |ϕθ(z)− ϕ∗(z)|2 + |Fθ(z,v)− F ∗(z,v)|2. (116)

The generalization error is the expected loss:

Egen(θ) = Ez,v [ℓ(hθ, (z,v))] . (117)

The empirical risk over n samples is:

Êgen(θ) =
1

n

n∑
i=1

ℓ(hθ, (zi,vi)). (118)

By statistical learning theory, we bound the difference between expected and empirical risk. The
Rademacher complexity of the loss class LH = {(z,v) 7→ ℓ(hθ, (z,v)) : hθ ∈ H} is:

Rad(LH) = Eσ,z,v

[
sup
hθ∈H

1

n

n∑
i=1

σiℓ(hθ, (zi,vi))

]
, (119)

where σi ∼ Unif({−1, 1}) are Rademacher variables. Since ℓ is the squared error, assume it is
bounded (as s > Z/2 ensures ϕθ, Fθ ∈ C0 by Theorem 2.4, and Ω is bounded). The loss is Lipschitz
continuous:

|ℓ(hθ1 , (z,v))− ℓ(hθ2 , (z,v))| ≤ L (|ϕθ1(z)− ϕθ2(z)|+ |Fθ1(z,v)− Fθ2(z,v)|) , (120)

where L = 2max(∥ϕθ − ϕ∗∥L∞ , ∥Fθ − F ∗∥L∞).

Using standard results (cf. Lemma B.D and Lemma B.E), with probability at least 1− δ:

Egen(θ) ≤ Êgen(θ) + 2Rad(LH) + C1

√
log(1/δ)

n
, (121)

where C1 depends on the bound of ℓ. Since LPoisson and LVlasov approximate the squared errors (small
residuals imply ϕθ ≈ ϕ∗, Fθ ≈ F ∗), and Ldisp adds regularization, the training loss L bounds ℓ.
Thus, the empirical training error Êtrain(θ) =

1
n

∑n
i=1 L(zi,vi;ϕθ, Fθ) satisfies:

Êgen(θ) ≤ Êtrain(θ) + C2, (122)

where C2 accounts for differences between ℓ and L. Taking expectations:

Egen(θ) ≤ Etrain(θ) + 2Rad(LH) + C1

√
log(1/δ)

n
+ C2. (123)

Since Rad(LH) depends on H, we denote Rad(H) = Rad(LH), and absorb C2 into the
O(
√
log(1/δ)/n) term, yielding:

Egen(θ) ≤ Etrain(θ) + 2Rad(H) +O

(√
log(1/δ)

n

)
. (124)

Now, we show that Ldisp reduces Rad(H). The Rademacher complexity is bounded by the complexity
ofH:

Rad(H) ≤ C3

(
sup
ϕθ

∥ϕθ∥Hs + sup
Fθ

∥Fθ∥Hs

)
/
√
n. (125)

29



By Theorem 2.5, Ldisp satisfies:

Ez,k[Ldisp] ≥ c∥ϕθ∥2H2 − C. (126)

Minimizing Ldisp constrains:

∥ϕθ∥2H2 ≤
1

c
Ez,k[Ldisp] + C. (127)

Define the subsetHϕ = {ϕθ ∈ H2 : Ez,k[Ldisp] ≤M} for some bound M . Then:

∥ϕθ∥H2 ≤
√
M + C

c
, (128)

restricting ϕθ to a bounded subset of H2. Since Hs ⊂ H2 for s ≥ 2, this reduces supϕθ
∥ϕθ∥Hs . For

Fθ = A exp
(
− 1

2m∥v∥
2 − ϕθ(z)

)
, the norm ∥Fθ∥Hs depends on ∥ϕθ∥Hs , so constraining ϕθ also

bounds Fθ. Thus, Ldisp reduces Rad(H), tightening the generalization bound, completing the proof.

C Algorithm Protocol

Algo. 1 and Algo. 2 give the algorithmic protocol of our framework, which is easy to implement and
applicable to common OOD problems.

Algorithm 1 Algorithm pseudocode of CBD-De

Require: Training mini-batches {xi, yi}Bi=1, pre-trained feature extractor f̂θ , distribution prediction
head Fθ, potential prediction head ϕθ, learning rate η

Ensure: Trained parameters θ
1: Initialize θ ← {Fθ, ϕθ}, optimizer O(θ, η) /* Fixed f̂θ, post-hoc fashion */
2: for each training step do
3: x← {xi}ni=1, y← {yi}ni=1

4: z← f̂θ(x) /* Extract features */
5: v← ones_like(z) /* Constant velocity input */

Vlasov residual: v · ∇xF
∗ −∇ϕ∗ · ∇vF

∗

6: F ∗ ← Fθ(z,v)
7: ϕ∗ ← ϕθ(z)
8: ∇zϕ

∗ ← autograd(ϕ∗.sum(), z)
9: E∗ ← −∇zϕ

∗

10: ∇xF
∗,∇vF

∗ ← autograd(F ∗.sum(), [z,v])
11: Lvlasov ← mean[(v · ∇zF

∗ +E∗ · ∇vF
∗)2]

Poisson residual: ∇2ϕ∗ + exp(−ϕ∗)

12: ∇zϕ
∗ ← autograd(ϕ∗.sum(), z)

13: /* Compute second-order derivatives on each dim */
14: for d = 1 to Z do
15: ∇ϕ∗d ← ∂ϕ∗/∂zd ← autograd(ϕ∗.sum(), zd)
16: ∂2ϕ∗/∂z2d ← autograd(∇ϕ∗d.sum(), zd)
17: Accumulate ∇2ϕ∗ ← ∇2ϕ∗ + ∂2ϕ∗/∂z2d
18: end for
19: Lpoisson ← mean[(∇2ϕ∗ + exp(−ϕ∗))2]

Total loss and backpropagation
20: Ltotal ← Lvlasov + Lpoisson
21: Ltotal.backward()
22: O.step()
23: O.zero_grad()
24: end for
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Algorithm 2 Algorithm pseudocode of CBD-Gen

Require: Training mini-batches {xi, yi}Bi=1, feature extractor f̂θ, classifier head fθ, distribution
prediction head Fθ, potential prediction head ϕθ, learning rate η, loss weight α, β, plane waves
number N , scaling factor σ

Ensure: Trained parameters θ

1: Initialize θ ← {f̂θ, fθ, Fθ, ϕθ}, optimizer O(θ, η)
2: for each training step do
3: x← {xi}ni=1, y← {yi}ni=1

4: z← f̂θ(x) /* Extract features */
5: v← ones_like(z) /* Constant velocity input */

Vlasov residual: v · ∇xF
∗ −∇ϕ∗ · ∇vF

∗

6: F ∗ ← Fθ(z,v)
7: ϕ∗ ← ϕθ(z)
8: ∇zϕ

∗ ← autograd(ϕ∗.sum(), z)
9: E∗ ← −∇zϕ

∗

10: ∇xF
∗,∇vF

∗ ← autograd(F ∗.sum(), [z,v])
11: Lvlasov ← mean[(v · ∇zF

∗ +E∗ · ∇vF
∗)2]

Poisson residual: ∇2ϕ∗ + exp(−ϕ∗)

12: ∇zϕ
∗ ← autograd(ϕ∗.sum(), z)

13: /* Compute second-order derivatives on each dim */
14: for d = 1 to Z do
15: ∇ϕ∗d ← ∂ϕ∗/∂zd ← autograd(ϕ∗.sum(), zd)
16: ∂2ϕ∗/∂z2d ← autograd(∇ϕ∗d.sum(), zd)
17: Accumulate ∇2ϕ∗ ← ∇2ϕ∗ + ∂2ϕ∗/∂z2d
18: end for
19: Lpoisson ← mean[(∇2ϕ∗ + exp(−ϕ∗))2]

Dispersion relation loss:
∑

k

∥∥∥k∥2ϕ′
k + ρ′k

∥∥2

20: Sample {ki}Ni=1 ∼ N (0, σ2I)
21: for each ki do
22: σi ← exp(−j · k⊤

i z)
23: ϕ∗ki

← mean(ϕ∗ · σi), ρki
← mean(exp(−ϕ∗) · σi)

24: ri ← ∥ki∥2 · ϕ∗ki
+ ρki

25: end for
26: Ldisp ← sum(|ri|2)

Classification loss
27: ypred ← fθ(z)
28: Lclassify ← CrossEntropy(ypred,y)

Total loss and backpropagation

29: Ltotal ← Lclassify + α(Lvlasov + Lpoisson) + βLdisp
30: Ltotal.backward()
31: O.step()
32: O.zero_grad()
33: end for
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D Additional Experiment Settings and Details

We conduct experiments following the latest version of OpenOOD3 [96, 94] and the DomainBed4 [23].
In this section, we first provide more details for the utilized baselines (Section D.1), datasets and
evaluation protocol (Section D.2), and model architectures (Section D.3). Then, we demonstrate the
hyperparameters (Section D.4) and thw experiment infrastructures (Section D.5). Finally, we include
additional ablation and validation results to better understand the proposed method, including the
effect of the initial velocity assumption (Section D.6), sensitivity analysis of the MLP architecture
(Section D.7), and the validation of the MLP steady-state approximation (Section D.8).

D.1 Baselines

OOD Detection. To evaluate the effectiveness of CBD-De in detecting OOD inputs, we conduct
extensive comparisons with 22 representative post-hoc OOD detection methods across three widely
adopted benchmarks: CIFAR-10, CIFAR-100, and ImageNet-1k. These baselines span a range of
methodological categories, including confidence-based methods such as OpenMax [6] and MSP [28];
calibration and scaling techniques like TempScale [24] and ODIN [47]; distance-based and density-
aware approaches such as MDS [43], MDSEns [43], RMDS [62], and KNN [77]; feature-based
scoring methods including Gram [66], ReAct [75], RankFeat [73], and VIM [85]; energy- and
activation-based models such as EBO [50], MLS [26], KLM [26], and ASH [14]; generative and
hybrid models like OpenGAN [37], SHE [97], and GEN [51]; as well as recent advances in neuron-
level uncertainty estimation such as GradNorm [32], DICE [76], and NAC-UE [52]. All evaluation
results reported in Tables 13, 14, and 15 are derived from the standardized OpenOOD implementations
to ensure fair and reproducible comparisons.

OOD Generalization. We evaluate the OOD generalization capability of CBD-Gen by comparing
it with 17 representative baselines spanning diverse algorithmic categories, including distribution
matching (MMD [46]), distributionally robust optimization (GroupDRO [65], VREx [39], IRM [2]),
data augmentation (MixStyle [103], ARM [98], Mixup [91]), representation learning (SagNet [58],
MTL [7], MLDG [44]), alignment-based methods (CORAL [74]), empirical risk minimization
(ERM [80]), feature suppression and invariance strategies (RSC [34]), as well as sharpness-aware
optimization techniques (SAM [68], GSAM [104], SAGM [86]) and gradient-guided approaches
(GGA [3]). Comprehensive experimental results across five widely used OOD generalization bench-
marks (PACS, VLCS, OfficeHome, TerraInc, and DomainNet) are summarized in Tables 16 to 20.

Comparison to Traditional Statistical Methods. Beyond empirical performance, it is essential to
contextualize our proposed method within the broader landscape of traditional statistical approaches
for OOD learning. While most conventional methods (e.g., energy-based modeling, density estimation,
or confidence scoring) focus on point-wise statistics or local sample relationships, they typically
overlook the structured interactions among features or samples. In contrast, our Vlasov–Poisson
formulation provides a principled, physically interpretable mechanism that inherently captures global
inter-feature dynamics through self-consistent field evolution. This collective interaction allows our
model to reflect structural dependencies that classical scoring-based or probabilistic models cannot
explicitly encode. Table 5 summarizes this conceptual distinction. We compare our method with
several representative approaches across multiple dimensions, including their modeling assumptions,
underlying OOD mechanisms, sample interaction properties, and interpretability.

D.2 Benchmarks

OOD Detection. We primarily evaluate CBD-De using the Far-OOD track from the OpenOOD
benchmark suite, which offers a standardized and well-established evaluation protocol adopted by
numerous prior works.

CIFAR-10 and CIFAR-100, consisting of 10 and 100 classes respectively, serve as the in-distribution
(InD) datasets in our experiments. Following the official OpenOOD setup, we adopt a consistent data
split for both benchmarks. Specifically, we use the full training set (50,000 images) for model training.
From the official test set, 1,000 samples are reserved as the InD validation set, while the remaining
9,000 images are used as the InD test set. For OOD validation, we follow the OpenOOD protocol by

3https://github.com/Jingkang50/OpenOOD.
4https://github.com/facebookresearch/DomainBed.
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Table 5: Comparison between our CBD-base method and traditional statistical OOD Approaches.

Approaches Modeling Assump-
tion

OOD Mecha-
nism

Sample Interac-
tions

Key Formula Interpretability

Energy-based
Models

Energy functions
in feature space

Low energy→
InD, high →
OOD

[X] No interac-
tions

E(x) = − log pθ(x) Intuitive locally,
hard globally

Density Estima-
tion

Probability den-
sity modeling

Low density
→ OOD

[∆] Local interac-
tions via density

p(x) =
∏

i p(xi) Captures local
trends, lacks high-
dim clarity

Confidence Scor-
ing

Model output con-
fidence

Low confi-
dence→ OOD

[X] No interac-
tions

C(x) = softmax(f(x)) Heuristic, limited by
generalization

Ours
(Vlasov–Poisson)

Particles in self-
consistent field

Cannot reach
steady state

[✓] Global ex-
plicit interactions

∂F
∂t +v·∇zF+∇·E = 0 Physics-based via

particle dynamics

selecting 1,000 images from Tiny ImageNet [41], evenly sampled across 20 unseen categories. This
ensures a controlled setting for hyperparameter tuning and model calibration. To comprehensively
assess the generalization ability of OOD detection methods, we evaluate performance on four widely
used OOD test datasets—each disjoint from both the InD and OOD validation sets. These datasets
include:

• MNIST [13] is a benchmark dataset for handwritten digit classification, consisting of 70,000
grayscale images of digits (60,000 for training and 10,000 for test), each sized 28×28 pixels.
We utilize the entire test set for OOD detection.

• SVHN [59] (Street View House Numbers) contains over 600,000 color images of digits
captured from real-world house numbers in Google Street View. Each image is 32×32 pixels
and includes significant background clutter, lighting variation, and perspective distortion.
We utilize the entire test set (26,032 images) for OOD detection.

• Textures [10] is a collection of texture-centric images designed for texture recognition
and segmentation tasks. The dataset comprises 5,640 images from 47 texture categories,
such as "bark", "brick", or "bubble", with each image exhibiting rich local patterns and
high-frequency variations. We employ the entire dataset.

• Places365 [101] is a large-scale scene recognition dataset comprising over 1.8 million
images across 365 diverse scene categories. The standard test set includes 900 images per
category. For OOD detection, we adopt the entire test set after removing 1,305 images
that exhibit semantic overlap with in-distribution classes, following the filtering protocol
established in prior works.

To evaluate our method under large-scale and high-resolution conditions, we adopt ImageNet-1K [12]
as the InD dataset. This dataset comprises approximately 1.2 million training images across 1,000
diverse object categories. Following the evaluation protocol established by OpenOOD, we use
45,000 images from the official ImageNet validation set as the InD test set, while the remaining
5,000 images are held out as the InD validation set. To facilitate hyperparameter tuning and avoid
information leakage from the test sets, we construct an OOD validation set using 1,763 images from
OpenImage-O [84], a curated subset of OpenImages whose categories are explicitly disjoint from
ImageNet classes. For final evaluation, we benchmark our method against three widely used OOD
test datasets that cover diverse semantic domains and visual characteristics:

• iNaturalist [79] is a large-scale, fine-grained dataset containing 859,000 images of
over 5,000 natural species. Captured in unconstrained environments, the images exhibit
complex backgrounds, lighting variation, and high intra-class diversity, making the dataset
visually and semantically distinct from object-centric benchmarks like ImageNet. Following
prior works[31, 94], we use a subset of 10,000 images from 110 non-overlapping classes for
OOD evaluation.

• Textures [10] comprises 5,640 real-world texture images spanning 47 categories. For
evaluation, we employ the full dataset without further filtering.

• OpenImage-O [84] is a curated subset of the OpenImages-v3 dataset. It comprises 17,632
images that are carefully selected to be semantically disjoint from ImageNet-1K classes. To
ensure a rigorous evaluation setting, the subset underwent manual filtering to eliminate any
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category overlap. Following the OpenOOD protocol, we utilize the entire dataset for OOD
testing, excluding the samples reserved for OOD validation.

OOD Generalization. We adopt the training and evaluation protocol established in DomainBed [23],
ensuring consistency in dataset splits, training schedules, and model selection criteria. Specifically, we
follow the leave-one-domain-out evaluation strategy, where the model is trained on all but one domain
and evaluated on the held-out domain to assess its generalization ability to unseen distributions. This
process is repeated for each domain, treating it as the target in turn. Model selection is performed
using the average accuracy across all validation sets corresponding to the training domains, ensuring
that the chosen model is not tuned on the target domain. We conduct experiments on five widely
adopted domain generalization benchmarks included in DomainBed:

• PACS [45] consists of four visually distinct domains: Photo (P), Art Painting (A), Cartoon
(C), and Sketch (S). It contains a total of 9,991 images spanning seven object categories
common across all domains. The dataset presents significant domain shift, especially
between natural (Photo) and abstract (Sketch) styles, challenging models to capture domain-
invariant features.

• VLCS [16] combines images from four datasets: PASCAL VOC2007 (V), LabelMe (L),
Caltech-101 (C), and SUN09 (S). It contains five shared object classes and a total of 10,729
images. The main source of domain shift lies in differences in collection environments,
image resolution, and labeling conventions across the constituent datasets.

• OfficeHome [82] is a more challenging benchmark with 15,588 images across four
domains: Art (A), Clipart (C), Product (P), and Real World (R). It spans 65 object categories
related to office and home environments. The dataset is characterized by high intra-class
variation and large appearance gaps between stylized (Clipart, Art) and natural (Real World)
domains.

• TerraInc [5] is a wildlife image dataset collected from camera traps in different geo-
graphical locations. It includes 24,788 images across four domains (locations): L100, L38,
L43, and L46, and contains ten animal species. The domain shift stems from environmental
variation (e.g., lighting, terrain, vegetation) and class imbalance.

• DomainNet [60] is the largest and most diverse benchmark in the domain generalization
literature, comprising approximately 600,000 images across six distinct domains: Clipart,
Infograph, Painting, Quickdraw, Real, and Sketch. It covers 345 object categories shared
among all domains. The dataset exhibits a wide range of domain shifts, including differences
in abstraction level, drawing style, color richness, and semantic representation. Among
the domains, Quickdraw is particularly challenging due to its highly simplified and noisy
stroke-based illustrations.

D.3 Model Architecture

For OOD detection, we adopt a post-hoc setting by freezing the classification network and training
only the lightweight distribution prediction head Fθ and potential prediction head ϕθ. In contrast, for
OOD generalization, all model parameters are optimized jointly.

D.3.1 OOD Detection

For the CIFAR-10 and CIFAR-100 benchmarks, we adopt the ResNet-18 architecture [25]. In
accordance with the standardized protocol in OpenOOD, we train each model for 100 epochs using
the official training splits. To account for potential variability across training stages, we evaluate OOD
detection performance at three checkpoints saved throughout the training process. This setting ensures
fair and consistent comparisons with prior post-hoc methods. Additional training configurations (e.g.,
learning rate, optimizer, data augmentation) follow the default settings provided in the OpenOOD.

For the large-scale ImageNet-1k benchmark, we evaluate OOD detection using two represen-
tative model architectures that reflect both convolutional and transformer-based paradigms: i)
ResNet-50 [25], a 50-layer residual network pretrained on ImageNet-1K, is employed as a high-
capacity convolutional backbone. During inference, all test images are resized to 224×224 pixels to
match the model’s input resolution. We use the official pretrained weights released by PyTorch to
ensure reproducibility. ii) ViT-b16 [15] serves as a transformer-based alternative, also pretrained
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on ImageNet-1K and evaluated with the same input resolution of 224×224 pixels. The ViT model
introduces a fundamentally different inductive bias compared to CNNs, allowing us to examine the
generality of our method across architectural paradigms. We employ the official PyTorch checkpoints
for all ViT experiments.

Distribution prediction head Fθ and potential prediction head ϕθ: For the CIFAR-10 and CIFAR-
100 benchmarks, both the distribution prediction head Fθ and the potential prediction head ϕθ are
implemented as two-layer MLPs with an input dimension of 512, a hidden dimension of 512, and an
output dimension of 1. For the large-scale ImageNet-1k benchmark, the hidden dimension is set to
512 when using ResNet-50 as the backbone, and 1,536 when using ViT-b16. All heads use the SiLU
activation function. Detailed configurations are provided in Table 6.

Table 6: Details of distribution prediction head and potential prediction head.

Backbone Input Dim. Hiddle Dim. Output Dim. #Head Param. Activation

CIFAR-10/100 ResNet-18 512 512 1 0.53M SiLU

ImageNet-1k ResNet-50 2048 512 1 2.10M SiLU
ViT-b16 768 1536 1 2.36M SiLU

D.3.2 OOD Generalization

For all benchmarks, we adopt ResNet-50 pretrained on ImageNet [12] as the default backbone and
initialization. Both the distribution prediction head Fθ and the potential prediction head ϕθ are
implemented as two-layer MLPs with a hidden dimension of 512 (same as Table 6). Although these
auxiliary branches introduce a small number of additional parameters during training (approximately
8% of the total), they serve solely to guide the backbone toward learning more robust representations
via explicit supervision. Importantly, these branches can be safely removed at inference time,
preserving the backbone’s structure and incurring no extra cost in prediction. Our approach maintains
a clear separation between the auxiliary supervision and the primary prediction pathway, ensuring that
the backbone remains unaltered throughout both training and inference. By decoupling training-time
supervision from inference-time computation, it achieves an efficient balance between representational
robustness and deployment practicality, enabling scalable application across diverse generalization
scenarios.

D.4 Hyperparameters

Shared Hyperparameters. For the constant ϵ0 in the loss function, we uniformly assign the value 1.
For each z, the initial velocity v0 of the corresponding v is set to a vector of ones in RZ .

OOD Detection. We train the distribution prediction head Fθ and the potential prediction head ϕθ
using the Adam optimizer with a learning rate of 5 × 10−4 and a batch size of 128, adhering to
standard post-hoc configurations. Training proceeds for 50 epochs.

OOD Generalization. In our experiments, the wavevector k in the dispersion relation loss Ldisp
is randomly sampled from a Gaussian distribution per batch, with a scaling factor of 0.5 and a
wavenumber N of 250. The loss weights α and β are both set to 0.01. Additional hyperparameters,
including learning rate, weight decay, and dropout rate, are tuned following [9] and detailed in Table
3. We adopt early stopping and utilize the Adam optimizer. Consistent with DomainBed, the batch
size is set to 32 for all datasets, except for DomainNet, which uses a batch size of 24.

Table 7: Hyperparameters for OOD generalization experiments.

Hyperparameter PACS VLCS OfficeHome TerraInc DomainNet

Learning rate 3e-5 1e-5 1e-5 1e-5 3e-5
Dropout 0.5 0.5 0.5 0.5 0.5
Weight decay 1e-4 1e-4 1e-4 1e-4 1e-4
Training Steps 5000 5000 5000 5000 15000
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D.5 Experiment Infrastructure

Our experiments are conducted using a combination of NVIDIA GeForce RTX 3090 Ti and NVIDIA
A100 GPUs. Specifically, we utilized four 3090 Ti GPUs and one A100 GPU with 40GB of memory.
The OOD detection experiments are performed exclusively on the 3090 Ti GPUs, while the OOD
generalization experiments were carried out on both the 3090 Ti and A100 GPUs.

D.6 Ablation on Initial Velocity Assumption

To evaluate the robustness of our uniform initial velocity assumption, we conducted additional
experiments using different initialization strategies: i) uniform vectors with all elements set to 1,
ii) uniform vectors with values of 0.5 matching the feature dimension, and iii) random vectors of
the same dimension. As shown in Tables 8 and 9, random initialization slightly underperforms the
uniform settings, but the performance gaps are minimal, demonstrating the robustness of our approach.
The uniform initialization assumption thus maintains effectiveness while simplifying computation.

Table 8: OOD Detection results on CIFAR-100 with different initial velocity settings.

Initial Velocity FPR95 ↓ AUROC ↑
1 34.81 90.90
0.5 35.20 90.47
Random 38.29 89.52

Table 9: OOD Generalization results on PACS with different initial velocity settingss.

Initial Velocity Accuracy ↑
1 87.7
0.5 87.7
Random 87.4

D.7 Sensitivity Analysis of MLP Architecture

We further investigate the sensitivity of our method to key architectural hyperparameters of the MLP,
which serves as the steady-state predictor. Specifically, we examine the impact of layer depth and
hidden dimension on OOD detection performance using CIFAR-100 as the InD dataset. Table 10
presents results for varying layer depths with a fixed hidden dimension of 512, while Table 11 shows
the effect of different hidden dimensions using a fixed depth of 2 layers. The results demonstrate
that performance scales favorably with the number of MLP parameters. Notably, increasing the
layer depth from 1 to 2 yields substantial improvements, with AUROC increasing from 87.14% to
90.90% and FPR95 decreasing from 39.30 to 34.81. Similarly, expanding the hidden dimension
from 128 to 512 progressively enhances performance. However, returns diminish beyond a certain
threshold (e.g., hidden dimension of 512 vs. 1024, with AUROC of 90.90% vs. 90.83%), highlighting
the importance of balancing model capacity with computational efficiency. These insights inform
practical hyperparameter selection for deploying CBD-De in real-world applications.

Table 10: OOD detection on CIFAR-100 with MLP hidden dimension of 512.

Layer Depth FPR95 ↓ AUROC ↑
1 39.30 87.14
2 34.81 90.90
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Table 11: OOD detection on CIFAR-100 with MLP depth of 2 layers.

Hidden Dimension FPR95 ↓ AUROC ↑
128 40.35 86.93
256 38.52 88.20
512 34.81 90.90
1024 35.25 90.83

D.8 Validation of the MLP Steady-State Approximation

Our formulation of steady-state prediction is originally defined through PDE. To make the solution
computationally tractable, we replace the numerical PDE integration with an MLP-based steady-state
predictor that directly approximates the stationary solution in a single forward pass. To assess the
fidelity of this approximation, we conduct experiments using a numerical PDE solver implemented
with DeepXDE [53], which follows the same architecture and parameter settings (2 layers, 512 hidden
dimensions). The PDE solver is executed with 10 and 30 integration steps to estimate the steady-state
distribution. Table 12 presents the OOD detection results on CIFAR-10 and CIFAR-100 datasets. For
simpler datasets (CIFAR-10), performance differences are negligible (0.02-0.06 AUROC), while for
more complex datasets (CIFAR-100), numerical integration shows moderate improvements (0.30-0.42
AUROC). However, these gains require 7-23× longer inference time and substantial memory verhead
for intermediate computations. Given the minimal accuracy differences on simpler distributions and
the significant computational advantages, our direct prediction approach offers a practical solution
for efficient OOD detection in real-world applications.

Table 12: Comparison of the MLP steady-state approximation against a numerical PDE solver
implemented with DeepXDE [53]. AUROC and relative inference time are reported.

Dataset Sample Size Classes MLP AUROC ↑ PDE Solver AUROC ↑ Forward Pass Time ↓
Time Steps = 10
CIFAR-10 50,000 10 96.39 96.41 (+0.02) 7× slower
CIFAR-100 50,000 100 90.90 91.20 (+0.30) 7× slower

Time Steps = 30
CIFAR-10 50,000 10 96.39 96.45 (+0.06) 23× slower
CIFAR-100 50,000 100 90.90 91.32 (+0.42) 23× slower

E Full OOD Detetion Results
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F Full OOD Generalization Results

Table 16: Out-of-domain accuracies (%) on PACS. Results are formatted as first, second, and third
best.

Method A C P S Avg
IRM 84.8±1.3 76.4±1.1 96.7±0.6 76.1±1.0 83.5
ERM 85.7 ±0.6 77.1 ±0.8 97.4 ±0.4 76.6 ±0.7 84.2
GroupDRO 83.5±0.9 79.1±0.6 96.7±0.7 78.3±2.0 84.4
MTL 87.5±0.8 77.1±0.5 96.4±0.8 77.3±1.8 84.6
Mixup 86.1±0.5 78.9±0.8 97.6±0.1 75.8±1.8 84.6
MMD 86.1±1.4 79.4±0.9 96.6±0.2 76.5±0.5 84.7
VREx 86.0±1.6 79.1±0.6 96.9±0.5 77.7±1.7 84.9
MLDG 85.5±1.4 80.1±1.7 97.4±0.3 76.6±1.1 84.9
ARM 86.8±0.6 76.8±0.5 97.4±0.3 79.3±1.2 85.1
Mixstyle 86.8±0.5 79.0±1.4 96.6±0.1 78.5±2.3 85.2
CORAL 88.3±0.2 80.0±0.5 97.5±0.3 78.8±1.3 86.2
SagNet 87.4±0.2 80.7±0.5 97.1±0.1 80.0±1.0 86.3
RSC 85.4±0.9 79.7±0.5 97.6±0.9 78.2±1.0 85.2
SAM 85.6±2.1 80.9±1.2 97.0±0.4 79.6±1.6 85.8
GSAM 86.9±0.1 80.4±0.2 97.5±0.0 78.7±0.8 85.9
SAGM 87.4±0.2 80.2±0.3 98.0±0.2 80.8±0.6 86.6
GGA 88.8±0.2 80.1±0.3 97.3±0.2 81.2±0.5 87.3
CBD-Gen 89.0±0.6 81.6±0.4 98.1±0.3 82.1±0.8 87.7

Table 17: Out-of-domain accuracies (%) on VLCS. Results are formatted as first, second, and third
best.

Method C L S V Avg
GroupDRO 97.3±0.3 63.4±0.9 69.5±0.8 76.7±0.7 76.7
MLDG 97.4±0.2 65.2±0.7 71.0±1.4 75.3±1.0 77.2
MTL 97.8±0.4 64.3±0.3 71.5±0.7 75.3±1.7 77.2
ERM 98.0 ±0.3 64.7 ±1.2 71.4 ±1.2 75.2 ±1.6 77.3
Mixup 98.3±0.6 64.8±1.0 72.1±0.5 74.3±0.8 77.4
MMD 97.7±0.1 64.0±1.1 72.8±0.2 75.3±3.3 77.5
ARM 98.7±0.2 63.6±0.7 71.3±1.2 76.7±0.6 77.6
SagNet 97.9±0.4 64.5±0.5 71.4±1.3 77.5±0.5 77.8
Mixstyle 98.6±0.3 64.5±1.1 72.6±0.5 75.7±1.7 77.9
VREx 98.4±0.3 64.4±1.4 74.1±0.4 76.2±1.3 78.3
IRM 98.6±0.1 64.9±0.9 73.4±0.6 77.3±0.9 78.6
CORAL 98.3±0.3 66.1±0.6 73.4±0.3 77.5±1.0 78.8
RSC 97.9±0.1 62.5±0.7 72.3±1.2 75.6±0.8 77.1
GSAM 98.7±0.3 64.9±0.2 74.3±0.0 78.5±0.8 79.1
SAM 99.1±0.2 65.0±1.0 73.7±1.0 79.8±0.1 79.4
SAGM 99.0±0.2 65.2±0.4 75.1±0.3 80.7±0.8 80.0
GGA 99.1±0.2 67.5±0.6 75.1±0.3 78.0±0.1 79.9
CBD-Gen 99.1±0.2 67.3±0.7 75.1±0.8 80.5±1.0 80.5
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Table 18: Out-of-domain accuracies (%) on OfficeHome. Results are formatted as first, second, and
third best.

Algorithm A C P R Avg
Mixstyle 51.1±0.3 53.2±0.4 68.2±0.7 69.2±0.6 60.4
IRM 58.9±2.3 52.2±1.6 72.1±2.9 74.0±2.5 64.3
ARM 58.9±0.8 51.0±0.5 74.1±0.1 75.2±0.3 64.8
GroupDRO 60.4±0.7 52.7±1.0 75.0±0.7 76.0±0.7 66.0
MMD 60.4±0.2 53.3±0.3 74.3±0.1 77.4±0.6 66.4
MTL 61.5±0.7 52.4±0.6 74.9±0.4 76.8±0.4 66.4
VREx 60.7±0.9 53.0±0.9 75.3±0.1 76.6±0.5 66.4
ERM 63.1 ±0.3 51.9 ±0.4 77.2 ±0.5 78.1 ±0.2 67.6
MLDG 61.5±0.9 53.2±0.6 75.0±1.2 77.5±0.4 66.8
Mixup 62.4±0.8 54.8±0.6 76.9±0.3 78.3±0.2 68.1
SagNet 63.4±0.2 54.8±0.4 75.8±0.4 78.3±0.3 68.1
CORAL 65.3±0.3 54.4±0.6 76.5±0.3 78.4±1.0 68.7
RSC 60.7±1.4 51.4±0.3 74.8±1.1 75.1±1.3 65.5
GSAM 64.9±0.1 55.2±0.2 77.8±0.0 79.2±0.2 69.3
SAM 64.5±0.3 56.5±0.2 77.4±0.1 79.8±0.4 69.6
SAGM 65.4±0.4 57.0±0.3 78.0±0.3 80.0±0.2 70.1
GGA 64.3±0.1 54.4±0.2 76.5±0.3 78.9±0.2 68.5
CBD-Gen 66.5±0.9 58.7±0.7 78.8±1.2 81.6±0.8 71.4

Table 19: Out-of-domain accuracies (%) on TerraInc. Results are formatted as first, second, and third
best.

Method L100 L38 L43 L46 Avg
MMD 41.9±3.0 34.8±1.0 57.0±1.9 35.2±1.8 42.2
GroupDRO 41.2±0.7 38.6±2.1 56.7±0.9 36.4±2.1 43.2
Mixstyle 54.3±1.1 34.1±1.1 55.9±1.1 31.7±2.1 44.0
ARM 49.3±0.7 38.3±0.7 55.8±0.8 38.7±1.3 45.5
MTL 49.3±1.2 39.6±6.3 55.6±1.1 37.8±0.8 45.6
ERM 49.8 ±4.4 42.1 ±1.4 56.9 ±1.8 35.7 ±3.9 46.1
VREx 48.2±4.3 41.7±1.3 56.8±0.8 38.7±3.1 46.4
IRM 54.6±1.3 39.8±1.9 56.2±1.8 39.6±0.8 47.6
CORAL 51.6±2.4 42.2±1.0 57.0±1.0 39.8±2.9 47.6
MLDG 54.2±3.0 44.3±1.1 55.6±0.3 36.9±2.2 47.8
Mixup 59.6±2.0 42.2±1.4 55.9±0.8 33.9±1.4 47.9
SagNet 53.0±2.0 43.0±1.4 57.9±0.8 40.4±1.4 48.6
SAM 46.3±1.0 38.4±2.4 54.0±1.0 34.5±0.8 43.3
RSC 50.2±2.2 39.2±1.4 56.3±1.4 40.8±0.6 46.6
GSAM 50.8±0.1 39.3±0.2 59.6±0.0 38.2±0.8 47.0
SAGM 54.8±1.3 41.4±0.8 57.7±0.6 41.3±0.4 48.8
GGA 55.9±0.1 45.5±0.1 59.7±0.1 41.5±0.1 50.6
CBD-Gen 56.4±2.1 45.0±1.2 59.6±0.6 41.0±1.5 50.5
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Table 20: Out-of-domain accuracies (%) on DomainNet. Results are formatted as first, second, and
third best.

Algorithm clip info paint quick real sketch Avg
MMD 32.1 ±13.3 11.0 ±4.6 26.8 ±11.3 8.7 ±2.1 32.7 ±13.8 28.9 ±11.9 23.4
GroupDRO 47.2 ±0.5 17.5 ±0.4 33.8 ±0.5 9.3 ±0.3 51.6 ±0.4 40.1 ±0.6 33.3
VREx 47.3 ±3.5 16.0 ±1.5 35.8 ±4.6 10.9 ±0.3 49.6 ±4.9 42.0 ±3.0 33.6
IRM 48.5 ±2.8 15.0 ±1.5 38.3 ±4.3 10.9 ±0.5 48.2 ±5.2 42.3 ±3.1 33.9
Mixstyle 51.9 ±0.4 13.3 ±0.2 37.0 ±0.5 12.3 ±0.1 46.1 ±0.3 43.4 ±0.4 34.0
ARM 49.7 ±0.3 16.3 ±0.5 40.9 ±1.1 9.4 ±0.1 53.4 ±0.4 43.5 ±0.4 35.5
Mixup 55.7±0.3 18.5±0.5 44.3±0.5 12.5±0.4 55.8±0.3 48.2±0.5 39.2
SagNet 57.7 ±0.3 19.0 ±0.2 45.3 ±0.3 12.7 ±0.5 58.1 ±0.5 48.8 ±0.2 40.3
MTL 57.9 ±0.5 18.5 ±0.4 46.0 ±0.1 12.5 ±0.1 59.5 ±0.3 49.2 ±0.1 40.6
MLDG 59.1 ±0.2 19.1 ±0.3 45.8 ±0.7 13.4 ±0.3 59.6 ±0.2 50.2 ±0.4 41.2
CORAL 59.2 ±0.1 19.7 ±0.2 46.6 ±0.3 13.4 ±0.4 59.8 ±0.2 50.1 ±0.6 41.5
ERM 63.0 ±0.2 21.2 ±0.2 50.1 ±0.4 13.9 ±0.5 63.7 ±0.2 52.0 ±0.5 43.8
RSC 55.0±1.2 18.3±0.5 44.4±0.6 12.2±0.2 55.7±0.7 47.8±0.9 38.9
SAM 64.5±0.3 20.7±0.2 50.2±0.1 15.1±0.3 62.6±0.2 52.7±0.3 44.3
GSAM 64.2±0.3 20.8±0.2 50.9±0.0 14.4±0.8 63.5±0.2 53.9±0.2 44.6
SAGM 64.9±0.2 21.1±0.3 51.5±0.2 14.8±0.2 64.1±0.2 53.6±0.2 45.0
GGA 64.0±0.2 22.2±0.3 51.7±0.1 14.3±0.2 64.1±0.4 54.3±0.3 45.2
CBD-Gen 64.9±0.4 22.8±0.3 52.5±0.3 15.1±0.6 64.7±0.4 55.4±0.7 45.9
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The experimental results mentioned in the abstract and the contributions
mentioned in the introduction accurately reflect the contributions and scope of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: A large wave vector k will reduce the training efficiency. In addition, the
algorithm involves retaining a large number of gradient maps, which poses a challenge to
efficient and GPU memory, and is mentioned in the experimental section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: For the six theories in the main text, we provide complete proofs in the
Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide implementation details in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Time is tight, the code has a lot of redundancy and is not organized. We will
release the code after published.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Detailed datasets and hyperparameters are provided in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The upper and lower limits of error are given in the experimental table.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Implementation details of the Appendix mentions graphics card resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our work does not involve ethical issues.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: No need to discuss these.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release any new datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The code, data, and models used are all public.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This question is not suitable for our work.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human subjects involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This question is not suitable for our work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This question is not suitable for our work.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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