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ABSTRACT

Risk-sensitive linear quadratic regulator is one of the most fundamental problems
in risk-sensitive optimal control. In this paper, we study online adaptive control
of risk-sensitive linear quadratic regulator in the finite horizon episodic setting.
We propose a simple least-squares greedy algorithm and show that it achieves
Õ(logN) regret under a specific identifiability assumption, where N is the total
number of episodes. If the identifiability assumption is not satisfied, we propose
incorporating exploration noise into the least-squares-based algorithm, resulting
in an algorithm with Õ(

√
N) regret. To our best knowledge, this is the first set

of regret bounds for episodic risk-sensitive linear quadratic regulator. Our proof
relies on perturbation analysis of less-standard Riccati equations for risk-sensitive
linear quadratic control, and a delicate analysis of the loss in the risk-sensitive per-
formance criterion due to applying the suboptimal controller in the online learning
process.

1 INTRODUCTION

In classical reinforcement learning (RL), one optimizes the expected cumulative rewards in an un-
known environment modeled by a Markov decision process (MDP, Sutton & Barto (2018)). How-
ever, this risk-neutral performance criterion may not be the most suitable one in applications such
as finance, robotics and healthcare. Hence, a large body of literature has studied risk-sensitive RL,
incorporating the notion of risk into the decision criteria, see, e.g., Mihatsch & Neuneier (2002);
Shen et al. (2014); Chow et al. (2017); Prashanth L & Fu (2018).

In this paper, we study online learning and adaptive control for a risk-sensitive linear quadratic
control problem, referred to as the Linear Exponential-of-Quadratic Regulator (LEQR) problem.
The LEQR problem is one of the most fundamental problems in risk-sensitive optimal control, and
there is extensive literature on this topic (Jacobson, 1973; Whittle, 1990; Zhang et al., 2021a). In this
control problem, the system dynamics is linear in the state and control variables, and it is disturbed
with additive Gaussian noise. The cost in each period is convex quadratic in both the state and
the control/action variables, and the performance criteria is the logarithm of the expectation of the
exponential functions of the cumulative costs. When the system parameters are known, the optimal
control at each stage is linear in state with the coefficient determined by certain Riccati equation.
Different from the risk-neutral setting, the solution to the Riccati equation for LEQR explicitly
depends on the risk parameter and the covariance matrix of the additve Gaussian noise in the system
dynamics (Jacobson, 1973). For general risk-sensitive nonlinear control, one does not have such
closed-form solutions. However, one can use LEQR as a local approximation model and solve
risk-sensitive control problems by iteratively solving LEQR problems, see e.g. Roulet et al. (2020).

We consider the standard finite-horizon episodic RL setting, where the system matrices of LEQR
are unknown to the agent. The learning agent repeatedly interacts with the unknown system over
N episodes, the time horizon of each episode is fixed, and the system resets to a fixed initial state
distribution at the beginning of each episode. We focus on the finite horizon LEQR model because
it is widely used as a model of locally linear dynamics. The performance of the agent or the online
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algorithm is often quantified by the total regret, which measures the cumulative suboptimality of the
algorithm accrued over time as compared to the optimal policy. We seek algorithms with (finite-
time) regret that is sublinear in N , which means the per episode regret converges to zero and the
agent can act near optimally as N grows.

Regret bounds for the risk-neutral linear quadratic regulator (LQR) in the infinite-horizon average
reward setting have been extensively studied in the literature, see e.g. Abbasi-Yadkori & Szepesvári
(2011); Mania et al. (2019); Cohen et al. (2019); Simchowitz & Foster (2020). It has been shown that
in this average reward setting, the certainty-equivalent controller where the agent selects control
inputs according to the optimal controller for her estimate of the system, together with a simple
random-search type exploration strategy, is (rate-)optimal for the online adaptive control of risk-
neutral LQR (Simchowitz & Foster, 2020). However, non-asymptotic regret analysis of the finite-
horizon episodic LQR has received much less attention, though some applications, especially in
finance, naturally fall into the episodic setting. For example, a common task faced by a financial
institution is to liquidate a large position of assets, e.g., a stock, in a finite amount of time, e.g.,
in one day. With a linear price impact, such problems can be formulated as a stochastic control
problem with linear dynamics and quadratic cost functions; see Section 1.5 of Almgren & Chriss
(2001). One can consider optimizing the expected utility of the total cost of trading and with an
exponential utility function (see e.g. Schied et al. (2010)), the problem becomes an episodic LEQR
problem. In different days, the institution may need to liquidate different assets, so the initial state of
this problem, which represents the initial position of the asset that the institution needs to liquidate
during the day, resets at the beginning of each day, resembling the episodic setting. Basei et al.
(2022) is among the first to establish regret bounds for the risk-neutral continuous time finite-horizon
LQR in the episodic setting. They proposed a greedy least-squares algorithm and established a regret
bound that is logarithmic in the number of episodes N under a specific identifiability condition. By
contrast, we study finite-horizon LEQR, which is a risk-sensitive model, in a discrete-time setting.

On the other hand, there is a surge of interest recently on studying finite-time regret bounds for
risk-sensitive RL. The first regret bound for risk-sensitive tabular MDP is due to Fei et al. (2020),
who study episodic RL with the goal of optimizing the exponential utility of the cumulative rewards.
There is now a rapidly growing body of literature on this topic, see, e.g. (Fei et al., 2020; 2021; Du
et al., 2022; Bastani et al., 2022; Liang & Luo, 2022; Xu et al., 2023; Wang et al., 2023; Wu & Xu,
2023; Chen et al., 2024). Most of the studies consider learning in risk-sensitive MDPs with finite
state and action spaces.

Inspired by these studies, in this paper we study regret bounds for online adaptive control of the
(discrete-time) risk-sensitive LEQR in the finite-horizon episodic setting, where both the state and
the action spaces are continuous. In particular, we obtain two main results:

• First, we propose a simple least-squares greedy algorithm without exploration noise (Al-
gorithm 1), and show that it achieves a regret of order logN under a certain identifiability
condition (Assumption 1) on the LEQR model.

• Second, without Assumption 1, we propose another algorithm with actively injected explo-
ration noise (Algorithm 2), and show that it achieves a regret of order

√
N .

To the best of our knowledge, this is the first set of regret bounds for finite-horizon episodic LEQR.
In the learning theory community, there has been a significant interest in the questions of whether
logarithmic regret is possible for what type of linear systems and under what assumptions. See
e.g. Agarwal et al. (2019); Cassel et al. (2020); Faradonbeh et al. (2020); Foster & Simchowitz
(2020); Lale et al. (2020). Our first result provides an answer to these questions in the setting of
risk-sensitive LEQR models. In addition, our second result complements the first result by showing
that
√
N -regret bounds can be established for risk-sensitive LEQR models without the identifiability

assumption.

We briefly discuss the technical challenges and highlight the novelty of our regret analysis. Even
though our proposed algorithms are fairly simple, the analysis is nontrivial and it builds on two
new components: (a) perturbation analysis of Riccati equation for LEQR; and (b) analysis of risk-
sensitive performance loss due to the suboptimal controller applied in the online control process. For
the perturbation analysis in (a), we cannot use the existing techniques from the literature on online
learning in risk-neutral LQR (Mania et al., 2019; Simchowitz & Foster, 2020; Basei et al., 2022).
This is because the Riccati equation for LEQR is less standard and more complicated: there are some
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extra parameters (see P̃t, t = 0, · · · , T − 1 in (5)) involved in the equation, and the risk-sensitive
parameter impacts the solution to the Riccati equation. To overcome this challenge, we first analyze
one-step perturbation bound for the solution to Riccati equation, and then leverage the recursive
structure of Riccati equation from our finite-horizon LEQR problem to establish a bound on the
controller mismatch in terms of the error in the estimated system matrices. For the performance loss
in (b), we can not employ the existing approach in online control of risk-neutral LQR as well. This
is because the performance objective in LEQR is nonlinear in terms of the random cumulative costs
(unlike the expectation which is a linear operator). Indeed, this type of non-linearity has been one
of the key challenges in regret analysis for risk-sensitive tabular MDPs (Fei et al., 2021). To address
this challenge, we leverage results from Jacobson (1973) for LEQR to express the performance loss
in terms of the controller mismatch (i.e. the gap between the executed controller and the optimal
controller). Due to these two new technical components, our analysis is substantially different from
the proof in the closely related work Basei et al. (2022). In addition, Basei et al. (2022) did not
analyze the case when the identifiability condition does not hold and provide

√
N -regret bound.

There are several recent studies on RL for LEQR. Zhang et al. (2021a) proposes model-free policy
gradient methods for solving the finite-horizon LEQR problem and provides a sample complexity
result. Sample complexity is another popular performance metric for RL algorithms in addition to
the regret. Note that the controller in Zhang et al. (2021a) is assumed to have simulation access to
the model, i.e., the controller can execute multiple policies within each episode. By contrast, our
work considers online control of LEQG with regret guarantees, where we do not assume access to
a simulator and the agent can only execute one policy within each episode. Other related works
include Zhang et al. (2021b), which proposes a nested natural actor-critic algorithm for LEQR with
the average reward criteria, and Cui et al. (2023), which proposes a robust policy optimization
algorithm for solving the LEQR problem to handle model disturbances and mismatches. These
studies do not consider regret bounds for LEQR, and hence are different from our work.

Finally, we comment that an alternative approach to considering risk sensitive LQR is H∞-optimal
adaptive control (Hassibi et al., 1999). This approach takes a different perspective from LEQR: it
considers deterministic, unknown noise and, instead of taking expectation with respect to random
noise as in LEQR, it considers the H∞ norm of the cost with respect to the deterministic, unknown
noise. Thus, in the presence of system noise, H∞-optimal adaptive control takes the robust control
approach to consider the worst case performance while LEQR assumes a probabilistic model for
the noise and a degree of risk aversion. Regret bounds for H∞ control have been studied in e.g.
Karapetyan et al. (2022). Because of different settings and objective functions in LEQG and H∞-
optimal control, the regret bounds in these two problems are not directly comparable.

2 PROBLEM FORMULATION

2.1 THE LEQR PROBLEM

We first provide a brief review of the LEQR problem (Jacobson, 1973). We consider the following
linear discrete-time dynamic system:

xt+1 = Axt +But + wt, t = 0, 1, · · · , T − 1, (1)

where the state vector xt ∈ Rn, the control vector ut ∈ Rm, the matrices A ∈ Rn×n, B ∈ Rn×m,
and the process noisewt ∈ Rn form a sequence of i.i.d. Gaussian random vectors. For the simplicity
of presentation, we assume the noise wt ∼ N (0, I) where I is the identity matrix. The goal in
the finite-horizon LEQR problem is to choose a control policy π = {u0, u1, · · · , uT−1} so as to
minimize the exponential risk-sensitive cost given by

Jπ(x0) =
1

γ
logE exp

(
γ

2

(
T−1∑
t=0

ct(xt, ut) + cT (xT )

))
, (2)

where ct(xt, ut) = x⊤t Qxt + u⊤t Rut, cT (xT ) = x⊤TQTxT , Q ⪰ 0, QT ⪰ 0 (i.e. positive semidefi-
nite), R ≻ 0 (i.e. positive definite), and γ is the risk-sensitivity parameter.

Note that when γ is small, we have by Taylor expansion:
1

γ
logE exp(γZ) = E[Z] +

γ

2
V ar(Z) +O(γ2),
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for a random variable Z with a finite moment generating function. It is well understood in the
economics literature that γ measures the risk aversion degree, and a positive (negatively, respec-
tively) γ stands for risk-averse (risk-seeking, respectively) attitude; see for instance Pratt (1964).
When γ → 0, the LEQR problem reduces to the conventional risk-neutral linear quadratic control
where one minimizes the expected total quadratic cost and the controller becomes risk-neutral. For
concreteness, we focus on the case where γ > 0 (our analysis extends to γ ≤ 0). The optimal
performance is denoted by

J⋆(x0) = inf
π
Jπ(x0). (3)

When the system parameters are all known, Jacobson (1973) shows that under the assumption that
I − γPt+1 ≻ 0 for all t = 0, 1, · · · , T − 1 (Note that if γ is too large, we have Jπ(x0) =∞ for all
policies), the optimal feedback control for (3) is a linear function of the system state

u⋆t = Ktxt, t = 0, 1, · · · , T − 1, (4)

where (Kt) can be solved from the following discrete-time (modified) Riccati equation:

PT = QT ,

P̃t+1 = Pt+1 + γPt+1 (In − γPt+1)
−1
Pt+1,

Kt = −(B⊤P̃t+1B +R)−1B⊤P̃t+1A,

Pt = Q+K⊤
t RKt + (A+BKt)

⊤P̃t+1(A+BKt),

t = 0, 1, · · · , T − 1. (5)

One can see that scaling all the cost matrices Q,QT , and R does not change the optimal controller,
and hence we assume R ⪰ Im without loss of generality. Note that in the risk-neutral setting where
γ = 0, we have P̃t = Pt in the Riccati equation (5). However, in the risk-sensitive setting, we have
extra matrices (P̃t) in the Riccati equation. This is one of the difficulties we need to overcome when
we study perturbation analysis of Riccati equations for the LEQR problem.

2.2 FINITE-HORIZON EPISODIC RL IN LEQR

In this paper, we consider the online learning/control setting for LEQR, where the system matrices
(A,B) are unknown to the agent. The learning agent repeatedly interacts with the linear system (1)
over N episodes, where the time horizon of each episode is T . In each episode i = 1, 2, · · · , N , an
arbitrary fixed initial state xk0 = x0 ∈ Rn is picked.1 An online learning algorithm executes policy
πi throughout episode i based on the observed past data (states, actions and costs) up to the end of
episode i−1. The performance of an online algorithm overN episodes of interaction with the linear
system (1) is the (total) regret:

Regret(N) =

N∑
i=1

(
Jπi

(xi0)− J⋆(xi0)
)
,

where the term Jπi

(xi0) − J⋆(xi0) (see (2) and (3)) measures the performance loss when the agent
executes the suboptimal policy πi in episode i.

3 A LOGARITHMIC REGRET BOUND

In this section, we propose a simple least-squares greedy algorithm and show that it achieves a regret
that is logarithmic in N , under a specific identifiability assumption.

3.1 A LEAST-SQUARES GREEDY ALGORITHM

We now present the details of the least-squares greedy algorithm, which combines least-squares
estimation for the unknown system matrices (A,B) with a greedy strategy.

1The results of the paper can also be extended to the case where the initial states are drawn from a fixed
distribution over Rn.
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We divide the N episodes into L epochs. The l-th epoch has ml episodes, thus
∑L

l=1ml = N .
At the beginning of the l-th epoch, we estimate the system matrices (A,B) by using the data from
the (l − 1)-th epoch, and the obtained estimator is denoted by (Al, Bl). Then we select the control
inputs according to the optimal controller for the estimate (Al, Bl) of the system, and execute such
a policy throughout epoch l. The feedback control Kl

t is obtained by replacing (A,B) in (5) with
the estimate (Al, Bl). Then, in the k-th episode of epoch l, we play the greedy policy ul,kt by taking
Kl

t into (4).

It remains to discuss the estimation procedure for (Al, Bl) which is conducted at the beginning of
epoch l. Within the l-th epoch, we note that the same policy is executed in each episode. Because
we consider the episodic setting where the system state reset to the same state at t = 0, we obtain
that the state-action trajectories across different episodes are i.i.d within the same epoch. Note that
the random linear dynamical system in epoch l is given by

xlt+1 = Axlt +Bult + wl
t, t = 0, 1, · · · , T − 1, (6)

where ult = Kl
tx

l
t. For simplicity of notation, we denote by zlt =

[
xl⊤t ul⊤t

]⊤
, which is the state-

action random vector at step t in epoch l. We also denote by θ = [A B]⊤ for the system matrices.
Taking the transpose of (6) and multiplying zlt on both sides of (6), we can get zltx

l⊤
t+1 = zltz

l⊤
t θ +

zltw
l⊤
t . Summing over T steps and taking the expectation, we obtain E

[
Y l
]
= E

[
V l
]
θ, where

V l =
∑T−1

t=0 zltz
l⊤
t and Y l =

∑T−1
t=0 zltx

l⊤
t+1. It follows that

θ = [A B]⊤ =
(
E
[
V l
])−1 (E [Y l

])
, (7)

provided that the matrix E[V l] is invertible. The formula (7) and the fact that state-action tra-
jectories across different episodes are i.i.d. within the same epoch provide the basis for our es-
timation procedure. Given the data in epoch l, we now discuss the construction of the estimator
θl+1 :=

[
Al+1, Bl+1

]⊤
.

Consider the sample state process in the k-th episode of epoch l:

xl,kt+1 = Axl,kt +Bul,kt + wl,k
t , t = 0, 1, · · · , T − 1. (8)

Denote the sample state-action vector by zl,kt =
[
xl,k⊤t ul,k⊤t

]⊤
. Then, we can design the l2-

regularized least-squares estimation for θ by replacing the expectation in (7) with the sample average
over the ml episodes in epoch l and adding the regularized term 1

ml
In+m:

θl+1 =

(
V̄ l +

1

ml
In+m

)−1

Ȳ l, (9)

where V̄ l = 1
ml

∑ml

k=1

∑T−1
t=0 zl,kt zl,k⊤t and Ȳ l = 1

ml

∑ml

k=1

∑T−1
t=0 zl,kt xl,k⊤t+1 .

We now summarize the details of the least-squares greedy algorithm in Algorithm 1. Note that the
input parameter θ1 denotes the initial guess of the true system matrices (A,B).

Algorithm 1 The Least-Squares Greedy Algorithm

Input: Parameters L, T,m1, θ
1, Q,QT , R

for l = 1, · · · , L do
ml = 2l−1m1

Compute (Kl
t) for all t by (5) using θl.

for k = 1, · · · ,ml do
for t = 0, · · · , T − 1 do

Play ul,kt ← Kl
tx

l,k
t .

end for
end for
Obtain θl+1 from the l2-regularized least-squares estimation (9).

end for

5



Published as a conference paper at ICLR 2025

3.2 LOGARITHMIC REGRET

In this section, we state our first main result. We first introduce the following assumption.
Assumption 1. For the sequence of the controller (Kt) defined in (5), we assume that{

v ∈ Rn+m
∣∣∣ [In K⊤

t

]
v = 0,∀t = 0, · · · , T − 1

}
= {0}. (10)

Assumption 1 is essentially Assumption H.1(2) in Basei et al. (2022) for learning finite-horizon
continuous-time risk-netural LQR, and it is referred to as the self-exploration property therein (i.e.,
exploration is ‘automatic’ due to the system noise and the time-dependent optimal feedback matrix
(Kt)t=0,...,T−1 ). One can show that Assumption 1 is equivalent to the condition (see Lemma 7)

E

[
T−1∑
t=0

ztz
⊤
t

]
=

T−1∑
t=0

[
In
Kt

]
E
[
xtx

⊤
t

] [
In K

⊤
t

]
≻ 0, (11)

which resembles the persistence of excitation assumption in adaptive control (Aström & Witten-
mark, 2008, Definition 2.1, Chapter 2).

In view of (7) and (11), Assumption 1 essentially guarantees the identifiability of the true system ma-
trices when the time-dependent optimal control in (5) is executed. This is important for the proposed
greedy least-squares algorithm to achieve a logarithmic regret bound. Assumption 1 can be satisfied
under various sufficient conditions. We provide one set of sufficient conditions in Proposition 4 in
the appendix.

We now present our first main result, which provides a logarithmic regret bound of Algorithm 1. We
denote ∥ · ∥ as the spectral norm for matrices.
Theorem 1. Suppose Assumption 1 holds and assume the optimal controller for the initial estimate
θ1 also satisfy (10). Fix δ ∈ (0, 3

π2 ). Then we can choose m1 = C0(− log δ) for some positive
constant C0 such that with probability at least 1− π2δ

3 , the regret of Algorithm 1 satisfies

Regret(N) ≤ C

(
T−1∑
t=0

ψt

)[
log

(
m+ n√

δ

)
L+ L logL

]
, (12)

where C is a constant independent of N and (ψt) is a sequence recursively defined by

ψT−1 = 2Γ̃3, ψt = 2Γ̃3(10V2LΓ̃4)2(T−t−1) + 12Γ̃4ψt+1, t ∈ [T − 2],

with

Γt = max
{
∥A∥ , ∥B∥, ∥Q∥, ∥QT ∥, ∥R∥, ∥Pt∥, ∥P̃t∥, ∥Kt−1∥

}
, Γ̃ = 1 +max

t
Γt,

V = 2(L+ 1)Γ̃3, L =
1

(1− γσ2Γ̃)2
.

(13)

Because
∑L

l=1ml = N and ml = 2l−1m1, we infer that L =
⌈
log2

(
N
m1

+ 1
)⌉

≲ logN , where ≲
means the inequality holds with a multiplicative constant. Hence, Theorem 1 implies that the regret
of Algorithm 1 satisfies Regret(N) = O (logN · log log(N)) , where O hides dependency on other
constants. In Appendix C, we provide some further discussions on the dependency of the regret
bound on other problem parameters, including the horizon length T , and the risk parameter γ of the
LEQR model. Note that Algorithm 1 requires L, or equivalently N (the total number of episodes)
as input. For unknown N , one can use the doubling trick (Besson & Kaufmann, 2018). Specifically,
consider an increasing sequence {nk}∞k=0 where nk = 22

k

for k ≥ 1 and n0 = 0. For each k, one
restarts Algorithm 1 at the beginning of episode nk + 1, and run the algorithm until episode nk+1

with the input N = nk+1−nk. One can readily verify that this leads to an anytime algorithm which
still achieves a logarithmic regret bound.

3.3 PROOF SKETCH OF THEOREM 1

In this section, we provide the proof sketch of Theorem 1. The full proof is given in Appendix A.

Step 1: We adapt the analysis in Basei et al. (2022) and use Bernstein inequality for the sub-
exponential random variables to derive the following bound on estimation errors of system matrices.
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Proposition 1 (Informal). Fix δ ∈ (0, 3
π2 ). Let δl = δ/l2. For ml ≳ log

(
(m+n)2

δl

)
, we have with

probability at least 1− 2δl,

∥∥θl+1 − θ
∥∥ ≲

√√√√ log
(

(m+n)2

δl

)
ml

+
log
(

(m+n)2

δl

)
ml

+
log2

(
(m+n)2

δl

)
m2

l

.

For a complete rigorous statement, see Proposition 3 in Appendix.

Step 2: We recursively carry out the perturbation analysis of less-standard Riccati equation (5) and
prove that the perturbation of the controller ∆Kl

t := Kl
t − Kt is on the order of O(ϵl), where

ϵl = max
{
∥Al −A∥, ∥Bl −B∥

}
. The formal statement is presented in Lemma 8.

Step 3: We use a result of Jacobson (1973) (see Lemma 10) and the proof technique in Fazel et al.
(2018) to prove that

Jπl,k

(xl,k0 )− J⋆(xl,k0 ) = − 1

2γ

T−1∑
t=1

log
(
det
(
In − γDl

t

))
+

1

2
xl,k⊤0 Dl

0x
l,k
0 ,

where Dl
t is a function of ∆Kl

t, · · · ,∆Kl
T−1, with ∥Dl

t∥ ≤ ψtV2ϵ2l + o(ϵ2l ). See Proposition 5.
Here, πl,k is the sub-optimal controller πl,k executed in the k-th episode of the l-th epoch.

Step 4: We can then bound the regret: Regret(N) =
∑L

l=1

∑ml

k=1

(
Jπl,k

(xl,k0 )− J⋆(xl,k0 )
)

≲∑L
l=1mlϵ

2
l ≲

∑L
l=1 log(l) ≲ O(logN · log log(N)).

4 A SQUARE-ROOT REGRET BOUND

Theorem 1 shows that the logarithmic regret bound is achievable for episodic LEQR under As-
sumption 1. One may wonder how does the regret bound changes after removing Assumption 1.
In particular, is

√
N regret achievable without Assumption 1? This section provides an affirmative

answer to this question, by proposing and analyzing a least-squares-based algorithm with actively
injected exploration noise.

4.1 A LEAST-SQUARES-BASED ALGORITHM WITH EXPLORATION NOISE

We now introduce the algorithm (Algorithm 2), which is is different from Algorithm 1. We no longer
divide the N episodes into epochs of increasing lengths to estimate the system matrices. Instead, in
the k-th episode, the algorithm updates the estimation of the system matrices (A,B) by using the
data from the previous k − 1 episodes, which is denoted by (Ak, Bk). Similar to Kl

t in Section 3.1,
we can obtain the feedback control Kk

t by replacing the true system matrices in (5) with (Ak, Bk).
Then, we execute the control with exploration noise (gkt ) that follows a Gaussian distribution in the
k-th episode. The design of Algorithm 2 is inspired by (Mania et al., 2019; Simchowitz & Foster,
2020) that establish

√
T regret bounds for risk-neutral LQR in the infinite-horizon average reward

setting, where T is the number of time steps.

The estimation of system matrices (A,B) in Algorithm 2 is different from that in Algorithm 1. In
Algorithm 2, the estimator (Ak+1, Bk+1) is obtained by solving the following l2-regularized least-
squares problem (based on the linear dynamics (1)):

θk+1 ∈ argmin
y

{
λ∥y∥2 +

k∑
i=1

T−1∑
t=0

∥xit+1 − y⊤zit∥2
}
, (14)

where θk+1 =
[
Ak+1, Bk+1

]⊤
, zit = [xi⊤t , ui⊤t ]⊤ and λ > 0 is the regularization parameter. By

solving (14), we can get

θk+1 =
(
V̄ k
)−1

(
k∑

i=1

T−1∑
t=0

zitx
i⊤
t+1

)
, (15)

where V̄ k = λI +
∑k

i=1

∑T−1
t=0 zitz

i⊤
t .
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Algorithm 2 The Least-Squares-Based Algorithm with Exploration Noise

Input: Parameters T,N, θ1, Q,QT , R, λ
for k = 1, · · · , N do

Compute (Kk
t ) for all t by (5) using θk.

for t = 0, · · · , T − 1 do
Play ukt ← Kk

t x
k
t + gkt , g

k
t ∼ N (0, 1√

k
Im).

end for
Obtain θk+1 from (15).

end for

4.2 SQUARE-ROOT REGRET

In this section, we present the second main result of our paper, which demonstrates that Algorithm
2 can attain Õ(

√
N)-regret (ignoring logarithmic factors). This is the first Õ(

√
N)-regret for online

learning in risk-sensitive LEQR models.

Theorem 2. Fix δ ∈ (0, 1). WhenN ≥ 200
(
3(n+m) + log

(
4N
δ

))
, with probability at least 1−δ,

the regret of Algorithm 2 satisfies

Regret(N) ≤ C̃
T−1∑
t=0

(αtCN + βt)
√
N,

where C̃ is a constant independent of N , CN exhibits a logarithmic dependence on N and depends
on λ, and (αt), (βt) are two sequences recursively defined by

αT−1 = 2Γ̃3, αt = 2Γ̃
(
10V2LΓ̃4

)2(T−t−1)

+ 12Γ̃4αt+1,

βT−1 = 0, βt = 12Γ̃4 + 12Γ̃4βt+1,

with Γ̃,V,L defined in (13).

4.3 PROOF SKETCH OF THEOREM 2

We provide a proof outline for Theorem 2. The complete proof is given in Appendix B.

Step 1: We adapt the self-normalized martingale analysis framework (Abbasi-Yadkori et al., 2011;
Cohen et al., 2019; Simchowitz & Foster, 2020) to derive the following high probability bound for
the estimation error. See Proposition 6 for the complete statement.
Proposition 2 (informal). When k is large enough, with probability at least 1− δ,∥∥θk+1 − θ

∥∥ ≲ k−
1
4

√
log

(
1 + k log

(
N

δ

))
. (16)

Step 2: We conduct perturbation analysis of the Riccati equation (5) and show that ∆Kk
t := Kk

t −
Kt is on the order of O(ϵk), where ϵk denotes the estimation error of system matrices, i.e. right-
hand-side of (16). This step is essentially the same as Step 2 in Section 3.3.

Step 3: Because of the additional exploration noise added to the online control, we show that the
loss in the risk-sensitive performance becomes

Jπk

(xk0)− J⋆(xk0) = −
1

2γ

T−1∑
t=0

log det
(
In − γF k

t

)
− 1

2γ

T−1∑
t=1

log det
(
Im − γUk

t

)
+

1

2
xk⊤0 Uk

0 x
k
0 ,

where F k
t and Uk

t are functions of ∆Kk
i = Kk

i −Ki, i = t, · · · , T − 1, with F k
t ≤ 2Γ̃3

√
k
+ o(ϵ2k)

and Uk
t ≤ αtV2ϵ2k + 5Γ̃5(1+βt)√

k
+ o(ϵ2k). See Proposition 7.

Step 4: Finally we can bound the regret: Regret(N) =
∑N

k=1

(
Jπk

(xk0)− J⋆(xk0)
)
≲
∑N

k=1 ϵ
2
k ≲∑N

k=1
1√
k
log
(
1 +N log

(
N
δ

))
≲ Õ(

√
N).
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5 SIMULATION STUDIES

We perform simulation studies to illustrate the regret performances of Algorithms 1 and 2. Note that
our paper is the first to obtain regret bounds for episodic risk-sensitive LEQR and there are currently
no other existing algorithms with sublinear regret for this problem. Our experiments are conducted
on a PC with 2.10 GHz Intel Processor and 16 GB of RAM. We consider the following three LEQR
systems for illustrations:

System 1. We use the system matrices and cost matrices in Section 6.1 of Dean et al. (2020) with
the following minor change: we set QT = Q = 1

2I instead of Q = 10−3I as in their paper because
the effect of risk parameters is difficult to visualize when Q has small eigenvalues.

System 2. We generate non-positive-semidefinite, non-symmetric random system matrices A ∈
R7×7 and B ∈ R7×4 with all entries sampled from the uniform distribution U(0, 1). The cost
matrices Q and R are randomly generated positive definite matrices, and we set QT = 0.

System 3. We consider a flying robot problem in Section IV of Tsiamis et al. (2020) with the
following minor change: we set QT = 0 instead of QT = diag{1, 0.1, 2, 0.1} as in their paper so
that the effect of risk parameters is easier to visualize.

We implement Algorithms 1 and 2 in all the systems and compute the expectation and 95% confi-
dence interval of the regret of each algorithm using 150 independent runs. In both algorithms, we
randomly generate the initial guess θ1 = (A1, B1) with all entries of A1 and B1 sampled from the
uniform distribution. In Algorithm 1, we set m1 = 500 and L =

⌈
log2

(
N
m1

+ 1
)⌉

. In Algorithm
2, we set λ = 0.8.

Because the simulation results for Systems 1, 2 and 3 are similar, we only present those for System
1 here and make the results for System 2 and system 3 available in Appendix D. Figures 1a, 1b, and
1c show the average regret of Algorithm 1 in System 1 using 150 independent runs and Figures 1d,
1e and 1f show the average regret of Algorithm 2 in the same system. The two blue dotted lines
in Figures 1a and 1d depict the 95% confidence interval of the regret when γ = 0.1 and T = 3.
We observe that Algorithm 1 incurs a large regret in the initial learning process, and as a result,
the actual performance of Algorithm 1 is worse than that of Algorithm 2 on this instance. This
is because Algorithm 1 updates parameter estimations less frequently compared with Algorithm 2,
and the inaccurate estimations in the initial learning process lead to a large regret for Algorithm 1.
With T = 3, Figure 1b illustrates the effect of the risk aversion on the regret. The true value of the
learning agent’s risk aversion parameter γ is 0.1. Figure 1b plots the regret of the algorithm when
the true value of γ is used and when a wrong value, e.g., 0.05, 0.2, and 0, is used. The plot shows
that if one runs Algorithm 1 with a misspecified risk aversion degree γ, particularly with γ = 0,
which corresponds to the algorithm in Basei et al. (2022) with the assumption of risk-neutral agents,
the regret performance is much worse compared with the case of a correctly specified risk aversion
parameter. Setting γ = 0.01, Figure 1c illustrates the effect of the time horizon T .2 Consistent with
our theoretical results, the regret is increasing in T . The same parameter settings are used in Figures
1d–1f, where we test the performance of Algorithm 2. The results are similar to those of Algorithm
1 in Figures 1a–1c.

6 CONCLUSION AND FUTURE WORK

This paper proposes two simple least-squares-based algorithm for online adaptive control of LEQR
in the finite-horizon episodic setting. We prove that the least-squares greedy algorithm can achieve
a regret bound that is logarithmic in the number of episodes under a identifiability condition of the
system. We also prove that the least-squares-based algorithm with exploration noise can achieve
Õ(
√
N)-regret when the identifiability condition is not satisfied. To the best of our knowledge, this

is the first set of regret bounds for LEQR.

The study of regret analysis for risk-sensitive control with continuous state and action spaces is
still in its infancy, and there are many open questions. For instance, it would be interesting to

2We choose γ = 0.01 to ensure the existence of the solution to the Riccati equation (5) for the values of T
under consideration.
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(a) Regret performance (Algorithm 1 System 1) (b) Effect of the risk parameter (Algorithm 1 System 1)

(c) Effect of the time horizon (Algorithm 1 System 1) (d) Regret performance (Algorithm 2 System 1)

(e) Effect of the risk parameter (Algorithm 2 System 1) (f) Effect of the time horizon (Algorithm 2 System 1)

Figure 1: Simulation results in System 1

study regret bounds for LEQR in the infinite-horizon average-reward (non-episodic) setting.It is
not straightforward to extend our current proof methods to this non-episodic setting because it is
nontrivial to establish explicit perturbation bounds for the generalized algebraic Riccati equation
for average-reward LEQR (see e.g. Cui et al. (2023)). Another significant question is to study
regret bounds for online linear quadratic regulators with other risk measures such as coherent risk
measures (see e.g. Lam et al. (2023)). Other interesting problems include lower bounds for online
LEQR, regret bounds for LEQR with partially observable states and for more general risk-sensitive
nonlinear control problems. We leave them for future work.
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A REGRET ANALYSIS FOR THE LEAST-SQUARES GREEDY ALGORITHM

In this section, we carry out the regret analysis for the least-squares greedy algorithm in Section 3.
We derive the high-probability bounds for the estimation error of system matrices in Appendix A.1.
We do the perturbation analysis of Riccati equations in Appendix A.2. We simplify the suboptimality
gap due to the controller mismatch in Appendix A.3. Finally, we combine the results derived/proved
above and prove Theorem 1.

A.1 BOUNDS FOR THE ESTIMATION ERROR OF SYSTEM MATRICES

In this section, we discuss the high probability bound for the estimation error of system matrices in
Algorithm 1. We adapt the analysis framework in Basei et al. (2022) and use the Bernstein inequality
for the sub-exponential random variables to derive the desired error bound.

To facilitate the presentation, we first introduce some notations. We fix the l-th epoch and define the
following set

Θ =

{
θ̂ ∈ R(n+m)×n

∣∣∣∣∣ ∥∥∥θ̂ − θ∥∥∥ ≤ ρ
}
∪
{
θ1
}
,

where ρ > 0 is a constant such that for any θl ∈ Θ,
∥∥∥(E[V l]

)−1
∥∥∥ ≤ C2 and

∥∥E [Y l
]∥∥ ≤ C2 for

some constant C2 ≥ 1. We choose the initial number of episodes m1 such that

ρ ≥ 3C1

√√√√ log
(

(n+m)2

δj−1

)
mj−1

,∀j ∈ N+\{1},

where δj−1 = δ
(j−1)2 , mj−1 = 2j−2m1 and C1 is a constant independent of mj ,∀j ∈ N+\{1}, but

may depend on other constants including m,n, T . We will show how to choose m1 in Section A.4.
We also define the event

Gl =
{
θj ∈ Θ,∀j = 1, · · · , l

}
.

We will prove that P(Gl) ≥ 1−
∑l−1

j=1 δj in Section A.4. The following proposition is the main result
of this section. Recall that θl+1 = [Al+1 Bl+1]⊤ are the estimated system matrices and θ = [A B]⊤

are the true system matrices.
Proposition 3. Conditional on event Gl, there exists a constant C3 ≥ 1 such that for ml ≥
C3 log

(
(n+m)2

δl

)
, with probability at least 1− 2δl,

∥∥θl+1 − θ
∥∥ ≤ C1


√√√√ log

(
(n+m)2

δl

)
ml

+
log
(

(n+m)2

δl

)
ml

+
log2

(
(n+m)2

δl

)
m2

l

 .

The proof of Proposition 3 is long, and we discuss it in the new few sections.

A.1.1 PRELIMINARIES

In this section, we recall the definition of sub-exponential random variables and state several well-
known results about such random variables that will be used in our analysis later.
Definition 1 (Definition 2.7 of Wainwright (2019)). A random variable X with mean µ = EX is
sub-exponential if there are non-negative parameters (ν, α) such that E[eλ(X−µ)] ≤ e

ν2λ2

2 for all
|λ| < 1

α . Denote the set of such random variables as SE(ν2, α).
Lemma 1 (Bernstein Inequality, Proposition 2.9 of Wainwright (2019)). Suppose that X ∈
SE(ν2, α), and let µ = EX . Then for any ζ > 0, we have

P (|X − µ| ≥ ζ) ≤ 2 exp

(
−min

{
ζ2

2ν2
,
ζ

2α

})
.
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Lemma 2 (Lemma 5.1 of Alessandro (2018)). If Xi ∈ SE(ν2i , αi), i ∈ [n], then
n∑

i=1

Xi ∈

{
SE

(∑n
i=1 ν

2
i ,maxi∈[n] αi

)
if Xi are independent,

SE
(
(
∑n

i=1 νi)
2
,maxi∈[n] αi

)
if Xi are not independent.

Lemma 3 (Lemma 2.7.7 of Vershynin (2018)). Let X and Y be sub-Gaussian random variables.
Then, XY is sub-exponential.

A.1.2 PROPERTIES OF ESTIMATED SYSTEM MATRIX

In this section, we use the properties of sub-exponential random variables to derive some statistical
properties for the estimated system matrix θl.

The following lemma shows that every element of the state-action random sample vector zl,kt =[
xl,k⊤t ul,k⊤t

]⊤
is sub-Gaussian.

Lemma 4. Consider the sample state (8) in section 3.1, conditional on event Gl, we can prove that
every element of the sample state xl,kt and action vector ul,kt is sub-Gaussian for any step t, episode
k, epoch l.

Proof. By the definition (8), we have
xl,kt = Axl,kt−1 +Bul,kt−1 + wl,k

t−1

= (A+BKl
t−1)x

l,k
t−1 + wl,k

t−1

= (A+BKl
t−1)(A+BKl

t−2)x
l,k
t−2 + (A+BKl

t−1)w
l,k
t−2 + wl,k

t−1.

Repeating this procedure, we can get

xl,kt =

(
0∏

i=t−1

(A+BKl
i)

)
xl,k0 +

t−1∑
j=0

(
j+1∏

i=t−1

(A+BKl
i)

)
wl,k

j , (17)

where
∏t

i=t−1(A + BKl
i) := In. Recall the definition of Kl

t in (5) by using θl. It’s continuous in
θl ∈ Θ, so Kl

t is uniformly bounded for any θl ∈ Θ by the boundedness of Θ, i.e. there exists some
constant M > 0 such that supt ∥Kl

t∥ ≤ M . Because xl,k0 = x0 and {wl,k
i }

t−1
i=0 are independent

zero-mean normal random variables, we can then readily obtain from (17) that every element of xl,kt
is sub-Gaussian by the uniform boundedness of Kl

t . Similarly, we can prove that every element of
ul,kt = Kl

tx
l,k
t is sub-Gaussian, which completes the proof.

Recall the following matrices in (7) and (9).

V l =

T−1∑
t=0

zltz
l⊤
t Y l =

T−1∑
t=0

zltx
l⊤
t+1

V̄ l =
1

ml

ml∑
k=1

T−1∑
t=0

zl,kt zl,k⊤t Ȳ l =
1

ml

ml∑
k=1

T−1∑
t=0

zl,kt xl,k⊤t+1 ,

(18)

where V l, V̄ l ∈ R(n+m)×(n+m) and Y l, Ȳ l ∈ R(n+m)×n. We denote the elements of V l, Y l, V̄ l, Ȳ l

as

V l
i,j =

T−1∑
t=0

zlt,iz
l
t,j , i, j ∈ [n+m]

Y l
i,j =

T−1∑
t=0

zlt,ix
l
t+1,j , i ∈ [n+m], j ∈ [n]

V̄ l
i,j =

1

ml

ml∑
k=1

T−1∑
t=0

zl,kt,i z
l,k
t,j , i, j ∈ [n+m]

Ȳ l
i,j =

1

ml

ml∑
k=1

T−1∑
t=0

zl,kt,i x
l,k
t+1,j , i ∈ [n+m], j ∈ [n].
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Then we have the following result from Lemma 4.

Lemma 5. There exist non-negative parameters ι and η such that V̄ l
i,j , Ȳ

l
i,j ∈ SE

(
ι2

ml
, η
ml

)
for all

i, j and l ∈ [L].

Proof. By Lemma 3 and Lemma 4, we know that every element of zl,kt zl,k⊤t and zl,kt xl,k⊤t+1 are

sub-exponential random variables. That is, zl,kt,i z
l,k
t,j ∈ SE

(
(νt,i,j)

2
, αt,i,j

)
, i, j ∈ [n + m] and

zl,kt,i x
l,k
t+1,j ∈ SE

(
(ωt,i,j)

2
, βt,i,j

)
, i ∈ [n +m], j ∈ [n]. The subexponential parameters can be

chosen independent of l and k by the proof of Lemma 4. If we denote by

νt = max
i,j

νt,i,j , αt = max
i,j

αt,i,j ,

ωt = max
i,j

ωt,i,j , βt = max
i,j

βt,i,j ,

then we have zl,kt,i z
l,k
t,j ∈ SE

(
(νt)

2
, αt

)
for any k ∈ [ml], i, j ∈ [n + m] and zl,kt,i x

l,k
t+1,j ∈

SE
(
(ωt)

2
, βt

)
for any k ∈ [ml], i ∈ [n+m], j ∈ [n].

By Lemma 2, for non-independent sub-exponential random variables, we obtain

T−1∑
t=0

zl,kt,i z
l,k
t,j ∈ SE

(T−1∑
t=0

νt

)2

,max
t
αt

 ,

T−1∑
t=0

zl,kt,i x
l,k
t+1,j ∈ SE

(T−1∑
t=0

ωt

)2

,max
t
βt

 .

Applying Lemma 2 again, but for independent sub-exponential random variables, we infer that

V̄ l
i,j =

1

ml

ml∑
k=1

T−1∑
t=0

zl,kt,i z
l,k
t,j ∈ SE


∑ml

k=1

(∑T−1
t=0 νt

)2
m2

l

,
maxt αt

ml


= SE


(∑T−1

t=0 νt

)2
ml

,
maxt αt

ml

 ,

Ȳ l
i,j =

1

ml

ml∑
k=1

T−1∑
t=0

zl,kt,i x
l,k
t+1,j ∈ SE


∑ml

k=1

(∑T−1
t=0 ωt

)2
m2

l

,
maxt β

l
t

ml


= SE


(∑T−1

t=0 ωt

)2
ml

,
maxt βt
ml

 .

The proof is complete by letting

ι = max


√√√√(T−1∑

t=0

νt

)2

,

√√√√(T−1∑
t=0

ωt

)2
 ,

η = max
{
max

t
αt,max

t
βt

}
.

We can now derive the concentration inequalities for V̄ l and Ȳ l.
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Lemma 6. Conditional on event Gl, we can derive that for any ζ > 0,

max
{
P
(∣∣V̄ l − EV l

∣∣ ≥ ζ) ,P (∣∣Ȳ l − EY l
∣∣ ≥ ζ)}

≤ 2(n+m)2 exp

(
−min

{
mlζ

2

2ι2(n+m)4
,

mlζ

2η(n+m)2

})
,

(19)

where | · | is a matrix norm that represents the summation of the absolute value of all the elements
of the matrix, e.g. |A| =

∑
i,j |ai,j |.

Proof. We first consider one element of the matrix V̄ l. By Lemma 1 and Lemma 5, we have

P
(∣∣V̄ l

i,j − EV l
i,j

∣∣ ≥ ζ) ≤ 2 exp

(
−min

{
mlζ

2

2ι2
,
mlζ

2η

})
.

Then, by the fact that P
(∑M

i=1 |Xi| ≥ ζ
)
≤
∑M

i=1 P
(
|Xi| ≥ ζ

M

)
for all M ∈ N and random

variables (Xi)
M
i=1, we can derive the concentration inequality for

∣∣V̄ l − EV l
∣∣:

P
(∣∣V̄ l − EV l

∣∣ ≥ ζ)
= P

n+m∑
i=1

n+m∑
j=1

∣∣V̄ l
i,j − EV l

i,j

∣∣ ≥ ζ


≤
n+m∑
i=1

n+m∑
j=1

P
(∣∣V̄ l

i,j − EV l
i,j

∣∣ ≥ ζ

(n+m)2

)

≤ 2(n+m)2 exp

(
−min

{
mlζ

2

2ι2(n+m)4
,

mlζ

2η(n+m)2

})
.

Similarly, we can derive the concentration probability for Ȳ l:

P
(∣∣Ȳ l − EY l

∣∣ ≥ ζ)
= P

n+m∑
i=1

n∑
j=1

∣∣Ȳ l
i,j − EY l

i,j

∣∣ ≥ ζ


≤
n+m∑
i=1

n∑
j=1

P
(∣∣Ȳ l

i,j − EY l
i,j

∣∣ ≥ ζ

(n+m)n

)

≤ 2(n+m)n exp

(
−min

{
mlζ

2

2ι2(n+m)2n2
,

mlζ

2η(n+m)n

})
(1)

≤ 2(n+m)2 exp

(
−min

{
mlζ

2

2ι2(n+m)4
,

mlζ

2η(n+m)2

})
,

where inequality (1) follows from the fact that n+m ≥ n.

Finally, combining the two probability inequalities above, we can obtain (19).

In order to derive the probability bounds in Proposition 3, we prove that
∥∥∥(E[V l]

)−1
∥∥∥ and

∥∥E[Y l]
∥∥

are bounded by a positive constant for any θl lies in Θ. The boundedness of
∥∥E[Y l]

∥∥ can be proved
directly, because E[Y l] is continuous in terms of θl according to the definition of Y l in (18). In
terms of

∥∥∥(E[V l]
)−1
∥∥∥, we will use the following lemma to show that it’s bounded when θl ∈ Θ.

Similar results can be found in Proposition 3.10 of Basei et al. (2022).
Lemma 7. The following properties are equivalent:

1. For the sequence of the controller Kt, t = 0, · · · , T − 1 defined in (5),{
v ∈ Rn+m

∣∣∣ [I K⊤
t

]
v = 0,∀t = 0, · · · , T − 1

}
= {0};
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2. E[V ] ≻ 0, where V =
∑T−1

t=0 ztz
⊤
t is generated by the optimal policy in (5);

3. There exists λ0 > 0 such that λmin

(
E
[
V l
])
≥ λ0 for any estimated θl ∈ Θ.

Proof. We first prove property 1 ⇐⇒ property 2.

For simplicity of notation, let ht = [I K⊤
t ]⊤ and H = [h0, h1, · · · , hT−1]. Property 1 is equivalent

to that there exists no nonzero v such that H⊤v = 0, which is also equivalent to that for any v ̸= 0,
v⊤HH⊤v > 0, i.e.

HH⊤ =

T−1∑
t=0

hth
⊤
t =

T−1∑
t=0

[
In
Kt

] [
In K

⊤
t

]
≻ 0.

One can readily compute that

E[V ] = E

[
T−1∑
t=0

ztz
⊤
t

]

=

T−1∑
t=0

[
In
Kt

]
E
[
xtx

⊤
t

] [
In K

⊤
t

]
= Hdiag

(
E
[
x0x

⊤
0

]
, · · · ,E

[
xT−1x

⊤
T−1

])
H⊤, (20)

where diag(·) is the notation of a diagonal block matrix. Next we show that E
[
xtx

⊤
t

]
is positive

definite for each t. Similar to (17), we can expand the system dynamics under the true system matrix
θ = (A,B) as

xt =

(
0∏

i=t−1

(A+BKi)

)
x0 +

t−1∑
j=0

(
j+1∏

i=t−1

(A+BKi)

)
wj , (21)

where
∏j+1

i=t−1(A+BKi) means (A+BKt−1)(A+BKt−2) · · · (A+BKj+1), and
∏t

i=t−1(A+
BKi) = In. For simplicity of notation, let

Φt1,t0 = (A+BKt1)(A+BKt1−1) · · · (A+BKt0), for any t1 ≥ t0. (22)

When t1 < t0, we set Φt1,t0 = In. Then we have xt = Φt−1,0x0 +
∑t−1

j=0 Φt−1,j+1wj . It follows
that

E
[
xtx

⊤
t

]
= Φt−1,0E

[
x0x

⊤
0

]
Φ⊤

t−1,0 +

t−1∑
j=0

Φt−1,j+1E
[
wjw

⊤
j

]
Φ⊤

t−1,j+1

(1)
= Φt−1,0x0x

⊤
0 Φ

⊤
t−1,0 +

t∑
j=1

Φt−1,jΦ
⊤
t−1,j

(2)
= Φt−1,0x0x

⊤
0 Φ

⊤
t−1,0 + In +

t−1∑
j=1

Φt−1,jΦ
⊤
t−1,j

⪰ In,
where the equality (1) follows from the fact that wj ∼ N (0, In) , j = 0, · · · , t− 1, and equality (2)
holds by the fact that Φt−1,t = In. Then, we can prove that property 1 is equivalent to that for any
v ̸= 0,

v⊤E[V ]v = v⊤Hdiag
(
E
[
x0x

⊤
0

]
, · · · ,E

[
xT−1x

⊤
T−1

])
H⊤v > 0,

which is equivalent to property 2.

We next prove property 2 ⇐⇒ property 3.

In terms of property 3 =⇒ property 2, it’s obvious that when θl = θ, we have λmin (E[V ]) ≥ λ0 > 0,
i.e. E[V ] ≻ 0.

In order to prove property 2 =⇒ property 3, we prove the continuity of E[V ] in terms of the system
matrices θ. By the recursive formula of the discrete-time Riccati equations and the optimal controller

18



Published as a conference paper at ICLR 2025

in (5), we can find that Pt, P̃t and Kt are continuous in terms of θ ∈ Θ. Recall that

E[xtx⊤t ] = Φt−1,0x0x
⊤
0 Φ

⊤
t−1,0 + In +

t−1∑
j=1

Φt−1,jΦ
⊤
t−1,j , (23)

where Φt−1,j is defined in (22). Plugging (23) into (20), we can see that E[V ] is continuous in terms
of θ. So for any θl ∈ Θ, there exists λ0 > 0 such that λmin

(
E[V l]

)
≥ λ0.

Now we are ready for the proof of Proposition 3.

Proof of Proposition 3. Recall the definition of V̄ l, Ȳ l, V l and Y l in (18), we have∥∥θl+1 − θ
∥∥

=

∥∥∥∥∥
(
V̄ l +

1

ml
In+m

)−1

Ȳ l −
(
E
[
V l
])−1 E

[
Y l
]∥∥∥∥∥

≤

∥∥∥∥∥
(
V̄ l +

1

ml
In+m

)−1

−
(
E
[
V l
])−1

∥∥∥∥∥ · ∥∥Ȳ l
∥∥+ ∥∥∥(E [V l

])−1
∥∥∥ · ∥∥Ȳ l − E[Y l]

∥∥
(1)

≤

∥∥∥∥∥
(
V̄ l +

1

ml
In+m

)−1
∥∥∥∥∥ · ∥∥∥(E [V l

])−1
∥∥∥ · ∥∥Ȳ l

∥∥ · ∥∥∥∥V̄ l +
1

ml
In+m − E

[
V l
]∥∥∥∥

+
∥∥∥(E [V l

])−1
∥∥∥ · ∥∥Ȳ l − E

[
Y l
]∥∥

(2)

≤ C2

(∥∥∥∥∥
(
V̄ l +

1

ml
In+m

)−1
∥∥∥∥∥ · ∥∥Ȳ l

∥∥ · ∥∥∥∥V̄ l +
1

ml
In+m − E

[
V l
]∥∥∥∥+ ∥∥Ȳ l − E

[
Y l
]∥∥) ,

(24)

where inequality (1) holds by the fact that E−1 − F−1 = E−1(F − E)F−1, inequality (2) follows
from the results in Lemma 7 that

∥∥∥(E[V l]
)−1
∥∥∥ ≤ C2. By Lemma 6 and the equivalence of matrix

norms, with probability at least 1 − 2δl, we have
∥∥V̄ l − E

[
V l
]∥∥ ≤ ∆l and

∥∥Ȳ l − E
[
Y l
]∥∥ ≤ ∆l,

where

∆l := max


√√√√2ι2(n+m)5 log

(
(n+m)2

δl

)
ml

,
2η(n+m)2.5 log

(
(n+m)2

δl

)
ml

 .

For notational simplicity, we denote by

C4 := max
{√

2ι2(n+m)5, 2η(n+m)2.5
}
.

C4 is a constant depending on m,n polynomially and depending on γ exponentially. For simplicity,
we ignore the T -dependence of C4. Then, we have

∆l ≤ C4 max


√√√√ log

(
(n+m)2

δl

)
ml

,
log
(

(n+m)2

δl

)
ml

 .

Now we can use ∆l to further bound the terms in (24). Let ml be large enough so that ∆l +
1
ml
≤

1
2C2

, i.e. ml ≥ C3 log
(

(n+m)2

δl

)
for some constant C3 ≥ 1. Then, with probability at least 1 − 2δl,

we have
∥∥∥V̄ l − E

[
V l
]
+ 1

ml
In+m

∥∥∥ ≤ ∆l +
1
ml
≤ 1

2C2
, and thus

λmin

(
V̄ l +

1

ml
In+m

)
≥ λmin

(
E
[
V l
])
−
∥∥∥∥V̄ l − E

[
V l
]
+

1

ml
In+m

∥∥∥∥ ≥ 1

2C2
.
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Then, we get
∥∥∥∥(V̄ l + 1

ml
In+m

)−1
∥∥∥∥ ≤ 2C2. In terms of

∥∥Ȳ l
∥∥, we have

∥∥Ȳ l
∥∥ =

∥∥Ȳ l − E
[
Y l
]
+ E

[
Y l
]∥∥ (3)

≤ C2 +
∥∥Ȳ l − E

[
Y l
]∥∥ ≤ C2 +∆l,

where inequality (3) follows from the fact that
∥∥E [Y l

]∥∥ ≤ C2. Finally, substituting all the elements
into (24), we can get∥∥θl+1 − θ

∥∥
≤ C2

(
2C2 ·

(
C2 +

∥∥Ȳ l − E
[
Y l
]∥∥) · (∆l +

1

ml

)
+∆l

)
≤ C2

(
2C2 · (C2 +∆l) ·

(
∆l +

1

ml

)
+∆l

)
(4)

≤ 2C32
(
(1 + ∆l)

(
∆l +

1

ml

)
+∆l

)
(5)

≤ 8C32
(
∆l +∆2

l +
1

ml

)
(6)

≤ 16C32C24


√√√√ log

(
(n+m)2

δl

)
ml

+
log
(

(n+m)2

δl

)
ml

+
log2

(
(n+m)2

δl

)
m2

l

 ,

where inequality (4) follows from C2 ≥ 1, inequality (5) holds by the fact thatml ≥ 1 and inequality
(6) holds because log

(
(n+m)2

δl

)
≥ 1. The proof is hence complete.

Lemma 7 shows that Assumption 1 can be extended to the neighbourhood of the true system matrices
θ, and thus guarantee the well-posedness of the sample variance of the estimated system matrices
within the neighbourhood. The following proposition provides a sufficient condition for Assumption
1.
Proposition 4. If the parameters defined in Section 2.1 satisfies

1. A ∈ Rn×n has full rank;

2. Q ≻ 0 and QT = 0;

3. B ∈ Rn×m has full column rank,

then for the sequence of the controller Kt, t = 0, · · · , T − 1 defined in (5), we have{
v ∈ Rn+m

∣∣∣∣[I K⊤
t ]v = 0,∀t = 0, · · · , T − 1

}
= {0}.

Proof. Let v = [v⊤1 v⊤2 ]
⊤ satisfying [I K⊤

t ]v = 0,∀t = 0, · · · , T − 1, where v1 ∈ Rn, v2 ∈ Rm.
Recall the optimal control defined in (5), by the condition QT = 0, we have KT−1 = 0, and thus
v1 = 0. Then, [I K⊤

t ]v = 0,∀t = 0, · · · , T − 1 is equivalent to K⊤
t v2 = 0,∀t = 0, · · · , T − 1.

Substitute (5) into it, we can obtain

K⊤
t v2 = −A⊤P̃t+1B

(
B⊤P̃t+1B +R

)−1

v2 = 0.

Recall that

P̃t+1 = Pt+1 + γPt+1 (In − γPt+1)
−1
Pt+1,

Pt = Q+K⊤
t RKt + (A+BKt)

⊤P̃t+1(A+BKt), t = 0, · · · , T − 1.

We can prove that Pt ≻ 0 for any t = 0, · · · , T − 1 by the mathematical induction. When t = T ,
P̃T = 0, and thus PT−1 ≻ 0 by Q ≻ 0 and K⊤

T−1RKT−1 ⪰ 0. For any t = 1, · · · , T − 1,
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assume that Pt+1 ≻ 0, we can prove that P̃t+1 ≻ 0, and thus Pt ≻ 0 by Q ≻ 0, K⊤
t RKt ⪰ 0 and

(A+BKt)
⊤P̃t+1(A+BKt) ⪰ 0, which finish the mathematical induction. And by the condition

A ∈ Rn×n has full rank, we have

B
(
B⊤P̃t+1B +R

)−1

v2 = 0.

According to the setting in Section 2.1, R ≻ 0, so B⊤P̃t+1B +R ≻ 0. So B
(
B⊤P̃t+1B +R

)−1

has full column rank by the condition that B ∈ Rn×m has full column rank, and thus v2 = 0, which
completes the proof.

A.2 PERTURBATION ANALYSIS OF RICCATI EQUATION

In this section, we discuss perturbation analysis of Riccati Equation, i.e., how the solutions to Riccati
Equation (5) change when we perturb the system matrices.

The main result of this section is the following lemma. We fix epoch l in the analysis below and
recall that (Al, Bl) are the estimators for the true system matrices (A,B).

Lemma 8. Assume 1− γΓ̃ > 0 and fix any ϵl > 0. Suppose ∥Al − A∥ ≤ ϵl, ∥Bl − B∥ ≤ ϵl, then
for any t = 0, 1, · · · , T − 1, we have

∥Kl
t −Kt∥ ≤ (10V2LΓ̃4)T−t−1Vϵl,

∥P l
t − Pt∥ ≤ (10V2LΓ̃4)T−tϵl,

where Γ̃,V and L are defined in (13).

To prove Lemma 8, we need the following result, which provides ‘one-step’ perturbation bounds for
the solutions to Riccati equations.

Lemma 9. Assume 1 − γΓ̃ > 0. For any ϵl > 0,W ≥ 1, assume ∥Al − A∥ ≤ ϵl, ∥Bl − B∥ ≤ ϵl
and ∥P l

t+1 − Pt+1∥ ≤Wϵl ≤ 1 for a given t ∈ {0, · · · , T − 1}. Then we have

∥Kl
t −Kt∥ ≤ VWϵl,

∥P l
t − Pt∥ ≤ 10V2LΓ̃4Wϵl,

where Γ̃,V and L are given in (13).

Proof. We first bound the perturbation of the optimal controller, i.e., ∆Kl
t = Kl

t −Kt. Recall that

Kt = −(B⊤P̃t+1B +R)−1B⊤P̃t+1A, and Kl
t = −

(
Bl⊤P̃ l

t+1B
l +R

)−1

Bl⊤P̃ l
t+1A

l.

(25)

To bound ∆Kl
t , we first bound

∥∥∥P̃ l
t+1 − P̃t+1

∥∥∥ as follows:∥∥∥P̃ l
t+1 − P̃t+1

∥∥∥
(1)
=
∥∥(In − γP l

t+1)
−1P l

t+1 − (In − γPt+1)
−1Pt+1

∥∥
=
∥∥(In − γP l

t+1)
−1P l

t+1 − (In − γPt+1)
−1P l

t+1 + (In − γPt+1)
−1P l

t+1 − (In − γPt+1)
−1Pt+1

∥∥
≤
∥∥(In − γP l

t+1)
−1P l

t+1 − (In − γPt+1)
−1P l

t+1

∥∥+ ∥∥In − γPt+1)
−1P l

t+1 − (In − γPt+1)
−1Pt+1

∥∥
≤
∥∥(In − γP l

t+1)
−1 − (In − γPt+1)

−1
∥∥ · ∥P l

t+1∥+ ∥(In − γPt+1)
−1∥ · ∥P l

t+1 − Pt+1∥.

Here, the equality (1) follows by the definition of P̃ l
t+1 and P̃t+1, and the fact that

P̃t = Pt + γPt(In − γPt)
−1Pt

=
[
In + γPt(I − γPt)

−1
]
Pt

=
[
(In − γPt)(In − γPt)

−1 + γPt(In − γPt)
−1
]
Pt

= (In − γPt)
−1Pt.
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It follows from the fact that E−1 − F−1 = E−1(F − E)F−1 for any invertible matrix E and F ,∥∥∥P̃ l
t+1 − P̃t+1

∥∥∥
≤
∥∥(In − γP l

t+1)
−1γ(P l

t+1 − Pt+1)(In − γPt+1)
−1
∥∥ · ∥P l

t+1∥+ ∥(In − γPt+1)
−1∥ · ∥P l

t+1 − Pt+1∥
(2)

≤ 1

1− γ∥P l
t+1∥

· 1

1− γ∥Pt+1∥
· γ∥P l

t+1 − Pt+1∥ · ∥P l
t+1∥+

1

1− γ∥Pt+1∥
· ∥P l

t+1 − Pt+1∥

≤ 1

1− γ(Wϵl + Γ)
· 1

1− γΓ
· γWϵl(Wϵl + Γ) +

1

1− γΓ
·Wϵl

(3)

≤ 1

(1− γΓ̃)2
γΓ̃Wϵl +

1

1− γΓ̃
Wϵl

=

[
γΓ̃

(1− γΓ̃)2
+

1

1− γΓ̃

]
Wϵl

=
Wϵl

(1− γΓ̃)2
,

where the inequality (2) holds by the fact that for any matrix E ∈ Rn×n, if ∥E∥ < 1, then ∥(In −
E)−1∥ ≤ 1

1−∥E∥ , and the inequality (3) holds because we assume that ∥P l
t+1 − Pt+1∥ ≤Wϵl ≤ 1.

To bound ∆Kl
t , we next bound

∥∥∥B⊤P̃t+1B −Bl⊤P̃ l
t+1B

l
∥∥∥ in view of the expressions in (25):∥∥∥B⊤P̃t+1B −Bl⊤P̃ l

t+1B
l
∥∥∥

≤
∥∥∥B⊤P̃t+1B −B⊤P̃t+1B

l
∥∥∥+ ∥∥∥B⊤P̃t+1B

l −B⊤P̃ l
t+1B

l
∥∥∥+ ∥∥∥B⊤P̃ l

t+1B
l −Bl⊤P̃ l

t+1B
l
∥∥∥

≤ ∥B⊤P̃t+1∥ · ∥B −Bl∥+ ∥B∥ · ∥P̃t+1 − P̃ l
t+1∥ · ∥Bl∥+ ∥B −Bl∥ · ∥P̃ l

t+1B
l∥

≤ ϵlΓ2 + ΓLWϵl(Γ + ϵl) + ϵl(LWϵl + Γ)(Γ + ϵl)

(4)

≤ Wϵl(Γ̃
2 + Γ̃2L+ (ϵlL+ Γ)Γ̃)

≤ 2(L+ 1)Γ̃2Wϵl,

where inequality (4) holds by the fact that Wϵl ≤ 1. Similarly, we can derive that∥∥∥B⊤P̃t+1A−Bl⊤P̃ l
t+1A

l
∥∥∥

≤
∥∥∥B⊤P̃t+1A−B⊤P̃t+1A

l
∥∥∥+ ∥∥∥B⊤P̃t+1A

l −B⊤P̃ l
t+1A

l
∥∥∥+ ∥∥∥B⊤P̃ l

t+1A
l −Bl⊤P̃ l

t+1A
l
∥∥∥

≤ 2(L+ 1)Γ̃2Wϵl.

Then, following a similar argument as in Lemma 2 of Mania et al. (2019), we can obtain

∥∆Kl
t∥ = ∥Kt −Kl

t∥ ≤ 2(L+ 1)Γ̃3Wϵl.

Next we proceed to bound ∥P l
t − Pt∥. Recall that

Pt = Q+K⊤
t RKt + (A+BKt)

⊤P̃t+1(A+BKt),

P l
t = Q+Kl⊤

t RKl
t + (Al +BlKl

t)
⊤P̃ l

t+1(A
l +BlKl

t).

We can directly compute that∥∥A+BKt −Al −BlKl
t

∥∥
≤
∥∥A−Al

∥∥+ ∥∥BKt −BKl
t

∥∥+ ∥∥BKl
t −BlKl

t

∥∥
≤ ϵl + ΓVWϵl + ϵl(VWϵl + Γ)

(5)

≤ ϵl + ΓVWϵl + Γ̃VWϵl

≤ 2VΓ̃Wϵl,
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where inequality (5) holds by the fact that ϵl(VWϵl + Γ) ≤ VWϵl + ΓϵlWV when both W and V
are larger than 1. Similarly, we can derive that∥∥K⊤

t RKt −Kl⊤
t RKl

t

∥∥
≤
∥∥K⊤

t RKt −K⊤
t RK

l
t

∥∥+ ∥∥K⊤
t RK

l
t −Kl⊤

t RKl
t

∥∥
≤ Γ2VWϵl + VWϵlΓ(VWϵl + Γ)

≤ 2V2Γ̃2Wϵl.

In addition, we can derive that∥∥∥(A+BKt)
⊤P̃t+1(A+BKt)− (A+BKl

t)
⊤P̃ l

t+1(A+BKl
t)
∥∥∥

≤
∥∥∥(A+BKt)

⊤P̃t+1(A+BKt)− (A+BKl
t)

⊤P̃t+1(A+BKt)
∥∥∥

+
∥∥∥(A+BKl

t)
⊤P̃t+1(A+BKt)− (A+BKl

t)
⊤P̃ l

t+1(A+BKt)
∥∥∥

+
∥∥∥(A+BKl

t)
⊤P̃ l

t+1(A+BKt)− (A+BKl
t)

⊤P̃ l
t+1(A+BKl

t)
∥∥∥

≤ 2VΓ̃4Wϵl + 2LVΓ̃4Wϵl + 4V2LΓ̃4Wϵl

≤ 8V2LΓ̃4Wϵl.

It then follows that

∥P l
t − Pt∥ ≤ 10V2LΓ̃4Wϵl.

The proof is therefore complete.

With Lemma 9, we are now ready to prove Lemma 8.

Proof of Lemma 8. By definition we know that P l
T = PT = QT , and thus we have ∥P l

T −PT ∥ ≤ ϵl.
By Lemma 9, we can derive that at time T − 1,

∥Kl
T−1 −KT−1∥ ≤ Vϵl,

∥P l
T−1 − PT−1∥ ≤ (10V2LΓ̃4)ϵl,

which implies that

∥Kl
T−2 −KT−2∥ ≤ (10V2LΓ̃4)Vϵl,

∥P l
T−2 − PT−2∥ ≤ (10V2LΓ̃4)2ϵl.

Applying Lemma 9 recursively, we obtain for any t = 0, · · · , T − 1.

∥Kl
t −Kt∥ ≤ (10V2LΓ̃4)T−t−1Vϵl,

∥P l
t − Pt∥ ≤ (10V2LΓ̃4)T−tϵl,

which completes the proof.

A.3 SUBOPTIMALITY GAP DUE TO THE CONTROLLER MISMATCH

In this section, we will simplify the performance gap between the total cost under policy πl,k and
the total cost under the optimal policy. We recall the corresponding total cost under entropic risk,

Jπl,k

0

(
xl,k0

)
=

1

γ
logE exp

(
γ

2

(
T−1∑
t=0

(
xl,k⊤t Qxl,kt + ul,k⊤t Rul,kt

)
+ xl,k⊤T QTx

l,k
T

))
,

where ul,kt = Kl
tx

l,k
t , and Kl

t is obtained by substituting (Al, Bl) into equation 5.

Let Hl,k
t be the set of possible histories up to the t-th step in the k-th episode of epoch l. Then, one

sample of the history up to the t-th step in the k-th episode of epoch l is

H l,k
t =

(
x1,10 , u1,10 , · · · , x1,1T , x1,20 , · · · , x2,10 , · · · , x2,1T , · · · , xl,k0 , · · · , xl,kt , ul,kt

)
.
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We also introduce some new notations, which will be heavily used in the regret analysis. For any
t = 1, · · · , T − 2, we define the following recursive equations:

Dl
T−1 = ∆Kl⊤

T−1(R+B⊤P̃TB)∆Kl
T−1,

D̃l
T−1 = (In − γDl

T−1)
−1Dl

T−1,

Dl
t = ∆Kl⊤

t

(
R+B⊤P̃t+1B

)
∆Kl

t + (A+BKl
t)

⊤D̃l
t+1(A+BKl

t),

D̃l
t = (In − γDl

t)
−1Dl

t,

Dl
0 = ∆Kl⊤

0

(
R+B⊤P̃1B

)
∆Kl

0 + (A+BKl
0)

⊤D̃l
1(A+BKl

0),

(26)

where ∆Kl
t = Kl

t − Kt and P̃T is defined in (5). In the following parts, we still consider the
risk-averse setting, where γ > 0. The following proposition is the key result of this section.
Proposition 5. We can simplify the performance gap in the k-th episode of epoch l to

Jπl,k

0 (xl,k0 )− J⋆
0 (x

l,k
0 ) = − 1

2γ

T−1∑
t=1

log
(
det
(
In − γDl

t

))
+

1

2
xl,k⊤0 Dl

0x
l,k
0 . (27)

where Dl
t is defined in (26).

In order to prove Proposition 5, we introduce Lemma 10, see p.8 of Jacobson (1973).
Lemma 10 (Jacobson (1973)). Consider the linear dynamic system xt+1 = Axt +But +wt, wt ∼
N (0, In), t = 0, · · · , T − 1. For any sequence of positive semidefinite matrix Et+1 satisfying
In − γEt+1 ≻ 0, we have

E
[
exp

(γ
2
x⊤t+1Et+1xt+1

) ∣∣∣xt, ut]
= (det(In − γEt+1))

− 1
2 exp

(γ
2
(Axt +But)

⊤Ẽt+1(Axt +But)
)
,

where Ẽt+1 = Et+1 + γEt+1(In − γEt+1)
−1Et+1.

We apply Lemma 10 to simplify the performance gap Jπl,k

0 (xl,k0 )− J⋆
0 (x

l,k
0 ) in the k-th episode of

epoch l in the following lemma.
Lemma 11. We can simplify the performance gap as

Jπl,k

0 (xl,k0 )− J⋆
0 (x

l,k
0 ) =

1

γ
logE

[
exp

(
γ

2

T−1∑
t=0

xl,k⊤t ∆Kl⊤
t (R+B⊤P̃t+1B)∆Kl

tx
l,k
t

)∣∣∣∣∣xl,k0 , H l,k−1
T

]
,

(28)
where ∆Kl

t = Kl
t −Kt.

Proof. Denote Jt(x
l,k
t ) = 1

2

(
xl,k⊤t Ptx

l,k
t −

∑T−1
i=t

1
γ log det (I − γPt+1)

)
, t = 0, · · · , T − 1,

which is the dynamic programming equations of LEQR problem. When t = T , JT (x
l,k
T ) =

xl,k⊤T QTx
l,k
T .

By the definition of Jπl,k

0 (xl,k0 ) and J⋆
0 (x

l,k
0 ), we have

Jπl,k

0 (xl,k0 )− J⋆
0 (x

l,k
0 )

=
1

γ
logE

[
exp

(
γ

2

(
T−1∑
t=0

(
xl,k⊤t Qxl,kt + ul,k⊤t Rul,kt

)
+ xl,k⊤T QTx

l,k
T

))∣∣∣∣∣xl,k0 , H l,k−1
T

]
− J0(xl,k0 )

=
1

γ
logE

[
exp

(
γ

2

(
T−1∑
t=0

((
xl,k⊤t Qxl,kt + ul,k⊤t Rul,kt

)
+ Jt(x

l,k
t )− Jt(xl,kt )

)
+ xl,k⊤T QTx

l,k
T

))∣∣∣∣∣xl,k0 , H l,k−1
T

]
− J0(xl,k0 ).

(29)
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Recall that JT (x
l,k
T ) = xl,k⊤T QTx

l,k
T , we have

Jπl,k

0 (xl,k0 )− J⋆
0 (x

l,k
0 )

=
1

γ
logE

[
exp

(
γ

2

(
T−1∑
t=0

((
xl,k⊤t Qxl,kt + ul,k⊤t Rul,kt

)
+ Jt(x

l,k
t )− Jt(xl,kt )

)
+ JT (x

l,k
T )

))∣∣∣∣∣xl,k0 , H l,k−1
T

]
− 1

γ
log
(
exp(J0(x

l,k
0 ))

)
(1)
=

1

γ
logE

[
exp

(
γ

2

T−1∑
t=0

((
xl,k⊤t Qxl,kt + ul,k⊤t Rul,kt

)
+ Jt+1(x

l,k
t+1)− Jt(x

l,k
t )
)) ∣∣∣∣∣xl,k0 , H l,k−1

T

]
(2)
=

1

γ
logE

[
exp

(
γ

T−1∑
t=0

(
1

2
xl,k⊤t (Q+Kl⊤

t RKl
t)x

l,k
t +

1

2
xl,k⊤t+1 Pt+1x

l,k
t+1 −

1

2
xl,k⊤t Ptx

l,k
t

+
1

2γ
log det(In − γPt+1)

))∣∣∣∣∣xl,k0 , H l,k−1
T

]
,

where equality (1) holds by canceling out the J0(x
l,k
0 ) inside and outside the entropic risk, and

equality (2) follows from the definition of the total cost under entropic risk and ul,kt = Kl
tx

l,k
t . By

the law of total expectation, i.e. E[X|Z] = E[E[X|Y,Z]|Z] for any random variables X,Y, Z, we
consider the conditional expectation

E

[
exp

(
γ
(1
2
xl,k⊤t (Q+Kl⊤

t RKl
t)x

l,k
t +

1

2
xl,k⊤t+1 Pt+1x

l,k
t+1 −

1

2
xl,k⊤t Ptx

l,k
t

+
1

2γ
log det(In − γPt+1)

))∣∣∣∣∣H l,k
t

]

= exp

(
γ

(
1

2
xl,k⊤t (Q+Kl⊤

t RKl
t)x

l,k
t −

1

2
xl,k⊤t Ptx

l,k
t +

1

2γ
log det(In − γPt+1)

))

× E

[
exp

(γ
2
xl,k⊤t+1 Pt+1x

l,k
t+1

) ∣∣∣∣∣H l,k
t

]
(3)
= exp

(
γ

(
1

2
xl,k⊤t (Q+Kl⊤

t RKl
t)x

l,k
t −

1

2
xl,k⊤t Ptx

l,k
t +

1

2γ
log det(In − γPt+1)

))

× (det(In − γPt+1))
−1/2 exp

[
γ

2

(
xl,k⊤t (A+BKl

t)
⊤P̃t+1(A+BKl

t)x
l,k
t

)]
= exp

[γ
2

(
xl,k⊤t (Q+Kl⊤

t RKl
t + (A+BKl

t)
⊤P̃t+1(A+BKl

t))x
l,k
t − x

l,k⊤
t Ptx

l,k
t

)]
,

(30)

where the equality (3) follows from Lemma 10.

Recall that ∆Kl
t = Kl

t −Kt and Pt = Q +K⊤
t RKt + (A + BKt)

⊤P̃t+1(A + BKt). Then the
RHS of Equation (30) becomes

exp
[γ
2
xl,k⊤t

(
Q+ (∆Kl

t +Kt)
⊤R(∆Kl

t +Kt)

+ (A+B(∆Kl
t +Kt))

⊤P̃t+1(A+B(∆Kl
t +Kt))

)
xl,kt −

γ

2
xl,k⊤t Ptx

l,k
t

]
= exp

[γ
2
xl,k⊤t ∆Kl⊤

t (R+B⊤P̃t+1B)∆Kl
tx

l,k
t + γxl,k⊤t ∆Kl⊤

t

(
(R+B⊤P̃t+1B)Kt +B⊤P̃t+1A

)
xl,kt

]
(4)
= exp

[γ
2
xl,k⊤t ∆Kl⊤

t (R+B⊤P̃t+1B)∆Kl
tx

l,k
t

]
,

(31)
where the equality (4) holds by the fact that Kt = −(R+B⊤P̃t+1B)−1B⊤P̃t+1A. Finally, substi-
tuting (31) into (30) and then substituting (30) into (29), we can get (28).
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With Lemma 11, we are now ready to prove Proposition 5.

Proof of Proposition 5. We prove the result recursively. When t = T − 1, we have

E
[
exp

(γ
2
xl,k⊤T−1∆K

l⊤
T−1(R+B⊤P̃TB)∆Kl

T−1x
l,k
T−1

) ∣∣∣∣H l,k
T−2

]
= E

[
exp

(γ
2
xl,k⊤T−1D

l
T−1x

l,k
T−1

) ∣∣∣∣H l,k
T−2

]
(1)
=
(
det(In − γDl

T−1)
)− 1

2 exp
{γ
2

[
xl,k⊤T−2(A+BKl

T−2)
⊤D̃l

T−1(A+BKl
T−2)x

l,k
T−2

]}
,

where equality (1) follows from Lemma 10 and ul,kT−1 = Kl
T−1x

l,k
T−1. When t = T − 2, we have

E

[
exp

(
γ

2

T−1∑
t=T−2

(
xl,k⊤t ∆Kl⊤

t (R+B⊤P̃t+1B)∆Kl
tx

l,k
t

))∣∣∣∣H l,k
T−3

]

=
(
det(In − γDl

T−1)
)− 1

2 E
[
exp

(
γ

2

[
xl,k⊤T−2

(
∆Kl⊤

T−2(R+B⊤P̃T−1B)∆Kl
T−2

+ (A+BKl
T−2)

⊤D̃l
T−1(A+BKl

T−2)
)
xl,kT−2

])∣∣∣∣H l,k
T−3

]
=
(
det(In − γDl

T−1)
)− 1

2 E
[
exp

(γ
2
xl,k⊤T−2D

l
T−2x

l,k
T−2

) ∣∣∣H l,k
T−3

]
=

T−1∏
t=T−2

(
det(In − γDl

t)
)− 1

2 exp
(γ
2

[
xl,k⊤T−3(A+BKl

T−3)
⊤D̃l

T−2(A+BKl
T−3)x

l,k
T−3

])
.

When t = i, i = 1, · · · , T − 1, similarly, we have

E

[
exp

(
γ

2

T−1∑
t=i

(
xl,k⊤t ∆Kl⊤

t (R+B⊤P̃t+1B)∆Kl
tx

l,k
t

))∣∣∣∣∣H l,k
i−1

]

=

T−1∏
t=i

(
det(In − γDl

t)
)− 1

2 exp

(
γ

2

[
xl,k⊤i−1 (A+BKl

i−1)
⊤D̃l

i(A+BKl
i−1)x

l,k
i−1

])
.

Repeating this procedure, we get

Jπl,k

0 (xl,k0 )− J⋆
0 (x

l,k
0 )

=
1

γ
logE

[
T−1∏
t=1

(
det(In − γDl

t)
)− 1

2

× exp

(
γ

2

[
xl,k⊤0

(
(A+BKl

0)
⊤D̃l

1(A+BKl
0) + ∆Kl⊤

0 (R+B⊤P̃1B)∆Kl
0

)
xl,k0

])∣∣∣∣∣xl,k0 , H l,k−1
T

]

=
1

γ
logE

[
T−1∏
t=1

(
det(In − γDl

t)
)− 1

2 exp
(γ
2
xl,k⊤0 Dl

0x
l,k
0

) ∣∣∣∣xl,k0 , H l,k−1
T

]
(2)
=

1

γ
log

(
T−1∏
t=1

(
det(In − γDl

t)
)− 1

2 exp
(γ
2
xl,k⊤0 Dl

0x
l,k
0

))

= − 1

2γ

T−1∑
t=1

log
(
det
(
In − γDl

t

))
+

1

2
xl,k⊤0 Dl

0x
l,k
0 ,

where inequality (2) holds because Dl
t, t = 0, · · · , T − 1 is based on the data from epoch 1 to epoch

l − 1.
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A.4 PROOF OF THEOREM 1

Now, we can derive the regret upper bound for Algorithm 1. Before we derive the high probability
bounds for (27), we introduce some new notations and provide the bounds for Dl

t in (26). Recall
that

ψT−1 = 2Γ̃3,

ψt = 2Γ̃3(10V2LΓ̃4)2(T−t−1) + 12Γ̃4ψt+1, t = 0, · · · , T − 2,
(32)

where the definitions of V and L are given in (13). Assume that for any t = 1, · · · , T − 1, l ∈ [L],
we have

γ ≤ 1

2ψtV2ϵ2l
. (33)

We can choose a proper constant C0 for the initial epoch size m1 in Theorem 1 so that γ can satisfy
assumptions in (33) when it satisfies the assumption of In − γPt+1 ≻ 0 and In − γP l

t+1 ≻ 0 in (5).
Because Dl

t are defined recursively, we obtain the bounds recursively from step T − 1 to step 1. At
step T − 1, ∥∥Dl

T−1

∥∥ =
∥∥∥∆Kl⊤

T−1

(
R+B⊤P̃TB

)
∆Kl

T−1

∥∥∥
≤
∥∥∥R+B⊤P̃TB

∥∥∥ · ∥∥∆Kl
T−1

∥∥2
(1)

≤ 2Γ̃3V2ϵ2l

= ψT−1V2ϵ2l ,

where inequality (1) follows from the definition of Γ̃ in (13) and Lemma 8. In terms of the bound
for D̃l

T−1, we have ∥∥∥D̃l
T−1

∥∥∥ =
∥∥∥(In − γDl

T−1

)−1
DT−1

∥∥∥
≤
∥∥∥(In − γDl

T−1

)−1
∥∥∥ · ∥∥Dl

T−1

∥∥
(2)

≤
∥Dl

T−1∥
1− γ∥Dl

T−1∥
(3)

≤ 2∥Dl
T−1∥

= 2ψT−1V2ϵ2l ,

where inequality (2) holds by the fact that for any matrix M ∈ Rn×n, if ∥M∥ < 1, then ∥(In −
M)−1∥ ≤ 1

1−∥M∥ and inequality (3) follows from the assumption in (33). At step T − 2, we have∥∥Dl
T−2

∥∥ =
∥∥∥∆Kl⊤

T−2

(
R+B⊤P̃T−1B

)
∆Kl

T−2 +
(
A+BKl

T−2

)⊤
D̃l

T−1

(
A+BKl

T−2

)∥∥∥
≤ 2Γ̃3

(
10V2LΓ̃4

)2
V2ϵ2l +

∥∥A+B(∆Kl
T−2 +KT−2)

∥∥2 · ∥∥∥D̃l
T−1

∥∥∥
(4)

≤ 2Γ̃3
(
10V2LΓ̃4

)2
V2ϵ2l +

(
6Γ̃4 + 3Γ̃2

(
10V2LΓ̃4

)2
V2ϵ2l

)
· 2ψT−1V2ϵ2l

=

(
2Γ̃3

(
10V2LΓ̃4

)2
+ 12Γ̃4ψT−1

)
V2ϵ2l + o(ϵ2l )

= ψT−2V2ϵ2l + o(ϵ2l ),

where inequality (4) follows from the fact that
∥∥∥∑K

t=1 xt

∥∥∥2 ≤ K∑K
t=1 ∥xt∥

2. Similarly, we have∥∥∥D̃l
T−2

∥∥∥ ≤ 2ψT−2V2ϵ2l + o(ϵ2l ).
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For t = T − 2, · · · , 1, we can recursively derive that
∥Dl

t∥ ≤ ψtV2ϵ2l + o(ϵ2l ),∥∥∥D̃l
t

∥∥∥ ≤ 2ψtV2ϵ2l + o(ϵ2l ),

∥Dl
0∥ ≤ ψ0V2ϵ2l + o(ϵ2l ). (34)

According to Lemma 5, the performance loss in the k-th episode of epoch l is

Jπl,k

0 (xl,k0 )− J⋆
0 (x

l,k
0 )

= − 1

2γ

T−1∑
t=1

log
(
det
(
In − γDl

t

))
+

1

2
xl,k⊤0 Dl

0x
l,k
0

(5)

≤ − 1

2γ

T−1∑
t=1

log
(
1− γ∥Dl

t∥
)n

+
1

2
∥xl,k0 ∥2∥Dl

0∥.

(35)

Here, inequality (5) holds because In− γDl
t ⪰

(
1− γ∥Dl

t∥
)
In ⪰ (1− γ(ψtV2ϵ2l + o(ϵ2l )))In ≻ 0

and det
((
1− γ∥Dl

t∥
)
In
)
=
(
1− γ∥Dl

t∥
)n

. Substituting the inequalities in (34) into (35), we
obtain

Jπl,k

0 (xl,k0 )− J⋆
0 (x

l,k
0 )

(6)

≤ − n

2γ

T−1∑
t=1

log
(
1− γ

(
ψtV2ϵ2l + o

(
ϵ2l
)))

+
1

2
∥x0∥2

(
ψ0V2ϵ2l + o

(
ϵ2l
))

(7)

≤ n

2

(
T−1∑
t=1

ψtV2ϵ2l + o
(
ϵ2l
))

+
1

2
∥x0∥2

(
ψ0V2ϵ2l + o

(
ϵ2l
))

=
n

2

T−1∑
t=1

ψtV2ϵ2l +
1

2
∥x0∥2ψ0V2ϵ2l + o(ϵ2l ),

inequality (6) holds by the inequalities in (34), and inequality (7) follows from the fact that log(1 +
y) ≤ y for any y > −1.

Now, we can substitute the high probability bounds derived in Section A.1 into (35). Recall that
conditional on event Gl−1 in Lemma 3, with probability at least 1− 2δl−1, we have

∥∥θl − θ∥∥ ≤ ϵl := C1

√√√√ log

(
(m+n)2

δl−1

)
ml−1

+
log
(

(m+n)2

δl−1

)
ml−1

+
log2

(
(m+n)2

δl−1

)
m2

l−1

 .

Similar to the procedure in page 26 in Basei et al. (2022), we set δl−1 = δ
(l−1)2 , ml−1 =

2l−2m1, m1 = C0(− log δ), where δ ∈ (0, 3
π2 ) and C0 is a finite positive constant that satisfies

C0 ≥ C3 sup
l∈N+\{1},δ∈(0, 2

π2 )


 log

(
(m+n)2

δl−1

)
2l−2(− log δ)


/

min

{(
ρ

3C1

)2

, 1

} ,

where ρ is defined at the beginning of Appendix A.1. Then, we have ml−1 ≥ C3 log
(

(m+n)2

δl−1

)
and

thus

C1


√√√√ log

(
(m+n)2

δl−1

)
ml−1

+
log
(

(m+n)2

δl−1

)
ml−1

+
log2

(
(m+n)2

δl−1

)
m2

l−1

 (8)

≤ 3C1

√√√√ log
(

(m+n)2

δl−1

)
ml−1

≤ ρ, ∀l ∈ N+\{1},

where inequality (8) holds because C3 ≥ 1 in Proposition 3. By a similar mathematical induction on
page 27 in Basei et al. (2022), we can prove the following event

G =

∥∥θl − θ∥∥ ≤ 3C1

√√√√ log
(

(m+n)2

δl−1

)
ml−1

,∀l ∈ N+\{1}

 ∪ {θ1 ∈ Θ
}

(36)
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holds with probability at least 1− 2
∑∞

l=2 δl−1 = 1− π2δ
3 , i.e. P(G) ≥ 1− π2δ

3 .

Under the event G, which satisfies P(G) ≥ 1− π2δ
3 , we can derive that

Regret(N)

=

N∑
i=1

(
Jπi

(xi0)− J⋆(xi0)
)

=

L∑
l=1

ml∑
k=1

(
Jπl,k

(xl,k0 )− J⋆(xl,k0 )
)

(9)

≤ m1

[
n

2

T−1∑
t=1

ψtV2ϵ21 +
1

2
∥x0∥2ψ0V2ϵ21 + o(ϵ21)

]
+

L∑
l=2

ml

[
n

2

T−1∑
t=1

ψtV2ϵ2l +
1

2
∥x0∥2ψ0V2ϵ2l + o(ϵ2l )

]

(10)

≤ m1

[
n

2

T−1∑
t=1

ψtV2ϵ21 +
1

2
∥x0∥2ψ0V2ϵ21 + o(ϵ21)

]
+

L∑
l=2

ml

[
n

2

T−1∑
t=1

ψtV2 · 9C21 ·
log
(

(m+n)2

δl−1

)
ml−1

+
1

2
∥x0∥2ψ0V2 · 9C21 ·

log
(

(m+n)2

δl−1

)
ml−1

+ o

 log
(

(m+n)2

δl−1

)
ml−1

]
(11)

≤ Chigh +m1

[
n

2

T−1∑
t=1

ψtV2ϵ21 +
1

2
∥x0∥2ψ0V2ϵ21

]

+

[
9C21V2

(
n

T−1∑
t=1

ψt + ∥x0∥2ψ0

)]
·

L∑
l=2

(
log

(
m+ n√

δ

)
+ log(l − 1)

)
(12)

≤ C

(
T−1∑
t=0

ψt

)[
log

(
m+ n√

δ

)
L+ L logL

]
,

where inequality (9) follows from (35), inequality (10) follows from the definition of the event G
in (36), ψt is defined in (32), Chigh in inequality (11) is a constant depends on T, γ,m, n,V, Γ̃
polynomially and it can bound the higher order term in inequality (10), and inequality (12) holds by
Stirling’s formula:

∑L
l=2 log(l− 1) = log((L− 1)!) ≤ C′(L− 1) log(L− 1), where C′ is a positive

constant. The expression of C is given by
C := Polynomial (C1, C′,V, n, ϵ1, n,m1, ∥x0∥) ,

where ϵ1 is the estimation error in the first epoch, m1 is the number of episodes in the first epoch,
ψt is defined in (32), C1 = 16C32C24 is from the proof of Proposition 3, and V is defined in (13).

B REGRET ANALYSIS OF THE LEAST-SQUARES-BASED ALGORITHM WITH
EXPLORATION NOISE

In this section, we prove Theorem 2 discussed in Section 4. The proof structure of Theorem 2
is similar to the proof structure of Theorem 1. We present the high probability bounds for the
estimation error of system matrices in Section B.1, the perturbation analysis of Riccati equations in
Section B.2, and the simplification of the suboptimality gap resulting from controller mismatch in
Section B.3.

B.1 BOUNDS FOR THE ESTIMATION ERROR OF SYSTEM MATRICES

In this section, we derive the high probability bound for the estimation error of system matrices in
Algorithm 2. Different from Section A.1, we adapt the classical self-normalized martingale analysis
framework to derive the desired error bound.

Similar as in Section A.1, we fix the k-th episode and define the following compact set

Ξ =
{
θ̂ ∈ R(n+m)×n

∣∣∣ ∥∥∥θ̂ − θ∥∥∥ ≤ ϖ} ∪ {θ1},
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where ϖ > 0 is a constant that satisfies

ϖ ≥ max

{
2n

λ

log

(
3n2N

δ2

)
+ (n+m) log

1 +
c̃N log

(
3TN2

δ

)
λ

+ 2(n+m)2Γ̃2,

80n

cT

log

(
4n2N

δ2

)
+ (n+m) log

1 +
c̃N log

(
4TN2

δ

)
λ

+
80λ(n+m)2Γ̃2

cT

}
.

(37)
Here, Γ̃ is defined in (13), λ is the regularization parameter and c, c̃ > 0 are two constants indepen-
dent of k and N but may depend on other constants including n,m, γ. The explicit expression of
c and c̃ can be found in (44) and (53). For any estimated θ̃ ∈ Ξ, there exists a universal constant
CK > 0 such that ∥∥∥K̃t

∥∥∥ ≤ CK , ∀t, (38)

where K̃t is the control corresponding to θ̃ and it’s continuous in terms of θ̃ according to (5). We
also define the following event

G̃k = {θi ∈ Ξ,∀i = 1, · · · , k}. (39)

We will prove P(G̃k) ≥ 1−
∑k−1

i=1
δ

N−1 = 1− (k−1)δ
N−1 in Section B.4.

The main result of this section is the following proposition, which provides the high probability
bound for the estimation error of system matrices estimated in Algorithm 2.
Proposition 6. Let δ ∈

(
0, 14

)
. Conditional on event G̃k, when kT ≥ 200

(
3(n+m) + log

(
1
δ

))
,

with probability at least 1− 4δ,∥∥θk+1 − θ
∥∥2 ≤ 80n

cT
√
k

(
log

(
n2

δ2

)
+ (n+m) log

(
1 +

c̃k log
(
TN
δ

)
λ

))
+

80λ(n+m)2Γ̃2

cT
√
k

,

where Γ̃ is defined in (13), the explicit expressions of c and c̃ can be found in (44) and (53), n
is the dimension of the system state vector, m is the dimension of the control vector and λ is the
regularization parameter. When kT < 200

(
3(n+m) + log

(
1
δ

))
, with probability at least 1− 3δ,∥∥θk+1 − θ

∥∥2 ≤ 2n

λ

(
log

(
n2

δ2

)
+ (n+m) log

(
1 +

c̃k log
(
TN
δ

)
λ

))
+ 2(n+m)2Γ̃2.

The proof of Proposition 6 is long, and we will discuss it in the following subsections.

B.1.1 PRELIMINARIES

In this section, we recall an important high probability bound, known as self-normalized bound for
vector-valued martingales. It will be used in the derivation of the bounds for the estimation error of
system matrices.
Lemma 12 (Theorem 1 in Abbasi-Yadkori et al. (2011)). Let {Ft}∞t=0 be a filtration. Let {ηt}∞t=0
be a real-valued stochastic process such that ηt is Ft+1-measurable and ηt is conditionally R-sub-
Gaussian for some R ≥ 0 i.e.

E
[
eληt

∣∣∣Ft

]
≤ exp

(
λ2R2

2

)
,∀λ ∈ R.

Let {Xt}∞t=0 be an Rd-valued stochastic process such that Xt is Ft-measurable. Assume that V is
a d× d positive definite matrix. For any t ≥ 0, define

V̄t = V +

t∑
s=0

XsX
⊤
s , St =

t∑
s=0

ηsXs.

Then, for any δ > 0, with probability at least 1− δ, for all t ≥ 0,

∥St∥2V̄ −1
t
≤ 2R2 log

(
det
(
V̄t
)1/2

det(V )−1/2

δ

)
,

where ∥St∥2V̄ −1
t

= S⊤
t

(
V̄t
)−1

St.
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B.1.2 SELF-NORMALIZED BOUNDS FOR THE ESTIMATION ERROR OF SYSTEM MATRICES

In this section, we analyze the estimation error based on bounds for the self-normalized martingale.
Similar to Section A.3, let Hk

t be the set of possible histories up to step t in the k-th episode. Denote
the history up to step t in the k-th episode by

Hk
t =

(
x10, u

1
0, · · · , x1T , x20, · · · , xk0 , · · · , xkt−1, u

k
t−1, x

k
t , u

k
t

)
. (40)

The following lemma is a modified version of Theorem 2 in Abbasi-Yadkori et al. (2011) and Lemma
6 in Cohen et al. (2019), which provides a coarse self-normalized bound for the estimation error.

Lemma 13. For any δ ∈ (0, 1), with probability at least 1− δ, we have

Tr
(
(θk+1 − θ)⊤V̄ k(θk+1 − θ)

)
≤ 2n log

(
n2

δ2
det(V̄ k)

det(λI)

)
+ 2λ∥θ∥2F , (41)

where θk+1 is the estimated system matrix defined in (15), θ is the true system matrix, λ is the
regularization parameter and

V̄ k = λI +

k∑
i=1

T−1∑
t=0

zitz
i⊤
t .

Proof. We first follow Lemma 6 in Cohen et al. (2019) to simplify θk+1 − θ. Recall that

xit+1 = θ⊤zit + wi
t, wi

t ∼ N (0, In)

where zit =
[
xi⊤t ui⊤t

]⊤
. Together with (15), we can obtain

θk+1 =
(
V̄ k
)−1

(
k∑

i=1

T−1∑
t=0

zit
(
zi⊤t θ + wi⊤

t

))

=
(
V̄ k
)−1

(
λθ +

k∑
i=1

T−1∑
t=0

zitz
i⊤
t θ +

k∑
i=1

T−1∑
t=0

zitw
i⊤
t − λθ

)
= θ +

(
V̄ k
)−1 (

Sk
T−1 − λθ

)
,

where we denote Sk
T−1 =

∑k
i=1

∑T−1
t=0 zitw

i⊤
t for the simplicity of notation. Then, we obtain

Tr
((
θk+1 − θ

)⊤
V̄ k
(
θk+1 − θ

))
= Tr

((
Sk
T−1 − λθ

)⊤ (
V̄ k
)−1 (

Sk
T−1 − λθ

))
= Tr

(
Sk⊤
T−1

(
V̄ k
)−1

Sk
T−1 + λ2θ⊤

(
V̄ k
)−1

θ − λSk⊤
T−1

(
V̄ k
)−1

θ − λθ⊤
(
V̄ k
)−1

Sk
T−1

)
(1)

≤ Tr
(
Sk⊤
T−1

(
V̄ k
)−1

Sk
T−1 + λ2θ⊤

(
V̄ k
)−1

θ
)
+ 2

∥∥∥λθ⊤ (V̄ k
)− 1

2

∥∥∥
F
·
∥∥∥(V̄ k

)− 1
2 Sk

T−1

∥∥∥
F

(2)

≤ 2Tr
(
Sk⊤
T−1

(
V̄ k
)−1

Sk
T−1

)
+ 2λ2 Tr

(
θ⊤
(
V̄ k
)−1

θ
)

(3)

≤ 2Tr
(
Sk⊤
T−1

(
V̄ k
)−1

Sk
T−1

)
+ 2λ∥θ∥2F .

(42)
Here, we use Cauchy–Schwarz inequality |Tr(EF )| ≤ ∥E∥F ∥F∥F for any matrix E and F to
obtain inequality (1), we use the inequality 2ab ≤ a2 + b2 for any a and b to obtain inequality (2),
and we use the fact that V̄ k ⪰ λI to obtain inequality (3).

We further bound Tr
(
Sk⊤
T−1

(
V̄ k
)−1

Sk
T−1

)
in (42) to get the result in (41). Let Sk

t (j) =∑k
i=1

∑t
s=0 z

i
sw

i
s(j), j = 1, · · · , n, t = 0, · · · , T − 1, k = 1, · · · , N , where wi

s(j) is the j-th
element of the random vector wi

s. Recall the trajectory in (40), zis is Hi
s-measurable for any step s
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in the i-th episode and wi
s(j) is Hi

s+1-measurable for any step s in the i-th episode. Therefore, we
can apply Lemma 12 and obtain that with probability at least 1− δ

n ,

Sk
T−1(j)

⊤ (V̄ k
)−1

Sk
T−1(j) ≤ 2 log

(
n

δ

det(V̄ k)1/2

det(λI)1/2

)
.

By a union bound, we can obtain that with probability at least 1− δ,

Tr
(
Sk⊤
T−1

(
V̄ k
)−1

Sk
T−1

)
=

n∑
j=1

Sk
T−1(j)

⊤ (V̄ k
)−1

Sk
T−1(j) ≤ n log

(
n2

δ2
det(V̄ k)

det(λI)

)
. (43)

On combining (42) with (43), we can obtain (41).

After deriving the coarse self-normalized bounds in (41), we need to find the upper and lower bounds
for V̄ k to obtain the result in Proposition 6. We follow the proof of Theorem 20 in Cohen et al.
(2019) to derive the high probability lower bound for V̄ k. The main difference is that we consider
a decaying exploration noise while they consider a nondecaying exploration noise. The next lemma
provides a lower bound for the conditional expectation of zkt z

k⊤
t ,∀k, t, which is a modification of

Lemma 34 in Cohen et al. (2019).

Lemma 14. For all episode k and step t, conditional on event G̃k, we have

E
[
zkt z

k⊤
t

∣∣Hk
t−1

]
⪰ c√

k
Im+n, t ̸= 0,

where c > 0 is a constant satisfying

c ≤
C2

K − CK

√
C2

K + 4 + 2

2
(44)

with CK defined in (38) and
C2

K−CK

√
C2

K+4+2

2 ∈ (0, 1).

Proof. Recall that zkt =
[
xk⊤t , uk⊤t

]⊤
, we have

E
[
zkt z

k⊤
t

∣∣Hk
t−1

]
=

[
In
Kk

t

]
E
[
xkt x

k⊤
t

∣∣Hk
t−1

] [
In Kk⊤

t

]
+

[
0 0
0 1√

k
Im

]
(1)

⪰
[
In
Kk

t

] [
In Kk⊤

t

]
+

[
0 0
0 1√

k
Im

]
=

[ (
1− c√

k

)
In Kk⊤

t

Kk
t Kk

t K
k⊤
t + 1√

k
(1− c)Im

]
+

c√
k
In+m

(2)

⪰


√

1− c√
k
In

Kk
t√

1− c√
k

[ √1− c√
k
In

Kk⊤
t√

1− c√
k

]
+

c√
k
In+m

⪰ c√
k
In+m.

Here, inequality (1) follows from the fact that zkt−1 =
[
xk⊤t−1, u

k⊤
t−1

]⊤
isHk

t−1-measurable and

E
[
xkt x

k⊤
t

∣∣Hk
t−1

]
= E

[(
Axkt−1 +Bukt−1 + wk

t−1

) (
Axkt−1 +Bukt−1 + wk

t−1

)⊤ ∣∣∣Hk
t−1

]
=
(
Axkt−1 +Bukt−1

) (
Axkt−1 +Bukt−1

)⊤
+ E

[
wk

t−1w
k⊤
t−1

∣∣Hk
t−1

]
⪰ In.

For inequality (2), when 0 < c ≤ C2
K−CK

√
C2

K+4+2

2 , we can obtain
1

1− c√
k

Kk
t K

k⊤
t ⪯ Kk

t K
k⊤
t +

1√
k
(1− c)Im. (45)

We can prove that (45) is equivalent to c
1− c√

k

Kk
t K

k⊤
t ⪯ c

1−cK
k
t K

k⊤
t ⪯ c

1−cC
2
KIm ⪯ (1 − c)Im.

Solving the inequality c
1−cC

2
K ≤ 1− c, we can obtain 0 < c ≤ C2

K−CK

√
C2

K+4+2

2 .
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With the lower bound for the conditional expectation of zkt z
k⊤
t ,∀k, t, we can derive the high proba-

bility lower bound as Lemma 33 in Cohen et al. (2019).

Lemma 15. Let δ ∈ (0, 1). Conditional on event G̃k, when kT ≥ 200
(
600(n+m) + log

(
1
δ

))
,

with probability at least 1− δ, we have

V̄ k ⪰ cT
√
k

40
In+m. (46)

Proof. Let e ∈ Sn+m−1, where Sn+m−1 = {v ∈ Rn+m|∥v∥2 = 1}. Let Ikt = e⊤zkt and let Yk
t be

an indicator random variable that equals 1 if (Ikt )
2 > c

2
√
k

and 0 otherwise. By the similar arguments
as in the proof of Lemma 35 in Cohen et al. (2019), we can prove that

E
[
Yk
t

∣∣Hk
t−1

]
= P

(
Yk
t = 1

∣∣Hk
t−1

)
≥ 1

5
, if t ̸= 0. (47)

Let Uk
t = Yk

t −E
[
Yk
t |Hk

t−1

]
. Then, (Uk

t ) is a martingale difference sequence with |Uk
t | ≤ 1,∀k, t.

So we can use Azuma-Hoeffding inequality to derive the high probability bound: with probability
at least 1− δ,

k∑
i=1

T−1∑
t=1

U i
t ≥ −

√
2kT log

(
1

δ

)
(1)

≥ −kT
10
, (48)

where inequality (1) holds when kT ≥ 200 log
(
1
δ

)
. On combining U i

t = Yi
t − E

[
Yi
t |Hi

t−1

]
with

(48), we can obtain with probability at least 1− δ,

k∑
i=1

T−1∑
t=1

Yi
t ≥

k∑
i=1

T−1∑
t=1

E
[
Yi
t

∣∣Hi
t−1

]
− kT

10

(2)

≥ kT

5
− kT

10
=
kT

10
, (49)

where inequality (2) follows from (47). Denote V k =
∑k

i=1

∑T−1
t=1 zitz

i⊤
t . Then, we can get with

probability at least 1− δ,

e⊤V ke =

k∑
i=1

T−1∑
t=1

(
Iit
)2 (3)

≥
k∑

i=1

T−1∑
t=1

Yi
t

c

2
√
i
≥

k∑
i=1

T−1∑
t=1

Yi
t

c

2
√
k

(4)

≥ kT

10
· c

2
√
k
=

√
kTc

20
,

where inequality (3) follows from the definition of Iit , inequality (4) holds by (49). Finally, by the
similar 1

4 -net argument in the proof of Theorem 20 in Cohen et al. (2019), we can prove that when
kT ≥ 200

(
3(n+m) + log

(
1
δ

))
, with probability at least 1− δ,∥∥∥(V k

)−1
∥∥∥ ≤ 40

cT
√
k
,

which is equivalent to

V̄ k ⪰ V k ⪰
k∑

i=1

T−1∑
t=1

zitz
i⊤
t ⪰

cT
√
k

40
In+m.

In addition to the lower bound of V̄ k, we also need to find the upper bound of V̄ k to get the final high
probability bound for the estimation error of system matrices. In the following lemma, we provide
the high probability upper bound for ∥xkt ∥, which plays a vital role in deriving the high probability
upper bound of V̄ k.

Lemma 16. Let δ ∈
(
0, 12

)
. Conditional on the event G̃k, with probability at least 1 − 2δ, for all

0 ≤ t ≤ T , we have

∥xkt ∥ ≤ 6
(
Γ̃(1 + CK)

)t (
n

3
4 +m

3
4

)
max {∥x0∥, 1} Γ̃ log

1
2

(
TN

δ

)
, (50)

where Γ̃ is defined in (13) and CK is defined (38).
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Proof. Recall that xkt = Axkt−1 +Bukt−1 + wk
t−1 = (A+BKk

t−1)x
k
t−1 +Bgkt−1 + wk

t−1. Similar
to (21), we can simplify xkt to

xkt =

 0∏
j=t−1

(
A+BKk

j

)xk0 +

t−1∑
r=0

 r+1∏
j=t−1

(
A+BKk

j

)(Bgkr + wk
r

)
,

where
∏r+1

j=t−1(A + BKk
j ) = (A + BKk

t−1)(A + BKk
t−2) · · · (A + BKk

r+1), and
∏t

i=t−1(A +

BKk
i ) = In. Similar to Theorem 21 and Lemma 32 of Cohen et al. (2019), we can use Hanson-

Wright inequality in Proposition 1.1 of Hsu et al. (2012) to derive that

P
(
∥wk

r∥2 ≤ 5n
3
2 log

(
TN

δ

)
, ∥gkr ∥2 ≤ 5m

3
2

1√
k
log

(
TN

δ

)
,∀k, r

)
≥ 1− 2δ (51)

Then, we can bound the state vector by

∥xkt ∥ ≤

∥∥∥∥∥∥
0∏

j=t−1

(A+BKk
j )

∥∥∥∥∥∥ · ∥xk0∥+
T−1∑
r=0

∥∥∥∥∥∥
r+1∏

j=t−1

(A+BKk
j )

∥∥∥∥∥∥ · ∥∥Bgkr + wk
r
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≤

0∏
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(
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j ∥
)
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(
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) (
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)

(1)
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√
5Γ̃t−r−1(1 + CK)t−r−1

(
1

k
1
4

m
3
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3
4

)
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1
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(
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δ

)

= Γ̃t(1 + CK)t∥x0∥+
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·
√
5

(
1

k
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4

m
3
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3
4

)
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1
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(
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δ

)
(2)

≤
(
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)t
∥x0∥+ 5

(
Γ̃(1 + CK)

)t−1 (
m

3
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3
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Γ̃ log

1
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)
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(
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)t (
n

3
4 +m

3
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)
max {∥x0∥, 1} Γ̃ log

1
2

(
TN

δ

)
,

where inequality (1) holds by the inequalities in (51) and inequality (2) follows from the fact that
Γ̃(1 + CK)− 1 ≥ Γ̃(1 + CK)− 1

2 Γ̃(1 + CK) = 1
2 Γ̃(1 + CK) and k ≥ 1.

With the result in Lemma 16, we can derive the high probability bound for
∥∥V̄ k

∥∥.

Lemma 17. Let δ ∈ (0, 1). Conditional on event G̃k, with probability at least 1− 2δ, we have

∥∥V̄ k
∥∥ ≤ λ+ (1 + 2C2

K)

72
(
(Γ̃(1 + CK))2T − 1

)
(
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3
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}
Γ̃2k log

(
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δ

)
+ 20m

3
2

√
kT log

(
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δ

)
.

Proof. Recall that V̄ k = λIn+m +
∑k

i=1

∑T−1
t=0 zitz

i⊤
t , zit = [xi⊤t , ui⊤t ]⊤. We have

∥V̄ k∥ ≤ λ+

k∑
i=1

T−1∑
t=0

∥zit∥2

= λ+

k∑
i=1
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(
∥xit∥2 + ∥Ki

tx
i
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)
(1)
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(
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)

(2)
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k∑
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T−1∑
t=0

(
(1 + 2C2

K)∥xit∥2 + 2∥git∥2
)
,

(52)
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where inequality (1) follows from the fact that ∥u + v∥2 ≤ 2∥u∥2 + 2∥v∥2,∀u, v, inequality (2)
holds by (38). Combine the results in Lemma 16 with (52), with probability at least 1− 2δ, we can
get

∥V̄ k∥
(3)

≤ λ+

k∑
i=1

T−1∑
t=0

[
(1 + 2C2

K)

(
72
(
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)2t (
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3
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3
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)
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∥x0∥2, 1

}
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δ
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+
10m
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√
i
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δ

)]

= λ+ (1 + 2C2
K)
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)2T
− 1

)
(
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· (n 3
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3
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}
Γ̃2k log
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δ

)
+ 20m

3
2

√
kT log

(
TN

δ

)
.

where inequality (3) follows from (50) and (51) in Lemma 16 and the fact that ∥u+ v∥2 ≤ 2∥u∥2 +
2∥v∥2,∀u, v.

For the simplicity of notation, we denote

c̃ = (1 + 2C2
K)

72
((

Γ̃(1 + CK)
)2T
− 1

)
(
Γ̃(1 + CK)

)2
− 1

· (n 3
2 +m

3
2 ) ·max

{
∥x0∥2, 1

}
Γ̃2

+ 20m
3
2T,

(53)
which is a constant independent of k and N . Then, we can get

∥V̄ k∥ ≤ λ+ c̃k log

(
TN

δ

)
. (54)

Now we are ready to prove Proposition 6.

Proof of Proposition 6. We can simplify (41) as follows:

λmin

(
V̄ k
) ∥∥θk+1 − θ

∥∥2
F
≤ Tr

((
θk+1 − θ

)⊤
V̄ k
(
θk+1 − θ
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δ2
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(
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)
+ (n+m) log

(
∥V̄ k∥
λ

))
+ 2λ∥θ∥2F ,

(55)

where inequality (1) follows from the fact that det(M) ≤ det(λmax(M)In) = λnmax(M),∀M ∈
Rn×n. When kT ≥ 200

(
3(n+m) + log

(
1
δ

))
, substituting (46) and (54) into (55), with probabil-

ity at least 1− 4δ, we have∥∥θk+1 − θ
∥∥2 ≤ ∥∥θk+1 − θ

∥∥2
F

≤ 80n
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√
k

(
log

(
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)
+ (n+m) log

(
1 +

λ+ c̃k log
(
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)
λ
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+

80λ(n+m)2Γ̃2

cT
√
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.

When kT < 200
(
3(n+m) + log

(
1
δ

))
, because V̄ k = λI +

∑k
i=1

∑T−1
t=0 zitz

i⊤
t ⪰ λI , with

probability at least 1− 3δ,∥∥θk+1 − θ
∥∥2 ≤ ∥∥θk+1 − θ

∥∥2
F

≤ 2n

λ

(
log

(
n2

δ2

)
+ (n+m) log

(
1 +

λ+ c̃k log
(
TN
δ

)
λ

))
+ 2(n+m)2Γ̃2.

The proof is therefore complete.
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B.2 PERTURBATION ANALYSIS OF RICCATI EQUATION

The perturbation analysis of Riccati equation under Algorithm 1 and Algorithm 2 is the same. So
we can get the similar bounds of Riccati perturbation by replacing ϵl with ϵk in Lemma 8, where
ϵk = max{∥Ak −A∥, ∥Bk −B∥}. The modified version of Lemma 8 is presented in the following
lemma.
Lemma 18. Assume 1 − γΓ̃ > 0 and fix any ϵk > 0. Suppose ∥Ak − A∥ ≤ ϵk, ∥Bk − B∥ ≤ ϵk,
then for any t = 0, 1, · · · , T − 1, we have

∥Kk
t −Kt∥ ≤ (10V2LΓ̃4)T−t−1Vϵk,

∥P k
t − Pt∥ ≤ (10V2LΓ̃4)T−tϵk,

where the definitions of V , L and Γ̃ can be found in (13).

B.3 SUBOPTIMALITY GAP DUE TO THE CONTROLLER MISMATCH

In this section, we will connect the gap between the total cost under policy πk and the total cost under
the optimal policy with the estimation error and the perturbation of Riccati equation in Appendix
B.1 and B.2. The proof framework is similar to the framework in Appendix A.3 except that we
need to analyse the additional exploration noise added to the control. We define the total cost under
entropic risk following policy πk (with slight abuse of notations) by

Jπk

0

(
xk0
)
=

1

γ
logE exp

(
γ

2

(
T−1∑
t=0

(
xk⊤t Qxkt + uk⊤t Rukt

)
+ xk⊤T QTx

k
T

))
,

where ukt = Kk
t x

k
t + gkt , g

k
t ∼ N

(
0, 1√

k
Im

)
, Kk

t is obtained by substituting (Ak, Bk) into (5).
Similar to Appendix A.3, we introduce the following new notations used in the regret analysis. For
any t = 0, 1, · · · , T − 2, we define the following recursive equations:

Dk
T−1 = ∆Kk⊤

T−1(R+B⊤P̃TB)∆Kk
T−1,

Ek
T−1 = σk

(
RKk

T−1 +B⊤P̃T (A+BKk
T−1)

)
,

F k
T−1 = σ2

k

(
R+B⊤P̃TB

)
,

Uk
T−1 = Dk

T−1 + γEk⊤
T−1(Im − γF k

T−1)
−1Ek

T−1,

Ũk
T−1 = (In − γUk

T−1)
−1Uk

T−1,

Dk
t = ∆Kk⊤

t

(
R+B⊤P̃t+1B

)
∆Kk

t + (A+BKk
t )

⊤Ũk
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Ek
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k

(
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)
,

Uk
t = Dk

t + γEk⊤
t (Im − γF k

t )
−1Ek

t ,

Ũk
t = (In − γUk

t )
−1Uk

t ,

(56)

where ∆Kk
t := Kk

t −Kt, σk := k−
1
4 and P̃T is defined in (5).

We then follow the proof framework of Appendix A.3 to derive the bounds for the suboptimality
gap due to the controller mismatch. The key result of this section is the following proposition.
Proposition 7. We have

Jπk

0 (xk0)− J⋆
0 (x

k
0)

= − 1

2γ

T−1∑
t=0

log det
(
In − γF k

t

)
− 1

2γ
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t=1

log det
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t

)
+

1

2
xk⊤0 Uk

0 x
k
0 , (57)

where F k
t and Uk

t are defined in (56).
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In order to prove Proposition 7, we extend Lemma 10 and prove the following result. Recall that
σk = k−

1
4 .

Lemma 19. For any t ∈ [T − 1], we have

E

[
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γ

2

[
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t

Ek
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(58)

where given (xkt−1, u
k
t−1),[

xkt
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k gkt

]
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0

]
, In+m

)
.

Proof. We obtain from Lemma 10 that
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We perform a block Gauss–Jordan elimination, take the inverse of the matrix in the determinant of
(59), and obtain(
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Then, we can obtain(
det

(
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[
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t

]))− 1
2

=
(
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2
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where Uk
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(61)
where Ũk

t = (In − γUk
t )

−1Uk
t . On combining (60) and (61) with (59), we can obtain (58).

The following lemma is an extension of Lemma 11, which provides a coarse simplification of the
performance gap in one episode.

Lemma 20. With Lemma 10, we can simplify the performance gap to

Jπk
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where ∆Kk
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T is defined in (40).

Proof. By a similar procedure as in (29), we can derive that
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(62)
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where equality (1) follows from the definition of the total cost under entropic risk and ukt = Kk
t x

k
t +

gkt . Again, we apply the law of total expectation, and compute
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It follows from Lemma 10 that
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1

2
gk⊤t Rgkt

+
1

2γ
log det(In − γPt+1)

))
× (det(In − γPt+1))

−1/2

× exp

[
γ

2
xk⊤t (A+BKk

t )
⊤P̃t+1(A+BKk

t )x
k
t + γgk⊤t B⊤P̃t+1(A+BKk

t )x
k
t

+
γ

2
gk⊤t B⊤P̃t+1Bg

k
t

]

= exp

[
γ

2

(
xk⊤t (Q+Kk⊤

t RKk
t + (A+BKk

t )
⊤P̃t+1(A+BKk

t ))x
k
t − xk⊤t Ptx

k
t

)
+ γgk⊤t (RKk

t +B⊤P̃t+1(A+BKk
t ))x

k
t +

γ

2
gk⊤t (R+B⊤P̃t+1B)gkt

]
,

Substituting ∆Kk
t = Kk

t −Kt and the Riccati equation Pt = Q+K⊤
t RKt+(A+BKt)

⊤P̃t+1(A+
BKt) into (63), we obtain

exp
[γ
2
xk⊤t

(
Q+ (∆Kk

t +Kt)
⊤R(∆Kk

t +Kt) + (A+B(∆Kk
t +Kt))

⊤P̃t+1(A+B(∆Kk
t +Kt))

)
xkt

+ γgk⊤t (RKk
t +B⊤P̃t+1(A+BKk

t ))x
k
t +

γ

2
gk⊤t (R+B⊤P̃t+1B)gkt −

γ

2
xk⊤t Ptx

k
t

]
= exp

[γ
2
xk⊤t ∆Kk⊤

t (R+B⊤P̃t+1B)∆Kk
t x

k
t + γxk⊤t ∆Kk⊤

t

(
(R+B⊤P̃t+1B)Kt +B⊤P̃t+1A

)
xkt

+ γgk⊤t (RKk
t +B⊤P̃t+1(A+BKk

t ))x
k
t +

γ

2
gk⊤t (R+B⊤P̃t+1B)gkt

]
(2)
= exp

[γ
2
xk⊤t ∆Kk⊤

t (R+B⊤P̃t+1B)∆Kk
t x

k
t + γgk⊤t (RKk

t +B⊤P̃t+1(A+BKk
t ))x

k
t

+
γ

2
gk⊤t (R+B⊤P̃t+1B)gkt

]
,

(64)
where the equality (2) holds by the fact that Kt = −(R + B⊤P̃t+1B)−1B⊤P̃t+1A. Substituting
(64) into (63) and then substituting (63) into (62), we can get

Jπk

0 (xk0)− J⋆
0 (x

k
0)

=
1

γ
logE

[
exp

(
γ

2

T−1∑
t=0

(
xk⊤t ∆Kk⊤

t (R+B⊤P̃t+1B)∆Kk
t x

k
t

+ 2gk⊤t (RKk
t +B⊤P̃t+1(A+BKk

t ))x
k
t + gk⊤t (R+B⊤P̃t+1B)gkt

))∣∣∣∣∣xk0 ,Hk−1
T

]
.
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The proof is complete.

Combining Lemma 19 with Lemma 20, we can prove Proposition 7.

Proof of Proposition 7. We prove the result recursively. Recall that σk = k−
1
4 . When t = T − 1,

E

[
exp

(
γ

2

(
xk⊤T−1∆K

k⊤
T−1(R+B⊤P̃TB)∆Kk

T−1x
k
T−1

+ 2σkσ
−1
k gk⊤T−1(RK

k
T−1 +B⊤P̃T (A+BKk

T−1))x
k
T−1 + σ2

kσ
−2
k gk⊤T−1(R+B⊤P̃TB)gkT−1

))∣∣∣∣∣Hk
T−2

]
(1)
= E

[
exp

(γ
2

(
xk⊤T−1D

k
T−1x

k
T−1 + 2σ−1

k gk⊤T−1E
k
T−1x

k
T−1 + σ−2

k gk⊤T−1F
k
T−1g

k
T−1

)) ∣∣∣Hk
T−2

]
(2)
=
(
det(In − γUk

T−1)
)− 1

2
(
det(Im − γF k

T−1)
)− 1

2

× exp

{
γ

2

[
xk⊤T−2(A+BKk

T−2)
⊤Ũk

T−1(A+BKk
T−2)x

k
T−2

+ 2gk⊤T−2B
⊤Ũk

T−1(A+BKk
T−2)x

k
T−2 + gk⊤T−2B

⊤Ũk
T−1Bg

k
T−2

]
,

(65)
where equality (1) holds by (56), and equality (2) follows from Lemma 19. When t = T − 2, we
have

E

[
exp

(
γ

2

T−1∑
t=T−2

(
xk⊤t ∆Kk⊤

t (R+B⊤P̃t+1B)∆Kk
t x

k
t + 2σkσ

−1
k gk⊤t (RKk

t +B⊤P̃t+1(A+BKk
t ))x

k
t

+ σ2
kσ

−2
k gk⊤t (R+B⊤P̃t+1B)gkt

))∣∣∣∣∣Hk
T−3

]
(3)
=
(
det(In − γUk

T−1)
)− 1

2
(
det(Im − γF k

T−1)
)− 1

2

× E

[
exp

(
γ

2

[
xk⊤T−2

(
∆Kk⊤

T−2(R+B⊤P̃T−1B)∆Kk
T−2 + (A+BKk

T−2)
⊤Ũk

T−1(A+BKk
T−2)

)
xkT−2

+ 2σkσ
−1
k gk⊤T−2(RK

k
T−2 +B⊤(P̃T−1 + Ũk

T−1)(A+BKl
T−2))x

k
T−2

+ σ2
kσ

−2
k gk⊤T−2(R+B⊤(P̃T−1 + Ũk

T−1)B)gkT−2

])∣∣∣∣∣Hk
T−3

]
(4)
=
(
det(In − γUk

T−1)
)− 1

2
(
det(Im − γF k

T−1)
)− 1

2

× E
[
exp

(γ
2

(
xk⊤T−2D

k
T−2x

k
T−2 + 2σ−1

k gk⊤T−2E
k
T−2x

k
T−2 + σ−2

k gk⊤T−2F
k
T−2g

k
T−2

)) ∣∣∣Hk
T−3

]
(5)
=

T−1∏
t=T−2

(
det(In − γUk

t )
)− 1

2
(
det(Im − γF k

t )
)− 1

2

× exp

(
γ

2

[
xk⊤T−3(A+BKk

T−3)
⊤Ũk

T−2(A+BKk
T−3)x

k
T−3

+ 2gk⊤T−3B
⊤Ũk

T−2(A+BKk
T−3)x

k
T−3 + gk⊤T−3B

⊤Ũk
T−2Bg

k
T−3

])
,

where equality (3) holds by applying the law of total expectation and applying (65), equality (4)
follows from (56) and equality (5) still holds by applying Lemma 19. When t = i, we can similarly
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derive

E

[
exp

(
γ

2

T−1∑
t=i

(
xk⊤t ∆Kk⊤

t (R+B⊤P̃t+1B)∆Kk
t x

k
t

+ 2σkσ
−1
k gk⊤t (RKk

t +B⊤P̃t+1(A+BKk
t ))x

k
t + σ2

kσ
−2
k gk⊤t (R+B⊤P̃t+1B)gkt

))∣∣∣∣∣Hk
i−1

]

=

T−1∏
t=i

(
det(In − γUk

t )
)− 1

2
(
det(Im − γF k

t )
)− 1

2

× exp

(
γ

2

[
xk⊤i−1(A+BKk

i−1)
⊤Ũk

i (A+BKk
i−1)x

k
i−1

+ 2gk⊤i−1B
⊤Ũk

i (A+BKk
i−1)x

k
i−1 + gk⊤i−1B

⊤Ũk
i Bg

k
i−1

])
.

Repeating this procedure, we can obtain

Jπk

0 (xk0)− J⋆
0 (x

k
0)

=
1

γ
log

(
T−1∏
t=1

(
det(In − γUk

t )
)− 1

2
(
det(Im − γF k

t )
)− 1

2

)

+
1

γ
logE

[
exp

(
γ

2

[
xk⊤0

(
∆Kk⊤

0 (R+B⊤P̃1B)∆Kk
0 + (A+BKk

0 )
⊤Ũk

1 (A+BKk
0 )
)
xk0

+ 2gk⊤0 (RKk
0 +B⊤(P̃1 + Ũk

1 )(A+BKl
0))x

k
0 + σ2

kσ
−2
k gk⊤0 (R+B⊤(P̃1 + Ũk

1 )B)gk0

])∣∣∣∣∣xk0 , Hk−1
T

]

=
1

γ
log

(
T−1∏
t=1

(
det(In − γUk

t )
)− 1

2
(
det(Im − γF k

t )
)− 1

2

)

+
1

γ
logE

[
exp

(γ
2

(
xk⊤0 Dk

0x
k
0 + 2σ−1

k gk⊤0 Ek
0x

k
0 + σ−2

k gk⊤0 F k
0 g

k
0

)) ∣∣∣xk0 , Hk−1
T

]
(6)
= − 1

2γ

T−1∑
t=1

[
log det

(
In − γUk

t

)
+ log det

(
Im − γF k

t

)]
+

1

2
xk⊤0 Dk

0x
k
0 −

1

2γ
log det

(
Im − γF k

0

)
+

1

2
γxk⊤0 Ek⊤

0

(
Im − γF k

0

)−1
Ek

0x
k
0

(7)
= − 1

2γ

T−1∑
t=0

log det
(
In − γF k

t

)
− 1

2γ

T−1∑
t=1

log det
(
Im − γUk

t

)
+

1

2
xk⊤0 Uk

0 x
k
0 ,

where equality (6) holds by directly calculating the conditional expectation of quadratic function of
gk0 in the second term of the previous equality and equality (7) follows from the definition of Uk

0 in
(56).

B.4 PROOF OF THEOREM 2

Now, we can derive the regret upper bound for Algorithm 2. Similar to Appendix A.4, we derive the
bounds for the equations in (56). We recursively define the following constants similarly as (32) in
Appendix A.4. For any t = 0, · · · , T − 2,

αT−1 = 2Γ̃3,

βT−1 = 0,

αt = 2Γ̃
(
10V2LΓ̃4

)2(T−t−1)

+ 12Γ̃4αt+1,

βt = 12Γ̃4 + 12Γ̃4βt+1,
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where V and L are defined in (13). To derive the regret bounds, we assume that for any t =
0, · · · , T − 1,

γ ≤ 1

2αtV2ϵ2k + 2βt · 5Γ̃5σ2
k + 10Γ̃5σ2

k

. (66)

We are now ready to derive the bounds for Dk
t , E

k
t , F

k
t , U

k
t , Ũ

k
t recursively from step T − 1 to step

0 conditional on event G̃k in (39). At step T − 1,

∥Dk
T−1∥ =

∥∥∥∆Kk⊤
T−1(R+B⊤P̃TB)∆Kk

T−1

∥∥∥
≤ ∥R+B⊤P̃TB∥ · ∥∆Kk

T−1∥2

(1)

≤ 2Γ̃3V2ϵ2k

= αT−1V2ϵ2k + 5Γ̃5βT−1σ
2
k,

(67)

where inequality (1) holds by the definition of Γ̃ in (13) and Lemma 18. Similarly,∥∥Ek
T−1

∥∥ =
∥∥∥σk(RKk

T−1 +B⊤P̃T (A+BKk
T−1)

∥∥∥
≤ σk∥R(∆Kk

T−1 +KT−1)∥
+ σk∥B∥ · ∥P̃T ∥ ·

(
∥A∥+ ∥B∥ · ∥KT−1∥+ ∥B∥ · ∥∆Kk

T−1∥
)

(2)

≤ σkΓ̃(Vϵk + Γ̃) + σkΓ̃
2(2Γ̃2 + Γ̃Vϵk)

= 2σkΓ̃
4 + σkΓ̃

2 + σk(Γ̃ + Γ̃3)Vϵk
≤ 3σkΓ̃

4 + 2σkΓ̃
3Vϵk

(68)

where inequality (2) holds by the definition of Γ̃ in (13) and Lemma 18. We also have∥∥F k
T−1

∥∥ =
∥∥∥σ2

k(R+B⊤P̃TB)
∥∥∥ ≤ 2Γ̃3σ2

k. (69)

Substitute (67), (68) and (69) into Uk
T−1, we can derive that∥∥Uk

T−1

∥∥ =
∥∥Dk

T−1 + γEk⊤
T−1(Im − γF k

T−1)
−1Ek

T−1

∥∥
≤ ∥Dk

T−1∥+ γ
∥∥Ek⊤

T−1(Im − γF k
T−1)

−1Ek
T−1

∥∥
≤ ∥Dk

T−1∥+ γ∥(Im − γF k
T−1)

−1∥ · ∥Ek
T−1∥2

(3)

≤ 2Γ̃3V2ϵ2k + γ
(
3σkΓ̃

4 + 2σkΓ̃
3Vϵk

)2
· 1

1− 2Γ̃3γσ2
k

= 2Γ̃3V2ϵ2k + γ
(
9σ2

kΓ̃
8 + 4σ2

kΓ̃
6V2ϵ2k + 12σ2

kΓ̃
7Vϵk

)
· 1

1− 2Γ̃3γσ2
k

(4)

≤ 2Γ̃3V2ϵ2k + 18γσ2
kΓ̃

8 + o(ϵ2k)

(5)

≤ 2Γ̃3V2ϵ2k + 5σ2
kΓ̃

5 + o(ϵ2k)

= αT−1V2ϵ2k + 5Γ̃5βT−1σ
2
k + 5Γ̃5σ2

k + o(ϵ2k),

(70)

where inequality (3) follows by substituting (67), (68) and (69) into (70) and the fact that for any
matrix M ∈ Rn×n, if ∥M∥ < 1, then ∥(In − M)−1∥ ≤ 1

1−∥M∥ , inequality (4) holds by the

assumption in (66), i.e. 1 − 2Γ̃3γσ2
k ≥ 1 − 1

2σ
2
k ≥ 1

2 , and inequality (5) still holds by assumption
(66), i.e. 18γσ2

kΓ̃
8 ≤ 18σ2

kΓ̃
8 · 1

4Γ̃3
≤ 5Γ̃5σ2

k. Note that conditional on event G̃k, ϵ2k is of order 1√
k

,

so ϵ2k and σ2
k share the same order conditional on event G̃k. Then, we can obtain∥∥∥Ũk

T−1

∥∥∥ =
∥∥(In − γUk

t )
−1Uk

t

∥∥ (6)

≤
∥Uk

T−1∥
1− γ∥Uk

T−1∥
(7)

≤ 2∥Uk
T−1∥, (71)
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where inequality (6) still holds by the fact that for any matrix M ∈ Rn×n, if ∥M∥ < 1, then
∥(In −M)−1∥ ≤ 1

1−∥M∥ , and inequality (7) holds by the assumption in (66), i.e. 1− γ∥Uk
T−1∥ ≥

1− 1
2 = 1

2 . It follows from (70) that∥∥∥Ũk
T−1

∥∥∥ ≤ 2αT−1V2ϵ2k + 10Γ̃5βT−1σ
2
k + 10Γ̃5σ2

k + o(ϵ2k).

With the bounds in the (T − 1)-th step, we can recursively derive the bounds in the (T − 2)-th step.
At step T − 2, by the similar arguments in step T − 1, we can obtain∥∥Dk

T−2

∥∥ =
∥∥∥∆Kk⊤

T−2

(
R+B⊤P̃T−1B

)
∆Kk

T−2 + (A+BKk
T−2)

⊤Ũk
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T−2)
∥∥∥

≤
∥∥∥R+B⊤P̃T−1B

∥∥∥ · ∥∥∆Kk
T−2
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∥∥2 · ∥∥∥Ũk
T−1

∥∥∥
(8)

≤ 2Γ̃3
(
10V2LΓ̃4

)2
V2ϵ2k

+ 3

(
Γ̃2 + Γ̃4 + Γ̃2

(
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)2
V2ϵ2k

)(
4Γ̃3V2ϵ2k + 10σ2

kΓ̃
5 + o(ϵ2k)

)
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(
10V2LΓ̃4

)2
V2ϵ2k + 12Γ̃4

(
2Γ̃3V2ϵ2k + 5Γ̃5σ2

k

)
+ o(ϵ2k)

= αT−2V2ϵ2k + 5Γ̃5βT−2σ
2
k + o(ϵ2k),

where inequality (8) holds by Lemma 18, (71) and the fact that
∥∥∥∑K

t=1 xt

∥∥∥2 ≤ K
∑K

t=1 ∥xt∥
2.

Similar to (68), we have∥∥Ek
T−2

∥∥ =
∥∥∥σk (RKk

T−2 +B⊤
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P̃T−1 + Ũk

T−1
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T−2)
)∥∥∥

≤ σk
∥∥∥RKk
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T−1(A+BKk
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∥∥∥
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∥∥
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∥∥
(9)

≤ σkΓ̃
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(
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)
+ σkΓ̃

(
4Γ̃3V2ϵ2k + 10σ2

kΓ̃
5
)
·
(
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(
10V2LΓ̃4
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Vϵk

)
= σk

(
Γ̃
(
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)
+ Γ̃3

(
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))
Vϵk + σk

(
Γ̃2 + 2Γ̃4

)
+ o(ϵ2k)

≤ 2σkΓ̃
3
(
10V2LΓ̃4

)
Vϵk + 3Γ̃4σk + o(ϵ2k),

where inequality (9) follows from Lemma 18 and (70). Similar to (69), we have∥∥F k
T−2

∥∥ =
∥∥∥σ2

k

(
R+B⊤

(
P̃T−1 + Ũk

T−1

)
B
)∥∥∥ ≤ 2Γ̃3σ2

k + o(ϵ2k).

Similar to (70), we have∥∥Uk
T−2

∥∥ ≤ ∥Dk
T−2∥+ γ∥(Im − γF k

T−2)
−1∥ · ∥Ek

T−2∥2

≤ 2Γ̃3
(
10V2LΓ̃4

)2
V2ϵ2k + 6Γ̃4

(
4Γ̃3V2ϵ2k + 10Γ̃5σ2

k

)
+ 18γσ2Γ̃8σ2

k + o(ϵ2k)

(10)

≤ 2Γ̃3
(
10V2LΓ̃4

)2
V2ϵ2k + 6Γ̃4

(
4Γ̃3V2ϵ2k + 10Γ̃5σ2

k
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k + o(ϵ2k)

= αT−2V2ϵ2k + 5Γ̃5βT−2σ
2
k + 5Γ̃5σ2

k + o(ϵ2k),

(72)

where inequality (10) follows from the assumption (66) and the similar arguments in (70). Then, by
(72) and assumption (66), we can get∥∥∥Ũk

T−2

∥∥∥ ≤ 2αT−2V2ϵ2k + 10Γ̃5βT−2σ
2
k + 10Γ̃5σ2

k + o(ϵ2k).
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Repeat this procedure from step T − 1 to step 0, we can get the following recursive inequalities. For
any t = 0, · · · , T − 2,∥∥Dk

T−1

∥∥ ≤ αT−1V2ϵ2k + 5Γ̃5βT−1σ
2
k,∥∥F k

T−1

∥∥ ≤ 2Γ̃3σ2
k,∥∥Uk

T−1

∥∥ ≤ αT−1V2ϵ2k + 5Γ̃5βT−1σ
2
k + 5Γ̃5σ2

k + o(ϵ2k),∥∥Dk
t

∥∥ ≤ αtV2ϵ2k + 5Γ̃5βtσ
2
k + o(ϵ2k),∥∥F k

t

∥∥ ≤ 2Γ̃3σ2
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t
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k + 5Γ̃5σ2

k + o(ϵ2k).

(73)

Substituting (73) into (57) in Lemma 7, we have
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= − 1

2γ

T−1∑
t=1

log det
(
In − γUk

t

)
− 1

2γ

T−1∑
t=0

log det
(
Im − γF k

t

)
+

1

2
xk⊤0 Uk

0 x
k
0

(11)

≤ − 1

2γ

T−1∑
t=1

log
(
1− γ

∥∥Uk
t

∥∥)n − 1

2γ

T−1∑
t=0

log
(
1− γ

∥∥F k
t

∥∥)m +
1

2

∥∥Uk
0

∥∥ · ∥∥xk0∥∥2
(12)

≤ − 1

2γ

T−1∑
t=1

n log
(
1− γ

(
αtV2ϵ2k + 5Γ̃5βtσ

2
k + 5Γ̃5σ2

k + o(ϵ2k)
))

− 1

2γ

T−1∑
t=0

m log
(
1− γ

(
2Γ̃3σ2

k + o(ϵ2k)
))

+
1

2

(
α0V2ϵ2k + 5Γ̃5β0σ

2
k + 5Γ̃5σ2

k + o(ϵ2k)
)
∥x0∥2

(13)

≤ n

2

T−1∑
t=1

(
αtV2ϵ2k + 5Γ̃5βtσ

2
k + 5Γ̃5σ2

k + o(ϵ2k)
)
+
m

2

T−1∑
t=0

(
2Γ̃3σ2

k + o(ϵ2k)
)

+
1

2

(
α0V2ϵ2k + 5Γ̃5β0σ

2
k + 5Γ̃5σ2

k + o(ϵ2k)
)
∥x0∥2 ,

(74)
where inequality (11) holds because

In − γUk
t ⪰

(
1− γ

∥∥Uk
t

∥∥) In ⪰ (1− γ (αtV2ϵ2k + 5Γ̃5βtσ
2
k + 5Γ̃5σ2

k + o(ϵ2k)
))

In ≻ 0,

and
Im − γF k

t ⪰
(
1− γ

∥∥F k
t

∥∥) Im ⪰ (1− γ (2Γ̃3σ2
k + o(ϵ2k)

))
Im ≻ 0,

inequality (12) follows from the inequalities in (73), inequality (13) holds by the fact that log(1 +
x) ≤ x for any x > −1.

Then, substituting the high probability bounds derived in Appendix B.1 into (74), we can further
bound Jπk

0 (xk0) − J⋆
0 (x

k
0). According to Proposition 6, conditional on event G̃k defined in (39),

when kT ≥ 200
(
3(n+m) + log

(
4N
δ

))
, with probability at least 1− δ

N−1 , we have∥∥θk+1 − θ
∥∥2 ≤ ϵk :=

CN√
k
. (75)

where

CN =
160n

cT

log

(
4nN

δ

)
+ (n+m) log

1 +
c̃N log

(
4TN2

δ

)
λ

+
80λ(n+m)2Γ̃2

cT
, (76)

and c, c̃ are defined in (44) and (53). Denote k̃ =

⌈
200(3(n+m)+log( 4N

δ ))
T

⌉
. When k > k̃, the

estimation error bounds are given by (75).
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By a similar mathematical induction as discussed in Section A.4 and page 27 in Basei et al. (2022),
we can prove that the event G̃ =

{
∥θk − θ∥ ≤ ϖ,∀k = 2, · · · , N

}
∪
{
θ1 ∈ Ξ

}
holds with proba-

bility at least 1−
∑N

i=2
δ

N−1 = 1− δ, i.e. P
(
G̃
)
≥ 1− δ, where ϖ is defined in (37).

Finally, conditional on the event G̃, we can derive an upper bound for Regret(N). Note that

Regret(N) =

k̃∑
k=1

(
Jπk

(xk0)− J⋆(xk0)
)
+

N∑
k=k̃+1

(
Jπk

(xk0)− J⋆(xk0)
)
, (77)

where k̃ =

⌈
200(3(n+m)+log( 4N

δ ))
T

⌉
. We bound the two terms in (77) separately. We first bound the

regret incurred up to the k̃-th episode. We have
k̃∑

k=1

(
Jπk

(xk0)− J⋆(xk0)
)
≤

k̃∑
k=1

Jπk

(xk0) ≤
k̃∑

k=1

1

γ
logE exp

(
γΓ̃

2

(
T−1∑
t=0

(
∥xkt ∥2 + ∥ukt ∥2

)
+ ∥xkT ∥2

))
.

(78)
It follows from (51) in Lemma 16 that

k̃∑
k=1

(
Jπk

(xk0)− J⋆(xk0)
)

≤ Γ̃k̃

2

(
c̃ log

(
TN

δ

)
+ 72T

(
Γ̃(1 + CK)

)2T (
n

3
2 +m

3
2

)
max{∥x0∥2, 1}Γ̃2 log

(
TN

δ

))
.

We next bound the regret in the remaining episodes as follows:
N∑

k=k̃+1

(
Jπk

(xk0)− J⋆(xk0)
)

≤
N∑

k=k̃+1

[
n

2

T−1∑
t=1

(
αtV2ϵ2k + 5Γ̃5βtσ

2
k + 5Γ̃5σ2

k + o(ϵ2k)
)
+
m

2

T−1∑
t=0

(
2Γ̃3σ2

k + o(ϵ2k)
)

+
1

2

(
α0V2ϵ2k + 5Γ̃5β0σ

2
k + 5Γ̃5σ2

k + o(ϵ2k)
)
∥x0∥2

]

≤
N∑

k=k̃+1

[
n

2

T−1∑
t=1

(
αtV2CN√

k
+

5Γ̃5βt√
k

+
5Γ̃5

√
k
+ o(ϵ2k)

)
+
m

2

T−1∑
t=0

(
2Γ̃3

√
k
+ o(ϵ2k)

)

+
1

2

(
α0V2CN√

k
+

5Γ̃5β0√
k

+
5Γ̃5

√
k
+ o(ϵ2k)

)
∥x0∥2

]

≤

[
n

T−1∑
t=1

(
αtV2CN + 5Γ̃5βt + 5Γ̃5

)
+ 2mT Γ̃3 +

(
α0V2CN + 5Γ̃5β0 + 5Γ̃5

)
∥x0∥2

]
√
N + o

(√
N
)
,

(79)
where the first inequality follows from (74), the second inequality follows from (75) andCN is given
in (76). On combining (78) with (79), we can obtain

Regret(N) ≤ C̃
T−1∑
t=0

(αtCN + βt)
√
N,

where C̃ := Polynomial
(
n,m, c̃,V, Γ̃, T, k̃, ∥x0∥, ϵ1

)
·
(
Γ̃(1 + CK)

)2T
.

C DEPENDENCY OF THE REGRET BOUNDS ON OTHER PARAMETERS

In this section, we provide some further discussions on the dependency of the regret bounds on
other problem parameters, including the horizon length T , and the risk parameter γ of the LEQR
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model. Because the coefficient terms of regret bounds in Theorem 1 and Theorem 2 share the similar
recursive structure, we focus on the regret bound in Theorem 1 and the regret bound in Theorem 2
can be analysed similarly. Spelling out the explicit dependency is generally difficult, due to the
implicit dependency of Γ̃ and constant C on the model parameters. Hence, in the following we focus
our discussion on the term

∑T−1
t=0 ψt in view of the bound (12).

Since {ψt}T−1
t=0 is defined in a recursive manner, one can directly verify that

2Γ̃3
(
10V2LΓ̃4

)2(T−1)

≤
T−1∑
t=0

ψt ≤ 2Γ̃3T 2
(
10V2LΓ̃4

)2(T−1)

. (80)

The formula (80) implies that the term
∑T−1

t=0 ψt has exponential dependence on the horizon length
T . When γΓ̃ > 0 is small, according to Taylor’s Theorem, we have

1

1− γΓ̃
= 1 + γΓ̃ + o

(
γΓ̃
)
≈ exp

(
γΓ̃
)
. (81)

Using the formula of L in (13) and plugging (81) into (80), we find that the dependence of the term∑T−1
t=0 ψt on γ is on the order of exp

(
12γΓ̃(T − 1)

)
. This also suggests that the regret bound in

Theorem 1 has exponential dependence on γ (ignoring the possible dependency of the constants C
and Γ̃ on these parameters).

Note that Basei et al. (2022) proved a regret bound that is logarithmic in the number of episodes
N for continuous-time risk neutral LQR problem, also in the finite-horizon episodic setting. They
also mentioned (see Remark 2.2 in their paper) that the regret bound of their algorithm in general
depends exponentially on the time horizon T . So our previous discussion is consistent with their
findings. Note that they did not make explicit of the dependency of their regret bound on the horizon
length T .

We also compare our results with Fei & Xu (2022), which proved gap-dependent logarithmic regret
bounds for tabular MDPs under the entropic risk criteria. In particular, they showed their algorithms
can achieve the regret of (exp(|β|H)−1)2

|β|2∆min
·poly(H,S,A) · log

(
HSAK

δ

)
with probability at least 1−δ,

where poly(·) represents the polynomial function, H is the length of the episode, S is the size of
the state space, A is the size of the action space, β is the risk coefficient and ∆min is the minimum
value of the sub-optimality gap of the value functions. Their regret bound also has exponential
dependency on the risk coefficient β and the length of the episode H , which is similar as our regret
bound. While there are some similarities, it is also important to emphasize we consider LEQR which
has continuous state and action spaces, which are different from tabular MDPs with finite state and
action spaces.

D SIMULATION RESULTS IN SYSTEM 2 AND SYSTEM 3 IN SECTION 5

In this section, we present the simulation results of Algorithms 1 and 2 for System 2 and System 3
that are defined in Section 5.

D.1 SYSTEM 2

Figures 2a–2c show the average regret of Algorithm 1 in System 2 using 150 independent runs and
Figures 2d–2f show the average regret of Algorithm 2 in the same system. The two blue dotted
lines in Figures 2a and 2d represent the 95% confidence interval of the regret when γ = 0.1 and
T = 3. In Figures 2b and 2e, we set the true risk aversion value γ = 0.1 and plot the regret of our
algorithms with the true risk aversion value and the regret of the algorithms with misspecified risk
aversion values. The results show that applying the algorithms with a wrong risk aversion value,
e.g., applying the algorithm suitable for risk-neutral learning agents to a risk averse agent can lead
to greater regret. In Figures 2c and 2f, we set γ = 0.001 and study the dependence of the regret on
the time horizon T . As expected, a longer time horizon implies greater regret.
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(a) Regret performance (Algorithm 1 System 2) (b) Effect of the risk parameter (Algorithm 1 System 2)

(c) Effect of the time horizon (Algorithm 1 System 2) (d) Regret performance (Algorithm 2 System 2)

(e) Effect of the risk parameter (Algorithm 2 System 2) (f) Effect of the time horizon (Algorithm 2 System 2)

Figure 2: Simulation results in System 2
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D.2 SYSTEM 3

Figures 3a-3c show the average regret of Algorithm 1 in System 3 using 150 independent runs and
Figures 3d–3f show the average regret of Algorithm 2 in the same system. The two blue dotted lines
in Figures 3a and 3d depict the 95% confidence interval of the regret when γ = 0.1 and T = 3.
Setting the true risk aversion value γ = 0.1, Figures 3b and 3e show the regret of the two algorithms
with the true risk aversion value and the misspecified risk aversion values, which illustrates that
applying the algorithms with an incorrect risk aversion value can cause poor performance of the
algorithms. Setting γ = 0.005, Figures 3c and 3f illustrates the dependence of the regret on the
time horizon T . Similar to the results in the previous two systems, the regret of the algorithms can
increase when the time horizon is longer.

(a) Regret performance (Algorithm 1 System 3) (b) Effect of the risk parameter (Algorithm 1 System 3)

(c) Effect of the time horizon (Algorithm 1 System 3) (d) Regret performance (Algorithm 2 System 3)

(e) Effect of the risk parameter (Algorithm 2 System 3) (f) Effect of the time horizon (Algorithm 2 System 3)

Figure 3: Simulation results in System 3
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