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Abstract
Flow and diffusion models have demonstrated
strong performance and training stability across
various tasks but lack two critical properties of
simulation-based methods: freedom of dimension-
ality and adaptability to different inference trajec-
tories. To address this limitation, we propose the
Multidimensional Adaptive Coefficient (MAC),
a plug-in module for flow and diffusion models
that extends conventional unidimensional coeffi-
cients to multidimensional ones and enables infer-
ence trajectory-wise adaptation. MAC is trained
via simulation-based feedback through adversar-
ial refinement. Empirical results across diverse
frameworks and datasets demonstrate that MAC
enhances generative quality with high training ef-
ficiency. Consequently, our work offers a new
perspective on inference trajectory optimality, en-
couraging future research to move beyond vec-
tor field design and to leverage training-efficient,
simulation-based optimization.

1. Introduction
Compared to simulation-based methods like NeuralODE
(Chen et al., 2018), flow and diffusion modeling (Sohl-
Dickstein et al., 2015; Lipman et al., 2023) demonstrates
remarkable performance and training stability across various
tasks and has become a standard approach for generation
tasks. However, it trades off two critical properties that
simulation-based methods offer, which could enhance the
quality of transportation: freedom of dimensionality and
adaptability with respect to different inference trajectories.
While simulation-based methodologies possess these prop-
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Figure 1: Comparison of α, γ, and γϕ. As shown, em-
ploying γϕ (MAC) expands the search space for trajectory
optimization by enabling adaptive, curved trajectories and
time steps that are distinct for each sample.

erties, they exhibit limitations in quality and training effi-
ciency compared to flow and diffusion. We integrate these
two properties of simulation-based methods into flow and
diffusion models to enhance performance while preserving
training efficiency, effectively combining their advantages.

To achieve this, we introduce the Multidimensional Adap-
tive Coefficient (MAC). As described by Albergo et al.
(2023), the trajectory with x0 ∼ ρ0 and x1 ∼ ρ1 in flow
and diffusion for t ∈ [0, T ] can be written as x(t) =
α0(t)x0 + α1(t)x1, x0, x1 ∈ Rd, where, convention-
ally, the coefficients α0(t), α1(t) ∈ R are unidimensional.
We extend this by introducing a Multidimensional Coeffi-
cient γ0(t), γ1(t) ∈ Rd×d, which allows for different time
scheduling across all data dimensions. Based on this, we
introduce MAC γϕ(t,x

S
θ,ϕ), parameterized by ϕ, to adapt

to different inference trajectories xS
θ,ϕ. To optimize MAC,

we use it to construct a flow- or diffusion-based differential
equation solverGθ,ϕ based on a flow or diffusion modelHθ,
and adversarially optimize θ and ϕ using a discriminatorDψ .
By optimizing MAC, we achieve full multidimensionality
and adaptability in the inference trajectory of flow and diffu-
sion models. This can be applied to any type of framework
as a plug-in module to enhance inference performance.
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(a) Inference without MAC (b) Inference with MAC
Figure 2: Comparison of inference trajectory optimization with and without MAC, given the same vector field estimated
by Hθ, indicated by gray arrows in the background. (a) Without MAC, inference trajectories strictly follow the directions
defined by the vector field Hθ, allowing adjustments only in step sizes, which must remain consistent across all samples. (b)
With MAC, the search space (shaded in blue) expands, enabling flexible adjustments in both trajectory directions and step
sizes, adaptively optimized for each individual sample. Thus, even when a suboptimal vector field is given, MAC effectively
corrects errors by identifying optimal inference plans that maximize final transportation quality.

For a given vector field defined by Hθ, optimizing MAC
corresponds to inference trajectory optimization. In par-
ticular, optimal inference plans are computed and refined
offline via simulation, and subsequently deployed during
inference without incurring additional optimization costs.
Before MAC, it was challenging to induce significant per-
formance gains through inference trajectory optimization
alone, due to the absence of multidimensionality and adapt-
ability. In contrast, as shown in Figure 2, MAC substantially
expands the search space for optimization by introducing
dimension-wise adaptive control, thereby enhancing the
effectiveness of inference trajectory optimization.

Our experiments span various frameworks (DDPM (Ho
et al., 2020), FM (Lipman et al., 2023), EDM (Karras et al.,
2022), SI (Albergo et al., 2023)) across multiple datasets
(CIFAR-10 (Krizhevsky & Hinton, 2009), FFHQ (Karras
et al., 2019), AFHQ (Choi et al., 2020), and ImageNet
(Deng et al., 2009)). Notably, inference using MAC yields
consistent performance improvements, achieving state-of-
the-art results in CIFAR-10 conditional generation. These
results are obtained with high training efficiency, suggesting
that we successfully integrate the advantages of simulation-
based and simulation-free dynamics.

Consequently, we propose exploring the optimality of in-
ference trajectories through training-efficient simulation
in flow- and diffusion-based generative models. Prior ap-
proaches primarily focused on shaping the vector field, often
relying on predefined, simulation-free notions of optimality,
such as straightness (Liu et al., 2023; Tong et al., 2024).
However, the inference trajectory is governed not solely by
the vector field, but by the interplay between the vector field
and the inference plan. From this perspective, simulation-
free vector field training deviates from true transportation
optimality, which should be defined by the final quality of

transportation. Our approach addresses this limitation by
introducing training-efficient simulation, thereby making
simulation-based inference trajectory optimization practi-
cally feasible. In summary, our main contributions are:

1. We introduce the concept of a Multidimensional Adap-
tive Coefficient (MAC) in flow and diffusion, laying the
foundation for achieving both freedom of dimension-
ality and adaptability in inference trajectories, easily
implemented as a plug-in module for any framework.

2. We propose a highly efficient training strategy for in-
ference trajectory optimization by leveraging MAC in
combination with adversarial training.

3. We suggest exploring the notion of trajectory optimal-
ity beyond predefined properties, emphasizing evalua-
tion based on the final transportation quality.

2. Related Works
Trajectory Optimizations in Flow and Diffusion Vari-
ous trajectory optimization approaches predefine optimal-
ity before training using simulation-free objectives. Meth-
ods such as Liu et al. (2023) and Tong et al. (2024) define
straightness as the optimality criterion and optimize trajec-
tories by maintaining consistency between (x0, x1) when
training flow and diffusion models, aligning with an Optimal
Transport (OT) perspective. Other approaches, including
Lee et al. (2023); Park et al. (2024); Kim et al. (2025), also
adopt the OT perspective as a predefined criterion for tuning
the vector field. Singhal et al. (2023) defines optimality
through a fixed sequence of diffusion steps aimed at reduc-
ing inference complexity. Bartosh et al. (2024) introduces a
neural flow model that implicitly sets trajectory optimality
within the diffusion process. Kapuśniak et al. (2024) op-
timizes trajectories by defining data-dependent geodesics.
There are also methods that refine trajectories after training,
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such as Albergo et al. (2024), which defines optimality by
minimizing trajectory length under the Wasserstein-2 metric,
focusing on a shortest-distance criterion.

Despite these diverse perspectives on trajectory optimality,
there are two significant differences between these methods
and ours. First, we assess optimality solely based on the
final transportation quality through simulation, which is
a crucial factor in generative modeling. Second, none of
the existing methods achieve full flexibility in inference
trajectory design on two fronts: multidimensionality and
adaptability with respect to different inference trajectories.

Few-Step Generation via Distillation and Fine-Tuning
Existing approaches can be broadly categorized into non-
adversarial and adversarial methods. Non-adversarial meth-
ods, such as Geng et al. (2023); Berthelot et al. (2023); Yin
et al. (2024); Song & Dhariwal (2024), focus on 1-step dis-
tillation techniques without adversarial objectives. These
approaches aim for few-step generation by leveraging distri-
butional losses and equilibrium models, effectively distilling
the diffusion process without involving a discriminator. Con-
versely, adversarial approaches such as Wang et al. (2023);
Lu et al. (2023); Luo et al. (2023); Xu et al. (2024), integrate
a discriminator within diffusion models via a GAN-based
framework. Kim et al. (2024) also generalizes Song et al.
(2023) to enable efficient sampling using a discriminator.

While our method shares similarities in achieving few-step
generation by leveraging a pre-trained diffusion model, a
key difference is that prior works optimize only the vector
field, omitting the inference plan. In contrast, our method
jointly optimizes both the vector field and the inference plan,
thereby enabling inference trajectory optimization.

3. Methodology
We consider the task of transporting between two distribu-
tions x0 ∼ ρ0 and x1 ∼ ρ1, where x0, x1 ∈ Rd. Following
Albergo et al. (2023), for t ∈ [0, T ], the trajectory x(t) is
defined as:

x(t) = α0(t)x0 + α1(t)x1, v(t, x(t)) = ẋ(t), (1)

where α(t) = [α0(t), α1(t)] ∈ R2 represents the unidimen-
sional coefficients, and ẋ(t) denotes the derivative of x(t)
with respect to t. The diffusion model Hθ estimates the
vector field v as follows:

vθ(t, x(t)) = α̇0(t)x̂0,θ + α̇1(t)x̂1,θ,

Hθ(t, x(t)) = [x̂0,θ, x̂1,θ].
(2)

For example, Song et al. (2021) predict the score value
∇x log p(x(t); t) = −x̂1,θ/α1(t) to obtain the vector field.
There are also flow-based methods, such as Lipman et al.
(2023), that do not explicitly target x̂0,θ or x̂1,θ, but instead

directly model the vector field Hθ(t, x(t)) = vθ(t, x(t))
with the flow model Hθ. All these methods achieve genera-
tive modeling by numerically solving an ODE or SDE using
the predicted vector field. We use DDPM (Ho et al., 2020),
FM (Lipman et al., 2023), EDM (Karras et al., 2022), and
SI (Albergo et al., 2023), as summarized in Appendix A.

3.1. Multidimensional Adaptive Coefficient

To introduce multidimensionality into the coefficient, we
first define the multidimensional coefficient, γ(t) =
[γ0(t), γ1(t)] ∈ Rd×d×2, which generalizes the unidimen-
sional coefficient by extending it to higher dimensions.

Definition 3.1. (Multidimensional Coefficient) Given a
trajectory defined by x(t) = γ0(t)x0 + γ1(t)x1, where
x0, x1 ∈ Rd, the multidimensional coefficient is defined as:

γ(t) = [γ0(t), γ1(t)] : [0, T ]→ Rd×d×2,

subject to the following conditions: γ0(0) = I , γ1(0) =
0d×d, γ1(T ) = TI , and γ(t) ∈ C1([0, T ],Rd×d×2).

γ(t) ∈ C1([0, T ],Rd×d×2) indicates that γ is continuously
differentiable to the first order with respect to t on the in-
terval [0, T ]. The boundary conditions ensure that x(t) be-
comes x0 and xT for t = 0 and t = T , respectively, which is
necessary for transportation. The unidimensional coefficient
α can be regarded as a special case of the multidimensional
coefficient γ, where γ is a scalar matrix for a given t.

For adaptability with respect to different inference trajecto-
ries, we define a multidimensional coefficient γϕ, parameter-
ized by ϕ, allowing it to adapt to different inference trajec-
tories xθ,ϕ(t) over the inference times τ = {t0, . . . , tN}:
Definition 3.2. (Multidimensional Adaptive Coeffi-
cient (MAC)) Let S = {t(1), . . . , t(ℓ)} ⊆ [0, T ]
be an arbitrary set of inference times, and define
the corresponding inference trajectory as xS

θ,ϕ =

[xθ,ϕ(t
(1)), . . . , xθ,ϕ(t

(ℓ))] ∈ Rd×ℓ. Then, the MAC
γϕ(t,x

S
θ,ϕ) = [γ0,ϕ(t,x

S
θ,ϕ), γ1,ϕ(t,x

S
θ,ϕ)] is defined as:

γϕ(t,x
S
θ,ϕ) : [0, T ]× Rd×ℓ → Rd×d×2,

and is parameterized by ϕ. Boundary conditions and smooth-
ness follow Definition 3.1.

Efficient Computation of MAC We adopt a diagonal
matrix for γϕ, which significantly reduces the output di-
mensionality and the size of the neural network for MAC,
while retaining sufficient capacity to model non-linear tra-
jectories. Accordingly, we consider γ(t) ∈ Rd×2 instead of
γ(t) ∈ Rd×d×2 (details in Appendix B). Furthermore, we
evaluate the ϕ-parameterized part of γϕ only once at t = T ,
and reuse the resulting function throughout the entire infer-
ence schedule τ . This allows us to compute γϕ over the full
schedule with a single forward pass through the ϕ-network.
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3.2. Inference Trajectory Optimization
Consider a flow- and diffusion-based differential equation
solverGθ,ϕ with fixed configurations (e.g., NFE, integration
schemes), where θ represents the vector field from the pre-
trained flow or diffusion model parameters, and ϕ is the
parameter for MAC. We propose two optimization problems.
The first is:

ϕ∗ = argmin
ϕ

D (ρ0, ρ̂0,θ,ϕ) , (3)

where ρ̂0,θ,ϕ denotes the generated distribution from Gθ,ϕ,
and D is a divergence metric. Solving Equation 3 corre-
sponds to inference trajectory optimization with a fixed
vector field. This setting allows us to isolate the impact of
optimizing MAC and clearly demonstrate its effectiveness.

To achieve higher transportation performance, we optimize
the full inference trajectory by jointly optimizing the vector
field θ and the inference plan ϕ, as follows:

θ∗, ϕ∗ = argmin
θ,ϕ

D (ρ0, ρ̂0,θ,ϕ) . (4)

For low-dimensional datasets, the divergence terms above
can be computed directly using the Wasserstein distance.
For high-dimensional datasets, following Goodfellow et al.
(2014), we minimize Equations 3 and 4 by using the follow-
ing min-max problem:

min
θ,ϕ

max
ψ

Ex0
[
logDψ(x0)

]
+ ExT

[
log

(
1−Dψ(Gθ,ϕ(τ, xT ))

)]
,

(5)

where Dψ represents the discriminator, and xT ∼ ρT is the
starting point of the inference trajectory. As shown, θ and ϕ
in Gθ,ϕ aim to deceive Dψ. Based on Equation 5, we use
the simulation-based adversarial objective exclusively for
ϕ (details in Section 3.2.3). Optionally, before trajectory
optimization, we pre-train the flow and diffusion model Hθ

using various γ sampled from a well-designed hypothesis
set Γh (details in Section 3.2.2).

3.2.1. HYPOTHESIS SET FOR MAC

We define the multidimensional coefficient set Γ as:

Γ =


γ(t) : [0, T ]→ Rd×2, where

γ(t) = [γ0(t), γ1(t)], γ(t) ∈ C1([0, T ],Rd×2),

γ0(0) = 1d, γ1(0) = 0d, γ1(T ) = T1d

 .

(6)
To design the hypothesis set Γh ⊆ Γ for exploring γϕ, we
consider three main properties. First, the hypothesis set
should be broad enough to include the optimal coefficient
γϕ∗ while avoiding unnecessary complexity to reduce the
burden on the flow and diffusion model. As shown in Fig-
ure 3, some multidimensional coefficients exhibit excessive

T
t1

t2
t3

t4

0

T t1 t2 t3 t4 0
(a) (b)

T t1 t2 t3 t4 0

T t1t2 t3 t4 0
(c) (d)

Figure 3: Crude coefficients: (a) Oscillatory behavior in t
due to high-frequency components; (b) High adjacent pixel
differences. Refined coefficients: (c) Constrained multidi-
mensionality for larger t in pre-training; (d) Unconstrained
multidimensionality for adversarial training.

high-frequency components in t and across different dimen-
sions. Given the vast size of the coefficient set, it is crucial
to exclude such crude coefficients using appropriate con-
straints and define a well-designed hypothesis set for γϕ to
explore. Second, the computation of γϕ via the parameter
ϕ should require low NFE. Lastly, for pre-training the flow
or diffusion models, the cost of sampling random γ ∼ Γh
should be low. Considering these factors, we choose to
model the weights of sinusoidals—akin to a Fourier expan-
sion—by parameter ϕ, as in Albergo et al. (2024). Our
chosen design is:

Γh =


γϕ(t, xT ) : [0, T ]× Rd → Rd×2, where
γϕ(t, xT ) = [γ0,ϕ(t, xT ), γ1,ϕ(t, xT )],

γ0,ϕ(t, xT ) = F0(bm(t), wϕ(xT )),

γ1,ϕ(t, xT ) = F1(bm(t), wϕ(xT )), ϕ ∈ P

 ,

(7)
where P represents the parameter set for ϕ. The function
F constructs the weighted sinusoidal expansion using basis
functions bm(t) and their weights wϕ, defined as:

bm(t) = sin (πm(t/T )1/q) ∈ R, q ∈ R, (8)

wϕ(xT ) = sLPF ◦ tanh (NNϕ(xT )) , s ∈ R, (9)

where wϕ(xT ) ∈ Rd×M×2 represents the multidimensional
weights for the sinusoidals, modeled by the neural network
NNϕ. LPF refers to low-pass filtering, implemented as con-
volution with a Gaussian kernel, applied across different d
dimensions to exclude high frequencies. This parameteriza-
tion always satisfies Γh ⊆ Γ. For image generation, we em-
ploy a U-Net Uϕ for NNϕ, and condition it as Uϕ(xT , c) for
conditional generation. Details are provided in Appendix C.
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This parameterization satisfies all three properties men-
tioned above. First, high-frequency components in t and
d can be excluded by controlling hyperparameters such
as s and LPF configurations. Second, γϕ can be com-
puted with 1 NFE using NNϕ. Lastly, because the tanh
in Equation 9 bounds the output of NNϕ to (−1, 1), we can
efficiently sample a random multidimensional coefficient
γ(t, u) ∼ Γh by directly sampling sinusoidal weights w
from a uniform distribution rather than evaluating NNϕ dur-
ing pre-training. Specifically, w(u) = sLPF ◦ u, u ∼
U(−1, 1) ∈ Rd×M×2.

3.2.2. OPTIONAL γ-PRE-TRAINING FOR Hθ

To ensure that Hθ can better accommodate γ, we introduce
a pre-training procedure. The loss functions for pre-training
Hθ follow the original flow and diffusion losses, except that
γ is used instead of α, and coefficient conditioning is incor-
porated. For example, in the case of DDPM, the loss func-
tion is given by Lpre

θ = Et,x0,x1,u∥Hθ (t, x(t), γ(t, u)) −
x0∥22. Detailed versions of the loss functions for each flow
and diffusion framework are provided in Appendix E.

Coefficient Conditioning When adopting existing pre-
trained models for Hθ, we apply Hθ(γ̄ϕ(t, xT ), x(t)) dur-
ing trajectory optimization, where γ̄ϕ(t, xT ) ∈ R denotes
the scalar average of γϕ(t, xT ) over all dimensions. How-
ever, to allow γϕ to receive precise gradients throughHθ, we
incorporate γϕ(t, xT ) directly into the model during infer-
ence trajectory optimization by usingHθ(t, x(t), γϕ(t, xT )).
To support this without modifying the structure of Hθ, we
concatenate γϕ(t, xT ) with x(t) along the channel axis as
input to Hθ. We also pre-train Hθ with coefficient condi-
tioning in the form Hθ (t, x(t), γ(t, u)), consistent with its
usage during inference trajectory optimization.

Γh for Pre-Training Given that a large Γh of coefficients
for pre-training can burden Hθ and potentially degrade per-
formance, we use a smaller Γh during pre-training and fully
enable multidimensionality across t during adversarial train-
ing, as shown in Figure 3 (c) and (d). Specifically, we use
γ with high multidimensionality near t = 0 and low mul-
tidimensionality at larger t by configuring the LPF during
the pre-training of Hθ. For adversarial training, we fully
enable multidimensionality for γϕ across the entire range of
t. Details are provided in Appendix C.

Optionality of Pre-Training We emphasize that this pre-
training stage is optional, as MAC can effectively leverage
existing models pre-trained with α without substantially
compromising performance. While using γ for pre-training
increases the probability of generating multidimensional
interpolated values x(t), multidimensional interpolation in-
herently arises even with a standard coefficient α, since
x1 ∼ ρ1 = N (0, I) ∈ Rd implies that each dimension x1,i
is independently drawn from N (0, 1). Consequently, for
large-scale datasets where training from scratch is computa-

tionally prohibitive, MAC remains compatible with existing
pre-trained models, ensuring practical applicability.

3.2.3. ADVERSARIAL OPTIMIZATION

For Equation 5, we use the hinge loss (Lim & Ye, 2017)
with the StyleGAN-XL (Sauer et al., 2022) discriminator
for Dψ, as used in Kim et al. (2024). Details for the flow-
and diffusion-based differential equation solver Gθ,ϕ are
provided in Appendix D. We use separate loss functions for
θ and ϕ, applying the simulation-based objective exclusively
to ϕ as follows:

Lϕ = −ExT
[Dψ(Gθ,ϕ(τ, xT ))],

Lψ = Ex0
[max(0, 1−Dψ(x0))]

+ ExT
[max(0, 1 +Dψ(Gθ,ϕ(τ, xT )))],

(10)

where Lϕ and Lψ indicate that gradients are computed with
respect to ϕ and ψ, respectively. Through these loss func-
tions, ϕ is optimized to determine better coefficients via
simulation through Gθ,ϕ. For θ, we use the adversarial loss
defined as:

Lθ = −Et,x0,x1,z [Dψ (Hθ(t, x(t), γϕ(t, z)))] ,

x(t) = γ0,ϕ(t, z)⊙ x0 + γ1,ϕ(t, z)⊙ x1,
(11)

where z ∼ ρT (sampled like xT , used only to train Hθ),
x0 ∼ ρ0, x1 ∼ ρ1, t ∼ τ , and Hθ(γ̄ϕ(t, z), x(t)) is used
when coefficient conditioning is disabled. Given that Hθ

approximates x0, it can be adversarially optimized with Dψ .
Since Hθ only needs to handle coefficients from γϕ rather
than the full hypothesis set Γh, it is trained exclusively
using γϕ, thereby reducing its computational burden, as γϕ
is significantly smaller than Γh. The final loss terms are:

Ladv
ϕ,ψ = Lϕ + Lψ, (12)

Ladv
θ,ϕ,ψ = Lθ + Lϕ + Lψ. (13)

Here, Equation 12 corresponds to Equation 3, and Equa-
tion 13 corresponds to Equation 4. The procedure corre-
sponding to Equation 13 is summarized in Algorithm 1.

Algorithm 1 γ-Pre-Training and Adversarial Optimization
Input: ρ0, ρ1, ρT , Hθ, γϕ, Gθ,ϕ, Dψ, T , τ
if γ-pretraining then

repeat
Sample x0 ∼ ρ0, x1 ∼ ρ1, u ∼ U(−1, 1), t ∼ T
[x̂0,θ, x̂1,θ]← Hθ(t, x(t), γ(t, u))
Compute Lpre

θ ; Update θ
until θ converges

end if
repeat

Sample x0 ∼ ρ0, x1 ∼ ρ1, xT ∼ ρT , z ∼ ρT , t ∼ τ

x̂0,θ,ϕ ←

{
Hθ(t, x(t), γϕ(t, z)) with γ-pretraining
Hθ(γ̄ϕ(t, z), x(t)) w/o γ-pretraining

xθ,ϕ(tN )← Gθ,ϕ(τ, xT )
Compute Ladv

θ,ϕ,ψ; Update θ, ϕ, ψ
until θ, ϕ, ψ converge

5



Multidimensional Adaptive Coefficient for Inference Trajectory Optimization in Flow and Diffusion

Table 1: W2 distance (↓) for 2-dimensional transportation results. The best performance is highlighted.

Gaussian to 8 Gaussians Gaussian to Moons 8 Gaussians to Moons Moons to 8 Gaussians

Method \ NFE 5 10 5 10 5 10 5 10

SIα 0.763±0.040 0.673±0.055 0.882±0.035 0.643±0.060 0.981±0.112 0.649±0.165 1.271±0.185 0.998±0.203

SIγ + opt ϕ 0.721±0.082 0.452±0.033 0.682±0.093 0.359±0.098 0.924±0.235 0.311±0.051 0.908±0.109 0.500±0.072

SIOT
α 0.457±0.021 0.440±0.052 0.245±0.023 0.217±0.019 0.321±0.064 0.318±0.068 0.488±0.050 0.492±0.056

SIOT
γ + opt ϕ 0.399±0.017 0.415±0.016 0.230±0.015 0.188±0.006 0.258±0.015 0.221±0.014 0.421±0.012 0.407±0.031

(a) SIα (b) SIγ + opt ϕ

(c) SIOT
α (d) SIOT

γ + opt ϕ

Figure 4: Comparison of inference trajectories from 8 Gaus-
sians to Moons.

4. Experiments
4.1. 2-Dimensional Transportation: Optimizing Only ϕ

We conduct experiments on 2-dimensional synthetic datasets
used by Tong et al. (2024) with SI (Albergo et al.,
2023). To validate the benefits of using MAC γϕ,

Figure 5: xT ∼ ρT
(black) and x0 ∼ ρ0
(blue).

we train ϕ exclusively while
freezing θ, as in Equation 3, en-
suring a fair comparison with
baseline methods. We use the
Wasserstein loss function Lϕ =
W2(x0, Gθ,ϕ(τ, xT )) instead of
a discriminator. To further eval-
uate whether MAC improves
transportation even when opti-
mality is defined as a straight tra-
jectory, we test additional con-
figurations of minibatch pairing for pre-training (x0, x1):
random pairing and OT pairing (Tong et al., 2024). The
minibatch-OT method encourages the flow and diffusion

Table 2: FID (↓) of models pre-trained with α and γ.

CIFAR-10 ImageNet-32

Method \ NFE 100 150 200 100 150 200

SIα 4.75 4.51 4.30 8.08 7.79 7.63
SIγ 3.98 3.74 3.63 6.33 6.21 6.20

FMα 4.52 4.23 4.07 7.78 7.53 7.38
FMγ 3.59 3.42 3.42 6.18 6.03 6.01

DDPMα 6.64 4.84 4.10 8.13 7.40 7.14
DDPMγ 4.73 4.11 3.83 6.84 6.51 6.42

Table 3: FID after adversarial optimization for varying NFE
on CIFAR-10.

Method \ NFE 4 (+) 6 (+) 8 (+) 10 (+)

SIγ + adv ϕ 20.59 6.62 4.85 4.14
FMγ + adv ϕ 16.42 8.17 6.56 6.13
DDPMγ + adv ϕ 72.64 20.13 13.72 10.04

model to learn a straight trajectory by pairing x0 and x1
as an OT solution within a minibatch during pre-training,
where optimality for the inference trajectory is defined as
straight. Details are provided in Appendix E.1.

As shown in Table 1, using MAC consistently achieves the
best results, even for models trained with minibatch-OT.
This suggests that a straight trajectory is not always optimal,
even in OT-trained models, and that MAC can adaptively
discover better inference trajectories to correct errors. Fig-
ure 4 further illustrates how MAC adjusts the trajectory
direction to optimize transportation, resulting in a path that
is not straight. A comparison of (c) with (d) reveals a dis-
tinct piecewise linear trajectory in (d), indicating that a non-
straight trajectory achieves superior performance. These
results empirically suggest that the optimality of the infer-
ence trajectory should be defined and explored in terms of
transportation quality, rather than by a predefined property.

Table 4: FID after adversarial optimization with different
conditionings of γϕ(t, ·) on CIFAR-10 (10 (+) NFE).

Method \ Conditioning 1d z ∼ ρT xT ∼ ρT
SIγ + adv ϕ 7.84 6.48 4.14
FMγ + adv ϕ 9.20 9.06 6.13
DDPMγ + adv ϕ 26.09 23.31 10.04
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Table 5: Performance comparisons on CIFAR-10, FFHQ, AFHQ, and ImageNet. ∗ indicates metrics computed by us.

Model NFE CIFAR-10 uncond. CIFAR-10 cond.
FID (↓) FID (↓)

GAN
StyleGAN-Ada (Karras et al., 2020) 1 2.92 2.42
StyleGAN-XL (Sauer et al., 2022) 1 – 1.85

Diffusion Model
DDPMα (Ho et al., 2020) 1000 3.17 –
Score SDEα (Song et al., 2021) 2000 2.38 2.20
EDMα (Karras et al., 2022) 35 1.98 1.79

Rectified Flow (Distillation)
2-Rectified Flowα (Liu et al., 2023) 1 4.85 –
2-Rectified Flowα++ (Lee et al., 2024) 1 3.07 –

2 2.40 –

Consistency Model (Distillation)
CDα (Song et al., 2023) 1 3.55 –

2 2.93 –
CDα + adv θ (Lu et al., 2023) 1 2.65 –
CTMα (Kim et al., 2024) 1 5.19 –
CTMα + adv θ (Kim et al., 2024) 1 1.98 1.73

2 1.87 1.63
5 1.86∗ 1.98∗

6 1.93∗ 2.04∗

Inference Trajectory Optimization
EDMγ + adv θ, ϕ (Ours) 5 (+) 1.69∗ 1.37∗

Model NFE ImageNet-64 cond.

FID (↓) FDDINOv2 (↓)

GAN
StyleGAN-XL (Sauer et al., 2022) 1 2.09 –

Diffusion Model
ADMα (Dhariwal & Nichol, 2021) 250 2.07 –
EDMα (Karras et al., 2022) 79 2.44 –

Consistency Model (Distillation)
CDα (Song et al., 2023) 1 6.20 –

2 4.70 –
CTMα + adv θ (Kim et al., 2024) 1 1.92 160.8∗

2 1.73 157.7∗

5 3.02∗ 195.0∗

6 3.17∗ 205.1∗

Inference Trajectory Optimization
EDMα + adv θ, ϕ (Ours) 5 (+) 1.48∗ 70.2∗

Model NFE FFHQ-64 AFHQ-64
FID (↓) FID (↓)

Diffusion Model
EDMα (Karras et al., 2022) 79 2.39 1.96

Rectified Flow (Distillation)
2-Rectified Flowα++ (Lee et al., 2024) 1 5.21 4.11

2 4.26 3.12

Inference Trajectory Optimization
EDMγ + adv θ, ϕ (Ours) 5 (+) 2.27∗ 2.04∗FID

4

3

2

kimg 100 200 300 400

EDMγ + Adv. θ

EDMγ + Adv. θ, φ

(a) CIFAR-10 uncond.
FID

4

3

2

kimg 100 200 300 400

EDMγ + Adv. θ

EDMγ + Adv. θ, φ

(b) CIFAR-10 cond.

Figure 6: EDMγ + adv θ and θ, ϕ.

Table 6: FID from the ablation study on CIFAR-10. Experiments used 500k
images, compared to 1500k in Table 5.

Unconditional Conditional

Configuration \ NFE 5 (Euler) 35 (Heun) 5 (Euler) 35 (Heun)

EDMα 68.73 1.97 48.76 1.79
EDMγ 69.58 2.08 48.53 1.81
EDMγ + adv ϕ (no multi.) 33.55 – 25.56 –
EDMγ + adv ϕ 18.67 – 7.77 –
EDMγ + adv θ 2.28 – 2.14 –
EDMγ + adv θ, ϕ 1.81 – 1.42 –

4.2. Image Generation: Optimizing Only ϕ
To isolate the benefits of using MAC in image generation,
we conduct experiments that optimize only ϕ. We employ
DDPM (Ho et al., 2020), FM (Lipman et al., 2023), and
SI (Albergo et al., 2023) on the CIFAR-10 (Krizhevsky &
Hinton, 2009) and ImageNet-32 (Deng et al., 2009) datasets.
Detailed training configurations and additional results are
presented in Appendix E.2.

Pre-Training Before adversarial optimization, we com-
pare the Fréchet Inception Distance (FID) (Heusel et al.,
2017) of models trained with α and γ. Interestingly, as
shown in Table 2, models trained with γ achieve the lowest
FID across all frameworks and NFE compared to models
trained with α. These results suggest that training flow and
diffusion models with γ ∼ Γh and coefficient labeling can
improve the innate performance of the model, despite the
increased complexity compared to α.

Adversarial Training We achieve approximately 10×
NFE efficiency across all frameworks. Specifically, in SI,
we obtain FID scores of 4.14 and 7.06 on CIFAR-10 and
ImageNet-32, respectively, using 10 (+) NFE (where (+)
accounts for the computation of γϕ, given that the size of
Uϕ is smaller than that of Hθ). These results demonstrate
the compatibility of MAC across various frameworks. As
shown in Table 3, MAC can also be optimized for different
sampling configurations. Additionally, we validate the im-
pact of using the starting point xT as a condition for MAC.
As shown in Table 4, incorporating xT as an input to γϕ
consistently improves performance across all frameworks,
providing empirical evidence of MAC’s adaptability to xT .

4.3. Image Generation: Optimizing θ and ϕ
We optimize θ and ϕ using Equation 13 on the CIFAR-
10 (Krizhevsky & Hinton, 2009), FFHQ-64 (Karras et al.,
2019), AFHQv2-64 (Choi et al., 2020), and ImageNet-64
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Figure 7: Training with different multidimensionalities. T/F
indicate whether multidimensionality is applied along the
channel, height, and width axes, respectively.

(Deng et al., 2009) datasets with EDM (Karras et al., 2022).
As mentioned in Section 3.2.2, since pre-training Hθ with
γ is optional for practicality, we use the existing pre-trained
model EDMα for ImageNet. We measure FID and FDDINOv2
(Oquab et al., 2024). Details are provided in Appendix E.3.

Impact of Trajectory Optimization As shown in Table 5,
our approach generates high-quality samples across various
datasets with only 5 (+) NFE, achieving a state-of-the-art
result (FID = 1.37) on CIFAR-10 conditional generation.
For a fair comparison in terms of NFE, we select CTM
(Kim et al., 2024) due to its popularity, strong performance,
and use of the same model architecture based on EDM
and adversarial training with StyleGAN-XL discriminator.
We then compute FID using 5 and 6 NFE on CIFAR-10
and ImageNet-64. As shown in Table 5, increasing the
NFE of CTM does not significantly reduce the FID, and
in some cases, the FID even increases. This indicates that
MAC provides additional performance gains that cannot be
achieved by distillation or vector field tuning methods alone,
even with increased NFE.

To empirically validate the benefit of MAC, we conduct
ablation studies by training either θ or ϕ individually. As
presented in Table 6, the results reveal that jointly training
θ and ϕ yields the best performance. Figure 6 further illus-
trates that FID decreases more rapidly during joint training
compared to training θ alone. These findings suggest that
performance improvements stem not only from the adver-
sarial training of Hθ, but also from the combined training
of both Hθ and γϕ, demonstrating the benefits of MAC.

Horse
Cat

Dog

Automobile
Ship

Deer
Airplane
Frog

Bird Truck

(a) CIFAR-10 uncond. (b) CIFAR-10 cond.

(c) FFHQ. (d) AFHQ.

Figure 8: T-SNE visualization of various coefficients. Yel-
low: w = 0 (corresponding to α); Purple: w = su;
Green: w = sLPF ◦ u (used for pre-training); Blue:
wϕ = sLPF ◦ tanh(Uϕ(xT , c)) (trained).

Impact of Multidimensionality of MAC To examine
how the multidimensionality of MAC influences perfor-
mance, we train ϕ with different levels of multidimension-
ality by averaging tanh(Uϕ(xT )) in Equation 9 across spe-
cific axes. For instance, to retain multidimensionality solely
in the height axis ([F, T, F]), we use the same wϕ across
the channel and width axes by averaging along those di-
mensions. As shown in Figure 7, incorporating more axes
consistently improves performance, indicating that MAC’s
multidimensionality positively impacts generation quality.

Analysis of Trained MAC To analyze how MAC is
trained, we plot t-SNE embeddings of four different si-
nusoidal weights w across multiple datasets, as shown in
Figure 8. Notably, the trained wϕ diverges from weights
randomly sampled from the predefined hypothesis set and
is far from α. This suggests that during adversarial train-
ing, γϕ adaptively identifies optimal coefficients without
heavily depending on the pre-trained distribution of γ ∼ Γh.
Interestingly, γϕ exhibits a sparser distribution in CIFAR-
10 conditional generation than in the unconditional setting,
with nearly identicalwϕ values for samples sharing the same
label condition c. This indicates that the optimality of the
coefficient depends more on the label condition c than on
the starting point xT of the differential equation.
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Training Efficiency Our method demonstrates notable
training efficiency despite incorporating simulation-based
training. As shown in Table 7, the number of train-
ing images required by our approach is significantly
lower across all datasets—approximately 20 to 2000
times fewer than distillation-based methods such as CTM.

Table 7: kimg (↓) for adversarial
training.

Dataset CTMα + adv θ Ours

CIFAR-10 25.6k 1.5k
FFHQ 38.4k 1.0k
AFHQ 51.2k 1.0k
ImageNet 61.4k 30

Training times are
10, 2, 6, and 9 hours
for CIFAR-10, FFHQ,
AFHQ, and ImageNet,
respectively, which
are also comparatively
low. The primary
cost of simulation
dynamics arises from VRAM requirements. However, this
remains practically feasible, as strong performance can
be achieved with just 5 (+) NFE. These results not only
highlight the effectiveness of simulation-based optimality,
but also showcase the strength of combining simulation-free
and simulation-based methodologies—leveraging the
advantages of each while mitigating their limitations.

5. Conclusions
We have introduced the Multidimensional Adaptive Coef-
ficient (MAC), a plug-in module for flow- and diffusion-
based generative models that enables both freedom of di-
mensionality and adaptability to different inference trajecto-
ries—properties previously found only in simulation-based
generative modeling. Our method improves generative per-
formance across various datasets and frameworks with high
training efficiency. These results highlight the potential of in-
ference trajectory optimization with MAC via simulation—a
direction that has been underexplored compared to vector
field design. We suggest broadening the notion of trajectory
optimality beyond predefined criteria such as straightness,
toward a more general view based on final transportation
quality. We hope our work encourages further exploration.

6. Future Directions
First, the current implementation of γϕ is tied to a fixed NFE
during trajectory optimization. Future work could explore
adaptive control of NFE based on inference trajectories.
Second, while γϕ currently conditions only on xT , future
extensions could, with appropriate design, condition on tra-
jectories xS

θ,ϕ over diverse inference times and incorporate
other contextual signals. Third, optimizing MAC under al-
ternative objectives beyond distributional divergence may
broaden its applicability to domains where task-specific cri-
teria are more relevant. Finally, interpreting MAC selection
as a form of trajectory-level policy learning may inspire
novel approaches, particularly when combined with ideas
from control theory or reinforcement learning.

Impact Statement
Our research introduces the Multidimensional Adaptive Co-
efficient (MAC), enhancing the generative quality and ef-
ficiency of flow and diffusion models. The broader impli-
cations of this advancement are twofold. On the positive
side, MAC improves the accessibility and practicality of
generative models, potentially benefiting diverse applica-
tions such as medical imaging, drug discovery, and creative
industries by reducing computational costs and enhancing
output quality. However, improved generative technologies
also carry potential risks, including the misuse in creating
deepfakes or synthetic biological threats. It is essential
for future work to develop robust safeguards and detection
methods to mitigate such harmful applications. Continued
interdisciplinary efforts in governance, ethics, and technical
controls will be critical to ensuring the beneficial integration
of our contributions into society.
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Outline of Appendix
Appendix A provides an overview of flow and diffusion frameworks. Appendix B provides justification for the use of
diagonal matrices in the design of γϕ. Appendix C describes the hypothesis set for MAC. Appendix D presents details of the
differential equation solver Gθ,ϕ. Appendix E outlines experimental setups, including datasets, training configurations, and
additional results. Appendix F explains evaluation metrics, and Appendix G provides visualizations of generated samples
and inference trajectories.

A. Flow and Diffusion Frameworks
During inference, all frameworks transport samples between ρT and ρ0, either in the forward or reverse direction.

Denoising Diffusion Probabilistic Models (DDPM) DDPM (Ho et al., 2020) is one of the most widely used diffusion-
based generative frameworks. Given x0 ∼ ρ0 = N (0, I) and x1 ∼ ρ1 as data, the VP diffusion coefficient is:

α(t) = [α0(t), α1(t)] =

[√
1− b21−t, b1−t

]
, bt = e−

1
2

∫ t
0
c(s)ds, c(s) = cmin + s(cmax − cmin), T = 1, (14)

where cmin = 0.1 and cmax = 20. DDPM minimizes the loss Lθ = Et,x0,x1

[
∥Hθ(t, x(t))− x0∥22

]
, where t ∼ U(0, 1).

Flow Matching (FM) FM (Lipman et al., 2023) introduces a simple yet effective objective for generation. Given
x0 ∼ N (0, I) and x1 ∼ ρ1 as data, it employs the following coefficient:

α(t) = [α0(t), α1(t)] = [1− (1− σmin)t, t], T = 1. (15)

FM directly models v using the objective Lθ = Et,x0,x1

[
∥Hθ(t, x(t))− (x1 − (1− σmin)x0)∥22

]
, where t ∼ U(0, 1).

Elucidating Diffusion Model (EDM) EDM (Karras et al., 2022) refines and stabilizes diffusion model training. Given
x0 ∼ ρ0 as data and x1 ∼ ρ1 = N (0, I), the coefficient is defined as:

α(t) = [α0(t), α1(t)] = [1, t], T = 80. (16)

The loss function is:

Lθ = Et,x0,x1

[
λ(t)cout(t)

2

∥∥∥∥Fθ (cnoise(t), cin(t)x(t))−
1

cout(t)
(x0 − cskip(t)x(t))

∥∥∥∥2
2

]
, (17)

where:

cin(t) =
1√

α2
1(t) + σ2

data

, cout(t) =
α1(t) · σdata√
σ2

data + α2
1(t)

, cskip(t) =
σ2

data

α2
1(t) + σ2

data
,

cnoise(t) =
1

4
ln t, λ(t) =

α2
1(t) + σ2

data

(α1(t) · σdata)2
,

(18)

with t sampled from ln(t) ∼ N (−1.2, 1.22), and σdata = 0.5. EDM models Hθ(t, x(t)) = cskip(t)x(t) +
cout(t)Fθ(cnoise(t), cin(t)x(t)) = x̂0,θ. During inference, EDM transports from ρT = N (0, T 2I) to ρ0.

Stochastic Interpolant (SI) SI (Albergo et al., 2023) facilitates transportation between arbitrary distributions ρ0 and ρ1.
The conventional coefficient design is:

α(t) = [α0(t), α1(t)] = [1− t, t], T = 1, (19)

SI models Hθ(t, x(t)) = [H0,θ(t, x(t)), H1,θ(t, x(t))] = [x̂0,θ, x̂1,θ]. The loss function is:

Lk,θ =
∫ 1

0

Ex0,x1

[
|Hk,θ(t, x(t))|2 − 2xk ·Hk,θ(t, x(t))

]
dt, k = 0, 1, t ∼ U(0, 1). (20)
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B. Justification for Diagonal Matrices in MAC
We argue that using diagonal matrices is sufficient to represent non-linear trajectories for inference trajectory optimization.
Theoretically, the expressible space of the interpolated value x(t) remains x(t) ∈ Rd for both the Hadamard product and
matrix-vector multiplication. While the primary benefit of full matrix multiplication lies in its ability to model non-linear
trajectories by incorporating cross-dimensional effects, we contend that a diagonal matrix is already adequate for this
purpose—provided that the U-Net Uϕ, used to parameterize γϕ, possesses enough expressive power to generate diverse
non-linear trajectories.

Moreover, using diagonal matrices for the output of MAC significantly reduces model size compared to using full matrices.
One alternative is to use a low-rank-plus-diagonal decomposition, γϕ = D + UV T , where D = γ is a diagonal matrix, and
U, V ∈ Rd×r, with r being a typically small rank (e.g., r = 4 or 8). However, even with a small r, this approach would
still require a large number of output channels from Uϕ, significantly increasing model complexity. Specifically, Uϕ would
require an output channel size of C × (2r + 1) ×M × 2, where C is the image channel size and M is the number of
sinusoidal functions. For instance, with r = 4, this results in 3× 9× 5× 2 = 270 output channels for Uϕ when NFE = 5,
compared to only C ×M × 2 = 30 channels in the diagonal case.

In conclusion, we believe that using a diagonal matrix, in conjunction with a sufficiently expressive U-Net Uϕ, provides
ample capacity to model non-linear trajectories while keeping the model size efficient and manageable.

C. Hypothesis Set Design for MAC
We design the hypothesis set and parameterization for γϕ as follows:

Γh =



γϕ(t, xT ) = [γ0,ϕ(t, xT ), γ1,ϕ(t, xT )] : [0, T ]× Rd → Rd×2, where

γ0,ϕ(t, xT ) = F0(bm(t), wϕ(xT )) = T
fϕ(t, xT )

fϕ(t, xT ) + gϕ(t, xT )
,

γ1,ϕ(t, xT ) = F1(bm(t), wϕ(xT )) = T
gϕ(t, xT )

fϕ(t, xT ) + gϕ(t, xT )
, ϕ ∈ P


, (21)

This parameterization can vary depending on the flow and diffusion framework. For example, we use γ0,ϕ as described
above for SI, but set γ0,ϕ(t, xT ) = 1d for EDM to align with its original formulation. The functions fϕ and gϕ are defined
as:

fϕ(t, xT ) = 1− t

T
+

(
M∑
m=1

wfm,ϕ(xT )bm(t)

)2

, gϕ(t, xT ) =
t

T
+

(
M∑
m=1

wgm,ϕ(xT )bm(t)

)2

, (22)

bm(t) = sin

(
πm

(
t

T

)1/q
)
∈ R, wϕ(xT ) = sLPF ◦ tanh (NNϕ(xT )) , q ∈ R, s ∈ R, (23)

where M and q are hyperparameters for the sinusoidal basis, and the scaling factor s controls the output range of wϕ(xT ) ∈
(−s, s). When s = 0.0, γ reduces to α. For image generation, we use a U-Net Uϕ as NNϕ. The outputs Uϕ(xT ) =
[Uf,ϕ(xT ), Ug,ϕ(xT )] ∈ RC×H×W×M×2, where C, H , and W denote the channel, height, and width of the image.
Uf,ϕ(xT ) and Ug,ϕ(xT ) each have a channel shape of C ×M , structured along the channel axis.

Design Choice of Sinusoidals The inference time schedule of EDM is defined as:

ti =

(
tmax

1
q +

i

N − 1

(
tmin

1
q − tmax

1
q

))q
, tmin = 0.002, tmax = 80, q = 7. (24)

As illustrated in Figure 9, bm(t) = sin(πm(t/T )1/7) effectively covers the entire EDM time schedule, whereas bm(t) =
sin(πm(t/T )) has minimal magnitude when t ≤ 1. Since wϕ is constrained to (−s, s), the choice of sinusoidal basis
significantly influences the controllability of γϕ during simulation. Accordingly, we use q = 1 for DDPM, FM, and SI, and
q = 7 for EDM.

In addition, to avoid aliasing in bm(t), we follow the Nyquist criterion, requiring the sampling rate fs = N ≥ 2fmax =M .
Based on this, we set M = N during adversarial training to ensure sufficient frequency resolution.
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1
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(a) sin(πm(t/T )) (b) sin(πm(t/T )1/7)

Figure 9: Comparison of bm(t) for M = 10. The dotted line represents the EDM inference time schedule for N = 10.

Low-Pass Filtering (LPF) For LPF, we apply a 2D convolution with a Gaussian kernel, where the kernel size is
20×resolution

32 − 1 and the standard deviation of the Gaussian is σ = 4.0×resolution
32 . Here, resolution refers to the image height or

width. To mitigate boundary effects introduced by LPF, we apply zero-padding of kernel size+1
2 on all sides of Uϕ’s input and

crop the borders after convolution to restore the original shape. To preserve consistent scaling, we compute the minimum
and maximum values before LPF for each batch and rescale the post-LPF output to match the original range. LPF is
applied only for image generation experiments.

Hypothesis Set for Pre-training and Adversarial Training Since using a large hypothesis set of coefficients during
pre-training may overburden Hθ and degrade performance, we adopt a smaller hypothesis set for pre-training and enable
full multidimensionality across t only during adversarial training. For Section 4.2, LPF is used exclusively during pre-
training and omitted during adversarial training. For Section 4.3, we configure the convolution group size for LPF during
pre-training to 1, yielding an LPF output shape of [B, 1, resolution, resolution]. This enforces high multidimensionality for
small t and low multidimensionality for large t. In contrast, during adversarial training, we use a convolution group size of
[B, 2× 3×M, resolution, resolution], producing an LPF output shape of [B, 2× 3×M, resolution, resolution].

D. Details of the Differential Equation Solver
The displacement of the trajectory x(ti+1)− x(ti), parameterized by vθ,ϕ, is expressed as:

∆ti vθ,ϕ(ti, x(ti), xT ) = ∆ti γ̇0,ϕ(ti, xT )⊙ x̂0,θ +∆ti γ̇1,ϕ(ti, xT )⊙ x̂1,θ
≈ ∆γ0,ϕ(ti, xT )⊙ x̂0,θ +∆γ1,ϕ(ti, xT )⊙ x̂1,θ,

(25)

where the time displacement ∆ti = ti+1 − ti is derived from the inference time schedule τ = {t0, . . . , tN}, with
t0 = T > . . . > tN = 0. The corresponding displacements for γ are:

∆γ0,ϕ(ti, xT ) = γ0,ϕ(ti+1, xT )− γ0,ϕ(ti, xT ), ∆γ1,ϕ(ti, xT ) = γ1,ϕ(ti+1, xT )− γ1,ϕ(ti, xT ). (26)

This approach helps reduce numerical errors when solving differential equations under curved γ. Accordingly, the trajectory
displacement for EDM is given by:

∆ti vθ,ϕ(ti, x(ti), xT ) =


∆γ1,ϕ(ti, xT )

γ1,ϕ(ti, xT )
⊙ (x(ti)−Hθ(ti, x(ti), γϕ(ti, xT ))) with γ-pre-training

∆γ1,ϕ(ti, xT )

γ1,ϕ(ti, xT )
⊙ (x(ti)−Hθ(γ̄ϕ(ti, xT ), x(ti))) w/o γ-pre-training

. (27)

For SI:

∆ti vθ,ϕ(ti, x(ti), xT ) = ∆γ0,ϕ(ti, xT )⊙ x̂0,θ +∆γ1,ϕ(ti, xT )⊙ x̂1,θ, (28)

[x̂0,θ, x̂1,θ] =

{
Hθ(ti, x(ti), γϕ(ti, xT )) with γ-pre-training
Hθ(γ̄ϕ(ti, xT ), x(ti)) w/o γ-pre-training

. (29)

The differential equation solver Gθ,ϕ, using Euler discretization, is then defined as:

Gθ,ϕ(τ, xT , vθ,ϕ) = xθ,ϕ(tN ) = xT +

N−1∑
i=0

∆ti vθ,ϕ(ti, xθ,ϕ(ti), xT ),

xθ,ϕ(ti+1)← xθ,ϕ(ti) + ∆ti vθ,ϕ(ti, xθ,ϕ(ti), xT ).

(30)
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E. Details for Experiments
All experiments are conducted on NVIDIA RTX 3080Ti, RTX 4090, and RTX A6000 GPUs. Euler discretization is used for
all inference procedures.

E.1. 2-Dimensional Transportation: Optimizing Only ϕ

E.1.1. γ-PRE-TRAINING

We follow the implementation from Tong et al. (2024), employing a multilayer perceptron (MLP) consisting of four linear
layers with 64 hidden units and SiLU activation functions. The Stochastic Interpolant (SI) model is trained with a batch size
of 256 for 20,000 iterations. The loss function is defined as:

Lk(θ) =
∫ 1

0
Ex0,x1,u

[
|Hk,θ(t, x(t), γ(t, u))|2 − 2xk ·Hk,θ(t, x(t), γ(t, u))

]
dt, k = 0, 1, t ∼ U(0, 1), u ∼ U(−1, 1) ∈ Rd×M×2. (31)

E.1.2. OPTIMIZATION OF ϕ

To train γϕ, we use a batch size of 1024 and run for 2000 iterations with s = 0.1. Each configuration is trained with three
different random seeds, and we report the mean and standard deviation of the Wasserstein distance.

E.2. Image Generation: Optimizing Only ϕ

E.2.1. TRAINING CONFIGURATIONS

Table 8: U-Net configurations for Hθ.

Configuration CIFAR-10 ImageNet-32
Channels 128 256
Depth 2 3
Channel multipliers 1,2,2,2 1,2,2,2
Attention heads 4 4
Head channel size 64 64
Attention resolution 16 16
Dropout 0.1 0.1

We use the U-Net architecture from Dhariwal & Nichol (2021) for Hθ and the U-Net from Ronneberger et al. (2015) for Uϕ.
Configuration details for Hθ are given in Table 8. For γϕ, we use a channel progression of [256, 512, 1024, 2048]. The
discriminator Dψ consists of four convolutional layers with 1024 channels, batch normalization, leaky ReLU activations,
and a final sigmoid output.

Table 9: Hyperparameters for pre-training and adversarial training.

Hyperparameter CIFAR-10 ImageNet-32
Pre-training Adversarial training Pre-training Adversarial training

Batch size 128 16 512 15
GPUs 1 1 4 1
Iterations 400k 200k 250k 200k
Peak LR 2e-4 2e-4 2e-4 2e-4
LR Scheduler Poly decay Poly decay Poly decay Poly decay
Warmup steps 5k 5k 5k 5k
Warmup steps for Dψ – 20k – 20k

We use the Adam optimizer with β1 = 0.9, β2 = 0.999, weight decay of 0.0, and ϵ = 1× 10−8, along with polynomial
decay learning rate scheduling. An exponential moving average (EMA) with a decay rate of 0.999 is applied during all
training phases. For adversarial training, we use the vanilla GAN loss from Equation 5 instead of hinge loss for simplicity.
FID is evaluated every 10,000 steps, and we report the lowest value obtained. Hyperparameters are summarized in Table 9.
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E.2.2. EXPERIMENTS FOR HYPOTHESIS SET HYPERPARAMETER TUNING

Table 10: FID comparison between α and γ under various configurations (e.g., s, LPF) across different NFE.

CIFAR-10 ImageNet-32

Method \ NFE 10 100 150 200 10 100 150 200

SIα 14.43 4.75 4.51 4.30 17.72 8.08 7.79 7.63
SIγ(s=0.005) 14.59 3.98 3.74 3.63 17.41 6.33 6.21 6.20
SIγ(s=0.1, LPF) 15.44 3.77 3.68 3.75 17.86 6.63 6.47 6.44

FMα 13.70 4.52 4.23 4.07 16.92 7.78 7.53 7.38
FMγ(s=0.005) 13.81 3.59 3.42 3.42 16.85 6.18 6.03 6.01
FMγ(s=0.1, LPF) 15.13 3.64 3.57 3.64 17.52 6.40 6.27 6.31

DDPMα 98.47 6.64 4.84 4.10 111.54 8.13 7.40 7.14
DDPMγ(s=0.005) 74.44 3.77 5.96 7.84 139.69 7.67 12.37 11.70
DDPMγ(s=0.005,LPF) 72.23 4.73 4.11 3.83 135.48 6.84 6.51 6.42
DDPMγ(s=0.1, LPF) 71.80 4.46 6.32 12.60 142.99 6.70 8.69 10.91

Table 11: FID for different NFE and Gaussian kernel σ in LPF, evaluated on CIFAR-10 with SIγ(s=0.1,LPF).

σ \ NFE 10 20 30 40 50 100 150 200

0.1 14.89 8.05 6.49 5.45 6.53 9.59 10.67 11.20
1.0 14.92 8.47 5.32 4.45 4.68 6.06 7.01 7.50
2.0 16.25 9.56 7.56 6.06 4.72 3.77 3.95 4.17
4.0 15.44 9.13 7.39 6.36 5.59 3.77 3.68 3.75

Table 12: FID after adversarial training with 10 NFE on CIFAR-10 for varying values of M .

Method \M 5 10 15 20 25 30

SIγ(s=0.1, LPF) 6.89 4.14 4.42 5.32 6.11 5.74
FMγ(s=0.1, LPF) 5.93 6.13 6.70 6.18 5.97 6.42
DDPMγ(s=0.1, LPF) 10.15 10.04 9.60 9.04 8.94 9.19

Table 13: FID after adversarial training of SI under various configurations on CIFAR-10 with 10 NFE.

Method \M 5 10 15 20

s = 0.0 10.20 9.75 11.30 11.53
s = 0.005 6.60 4.79 4.45 5.28
s = 0.005, LPF 7.37 4.42 4.26 5.31
s = 0.1, LPF 7.21 4.14 5.59 5.32

We conduct extensive experiments to tune hyperparameters for the hypothesis set. Tables 10 and 11 show the effects of
different coefficients, LPF configurations, and other settings during pre-training. Tables 12 and 13 present results from
adversarial training under various configurations. These results help identify optimal hyperparameter settings that enhance
model performance in both pre-training and adversarial training stages.
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E.3. Image Generation: Optimizing θ and ϕ

E.3.1. γ-PRE-TRAINING

Table 14: Hyperparameters used for pre-training EDM.

Hyperparameter CIFAR-10 FFHQ & AFHQ
Number of GPUs 8 8
Duration (Mimg) 200 200
Minibatch size 512 256
Learning rate 1e-3 2e-4
LR ramp-up (Mimg) 10 10
EMA half-life (Mimg) 0.5 0.5
Dropout probability 13% 5% (FFHQ) / 25% (AFHQ)
Channel multiplier 128 128
Channels per resolution 2-2-2 1-2-2-2
Augment probability 12% 15%
M 10 10
Low-pass filtering True True
s 0.05 0.05

We adopt the codebase from Karras et al. (2022) and follow the EDM configuration, replacing α with γ and applying
coefficient conditioning. The pre-training loss function is:

Lθ = Et,x0,x1,u

[
λ(t, u)cout(t, u)

2

∥∥∥∥Fθ (cnoise(t), cin(t, u)x(t), ccoeff(t, u))−
1

cout(t, u)
(x0 − cskip(t, u)x(t))

∥∥∥∥2
2

]
, (32)

where:

cin(t, u) =
1√

γ21(t, u) + σ2
data

, cout(t, u) =
γ1(t, u) · σdata√
σ2

data + γ21(t, u)
, cskip(t, u) =

σ2
data

γ21(t, u) + σ2
data

,

cnoise(t) =
1

4
ln t, ccoeff(t, u) =

1

4
ln γ1(t, u), λ(t, u) =

γ21(t, u) + σ2
data

(γ1(t, u) · σdata)2
,

(33)

with ln(t) ∼ N (−1.2, 1.22), u ∼ N (−1, 1) ∈ Rd×M×2, and σdata = 0.5. For coefficient conditioning (Section 3.2.2), we
concatenate [cin(t, u)x(t), ccoeff(t, u)] along the channel axis as input to Fθ. We use the Adam optimizer with β1 = 0.9,
β2 = 0.999, and ϵ = 1e−8.

E.3.2. ADVERSARIAL TRAINING

Table 15: Hyperparameters used for adversarial training.

Hyperparameter CIFAR-10 FFHQ & AFHQ ImageNet
Number of GPUs 8 8 8
Training duration for γϕ (kimg) 1500 1000 30
Minibatch size for vθ 512 256 256
Minibatch size for γϕ 128 64 32
Minibatch size for Dψ 128 64 512
Learning rate for vθ 1e-5 1e-5 1e-5
Learning rate for γϕ 1e-4 1e-4 1e-4
Learning rate for Dψ 1e-3 1e-3 1e-3
EMA half-life (kimg) 10 10 10
Low-pass filtering True True True
s 0.05 0.05 0.05
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For Uϕ, we adopt a U-Net architecture based on Song et al. (2021) with the following configuration: 256 channels, channel
multipliers [1, 2, 4], a dimensionality multiplier of 4, 4 blocks, and an attention resolution of 16. The embedding layer for t
is disabled. We disable dropout in both Hθ and γϕ to ensure deterministic behavior of Gθ,ϕ. We use the Adam optimizer
with β1 = 0.0, β2 = 0.99, and ϵ = 1e−8. The sampling time t is drawn from ln(t) ∼ N (−1.2, 1.22) and is quantized
according to the inference time schedule τ . For ablation studies, each configuration is trained for 500 kimg, corresponding
to approximately 4000 iterations. When training only ϕ (Table 6, Figure 7), LPF is not applied.

E.3.3. OPTIMIZED INFERENCE TRAJECTORIES DEVIATE FROM LINEARITY

40

20

0
10 1 0.1 0.01t

CIFAR-10 uncond.
CIFAR-10 cond.
FFHQ
AFHQv2

Figure 10: L2 norm between the linear trajectory xlin(t) and the optimized trajectory xθ,ϕ(t) over t.

To confirm that the optimized inference trajectories in the image generation experiment are not linear lines, we compute the
L2 norm between linear trajectories xlin(t) =

t
T xT +

(
1− t

T

)
xθ,ϕ(tN ) and the optimized trajectories xθ,ϕ(t). As shown

in Figure 10, the optimized inference trajectories clearly deviate from the linear path. This result demonstrates that our
method effectively discovers superior, non-linear trajectories in high-dimensional spaces, leading to enhanced performance.

F. Metrics Calculation
For CIFAR-10, AFHQ, and FFHQ experiments, we follow the evaluation protocol and code provided by Karras et al. (2022)
to compute the Fréchet Inception Distance (FID). For ImageNet-64 experiments, we use the ImageNet dataset from EDM
(Karras et al., 2022) as the reference and calculate both FID and FDDINOv2 using the code from EDM2 (Karras et al., 2024).
All metrics are computed over 50,000 generated samples. Each experiment is run three times with different random seeds,
and we report the minimum FID and FDDINOv2 values observed.

G. Generated Samples

Figure 11: Inference trajectories from EDMγ + adv θ, ϕ for conditional generation on CIFAR-10.
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FID 1.98 NFE 35 FID 1.69 NFE 5(+)
CIFAR-10 unconditional.

FID 1.79 NFE 35 FID 1.37 NFE 5(+)
CIFAR-10 conditional.

FID 2.39 NFE 79 FID 2.27 NFE 5(+)
AFHQ-64.

FID 1.96 NFE 35 FID 2.04 NFE 5(+)
FFHQ-64.

Figure 12: Generated samples on CIFAR-10, FFHQ-64, and AFHQ-64 using EDMα (left) and EDMγ + adv θ, ϕ (right).
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FID 1.48 FDDINOv2 70.2 NFE 5(+)

Figure 13: Generated samples on ImageNet-64 using EDMα + adv θ, ϕ.
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