
GALA: Global LLM Agents for
Text-to-Model Translation

Junyang Cai1, Serdar Kadıoğlu2,3, Bistra Dilkina1
1Department of Computer Science, University of Southern California

2AI Center of Excellence, Fidelity Investments
3Department of Computer Science, Brown University

caijunya@usc.edu, serdark@cs.brown.edu, dilkina@usc.edu

Abstract

Natural language descriptions of optimization or satisfaction problems are chal-
lenging to translate into correct MINIZINC models, as this process demands both
logical reasoning and constraint programming expertise. We introduce GALA, a
framework that addresses this challenge with a global agentic approach: multiple
specialized large language model (LLM) agents decompose the modeling task by
global constraint type. Each agent is dedicated to detecting and generating code
for a specific class of global constraint, while a final assembler agent integrates
these constraint snippets into a complete MINIZINC model. By dividing the prob-
lem into smaller, well-defined sub-tasks, each LLM handles a simpler reasoning
challenge, potentially reducing overall complexity. We conduct initial experiments
with several LLMs and show better performance against baselines such as one-shot
prompting and chain-of-thought prompting. Finally, we outline a comprehensive
roadmap for future work, highlighting potential enhancements and directions for
improvement.

1 Introduction

Building correct MINIZINC models from natural language descriptions is a complex challenge.
Recently, Singirikonda et al. [2025] has introduced several modeling co-pilot frameworks as well as a
supporting dataset, TEXT2ZINC, and corresponding leaderboard for benchmarking this task. Existing
co-pilot evaluations on TEXT2ZINC (using direct prompting, chain-of-thought, and compositional
strategies, and external tools such as NER4OPT [Kadıoğlu et al., 2024], Knowledge Graphs) found
that even powerful LLMs are “not yet a push-button technology” for generating combinatorial
models from text. In other words, general-purpose prompting often fails to capture all variables and
constraints correctly, especially for harder optimization problems. This motivates research into more
structured and guided methods.

One promising direction is to break the problem into manageable pieces. Multi-step or multi-agent
frameworks have begun to emerge for NL4Opt [Ramamonjison et al., 2023] (natural language for
optimization) tasks. For example, Chain-of-Experts by Xiao et al. [2023] assigns multiple LLM
“experts” with specific roles (e.g. interpreting text, formulating model components, coding, verifying)
coordinated by a central conductor. This cooperative agent approach significantly outperformed prior
single-LLM methods on complex operations research problems. Similarly, the OptiMUS system
by AhmadiTeshnizi et al. [2023] uses an LLM-based agent to iteratively identify parameters, write
constraints, and debug a linear program model, achieving a higher problem-solving rate than basic
one-shot prompting. These results suggest that decomposing the modeling task and giving LLMs
more structured guidance can substantially improve performance.

Preprint.

The main drawback of existing multi-agent approaches is that each agent still inherits the full
complexity of the problem rather than focusing on a narrower, more tractable sub-task. To address
this, we propose a new agentic framework for translating text to MINIZINC [Nethercote et al., 2007]
that is centered around global constraints. In Constraint Programming (CP), global constraints such
as all_different and cumulative are high-level primitives that capture common patterns among
variables. They offer expressive and efficient building blocks in models, and many optimization
problems can be described as a combination of such global constraints.

Our approach, GALA: GlobAl LLM Agents leverages this by dedicating a specialized LLM agent to
each type of global constraint, turning model generation into a collaboration of focused experts rather
than one monolithic generation. More broadly, our approach can be viewed as aligning and combining
the key strength of Constraint Programming (i.e., global constraints) with the Agentic Frameworks.
The following sections outline background and related work, our framework, preliminary findings,
and future roadmap.

2 Background and Related Work

2.1 HOLY GRAIL 2.0, NL4OPT NER4OPT, & OPTIMUS

LLMs are increasingly applied to optimization and constraint programming. Holy Grail 2.0 [Tsouros
et al., 2023] outlined a blueprint for conversational modeling assistants. Early work Ramamonjison
et al. [2023] tackled linear programming via entity recognition and logical-form translation, showing
promising ChatGPT results on NL4OPT.NER4OPT showed that accuracy of LLM-generated MINIZ-
INC improves with in-line entity annotations [Dakle et al., 2023] as also built into several co-pilot
pipelines [Kadıoğlu et al., 2024]. Agentic methods followed: a multi-agent Chain-of-Experts [Xiao
et al., 2023] and Optimus [AhmadiTeshnizi et al., 2023], a modular system for complex descriptions.
Text-to-model translation was also explored via simple decomposition prompts with GPT [Tsouros
et al., 2023]. Extending this, RAG-based in-context learning built CPMpy models [Michailidis et al.,
2025]. Concurrently to our work, Szeider [2025] introduce a Reason-and-Act framework solving all
101 CP-Bench tasks [Michailidis et al., 2025].

2.2 MINIZINC & TEXT2ZINC

MINIZINC [Nethercote et al., 2007] is a high-level, solver-agnostic constraint modeling language
for discrete and continuous satisfaction and optimization problems. It provides a rich library of
global constraints that capture common CP patterns, allowing users to express problems declaratively
rather than through low-level decompositions. MINIZINC’s practical utility is enhanced by its clean
separation between models and instances. Given these features and the availability of existing
TEXT2ZINC[Singirikonda et al., 2025] datasets, we benchmark different approaches of NL4OPT on
MINIZINC execution accuracy and solution accuracy.

2.3 CP & Global Constraints

In CP, global constraints concisely represent recurring patterns like all-differentness, resource limits,
ordering, counting, etc., which are found across many scheduling, assignment, and configuration
problems. For example, all_different enforces that a set of decision variables all have distinct
values – a common requirement in scheduling and allocation problems. Other examples include
cumulative (which enforces scheduling resource capacity over time) and global_cardinality
(which limits how many variables take each value). Our approach GALA is designed to take advantage
of CP global constraints in an agentic LLM architecture as detailed next.

3 GALA: Global LLM Agents

Specialized LLM Agents per Constraint: For each type of global constraint, we instantiate a
separate LLM agent with a specialized prompt. This prompt primes the agent to act as an expert
in detecting and formulating that constraint in MINIZINC. The agent receives the full problem
description (and any input data) but its instructions are local: it should ignore the broader context
and only answer the question, “Does this problem involve an <X> constraint? If yes, produce the
MINIZINC snippet for it; if not, output FALSE.” Each agent is effectively performing a binary
classification (constraint present or not) followed by code generation for that constraint if needed.

2

Figure 1: GALA: Global LLM Agents architecture
for global-constraint detection and assembly.

Table 1: Performance of GALA on detection and false-
detection rates by global constraint type.

Critically, the agent is instructed not to produce any other modeling elements beyond its constraint.
For instance, the all_different agent is prompted: “You are a MINIZINC modeling assistant
specialized in detecting and modeling all_different constraints. Given a problem description,
decide whether it requires one or more all_different constraints. If it does, generate only MINIZ-
INC code specifying the all_different constraint and its variables. If it does not, return FALSE
with a brief reason.”. Similar templates are crafted for each global constraint type, incorporating
definitions and common clue words (e.g. phrases like "each ... different" hint at all_different, or
"no overlap" hints at cumulative). By isolating each agent’s focus, our main novelty is to simplify
the reasoning task leveraging CP global constraints. Unlike the previous agentic approaches,
our agents do not need to understand the entire problem structure, only whether a specific pattern
appears and how to encode it.

Assembler LLM for Model Integration: Once the constraint-specific agents have each returned
either a code snippet or FALSE, an assembler LLM takes over. The assembler’s input includes the
original problem description and all the constraint snippets (we call them “hints”) provided by the
agents that found a constraint. The assembler’s role is to compile a complete, coherent MINIZINC
model from these pieces. We prompt the assembler agent as if it were “the world’s best MINIZINC
programmer” tasked with integrating hints and filling in the gaps. Concretely, it must: (1) declare all
decision variables (and their domains) that are needed, possibly renaming or merging variables from
different snippets for consistency; (2) analysis and decide if to include provided global constraints or
not; (3) add any remaining constraints from the text that were not covered by the hints; (4) determine
the objective (if an optimization problem) or a satisfy goal, based on the description; and (5) append
a proper solve item and output format. The assembler may ignore an irrelevant hint if an agent was
mistaken, but in general, it tries to use all valid snippets. By design, this agent has the most complex
task, since it sees the full problem and must ensure completeness. However, because much of the
heavy lifting (expressing complex constraints) is done by the specialized snippets, the assembler can
focus on glueing components together and writing boilerplate code.

Figure 1 presents the overall architecture which is essentially a team of specialists: each constraint
agent independently proposes part of the model, and the assembler (acting as the principal architect)
reviews and integrates these contributions into the final solution. This approach aims to reduce the
cognitive load on any single LLM. Eech agent works on a local model of the structured sub-problem,
thanks to CP global constraints, instead of the entire text-to-model translation.

4 Initial Results

We conduct an initial evaluation of GALA, focusing on two aspects: (1) the ability of global agents
to correctly detect global constraints, and (2) the end-to-end performance of the agentic pipeline
compared to baseline prompting strategies and chain-of-thought (CoT) [Wei et al., 2022].

4.1 Performance of Global Agents

Table 1 reports detection performance for seven global constraint types using the open-source LLM
Phi4. We evaluate on all 567 instances from the TEXT2ZINC dataset [Singirikonda et al., 2025]. For
each constraint type, the detection rate is computed over the subset of instances whose ground-truth
model contains that constraint. As shown in the table, the average detection rates is around 70% to
80%. To estimate the false detection rate, we use 110 verified TEXT2ZINC instances and exclude
those whose ground-truth model includes the target constraint.

3

Model Strategy Execution Rate (count) Solve Rate (count) Avg Score
o3-mini GALA 57.27% (63) 32.73% (36) 45.00%
o3-mini CoT 52.73% (58) 30.91% (34) 41.82%

gpt-4o-mini GALA 33.64% (37) 17.27% (19) 25.45%
gpt-4o-mini CoT 31.82% (35) 12.73% (14) 22.27%

gpt-oss:20b GALA 17.27% (19) 8.18% (9) 12.73%
gpt-oss:20b CoT 16.36% (18) 10.00% (11) 13.18%
gpt-oss:20b baseline 11.81% (13) 7.27% (8) 9.54%

Table 2: Execution rate, solve rate (numbers of executed/solved instances in parentheses), and average score
across 110 TEXT2ZINC instances.

As shown Table 1, overall, our agents achieve strong detection rates, and false detection rates are
generally low for rarer constraints; the main exception is count (28.3%), suggesting that distinguish-
ing counting patterns from other numerical constraints remains a challenge. These results indicate
that the individual agents are reasonably effective, with room for improvement through stronger base
models or prompt optimization.

4.2 Performance of GALA on Text-to-Model Translation

In Table 2, we compare GALA with direct prompting (baseline) and chain-of-thought (CoT) across
three LLM configurations: OpenAI o3-mini [OpenAI, 2025b], gpt-4o-mini [OpenAI, 2023], and
the open-source gpt-oss 20B model [OpenAI, 2025a]. We execute each model and strategy on 110
verified instances from the TEXT2ZINC datasets [Singirikonda et al., 2025].

Agents consistently outperform CoT on the stronger models (o3-mini, GPT-4o-mini) across execution,
solve, and mean score, and remain competitive on the 20B open model. While CoT gives a clear
lift over the non-agent baseline on 20B, our first-pass global agents, with no model tuning, prompt
optimization, or hyperparameter search, match or slightly exceed CoT on the stronger models, and
substantially improve execution success overall. This supports the claim that the gains come from the
decomposition/agentic assembly itself rather than prompt or parameter scaling.

5 Future Work

Optimize Global Agents: Replace hand-crafted prompts with systematic optimization (automatic
search, curated few-shot exemplars, adversarial negatives) and consider fine-tuning per global
constraint to boost precision and recall. Pair these with compile-time snippet validation so each agent
not only detects constraints correctly but also emits syntactically valid MINIZINC.

Unblock the Assembler: Add a supervisor to extract variables and objectives before delegation, or a
post-hoc linker to unify names and deduplicate constraints. Build a systematic error taxonomy to
map where agents and the assembler succeed or fail, driving targeted fixes and feedback loops that
patch prompts or trigger regenerations, improving local correctness and global assembly coherence.

Scale Evaluation: Go beyond small models (e.g., Phi-4) by running stronger LLMs (e.g., GPT-4) and
sweeping both open- and closed-weight models across sizes. Benchmark on datasets rich in global-
constraint instances, currently 70% of TEXT2ZINC lacks them, to better showcase the approach and
reveal architectural headroom.

6 Conclusion

We introduce GALA: Global LLM Agents for Text-to-Model translation of satisfaction and opti-
mization problems. We leverage specialized LLM agents to global constraints and an assembler
to integrate them. Even in a first pass, without tuning, prompt engineering, or hyperparameter
search, GALA outperforms a carefully curated CoT on stronger models and improve executability
on the open 20B model, indicating that decomposition and agentic assembly are the key drivers of
gains. The approach is modular and immediately extensible: finer handling of subtle constraints,
compile-aware validation of snippets, and more robust staged assembly (conflict resolution, retry, and
self-rectification) are natural next steps. With systematic error analysis and targeted feedback loops,
we expect to turn this prototype into a robust and strong default for modeling co-pilots.

4

Acknowledgment

The National Science Foundation (NSF) partially supported the research under grant #2112533:
"NSF Artificial Intelligence Research Institute for Advances in Optimization (AI4OPT)" and grant
#2346058: "NRT-AI: Integrating Artificial Intelligence and Operations Research Technologies".

References
Ali AhmadiTeshnizi, Wenzhi Gao, and Madeleine Udell. Optimus: Optimization modeling using

mip solvers and large language models. arXiv preprint arXiv:2310.06116, 2023.

Parag Pravin Dakle, Serdar Kadıoğlu, Karthik Uppuluri, Regina Politi, Preethi Raghavan, SaiKrishna
Rallabandi, and Ravisutha Srinivasamurthy. Ner4opt: Named entity recognition for optimization
modelling from natural language. In International Conference on Integration of Constraint
Programming, Artificial Intelligence, and Operations Research, pages 299–319. Springer, 2023.

Serdar Kadıoğlu, Parag Pravin Dakle, Karthik Uppuluri, Regina Politi, Preethi Raghavan, SaiKrishna
Rallabandi, and Ravisutha Srinivasamurthy. Ner4opt: named entity recognition for optimization
modelling from natural language. Constraints, pages 1–39, 2024.

Kostis Michailidis, Dimos Tsouros, and Tias Guns. Cp-bench: Evaluating large language models for
constraint modelling. arXiv preprint arXiv:2506.06052, 2025.

Nicholas Nethercote, Peter J Stuckey, Ralph Becket, Sebastian Brand, Gregory J Duck, and Guido
Tack. Minizinc: Towards a standard cp modelling language. In International conference on
principles and practice of constraint programming, pages 529–543. Springer, 2007.

OpenAI. Gpt-4 technical report. 2023. URL https://arxiv.org/abs/2303.08774.

OpenAI. gpt-oss-120b & gpt-oss-20b model card, August 2025a. URL https://cdn.openai.com/
pdf/419b6906-9da6-406c-a19d-1bb078ac7637/oai_gpt-oss_model_card.pdf. Model
card.

OpenAI. Openai o3 and o4-mini system card, April 2025b. URL https://cdn.openai.com/pdf/
2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf. Sys-
tem card.

Rindranirina Ramamonjison, Timothy Yu, Raymond Li, Haley Li, Giuseppe Carenini, Bissan Ghaddar,
Shiqi He, Mahdi Mostajabdaveh, Amin Banitalebi-Dehkordi, Zirui Zhou, et al. Nl4opt competition:
Formulating optimization problems based on their natural language descriptions. In NeurIPS 2022
competition track, pages 189–203. PMLR, 2023.

Akash Singirikonda, Serdar Kadioglu, and Karthik Uppuluri. Text2zinc: A cross-domain dataset for
modeling optimization and satisfaction problems in minizinc. arXiv preprint arXiv:2503.10642,
2025.

Stefan Szeider. Cp-agent: Agentic constraint programming. arXiv preprint arXiv:2508.07468, 2025.

Dimos Tsouros, Hélène Verhaeghe, Serdar Kadıoğlu, and Tias Guns. Holy grail 2.0: From natural
language to constraint models. arXiv preprint arXiv:2308.01589, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-Thought prompting elicits reasoning in large language models. arXiv
preprint arXiv:2201.11903, 2022. URL https://arxiv.org/abs/2201.11903.

Ziyang Xiao, Dongxiang Zhang, Yangjun Wu, Lilin Xu, Yuan Jessica Wang, Xiongwei Han, Xiaojin
Fu, Tao Zhong, Jia Zeng, Mingli Song, et al. Chain-of-experts: When llms meet complex operations
research problems. In The twelfth international conference on learning representations, 2023.

5

https://arxiv.org/abs/2303.08774
https://cdn.openai.com/pdf/419b6906-9da6-406c-a19d-1bb078ac7637/oai_gpt-oss_model_card.pdf
https://cdn.openai.com/pdf/419b6906-9da6-406c-a19d-1bb078ac7637/oai_gpt-oss_model_card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://arxiv.org/abs/2201.11903

	Introduction
	Background and Related Work
	Holy Grail 2.0, NL4Opt Ner4Opt, & Optimus
	MiniZinc & Text2Zinc
	CP & Global Constraints

	Gala: Global LLM Agents
	Initial Results
	Performance of Global Agents
	Performance of Gala on Text-to-Model Translation

	Future Work
	Conclusion

