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ABSTRACT

Although advancements in face landmark detection (FLD) methods continue to
push performance boundaries, they overlook two major functional limitations:
(1) different network parameters need to be trained independently for each “N-
point” benchmark dataset, and (2) a model trained on an “/N-point” dataset reliably
outputs only the N landmarks. In our work, we first conceptualize Face Part-
Anchored Landmark Positions (FPALPs), wherein each landmark is treated as a
progression value between zero (start) and one (end) along a face part’s contour.
Every landmark can be expressed in the FPALP format, irrespective of its source
dataset, hence unlocking the ability to unify all “/NV-point” datasets into a single
dataset. Secondly, we represent each landmark with an FPALP-based query, refine
it progressively with a cross-modality decoder, and predict its coordinates based
on the final representation. Our approach, called Unified Dynamic FLD, embod-
ies these two design choices and streamlines the landmark detection pipeline by
enabling (1) a single model to learn on any number of “N-point” datasets, and
(2) yield any number of specific landmark predictions by loading the designated
landmark queries at runtime. Extensive experiments carried out on several bench-
mark datasets demonstrate that our approach can achieve the above benefits while
performing competitively with existing SOTA methods.

1 INTRODUCTION

Face landmark detection (FLD) aims to predict the coordinates of predefined landmarks in facial
images. Facial landmarks provide rich and diverse visual cues regarding face shape, face-part
positions, and pose information. These are essential for many downstream tasks such as 3D face
reconstruction (Wood et al., 2022} |Cai et al.,|2021)), face recognition (Juhong and Pintavirooj, 2017
Sarsenov and Latutal 2017), face expression recognition (Munasinghe, |2018}; [Ngoc et al.| |2020), and
more recently facial beauty predictions (Bougourzi et al., 2022; J. Iyer et al., 2021 and face make-up
try on (Marelli et al., [2022; [Kips et al., 2021} |Li et al., 2019;|Sanapala and Angel Arul Jothi}, 2024)).

Despite being at the core of numerous applications, FLD algorithms suffer from major inherent
drawbacks at both the training and prediction stages due to a rigid adherence to the landmark layout
defined by the training dataset. Facial images are annotated with different landmark definitions across
datasets such as AFLW (Zhu et al.} 2015) (19/21 points), 300W (Sagonas et al., 2013)) (68 points),
and WFLW (Wau et al.| 2018) (98 points). Generalizing, we denote an FLD dataset that defines a
unique face layout of N landmarks as the term “/V-point” dataset. Prior works (Xia et al.|[2022; |Zhou
et al.,|2023} [Huang et al., 2021} [Li et al., 2022) have advanced FLD performance on these datasets by
training on them individually using separate backbones and/or regression heads, and designing the
networks to output only the dataset-specific N points. We denote the above as the separate model
and common backbone paradigms (see [Figure T)) and investigate their demerits in detail below.

Theoretically, each “/N-point” dataset can specify facial landmarks according to mutually exclusive
semantic definitions. Here, the specialist nature of the separate model paradigm may outweigh the
benefits of a model that was trained on multiple datasets through the common backbone paradigm, as
only low-level features might be shared. In reality, we observe that this assumption does not always
hold true. As an example, in[Figure 2 we overlay the landmark predictions output by SLPT (Xia
et al.}[2022), a state-of-the-art FLD method, that was trained separately on three benchmark datasets;
AFLW19 (Zhu et al.| 2015}, 300W (Sagonas et al.,|2013)), and WFLW (Wu et al., 2018). We make
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Figure 1: A comparison of the end-to-end train-
ing pipeline of prior works’ separate model
and common backbone paradigms to the sin-
gle model paradigm implemented by our Uni-
fied Dynamic Face Landmark Detection method.
BB, RH, and D denote backbone, regression
head, and number of datasets, respectively.
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Figure 2: (a) An overlay of the facial landmarks
in the AFLW (19-point), 300W (68-point), and
WFLW (98-point) formats. The landmark defini-
tions across different datasets are observed to be
non-mutually exclusive and strongly semantically
related via face parts. (b) Landmarks (excluding
pupils) of the WFLW format expressed as Face

Based on Face Part-Anchored Landmark Posi-
tions, our network can train on the combination
of multiple “/N-point” datasets and execute an
unlimited number of landmark predictions.

Part-Anchored Landmark Positions. Each gra-
dient curve transitioning from white to a darker
colour indicates the progression from the start to
the end of a face part boundary.

two critical observations: (1) facial landmark annotations are semantically anchored to face parts
such as eyes, lips, nose, etc., and (2) are often defined to be evenly spaced along a face part boundary
(Wu et al.| 2018}, [Yang et al.,[2024). These cause the landmarks in the different “/N-point” datasets
to be non-mutually exclusive and strongly semantically related. Based on these observations, we
conceptualize Face Part-Anchored Landmark Positions (FPALPs), in which each facial landmark
is first associated with one or more distinct face parts and then assigned a value between 0 and 1
designating a progression point between the start and end of the face part boundary, respectively. We
illustrate FPALPs in[Figure 2P| wherein most facial landmarks of the WFLW format
are anchored to 9 distinct face parts. By indexing facial landmarks as FPALPs calculated on the
union of all landmark definitions across the different benchmark datasets, we enable unified FLD: the
ability of an FLD model to be trained end-to-end on the combination of all the considered datasets.

As noted earlier, during inference, FLD methods trained on an “/N-point” dataset outputs only N
facial landmarks. Such output rigidity is non-optimal for downstream applications like face direction
estimation (AI-Nuimi and Mohammed}, 2021}, [Souley Dosso et al,[2022) and FLD stabilization in
videos (Jin et al., [2020; Wu et al., 2021) that may utilize only a few sparse facial landmarks, and
restrictive for applications like face image animation that require a higher density
of accurate facial landmarks. Although higher facial landmark density can be naively achieved using
interpolation methods, the output accuracy is dependent on a higher N since face parts have non-linear
shape. To this end, we construct facial landmark queries on demand using the combination of their
FPALPs and the text embedding of the containing face parts, and feed them to a cross-modality
decoder-regressor to enable dynamic FLD: the ability of an FLD model to output the predictions of
only the queried landmarks.

Revisiting [Figure 1] our Unified Dynamic FLD,
which is founded on the concept of FPALPs,
executes a single model paradigm that can be
trained on the combination of diverse “/N-point”
datasets, and can yield any number of specific

Table 1: An efficiency comparison of different
face landmark detection paradigms. D denotes the
number of unique “/N-point” datasets. 3, H, and
E¢ denotes the backbone, regression heads, and
landmark query encoder respectively.

facial landmark predictions at inference time. In : _ Efficiency
. . FLD Paradigm Training Inference Storage Landmark
we compare the efficiency of the single Cycles | Caloulation | Parameter |Throughput
. . Separate Model D D, D D, D N
model paradigm of our method with the separate oo gosbone | b B | EriH N
model and common backbone paradigms exe-  Single Model Ous)| 1 |[IB+ 1 + 15|15+ 1M+ 1Eg| 0o
(Eq << H) (Eq << H)

cuted by prior work, when trained on D number
of unique “/N-point” datasets. Visibly, our method is the most efficient since it is agnostic to D on all
the considered factors, and is the most versatile since it offers demand-specific landmark throughput.
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Our contributions and their benefits are summarized below:

1. We propose the Face Part-Anchored Landmark Positions (FPALPs), an intuitive represen-
tation of face landmarks that are evenly distributed on well-defined face part curves. The
FPALP format is universal and allows for compatibility with all existing and future datasets.

2. To the best of our knowledge, our work using FPALPs is the first to enable, without auxiliary
dataset information, Unified FLD: the ability of a model to be trained end-to-end on the
fusion of multiple “N-point” datasets. We demonstrate increased model generalization by
training on a larger, more diverse combined dataset offering higher landmark heterogeneity
through the unification of various “/N-point” formats.

3. We propose a novel FPALP-based landmark queried regressor to enable Dynamic FLD, i.e.,
unlimited on-demand landmark prediction without network retraining.

4. We demonstrate through extensive experiments that our work not only unlocks the numerous
benefits of Unified Dynamic FLD but also achieves competitive performance compared to
existing state-of-the-art methods on several benchmark datasets.

2 RELATED WORK

Targeting Fundamental Performance Improvements. Recent face landmark detection (FLD)
methods can be categorized into direct coordinate regression methods (Li et al., 2022} |Xia et al.,
2022; L1 et al.| [2020) and heatmap-based regression methods (Huang et al.l 2021 [Zhou et al.|
2023} [Kumar et al., [2020). While each approach has advantages and disadvantages, they target
different challenges to achieve performance improvements. AnchorFace (Xu et al.,|2020) proposes a
split-aggregate strategy using anchor templates to tackle landmark uncertainty in large pose faces.
ADNet (Huang et al.,2021) and STARLoss (Zhou et al.| 2023)) address the semantic ambiguity in
landmark annotations by suppressing the associated disentangled loss component for landmarks with
an anisotropic distribution. DTLD (Li et al., 2022)) and SLPT (Xia et al.,[2022) adaptively leverage
the underlying inter-landmark structural relationship to improve localization performance, especially
on occluded landmarks. Meanwhile, PIPNet (Jin et al.| |2021) performs simultaneous heatmap
regression and offset predictions to speed up inference while achieving competitive localization
accuracy. Orthogonal to these efforts, our work aims to deliver the aforementioned unified and
dynamic FLD properties to induce robustness and versatility at the system level.

Approaches to Ameliorate the FLD Pipeline. Prior works have also surfaced the issues of immis-
cibility of the various “/N-point” annotation schemes across datasets (Wu et al., 2018} |Yang et al.,
2024), and the infeasibility to infer landmarks beyond those N defined by the training dataset (Yang
et al.| |2024; |Chandran et al., 2023)). LAB (Wu et al., 2018)) represented facial structure using 13
boundary lines, theorized that facial landmarks across datasets can be interpolated within these lines,
and performed landmark regression using the common backbone paradigm. LDDMM-Face (Yang
et al.}2024) assigned landmarks on mean face templates to semantic boundary curves called flows
and used flow-wise deformation layers to predict the final landmarks. The limited adaptation between
different annotation schemes was achieved through affine transformation between the source and
target mean faces. FreeEnricher (Huang et al.,2023)) employs a patch refinement network operates on
contextual patches centered on interpolated face landmarks along a given face part curve and predicts
offsets to align them with the true face part boundary. Since the enrichment process is decoupled from
the base landmark prediction network, its efficacy is highly dependent on the accuracy of the base
landmark predictions that define the initial face part curve. Recently, CLD (Chandran et al., [2023)
proposed a pipeline that ingests a facial image and arbitrary 3D query locations on a canonical face
shape to output the corresponding and possibly continuous 2D landmark coordinates. Although CLD
could be trained with multiple datasets, its success is highly dependent on a large collection of densely
annotated face datasets having 3D canonical landmark mappings. While a more detailed comparison
is provided in Appendix [A.5] we briefly contrast it here to highlight our single-model paradigm,
which trains end-to-end with only sparsely annotated 2D landmark datasets and performs dynamic
and direct inference to any arbitrary landmark format without manual transformations. Furthermore,
our Face Part-Anchored Landmark Position-based landmark queries are easily interpretable and
allow for unconstrained interaction with text-based or agentic downstream applications.
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Figure 3: An overview of our proposed framework. First, we associate user-defined face parts to
the required landmarks and calculate their Face Part-Anchored Landmark Positions (FPALPs). The
FPALPs and the face parts’ text are encoded and aggregated to yield the image-agnostic landmark
encodings. The facial image’s visual features are then conditioned on these encodings to output the
initial landmark queries and coordinate predictions. Lastly, a cross-modality decoder block iteratively
refines the landmark queries and coordinate predictions to output the final values.

Generalist Face Models. Another line of research aims to simultaneously perform facial tasks such
as landmark detection, age/gender/head-pose estimation, and face parsing using multi-task learning.
Early works like HyperFace (Ranjan et al., 2016) and AIO (Ranjan et al.,|2017) utilized multi-scale
features from various CNN layers and executed upto 7 face tasks at once using task-wise heads.
Recently, FaceXFormer (Narayan et al., 2024} and Faceptor (Qin et al.,2024) treated face tasks as
tokens in transformer-based architectures (Vaswani et al., 2017} containing unified task and pixel
decoders. These on-demand task-expandable generalist face models train on the fusion of diverse
task datasets. However, for the FLD task, they still train separately on the “N-point” datasets and
yield only a fixed NV output. Our unified dynamic FLD method can be readily integrated into existing
generalist face models to streamline their FLD division.

3 METHODOLOGY

Our proposed Unified Dynamic Face Landmark Detection framework is inspired by Grounding DINO
(Liu et all, 2023) and is illustrated in[Figure 3| First, we introduce Face Part-Anchored Landmark
Positions (FPALPs), a supplementary representation of facial landmarks from the viewpoint of face
part boundaries. Next, we describe how we construct image-agnostic landmark encodings using
FPALPs and combine them with facial image features sourced from an image encoder to initialize
the landmark queries and the primitive coordinate predictions. Lastly, we elucidate the process of
iterative query refinement to yield the final landmark representations and coordinate predictions.

Face Part-Anchored Landmark Positions (FPALPs). As prior work (Wu et al.l 2018} |Yang et al.,
2024) have noted and illustrated by us earlier in facial landmarks specified by benchmark
datasets that we consider, i.e., AFLW (Zhu et al.l [2015), WFLW (Wu et al., 2018)), and 300W
(Sagonas et al.,|2013), are bound to face part boundaries in an evenly spaced manner. To leverage
this observation, we conceptualize Face Part-Anchored Landmark Positions (FPALPs). Here, each
landmark is associated with one or more containing face parts and is represented as a progression
value between 0 and 1 denoting its fractional position within the containing face part curve. Since
each “N-point” dataset can define its face template with different landmark layouts and different
start and end positions for the various face parts, we first create a unified face template by taking the
union of the face templates of all datasets. Formally, we denote the face template for dataset D;, out
of D considered datasets, having /N; number of landmarks, as Tp,, and the unified face template
asTy =Tp, UTp, U...UTp,. Ty consists of Ny number of landmarks clusters each of which
indicates a landmark’s proximity across the D datasets. While this may seem inexact, we observed a
clean alignment between the face templates resulting in tight proximal landmark clusters having an
average intra-cluster distance of 2.22 pixels averaged over all face parts.

We split Ty into P face part templates, Ty = Tp, UTp, U ... U Tp,,, each consisting of member
landmarks to represent user-defined face part curves such as left/right eye(brow), face contour,
inner/outer lip, etc. Face part curves can be open (e.g., nose bridge, face contour) or closed (e.g., eyes,
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Figure 4: Illustration of the construction of Face Part-Anchored Landmark Positions (FPALPs) for
the landmarks of the left eyebrow and the right eye closed curve face parts.

lips). For closed curve face parts, we create a copy of the starting landmark in the curve sequence and
signify it as the ending landmark for that sequence. In[Figure 4] we exemplify the following FPALP
formulation using the left eyebrow and right eye face part curves. For a landmark [ positioned at
pos, ,, within a sequence of N, landmarks that compose the face part p with template 7},, we define
the FPALP of [ as FPALP; ;, = pos; ,/(Np — 1).

Image-Agnostic Landmark Encodings. To achieve dynamic face landmark detection, we represent
target landmarks as landmark queries. To this end, we construct initial image-agnostic representations
which conceptually capture the landmarks to be queried. Firstly, we encode FPALPs using a simple
MLP with ReLLU activation. Next, we input the face part name into a lightweight pretrained text
encoder to get its textual representation. Finally, we derive the image-agnostic landmark encodings
as the summation of the encoded FPALPs and the face part textual representations. Formally, for a

landmark [ in the face part p, the image-agnostic landmark encodings Eéﬁ are derived as:

E%)DALP = MLP(FPALP, ), EY, . = Encex(p), E?ﬁ; = E%DALP + Bl (D

fents Eéf; € R% and d is the encoding dimension. In lieu of Enciet, we could
use learnable embeddings to yield the face part representations. We hypothesize that pretrained text
encoders are more superior since they may already encode the semantics of facial layouts. In Sec. .2}
we compare both the options and corroborate that using pretrained text encoders is the better choice.

l,p P
where Epp, 1 p, B

Landmark Query Initialization. Effective initial landmark queries should capture the required land-
marks’ proximity specified by their semantic definitions. To this end, we condition the facial image’s
visual features with the image-agnostic landmark encodings in the following manner. First, we utilize a

pretrained image encoder to output the facial image features Ey € R *Werxd where (Hg,, Wg,)
. . . Hp, W,

represents the spatial resolution of the image features. Let Gg, = {(zf j,yfyj)}i:?j:(f !

represent the grid of the image-space center coordinates corresponding to ;. Next,
we derive the attention map A of the visual features with respect to the required image-agnostic
landmark encodings Ej4 € RLXd wwhere L denotes the number of landmarks to be queried, as
A = Softmax(Er - EL,), where A € RHT*We; XL and the softmax is applied along the Hp;, x W,
dimension. Here, A reflects the activation of the visual regions that correspond to the required
landmarks’ image-agnostic landmark encodings. We obtain our initial landmark queries Qo € R**¢
and initial coordinate predictions Cy € RE*2 by taking the weighted mean of E; and G g, using

the attention map A, respectively. Formally, given grid center coordinates (xf 2 Y5, j) € Gg,, for

RHEI XWEI X2

a required landmark € [0, L) with a corresponding attention map A' € R¥2:*Wer | the initial
landmark query LQ% and initial coordinate prediction C}, are derived as:

Hp, .Wg, Hg, . Wg, Hp, Wg,
o= >, A-E Ci = Al -xg L
) 5] B ) ) )
LQO 1,] L j» 0 ( 7 /IR 1,7 ylj) ()
i=0,j=0 i=0,5=0 i=0,7=0

Landmark Query Refinement. We employ a cross-modality transformer decoder, as depicted in the
third block of to iteratively hone the landmark queries and the predicted coordinates. This
block consists of n4.. decoder layers, the first of which consumes L), and Cj, while the later layers
consume the output of the previous layers to implement iterative refinement. At layer dec;, we first
execute self-attention on the landmark queries L@ ;... _; to exploit the inter-landmark dependencies.
Then, we deploy a deformable attention layer that consumes the locations Clec; —1
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and performs targeted cross-modality attention between the image features and the queries from the
previous step. To reinforce the alignment between the queries and the semantic definitions of the
required landmarks, we execute a cross-attention layer between the queries from the previous step
and the image-agnostic landmark encodings E74. Finally, we deploy a feed-forward network to yield
the decoder layer’s query output L@ ..., , operate an MLP on it to derive the coordinate offsets with
respect to C'yec,—1, and calculate the coordinate predictions as Clye.,. For brevity, we assume the
reader to be aware of the transformer-related notations and formulations, and elucidate the above
process using simplified equations as below:

LQ??Q = Self Attn (L Q g, — 15 LQ gec,— 1> LQ dec,— 1) 3)
LQEI = DeformableAttn(LQ5. , Er, Er, Cec,—1) 4)
LQSA = CrossAtin(LQ5ICY  Era, Era) )
LQ e, = FN(LQ L)) 6)

Caece, = Cdec;—1 + MLP(LQ 4,...) )

where dec; € [1, nge] and the first three inputs to the layers in [Equation 3H5|respectively assume the
roles of query, key, and value in the attention mechanism.

Given the ground truth coordinates of the required L landmarks C' g7 € RL*2, we supervise both
our intermediate and final coordinate predictions Cye., Where dec; € [0, n 4] using the Wing Loss
(Feng et al.,[2018) as £ = Y% _ WingLoss(Cec,, Car).

dec;=

4 EXPERIMENTS

Datasets. We train and evaluate our framework on three benchmark datasets: AFLW (Zhu et al.|
2015), 300W (Sagonas et al.l 2013), and WFLW (Wu et al.l 2018). AFLW focuses on coarse
annotations for in-the-wild images and comprises of 20000 training and 4386 test facial images, each
annotated with 19 landmarks. 300W is collected from five facial datasets and contains 3148 training
and 689 test facial images, each annotated with 68 landmarks. The test set is further divided into
common (554 images) and challenging (135 images) subsets. WFLW is collected from WIDER Face
(Yang et al.,[2016) with an emphasis on challenging poses, expressions, and occlusions. It consists of
7500 training and 2500 test images, each annotated with 98 landmarks. For cross-dataset evaluation,
we consider COFW (Burgos-Artizzu et al.,2013)), which contains 507 test images each annotated
with 29 landmarks, COFW68 and WFLW68, the 68 landmark variants whose face template matches
that of 300W. Collectively, these datasets provide images with diverse levels of expression, pose, and
occlusion, making them effective to evaluate a model’s generalization ability.

Implementation Details. Facial images from all datasets are cropped using the given bounding boxes
and resized to either 224 x 224 (ViT-B) or 256 x 256 (ResNet) depending on the image encoder.
Following prior works (Jin et al.,|2021; |Li et al., 2022} |Qin et al., 2024)), bounding boxes are enlarged
by 10% to include more contextual information. Data augmentation methods including random
rotations (£15°), scaling (+20%), horizontal flipping, and translation (£10 pixels), are employed to
improve model robustness by simulating real-world variability.

We employ the lightweight pretrained SentenceBERT (Reimers and Gurevych, |[2019) as the face part
text encoder, FaRL (Zheng et al., 2022)) pretrained ViT-B (Dosovitskiy et al.,|2021) or ResNet (He
et al., 2016)) as the facial image encoder, 3 decoder layers (n4..), €ach with 8 attention heads, and
a model-wide feature dimension d = 256. During image cross-attention, 4 features per head are
sampled from each level of the image feature maps for each query. We train the model end-to-end on
an NVIDIA A100 GPU (40GB) for 32 epochs, with a batch size of 16, using the Adam optimizer with
a learning rate of 10~* and a weight decay of 10~°. The learning rate is lowered to 10~ from the
25th epoch. The image and text encoders are trained at a tenth of the running learning rate. Details
on the dataset sampling strategy can be found in Appendix [A.9]

Evaluation Metrics. Following prior works (Jin et al., 2021} |Li et al.,|2022; | Xia et al., [2022)), we
evaluate the face landmark detection methods using the Normalized Mean Error (NME) percentage.
NME measures the L2 distance between the predicted and true landmarks and is normalized by either
the inter-ocular distance (NME ;,ter— ocuiar), Which is used for evaluation on 300W and WFLW, or
the diagonal distance of the facial bounding box (NME 4;,,4), which is used for evaluation on AFLW.
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Table 2: Comparison of our Unified Dynamic Face Landmark Detection approach with SOTA
methods on the WFLW, 300W, and AFLW-19 datasets. Our method enables fused dataset training
and dynamic landmark prediction with a negligible 0.05 — 0.1% performance drop compared to
SOTA methods on the full version of the datasets.

Method Trair}f;d w/| Fused | Dynamic |[WFLW 300W AFLW-19
Method T Additional | Dataset | Landmark| Full Common Challenge Full Full
ype Datasets | Training | Prediction NMEinter-ocutar + NMEgiag ¢
FaceXFormer (Narayan et al.[2024) Generalist v X X - 2.66 4.67 3.05 -
Faceptor (Qin et al.||2024) v X X 4.03 2.52 425 2.86 0.95
PIPNet (Jin et al.|[2021) X X X 4.31 2.78 489 3.19 1.42
ADNet (Huang et al.[[2021) X X X 4.14 2.53 458 293 -
SLPT (Xia et al.|[2022) X X X 4.14 2.75 490 3.17 -
DTLD+ (Li et al.|[2022) Specialist X X X 4.05 2.60 448 296 1.37
STAR Loss (Zhou et al.|[2023) X X X 4.02 2.52 432 287 -
Ours (ViT-B) Specialist X v v 4.07 2.59 450 296 1.04

4.1 COMPARISON WITH SOTA METHODS

Our intention in providing quantitative comparisons with SOTA methods is to demonstrate the
competitiveness of our framework, not to establish new benchmarks. Our main contribution is the
enablement of the unified and dynamic FLD features. Additionally, as most prior works are not
open-sourced and use different backbones, direct adaptation for fair comparison is challenging.
Hence, for transparency, we cite their reported performance and explicate our model configuration.

Individual Dataset Evaluation. We compare our Unified Dynamic Face Landmark Detection (FLD)
framework against SOTA methods and present the results in We include the generalist
approaches that use additional datasets from other tasks for reference purpose only. As seen from
the table, our best model enables the training on the fusion of multiple training datasets and allows
for dynamic landmark prediction, while performing on-par with prior works with a minor drop
of 0.05 — 0.1% in NME on the full version of all datasets. The negligible performance drop
across multiple datasets further corroborates a well-defined alignment between the face templates of
the considered datasets and proves that Face Part-Anchored Landmark Positions are conceptually
applicable to the FLD task.

Cross-Dataset Evaluation. To verify the gen- Table 3: Cross-dataset evaluation comparison.
eralization ability of our approach, we conduct Models are supervised only on 300W.

a cross-dataset evaluation on the COFW68 and  Method 300WNC1\?I§W68 WiLWGS
: : inter-ocular

WFLW68 datasets using our model tralned~ only  TABWu et al0TS] 349 460 -

on the 300W dataset, and present the results in[Ta] ~ AVSw/SAN(Qian ct al.|2019)| 3.86  4.43

[ble 3] Our method with the ResNet backbones fare =~ DAG(Lietal.{2020) 304 422 -

. . PIPNet(Jin et al.|[2021) 3.36 4.55 8.09
approximately on par with SOTA on the 300W and DTLD (Li et al 12023 307 442 723
COFWG68 datasets. Using the ViT-B backbone, we Ours (ResNet18) 317 488 7.36

monstr: I n ienificantly improvin Ours (ResNet101) 3.13 4.8 7.22
demonstrate robustness by significantly improving Outs (VILBy 303 ad6 o1

performance on the challenging WFLW68 dataset,
which includes facial images with extreme poses,

' ‘ Table 4: Ablation study on training datasets as a
expressions, occlusions, and makeup.

cross-dataset evaluation. * indicates exclusion of

undefined landmarks not defined in the template.
AFLW-19 |[300W WFLW COFW WFLW68 COFW68

4.2 ABLATION STUDIES Training Datasets NMEqg NMEiperocutar
300W 2.25% 3.04 647% 3.85% 6.11 4.46
‘WFLW 2.44% 4.14 4.12 3.74 393 473

Our model is trained on a fusion of AFLW19, 0¥ Wiw . amwio] Tos |20 07 38  4s  an
300W, and WFLW, and we conduct a dataset ab-

lation study to assess the contribution of each dataset to overall performance (Table 4). The study
evaluates the impact of training on salient dataset combinations and tests on individual datasets.
Notably, when the evaluation dataset uses a different ” N-point” template than those seen during
training, the setting is effectively near zero-shot, as many Face Part-Anchored Landmark Positions
(FPALPs) in the target dataset are unseen. Our approach is the first to conduct such cross-template
evaluations without resorting to manual interpolation techniques. The results indicate that training on
all datasets combined yields the best performance across most datasets, except for WFLW68, where
the best performance is achieved by training solely on WFLW. We attribute this to the reduction of
non-critical landmarks in the transition from the 98-point to the 68-point template and the dilution of
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challenging samples when additional datasets are introduced. It is essential to acknowledge that the
effect of incorporating new training datasets can vary based on alignment between the distribution and
label quality of the training and evaluation datasets. The observed performance gains from training on
datasets with diverse face templates suggest that exposure to different FPALPs enhances the model’s
ability to effectively represent face part curves and generalize across varied facial structures and
ambient conditions.

Choices for Face Part Representation. In this o —
study, we investigate the impact of choosing how Lesrable mbedings
face parts are represented to yield EY,, in|Equa} s

We present two options: (1) training learn-
able embeddings, or (2) leveraging the output of

pretrained text encoders. The former might seem

w
o

3.0x faster

«
)

WFLW Evaluation NME

IS
n

as the default option given the limited amount of 2.4 faster

face parts that can be encoded. We contend that, %74_7%
although simpler, training with learnable embed- 4o} - - - - — -
dings may not capture the nontrivial semantics Training Iterations

of facial structure, such as the relati.ve pqsitions Figure 5: A comparison of training curve plots
of face parts, the inter-face part relationships dur- 1. using learnable embeddings vs. Sentence-

ing facial expressions (e.g., the squinting of the  BERT (Reimers and Gurevych, 2019) to repre-
eyes and broadening of the lips during a laugh), ..t face parts.

and interactions with makeup and accessories. We

postulate that text encoders that are trained on  Taple 5: Performance comparison using learn-

diverse corpora encode these intricacies. In able vs. SentenceBERT (Reimers and Gurevych|
ure 5 we compare the training curve plots of the  p(T9),

mOde] When using leamable embeddings versus AFLW-19 [300W WELW COEFW COFW68
SentenceBERT (Reimers and Gurevychl 2019), Query Type NMEgigg NMEiner-ocutar 4

a lightweight pretrained text encoder, and in Learnable 109 13.04 427 379 436
we compare their performance at conver- Language | 104 [296 407 357 4.30
gence. The usage of SentenceBERT to represent face parts results in a faster convergence and a more
performant model, thereby corroborating our earlier thesis and proving to be the superior choice over
learnable embeddings.

Impact of Image Encoder. We analyze the impact of different image encoders, including ResNet18,
ResNet101, and ViT-B, on the overall performance of our model as well as its generalization ability.
In we display the results of our model with different backbones when trained on the fusion
of the considered datasets. Although ViT-B proves to be superior on most of the evaluation datasets,
it is noteworthy that both ResNets perform competitively, at a fraction of the size of ViT-B. This
suggests that the availability of diverse “/N-point” training datasets is of higher importance than
the capacity of the image encoder to achieve an overall high-performing model. In we
present the results of a cross-dataset evaluation conducted by training our model only on 300W, with
different image encoders, and report its performance on 300W, COFW68, WFLW, WFLW68, and
WFLW g, whose face template contains only the 28 points that are absent/undefined in 300W. We
observe that as the image encoder’s capacity increases, the performance improves drastically on most
datasets, especially on the WFLW g variant where our model executes zero-shot evaluation since
the landmarks (and their corresponding FPALPs) are unseen during training. As we constrained our
model training to only 300W, the result of this experiment suggests that the generalization ability of
our model is dependent on the capacity of the image encoder.

Table 6: (a) Performance comparison of our model trained on the fusion of all considered datasets
when using various image encoders. (b) Cross-dataset evaluation with our model trained only on
300W when using different image encoders. WFLW g, refers to the WFLW dataset containing only
the 28 points that are absent/undefined in 300W.

Image AFLW-19 |300W WFLW COFW COFW68 Method 300W COFW68 WFLW68 WFLW WFLW g

Encoder Nl\'/IEdiug \L Nl\"IEinter-ocular l Nl\’/IEimcrfocular \l/

ResNet18 1.07 3.00 439 377 4.53 ResNet18 | 3.17 4.88 7.22 7.60 7.96

ResNet101 1.04 292 425 371 4.47 ResNet101| 3.13 4.80 7.36 7.69 7.70

ViT-B 1.04 296 4.07 3.57 4.30 ViT-B 3.03 4.46 6.11 6.47 6.66
() (b)
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Figure 6: An illustration of the dynamic landmark prediction capability of our system. Images are
selected from the WFLW (98-point) test set. We anchor the landmarks to the following face parts: left
and right eyes, eyebrows, and pupils, inner and outer lips, face contour, nose bridge and boundary. For
(e), we split the face contour, lips, and nose boundary into left, center, and right sub-parts. Landmark
predictions per face part are depicted using (a)-(c) a granularity multiplier of 0.5, 1, and 4 respectively,
(d) 4 landmarks per face part, and (e) a granularity multiplier of 0.5, 1, and 2 for left, center, and right
sub-parts whose landmarks are color coded as red, green, and blue respectively.

4.3 DYNAMIC LANDMARK PREDICTION

In this section, we qualitatively assess the output of our Unified Dynamic Face Landmark Detection
system. Using our model trained on the fusion of the considered datasets, we depict a variety of
dynamic landmark prediction configurations on images from the WFLW test set in [Figure 6| In
contrast to prior works, which can only output a fixed landmark layout as in del
can predict landmarks pertaining to user-selected face parts and, furthermore, at various granularities
within and across face parts, hence demonstrating its versatility and
applicability to an assortment of downstream applications. We observe that landmark predictions for
face parts with higher FPALP diversity, such as the face contour and the eyes, are more accurate than
those with lower FPALP diversity, such as the nose boundary. A larger diversity of face templates
within the combined training dataset increases the exposure to different FPALPs and empowers
the model to accurately predict landmarks at higher granularities. Additionally, incorporating loss
components that enforce appropriate distribution of landmark predictions across the input FPALPs
could further enhance prediction quality — a direction we leave for future work.

5 DISCUSSION AND CONCLUSION

Limitations. We acknowledge the likelihood of an imprecise alignment of the individual datasets’
face templates during the construction of the unified face template, which may hinder the scalability
of the FPALP formulation. We note from the resiliency of our model, which is trained on the
alignment of three different (14, 68, and 98-point) face templates, that only an approximate alignment
is necessary for effective face part curve learning. In cases of large misalignment, new face parts can
be defined to contain the introduced landmarks. Meaningful inter-face part relationships with the
misaligned face parts can still be forged via the landmark query refinement process in our model.

Future Work. An extension of our work can be the construction of 2D FPALPs (detailed in
Appendix [A-8) to capture face part surfaces and leverage the query features to track facial artifacts
like acne, moles, and wrinkle lines. Research on integration with vision-language and generalist face
models may allow for text- or visual prompt-based face part creation, automated landmark-to-FPALP
registration, and generation of the unified face template, leading to a more versatile face landmark
detection component within a robust face analysis system.

Conclusion. In this paper, we present our Unified Dynamic Face Landmark Detection method,
wherein landmarks are treated as progression points on user-defined face parts, allowing for end-to-
end model training on the fusion of diverse “/N-point” datasets and execution of unlimited on-demand
landmark predictions. With a performance competitive with to SOTA methods, our simple, yet
adaptable framework is positioned to meet the requirements of various downstream applications that
depend on a wide range of precise face landmarks.
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A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

A.1 RELEVANCE AND STRENGTH OF CONTRIBUTION

Our work addresses critical limitations in current 2D face landmark detection (FLD) methods and
provides an efficient, semantically flexible alternative to both dense and traditional sparse approaches:

* Unified Training Across Datasets. We introduce the FPALP representation, which enables
a single model to be trained across heterogeneous landmark templates without requiring 3D
priors or costly alignment procedures. This overcomes the fragmentation seen in prior work,
where separate models are typically needed for different datasets.

* Dynamic, Semantic Landmark Prediction. Unlike fixed-protocol models or dense outputs,
our method supports flexible, part-based landmark queries. This design offers interpretability
and adaptability for downstream tasks that demand only specific landmarks or face regions.

* Purely 2D Supervision. Our method operates entirely within the 2D domain, without
relying on 3D annotations or model-based priors. This makes it more scalable and accessible
in real-world applications where 3D data is limited or unavailable.

* Improved Generalization and Regularization. Training on diverse datasets with different
landmark configurations serves as a natural regularizer, promoting robustness and reduc-
ing overfitting. The FPALP structure aligns these heterogeneous protocols into a unified
representation that supports generalization to unseen templates.

¢ Compatibility with Sparse-to-Dense Learning. Our model supports zero-shot or near-
zero-shot generalization across protocols. It can be trained on sparse landmarks and still
perform well on denser configurations, laying the groundwork for bridging sparse and dense
paradigms in a single framework.

* Suitability for Low-Resource Deployment. Dynamic 2D FLD is particularly advanta-
geous for edge and mobile devices, where lightweight, semantically interpretable, and
adaptable models are essential. Our method meets these requirements, while 3D-based
approaches—due to their reliance on dense meshes, heavy computation, and 3D priors—are
ill-suited for such environments. By avoiding these constraints, our framework provides a
practical and efficient solution for real-world deployment.

A.2 LIMITATIONS CONTINUED

From our ablation studies, we infer that the generalization ability of our model, which we define
as its capacity to accurately predict landmarks at unseen Face Part-Anchored Landmark Positions
(FPALPs) - is influenced by both the diversity of training dataset face templates and the range of
facial and ambient conditions. Training on a broader variety of datasets with distinct landmark
layouts, rather than simply increasing the number of datasets with similar layouts, is likely to yield
a more generalizable model. However, as discussed in the dataset ablation section, incorporating
additional training datasets may enhance overall generalization but could also diminish performance
on specific evaluation datasets if the training and evaluation datasets differ significantly in facial and
ambient condition distributions or label quality.

We also note that FPALPs are constructed using native dataset annotations. These annotations along
face part boundaries often represent semantic progression points in 2D space. However, landmarks
generated through interpolation techniques may not align with those predicted via evenly spaced
FPALPs. For instance, consider a front-facing view of a person whose jawline narrows near the chin.
Landmarks sampled along the true jaw contour may increase in density as they approach the chin.
While these landmarks may appear equidistant in the profile view, they may not be evenly spaced in
the frontal view. Consequently, we are unable to quantitatively evaluate our method on benchmarks
that employ higher-density landmarks derived through interpolation, as it becomes challenging to
objectively identify the cases we described above.

A.3 EXCLUSION OF DATASETS

Our framework is trained and evaluated on AFLW19 (Zhu et al., 2015), WFLW (Wu et al., 2018)),
and 300W (Sagonas et al.,|2013)), with additional evaluation conducted on COFW (Burgos-Artizzu
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et al.,|2013) and its variants. However, we exclude COFW from the training set due to observed
inconsistencies in annotation quality. Preliminary experiments indicated that including COFW not
only degraded the overall performance across all datasets but also adversely impacted the quality of
denser landmark predictions. We also do not evaluate on the Enriched 300W test set proposed in
(Huang et al., |2023) as its annotations are derived through interpolation-based methods, as discussed
in the[A.2]above.

A.4 CHOICE OF TEXT ENCODER

As discussed in the main paper, we employ SentenceBERT (Reimers and Gurevych, 2019) as the text
encoder to generate face part representations. In Sec. 1.2 we detailed the rationale for selecting a
language model output rather than a learnable embedding. Another plausible option was to use the
FaRL (Zheng et al., 2022) text encoder, given that we already utilize its image encoder. Although
FaRL was trained on LAION-FACE (Zheng et al., [2022), a dataset comprising facial image-text
pairs, the textual descriptions predominantly consist of general attributes such as ’smiling girl with
party wig” or the beautiful bride with the sunlight shining on her,” rather than the specific face part
intricacies discussed in Sec. [Z;Z} In contrast, SentenceBERT was pretrained on diverse textual corpora,
enabling it to effectively encode the nuanced characteristics of individual face parts. Preliminary
experiments further confirmed that SentenceBERT outperformed FaRL'’s text encoder, reinforcing
our choice.

A.5 DETAILED COMPARISON WITH CONTINUOUS LANDMARK DETECTION (CHANDRAN
ET AL.,12023))

As outlined in Sec. |2| Continuous Landmark Detection (CLD) (Chandran et al., [2023)) is a recent
framework that takes as input a facial image and arbitrary 3D query locations on a canonical 3D face
surface to output corresponding 2D landmark predictions. While CLD can be trained using existing
2D face landmark datasets, it requires a layout mapping to the 3D canonical surface, imposing a
dependency on such mappings. In contrast, our Unified Dynamic FLD framework eliminates this
dependency by deriving FPALPs directly from the native coordinate system of the dataset, enabling
training on all native 2D FLD datasets without additional mappings.

Furthermore, CLD leverages 3D coordinates on the canonical face mesh as input queries, facilitating
continuous landmark detection, and is a very valuable contribution, especially in applications where
accurate dense coordinates are required to retrieve and characterize a facial surface. In contrast,
our framework is designed to provide a more interpretable and semantically driven interface for
querying FLD systems. Specifically, we construct queries based on text-defined face parts and
semantic progression points along face contours. We envisage future FLD systems being queried
using descriptive instructions, such as “Predict 10 coordinates from the left chin boundary to the end
of the jawline,” and position our framework to address such needs.

From an architectural perspective, CLD’s query encoder processes 3D query locations on a canonical
face mesh, whereas our framework encodes face part text and FPALPs. Additionally, while CLD’s
landmark predictor employs transformer layers to fuse the image encoder output and the 3D query
encoding, our framework instantiates the initial landmark queries and coordinate predictions by
encoding the face part text and corresponding FPALPs and subsequently conditioning the image
features. We then refine the queries and coordinate predictions using self-attention and cross-attention
layers to produce the final landmark coordinates.

A.6 DETAILED FPALP FORMULATION

In this section, we revisit and elaborate on the formulation of the Face Part-Anchored Landmark
Positions (FPALPs). Referring to the FPALP formulation in the main paper, for a landmark [
positioned at pos, ,, in a sequence of N, landmarks that composes the face part p with template
T,, we denote the FPALP of | as FPALP;, = pos;,/(N, — 1). As observed, the landmark
layout pertaining to a face part defined by a dataset usually comprises of landmarks that are evenly
distributed on the face part boundary. The unification of individual landmark templates of the various
datasets into Ty may render the collection of landmarks to be unevenly distributed along the face
part boundary. To determine pos, ,, of a landmark [ which originally belonged to the dataset D; with
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landmark layout Tp,, we first derive the position of the face part’s starting landmark in T, relative
to the starting landmark of the face part in Ty, and then add to it the index of [ relative to the other
landmarks of the face part in Tp,. We express the above formulation for pos, ,, as:

. .. Th, . Tp,
pos; ,, = RelativePosition(I 1, ., lSTt‘{m,p) + mdeml;’ (8)

A.7 HANDLING UNDEFINED OR OCCLUDED FACE PARTS

Our current framework assumes that the queried face parts are explicitly defined in the training data.
We acknowledge that parts that are heavily occluded or undefined poses a challenge and the impact
would be dependent on the extent of visible visual context. To address such cases, the framework
could be extended in future work to dynamically infer or adapt face part boundaries:

1. We can utilize the text encoder to parse face part descriptions into latent embeddings that
can be aligned with image features. Soft spatial attention maps based on the introduced
face parts can be used to approximate the boundaries of unseen face parts, even under
occlusion. Such an extension would enable the model to infer FPALP-like progression
values for novel regions by projecting the learned attention map onto surrounding anchor
contours. Additionally, a dynamic part discovery module could be trained using contrastive
losses to bind new textual descriptions to consistent visual patterns across samples. This
could potentially enable open-vocabulary part generalization in FLD, which could be an
exciting avenue for future work.

2. We can also leverage visibility annotations per landmark, such as those provided in the
MERL-RAV (Kumar et al.| 2020) dataset, to supervise the model in learning to selectively
ignore occluded regions during training. This allows the framework to learn robust part
representations even when portions of the face are not visible. Additionally, these visibility
flags can be used to guide a gating mechanism or soft-attention masking module that
modulates the contribution of occluded regions in the query or image features during
inference, improving landmark prediction reliability under occlusion.

A.8 DETAILED 2D FPALP PROPOSAL FOR FUTURE WORK

As discussed in the future work section, the proposed FPALPs can be extended to 2D space to
facilitate further advancements. Currently, FPALPs are defined in 1D space, representing semantic
progression points along a face part curve. By treating face part curves as boundaries, 2D FPALPs can
be defined along these boundaries, capturing semantic progression both horizontally and vertically,
with either the x or y component as zero. Extending this further, regions within the face part boundary
can be described using 2D FPALPs where both x and y components are non-zero. With only the
face part boundary as input, weak supervision could be employed to predict 2D FPALPs for arbitrary
points within the face part region. Thus, transitioning from 1D to 2D FPALPs shifts the representation
from linearly traversing face part curves to encompassing face part surfaces.

While 1D FPALPs correspond to progression along a face part boundary, 2D FPALPs require a surface
parameterization that maps internal face part regions to a normalized coordinate space. Constructing
such mappings without dense annotations firstly requires us to define the boundary coordinates of
each defined face part in both spatial dimensions and further necessitates the use of weak supervision
to learn the face part surface. For example, given only the boundary of a region (e.g., the cheek or
forehead), one could generate pseudo-ground-truth 2D FPALP labels using mesh-based interpolation
to learn consistent internal representations across identities.

Incorporating 2D FPALPs would allow the model to reason over continuous face surfaces rather
than just boundary curves, enabling richer spatial representations. This would benefit tasks such
as facial expression analysis, where subtle shape changes within a region (e.g., the bulging of
cheeks or wrinkling of the forehead) may not be captured effectively through sparse boundary points.
By modeling internal face part regions with 2D FPALPs, the framework could localize and track
deformations more precisely, potentially improving performance on downstream tasks requiring
dense spatial awareness.
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A.9 DETAILED TRAINING PROCEDURE

Dataset Sampling. As our model is trained on a fusion of multiple datasets, we apply dataset-level
oversampling to ensure a balanced training distribution. Each training epoch includes approximately
the same number of samples from each dataset, ensuring equal exposure to each N-point facial
landmark template.

Batch Sampling. Since each dataset uses its own N-point template, all samples within a dataset
share the same number of queried landmarks. For each training iteration, we randomly select (without
replacement) one dataset and sample a batch (equal to the batch size) from it. This ensures consistent
tensor shapes for landmark queries and avoids the need for jagged arrays.

A.10 EXPLANATION OF SLIGHT PERFORMANCE DROP ON WFLW68

We address this issue in L375-383 of the manuscript and expand on it here. As noted in L.299-300,
the WFLW dataset presents a wide range of challenges, including extreme poses, expressions, and
occlusions. In our unified training setup, we apply dataset-level oversampling to maintain a balanced
exposure across all datasets. However, because other datasets often contain less challenging samples,
the model’s exposure to difficult WFLW-specific cases is reduced. This can explain the slight
performance drop on WFLW68. Importantly, while we observe a decrease in NME on the 68-point
version of WFLW, we also observe a performance gain on the full 98-point format. This suggests
that the model benefits from the additional diverse data, especially in handling the extra 30 facial
points. In other words, the gain in the 30 additional landmarks outweighs the loss in the common
68, indicating that our method generalizes well overall when exposed to a wider variety of N-point
formats.

A.11 FACE TEMPLATE ALIGNMENT STATISTICS

As detailed in Sec. 3 of the main paper, the first step in the formulation of Face Part-Anchored
Landmark Positions is the synthesis of the unified face template Ty through an alignment of the
individual face templates of the considered datasets. We specified that the alignment of the face
templates of AFLW19, 300W, and WFLW, resulted in tight proximal clusters having an average
intra-cluster distance of 2.22 pixels averaged over all face parts. In we expand this statistic
by showing the per-face part mean intra-cluster distances of landmark clusters having at least two
landmark members.

Table 7: Mean intra-cluster distance (in pixels) for the landmark clusters per face part during the
alignment of the face templates of the AFLW19, 300W, and WFLW datasets, into a unified face
template. A clean alignment is observed with the minimum, maximum, and mean values of the mean
intra-cluster distance taken across the face parts as 1.51, 3.82, and 2.22 pixels respectively.

Face Part Mean Intra-Cluster Distance
face contour 3.82
left eyebrow 2.11
right eyebrow 2.24
nose bridge 2.30
nose boundary 1.51
left eye 1.59
right eye 1.52
outer lip 1.82
inner lip 327
left pupil 2.12
right pupil 2.07

A.12 LANDMARK TO FPALP MAPPING
After we attain the unified face template 77;, we assign each landmark to one or more user-defined

face parts and calculate its Face Part-Anchored Landmark Positions. We tabulate the result of this
assignment for the AFLW, COFW, 300W, and 300W datasets in Tab. respectively.
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(2) (b) (©) (@ (e)

®) ' ) (h) ® @

Figure 7: An illustration of the dynamic landmark prediction capability of our system. All images
are selected from the WFLW test set which implements the 98-point face template. We anchor the
landmarks to the following face parts: left and right eyes, eyebrows, and pupils, inner and outer lips,
face contour, nose bridge and boundary. For (e), we split the face contour, lips, and nose boundary
into left, center, and right sub-parts. Landmark predictions per face part are depicted using (a)(f)(k) a
granularity multiplier of 0.5, (b)(g)(1) a granularity multiplier of 1, (c)(h)(m) a granularity multiplier
of 4, (d)(i)(n) 4 landmarks per face part, and (e)(j)(o) a granularity multiplier of 0.5, 1, and 2 for left,
center, and right sub-parts whose landmarks are color coded as red, green, and blue respectively.

A.13 SHOWCASING DYNAMIC LANDMARK PREDICTION: ADDITIONAL VISUALIZATIONS
As in Fig. 6 within Sec. 4.3 of our main paper, we qualitatively assess the output of our Generalized

Dynamic Face Landmark Detection system by depicting a variety of dynamic landmark prediction
configurations on images from the WFLW test set in [Figure 7|
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Table 8: Mapping of AFLW’s 19 landmarks to their face parts and Face Part-Anchored Landmark

Positions (FPALPs).

Table 9: Mapping of COFW’s 29 landmarks to their face parts and Face Part-Anchored Landmark

Positions (FPALPs).

Landmark ID |Face Part FPALP
1 Face Contour 16/32
2 Left Eyebrow 0/9 or 0/2
3 Left Eyebrow 4.5/9 or 1/2
4 Right Eyebrow 0/9 or 0/2
5 Right Eyebrow 4.5/9 or 1/2
6 Middle of Left Eyebrow 0/1
7 Middle of Right Eyebrow 0/1
8 Nose Bridge 3/3
9 Nose Boundary 0/6
10 Nose Boundary 6/6
11 Left Eye 0/6
12 Left Eye 3/6 or 1/2
13 Right Eye 0/6
14 Right Eye 3/6 or 1/2
15 Outer Lip 0/12
16 Outer Lip 6/12
17 Middle of Mouth 0/1
18 Left Eye Pupil 0/1
19 Right Eye Pupil 0/1

Landmark ID |Face Part FPALP
1 Face Contour 16/32
2 Left Eyebrow 0/9
3 Left Eyebrow 2/9
4 Left Eyebrow 172
5 Left Eyebrow 7/9
6 Right Eyebrow | 0/9
7 Right Eyebrow | 2/9
8 Right Eyebrow 172
9 Right Eyebrow | 7/9
10 Nose Bridge 3/3
11 Nose Boundary | 0/6
12 Nose Boundary | 3/6
13 Nose Boundary |  6/6
14 Left Eye 0/8
15 Left Eye 2/8
16 Left Eye 4/8
17 Left Eye 6/8
18 Right Eye 0/8
19 Right Eye 2/8
20 Right Eye 4/8
21 Right Eye 6/8
22 Outer Lip 0/12
23 Outer Lip 3/12
24 Outer Lip 6/12
25 Outer Lip 9/12
26 Inner Lip 2/8
27 Inner Lip 6/8
28 Left Eye Pupil 0/1
29 Right Eye Pupil| 0/1
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Table 10: Mapping of 300W’s 68 landmarks to their face parts and Face Part-Anchored Landmark
Positions (FPALPs).

Landmark ID|Face Part FPALP |Landmark ID |Face Part FPALP
1 Face Contour 0/32 35 Nose Boundary| 4/6
2 Face Contour 2/32 36 Nose Boundary| 5/6
3 Face Contour 4/32 37 Left Eye 0/6
4 Face Contour 6/32 38 Left Eye 1/6
5 Face Contour 8/32 39 Left Eye 2/6
6 Face Contour 10/32 40 Left Eye 3/6
7 Face Contour | 12/32 41 Left Eye 4/6
8 Face Contour 14/32 42 Left Eye 5/6
9 Face Contour 16/32 43 Right Eye 0/6
10 Face Contour | 18/32 44 Right Eye 1/6
11 Face Contour | 20/32 45 Right Eye 2/6
12 Face Contour | 22/32 46 Right Eye 3/6
13 Face Contour | 24/32 47 Right Eye 4/6
14 Face Contour | 26/32 48 Right Eye 5/6
15 Face Contour | 28/32 49 Outer Lip 0/12
16 Face Contour | 30/32 50 Outer Lip 1/12
17 Face Contour | 32/32 51 Outer Lip 2/12
18 Left Eyebrow 0/9 52 Outer Lip 3/12
19 Left Eyebrow 1/9 53 Outer Lip 4/12
20 Left Eyebrow 2/9 54 Outer Lip 5/12
21 Left Eyebrow 3/9 55 Outer Lip 6/12
22 Left Eyebrow 4/9 56 Outer Lip 7112
23 Right Eyebrow | 0/9 57 Outer Lip 8/12
24 Right Eyebrow | 1/9 58 Outer Lip 9/12
25 Right Eyebrow | 2/9 59 Outer Lip 10/12
26 Right Eyebrow | 3/9 60 Outer Lip 11/12
27 Right Eyebrow | 4/9 61 Inner Lip 0/8
28 Nose Bridge 0/3 62 Inner Lip 1/8
29 Nose Bridge 1/3 63 Inner Lip 2/8
30 Nose Bridge 2/3 64 Inner Lip 3/8
31 Nose Bridge 3/3 65 Inner Lip 4/8
32 Nose Boundary| 1/6 66 Inner Lip 5/8
33 Nose Boundary| 2/6 67 Inner Lip 6/8
34 Nose Boundary| 3/6 68 Inner Lip 7/8
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Table 11: Mapping of WFLW’s 98 landmarks to their face parts and Face Part-Anchored Landmark
Positions (FPALPs).

Landmark ID| Face Part |FPALP | LandmarkID| FacePart |FPALP
1 Face Contour | 0/32 50 Right Eyebrow | 7/9
2 Face Contour | 1/32 51 Right Eyebrow | 8/9
3 Face Contour | 2/32 52 Nose Bridge 0/3
4 Face Contour | 3/32 53 Nose Bridge 1/3
5 Face Contour | 4/32 54 Nose Bridge 2/3
6 Face Contour | 5/32 55 Nose Bridge 3/3
7 Face Contour | 6/32 56 Nose Boundary| 1/6
8 Face Contour | 7/32 57 Nose Boundary | 2/6
9 Face Contour | 8/32 58 Nose Boundary | 3/6
10 Face Contour | 9/32 59 Nose Boundary| 4/6
11 Face Contour | 10/32 60 Nose Boundary| 5/6
12 Face Contour | 11/32 61 Left Eye 0/8
13 Face Contour | 12/32 62 Left Eye 1/8
14 Face Contour | 13/32 63 Left Eye 2/8
15 Face Contour | 14/32 64 Left Eye 3/8
16 Face Contour | 15/32 65 Left Eye 4/8
17 Face Contour | 16/32 66 Left Eye 5/8
18 Face Contour | 17/32 67 Left Eye 6/8
19 Face Contour | 18/32 68 Left Eye 718

20 Face Contour | 19/32 69 Right Eye 0/8
21 Face Contour | 20/32 70 Right Eye 1/8
22 Face Contour | 21/32 71 Right Eye 2/8
23 Face Contour | 22/32 72 Right Eye 3/8
24 Face Contour | 23/32 73 Right Eye 4/8
25 Face Contour | 24/32 74 Right Eye 5/8
26 Face Contour | 25/32 75 Right Eye 6/8
27 Face Contour | 26/32 76 Right Eye 718
28 Face Contour | 27/32 77 Outer Lip 0/12
29 Face Contour | 28/32 78 Outer Lip 1712
30 Face Contour | 29/32 79 Outer Lip 2/12
31 Face Contour | 30/32 80 Outer Lip 3/12
32 Face Contour | 31/32 81 Outer Lip 4/12
33 Face Contour | 32/32 82 Outer Lip 5/12
34 Left Eyebrow | 0/9 83 Outer Lip 6/12
35 Left Eyebrow | 1/9 84 Outer Lip 712
36 Left Eyebrow | 2/9 85 Outer Lip 8/12
37 Left Eyebrow | 3/9 86 Outer Lip 9/12
38 Left Eyebrow | 4/9 87 Outer Lip 10/12
39 Left Eyebrow | 5/9 88 Outer Lip 11/12
40 Left Eyebrow | 6/9 89 Inner Lip 0/8
41 Left Eyebrow | 7/9 90 Inner Lip 1/8
42 Left Eyebrow | 8/9 91 Inner Lip 2/8
43 Right Eyebrow| 0/9 92 Inner Lip 3/8
44 Right Eyebrow| 1/9 93 Inner Lip 4/8
45 Right Eyebrow| 2/9 94 Inner Lip 5/8
46 Right Eyebrow| 3/9 95 Inner Lip 6/8
47 Right Eyebrow| 4/9 96 Inner Lip 7/8
48 Right Eyebrow| 5/9 97 Left Eye Pupil | 0/1
49 Right Eyebrow| 6/9 98 Right Eye Pupil| 0/1
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