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ABSTRACT

Although advancements in face landmark detection (FLD) methods continue to
push performance boundaries, they overlook two major functional limitations:
(1) different network parameters need to be trained independently for each “N -
point” benchmark dataset, and (2) a model trained on an “N -point” dataset reliably
outputs only the N landmarks. In our work, we first conceptualize Face Part-
Anchored Landmark Positions (FPALPs), wherein each landmark is treated as a
progression value between zero (start) and one (end) along a face part’s contour.
Every landmark can be expressed in the FPALP format, irrespective of its source
dataset, hence unlocking the ability to unify all “N -point” datasets into a single
dataset. Secondly, we represent each landmark with an FPALP-based query, refine
it progressively with a cross-modality decoder, and predict its coordinates based
on the final representation. Our approach, called Unified Dynamic FLD, embod-
ies these two design choices and streamlines the landmark detection pipeline by
enabling (1) a single model to learn on any number of “N -point” datasets, and
(2) yield any number of specific landmark predictions by loading the designated
landmark queries at runtime. Extensive experiments carried out on several bench-
mark datasets demonstrate that our approach can achieve the above benefits while
performing competitively with existing SOTA methods.

1 INTRODUCTION

Face landmark detection (FLD) aims to predict the coordinates of predefined landmarks in facial
images. Facial landmarks provide rich and diverse visual cues regarding face shape, face-part
positions, and pose information. These are essential for many downstream tasks such as 3D face
reconstruction (Wood et al., 2022; Cai et al., 2021), face recognition (Juhong and Pintavirooj, 2017;
Sarsenov and Latuta, 2017), face expression recognition (Munasinghe, 2018; Ngoc et al., 2020), and
more recently facial beauty predictions (Bougourzi et al., 2022; J. Iyer et al., 2021) and face make-up
try on (Marelli et al., 2022; Kips et al., 2021; Li et al., 2019; Sanapala and Angel Arul Jothi, 2024).

Despite being at the core of numerous applications, FLD algorithms suffer from major inherent
drawbacks at both the training and prediction stages due to a rigid adherence to the landmark layout
defined by the training dataset. Facial images are annotated with different landmark definitions across
datasets such as AFLW (Zhu et al., 2015) (19/21 points), 300W (Sagonas et al., 2013) (68 points),
and WFLW (Wu et al., 2018) (98 points). Generalizing, we denote an FLD dataset that defines a
unique face layout of N landmarks as the term “N -point” dataset. Prior works (Xia et al., 2022; Zhou
et al., 2023; Huang et al., 2021; Li et al., 2022) have advanced FLD performance on these datasets by
training on them individually using separate backbones and/or regression heads, and designing the
networks to output only the dataset-specific N points. We denote the above as the separate model
and common backbone paradigms (see Figure 1) and investigate their demerits in detail below.

Theoretically, each “N -point” dataset can specify facial landmarks according to mutually exclusive
semantic definitions. Here, the specialist nature of the separate model paradigm may outweigh the
benefits of a model that was trained on multiple datasets through the common backbone paradigm, as
only low-level features might be shared. In reality, we observe that this assumption does not always
hold true. As an example, in Figure 2a, we overlay the landmark predictions output by SLPT (Xia
et al., 2022), a state-of-the-art FLD method, that was trained separately on three benchmark datasets;
AFLW19 (Zhu et al., 2015), 300W (Sagonas et al., 2013), and WFLW (Wu et al., 2018). We make
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Figure 1: A comparison of the end-to-end train-
ing pipeline of prior works’ separate model
and common backbone paradigms to the sin-
gle model paradigm implemented by our Uni-
fied Dynamic Face Landmark Detection method.
BB,RH , and D denote backbone, regression
head, and number of datasets, respectively.
Based on Face Part-Anchored Landmark Posi-
tions, our network can train on the combination
of multiple “N -point” datasets and execute an
unlimited number of landmark predictions.
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Figure 2: (a) An overlay of the facial landmarks
in the AFLW (19-point), 300W (68-point), and
WFLW (98-point) formats. The landmark defini-
tions across different datasets are observed to be
non-mutually exclusive and strongly semantically
related via face parts. (b) Landmarks (excluding
pupils) of the WFLW format expressed as Face
Part-Anchored Landmark Positions. Each gra-
dient curve transitioning from white to a darker
colour indicates the progression from the start to
the end of a face part boundary.

two critical observations: (1) facial landmark annotations are semantically anchored to face parts
such as eyes, lips, nose, etc., and (2) are often defined to be evenly spaced along a face part boundary
(Wu et al., 2018; Yang et al., 2024). These cause the landmarks in the different “N -point” datasets
to be non-mutually exclusive and strongly semantically related. Based on these observations, we
conceptualize Face Part-Anchored Landmark Positions (FPALPs), in which each facial landmark
is first associated with one or more distinct face parts and then assigned a value between 0 and 1
designating a progression point between the start and end of the face part boundary, respectively. We
illustrate FPALPs in Figure 2b, wherein most facial landmarks of the WFLW (Wu et al., 2018) format
are anchored to 9 distinct face parts. By indexing facial landmarks as FPALPs calculated on the
union of all landmark definitions across the different benchmark datasets, we enable unified FLD: the
ability of an FLD model to be trained end-to-end on the combination of all the considered datasets.

As noted earlier, during inference, FLD methods trained on an “N -point” dataset outputs only N
facial landmarks. Such output rigidity is non-optimal for downstream applications like face direction
estimation (Al-Nuimi and Mohammed, 2021; Souley Dosso et al., 2022) and FLD stabilization in
videos (Jin et al., 2020; Wu et al., 2021) that may utilize only a few sparse facial landmarks, and
restrictive for applications like face image animation (Zhao et al., 2021) that require a higher density
of accurate facial landmarks. Although higher facial landmark density can be naı̈vely achieved using
interpolation methods, the output accuracy is dependent on a higher N since face parts have non-linear
shape. To this end, we construct facial landmark queries on demand using the combination of their
FPALPs and the text embedding of the containing face parts, and feed them to a cross-modality
decoder-regressor to enable dynamic FLD: the ability of an FLD model to output the predictions of
only the queried landmarks.

Table 1: An efficiency comparison of different
face landmark detection paradigms. D denotes the
number of unique “N -point” datasets. B,H, and
EQ denotes the backbone, regression heads, and
landmark query encoder respectively.

FLD Paradigm
Efficiency

Training
Cycles

Inference
Calculation

Storage
Parameter

Landmark
Throughput

Separate Model D DB +DH DB +DH N
Common Backbone D 1B +DH 1B +DH N
Single Model (Ours) 1 1B + 1H+ 1EQ 1B + 1H+ 1EQ 0−∞

(EQ << H) (EQ << H)

Revisiting Figure 1, our Unified Dynamic FLD,
which is founded on the concept of FPALPs,
executes a single model paradigm that can be
trained on the combination of diverse “N -point”
datasets, and can yield any number of specific
facial landmark predictions at inference time. In
Table 1, we compare the efficiency of the single
model paradigm of our method with the separate
model and common backbone paradigms exe-
cuted by prior work, when trained on D number
of unique “N -point” datasets. Visibly, our method is the most efficient since it is agnostic to D on all
the considered factors, and is the most versatile since it offers demand-specific landmark throughput.
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Our contributions and their benefits are summarized below:

1. We propose the Face Part-Anchored Landmark Positions (FPALPs), an intuitive represen-
tation of face landmarks that are evenly distributed on well-defined face part curves. The
FPALP format is universal and allows for compatibility with all existing and future datasets.

2. To the best of our knowledge, our work using FPALPs is the first to enable, without auxiliary
dataset information, Unified FLD: the ability of a model to be trained end-to-end on the
fusion of multiple “N -point” datasets. We demonstrate increased model generalization by
training on a larger, more diverse combined dataset offering higher landmark heterogeneity
through the unification of various “N -point” formats.

3. We propose a novel FPALP-based landmark queried regressor to enable Dynamic FLD, i.e.,
unlimited on-demand landmark prediction without network retraining.

4. We demonstrate through extensive experiments that our work not only unlocks the numerous
benefits of Unified Dynamic FLD but also achieves competitive performance compared to
existing state-of-the-art methods on several benchmark datasets.

2 RELATED WORK

Targeting Fundamental Performance Improvements. Recent face landmark detection (FLD)
methods can be categorized into direct coordinate regression methods (Li et al., 2022; Xia et al.,
2022; Li et al., 2020) and heatmap-based regression methods (Huang et al., 2021; Zhou et al.,
2023; Kumar et al., 2020). While each approach has advantages and disadvantages, they target
different challenges to achieve performance improvements. AnchorFace (Xu et al., 2020) proposes a
split-aggregate strategy using anchor templates to tackle landmark uncertainty in large pose faces.
ADNet (Huang et al., 2021) and STARLoss (Zhou et al., 2023) address the semantic ambiguity in
landmark annotations by suppressing the associated disentangled loss component for landmarks with
an anisotropic distribution. DTLD (Li et al., 2022) and SLPT (Xia et al., 2022) adaptively leverage
the underlying inter-landmark structural relationship to improve localization performance, especially
on occluded landmarks. Meanwhile, PIPNet (Jin et al., 2021) performs simultaneous heatmap
regression and offset predictions to speed up inference while achieving competitive localization
accuracy. Orthogonal to these efforts, our work aims to deliver the aforementioned unified and
dynamic FLD properties to induce robustness and versatility at the system level.

Approaches to Ameliorate the FLD Pipeline. Prior works have also surfaced the issues of immis-
cibility of the various “N -point” annotation schemes across datasets (Wu et al., 2018; Yang et al.,
2024), and the infeasibility to infer landmarks beyond those N defined by the training dataset (Yang
et al., 2024; Chandran et al., 2023). LAB (Wu et al., 2018) represented facial structure using 13
boundary lines, theorized that facial landmarks across datasets can be interpolated within these lines,
and performed landmark regression using the common backbone paradigm. LDDMM-Face (Yang
et al., 2024) assigned landmarks on mean face templates to semantic boundary curves called flows
and used flow-wise deformation layers to predict the final landmarks. The limited adaptation between
different annotation schemes was achieved through affine transformation between the source and
target mean faces. FreeEnricher (Huang et al., 2023) employs a patch refinement network operates on
contextual patches centered on interpolated face landmarks along a given face part curve and predicts
offsets to align them with the true face part boundary. Since the enrichment process is decoupled from
the base landmark prediction network, its efficacy is highly dependent on the accuracy of the base
landmark predictions that define the initial face part curve. Recently, CLD (Chandran et al., 2023)
proposed a pipeline that ingests a facial image and arbitrary 3D query locations on a canonical face
shape to output the corresponding and possibly continuous 2D landmark coordinates. Although CLD
could be trained with multiple datasets, its success is highly dependent on a large collection of densely
annotated face datasets having 3D canonical landmark mappings. While a more detailed comparison
is provided in Appendix A.5, we briefly contrast it here to highlight our single-model paradigm,
which trains end-to-end with only sparsely annotated 2D landmark datasets and performs dynamic
and direct inference to any arbitrary landmark format without manual transformations. Furthermore,
our Face Part-Anchored Landmark Position-based landmark queries are easily interpretable and
allow for unconstrained interaction with text-based or agentic downstream applications.
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Figure 3: An overview of our proposed framework. First, we associate user-defined face parts to
the required landmarks and calculate their Face Part-Anchored Landmark Positions (FPALPs). The
FPALPs and the face parts’ text are encoded and aggregated to yield the image-agnostic landmark
encodings. The facial image’s visual features are then conditioned on these encodings to output the
initial landmark queries and coordinate predictions. Lastly, a cross-modality decoder block iteratively
refines the landmark queries and coordinate predictions to output the final values.

Generalist Face Models. Another line of research aims to simultaneously perform facial tasks such
as landmark detection, age/gender/head-pose estimation, and face parsing using multi-task learning.
Early works like HyperFace (Ranjan et al., 2016) and AIO (Ranjan et al., 2017) utilized multi-scale
features from various CNN layers and executed upto 7 face tasks at once using task-wise heads.
Recently, FaceXFormer (Narayan et al., 2024) and Faceptor (Qin et al., 2024) treated face tasks as
tokens in transformer-based architectures (Vaswani et al., 2017) containing unified task and pixel
decoders. These on-demand task-expandable generalist face models train on the fusion of diverse
task datasets. However, for the FLD task, they still train separately on the “N -point” datasets and
yield only a fixed N output. Our unified dynamic FLD method can be readily integrated into existing
generalist face models to streamline their FLD division.

3 METHODOLOGY

Our proposed Unified Dynamic Face Landmark Detection framework is inspired by Grounding DINO
(Liu et al., 2023) and is illustrated in Figure 3. First, we introduce Face Part-Anchored Landmark
Positions (FPALPs), a supplementary representation of facial landmarks from the viewpoint of face
part boundaries. Next, we describe how we construct image-agnostic landmark encodings using
FPALPs and combine them with facial image features sourced from an image encoder to initialize
the landmark queries and the primitive coordinate predictions. Lastly, we elucidate the process of
iterative query refinement to yield the final landmark representations and coordinate predictions.

Face Part-Anchored Landmark Positions (FPALPs). As prior work (Wu et al., 2018; Yang et al.,
2024) have noted and illustrated by us earlier in Figure 2a, facial landmarks specified by benchmark
datasets that we consider, i.e., AFLW (Zhu et al., 2015), WFLW (Wu et al., 2018), and 300W
(Sagonas et al., 2013), are bound to face part boundaries in an evenly spaced manner. To leverage
this observation, we conceptualize Face Part-Anchored Landmark Positions (FPALPs). Here, each
landmark is associated with one or more containing face parts and is represented as a progression
value between 0 and 1 denoting its fractional position within the containing face part curve. Since
each “N -point” dataset can define its face template with different landmark layouts and different
start and end positions for the various face parts, we first create a unified face template by taking the
union of the face templates of all datasets. Formally, we denote the face template for dataset Di, out
of D considered datasets, having Ni number of landmarks, as TDi , and the unified face template
as TU = TD1 ∪ TD2 ∪ ... ∪ TDD

. TU consists of NU number of landmarks clusters each of which
indicates a landmark’s proximity across the D datasets. While this may seem inexact, we observed a
clean alignment between the face templates resulting in tight proximal landmark clusters having an
average intra-cluster distance of 2.22 pixels averaged over all face parts.

We split TU into P face part templates, TU = TP1
∪ TP2

∪ ... ∪ TPP
, each consisting of member

landmarks to represent user-defined face part curves such as left/right eye(brow), face contour,
inner/outer lip, etc. Face part curves can be open (e.g., nose bridge, face contour) or closed (e.g., eyes,
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Figure 4: Illustration of the construction of Face Part-Anchored Landmark Positions (FPALPs) for
the landmarks of the left eyebrow and the right eye closed curve face parts.

lips). For closed curve face parts, we create a copy of the starting landmark in the curve sequence and
signify it as the ending landmark for that sequence. In Figure 4, we exemplify the following FPALP
formulation using the left eyebrow and right eye face part curves. For a landmark l positioned at
pos l,p within a sequence of Np landmarks that compose the face part p with template Tp, we define
the FPALP of l as FPALP l,p = pos l,p/(Np − 1).

Image-Agnostic Landmark Encodings. To achieve dynamic face landmark detection, we represent
target landmarks as landmark queries. To this end, we construct initial image-agnostic representations
which conceptually capture the landmarks to be queried. Firstly, we encode FPALPs using a simple
MLP with ReLU activation. Next, we input the face part name into a lightweight pretrained text
encoder to get its textual representation. Finally, we derive the image-agnostic landmark encodings
as the summation of the encoded FPALPs and the face part textual representations. Formally, for a
landmark l in the face part p, the image-agnostic landmark encodings El,p

IA are derived as:

El,p
FPALP = MLP(FPALP l,p), Ep

text = Enctext(p), El,p
IA = El,p

FPALP + Ep
text (1)

where El,p
FPALP , E

p
text, E

l,p
IA ∈ Rd, and d is the encoding dimension. In lieu of Enctext, we could

use learnable embeddings to yield the face part representations. We hypothesize that pretrained text
encoders are more superior since they may already encode the semantics of facial layouts. In Sec. 4.2,
we compare both the options and corroborate that using pretrained text encoders is the better choice.

Landmark Query Initialization. Effective initial landmark queries should capture the required land-
marks’ proximity specified by their semantic definitions. To this end, we condition the facial image’s
visual features with the image-agnostic landmark encodings in the following manner. First, we utilize a
pretrained image encoder to output the facial image features EI ∈ RHEI

×WEI
×d, where (HEI

,WEI
)

represents the spatial resolution of the image features. Let GEI
= {(xc

i,j , y
c
i,j)}

HEI
,WEI

i=0,j=0 ∈
RHEI

×WEI
×2 represent the grid of the image-space center coordinates corresponding to EI . Next,

we derive the attention map A of the visual features with respect to the required image-agnostic
landmark encodings EIA ∈ RL×d, where L denotes the number of landmarks to be queried, as
A = Softmax(EI ·ET

IA), where A ∈ RHEI
×WEI

×L and the softmax is applied along the HEI
×WEI

dimension. Here, A reflects the activation of the visual regions that correspond to the required land-
marks’ image-agnostic landmark encodings. We obtain our initial landmark queries Q0 ∈ RL×d

and initial coordinate predictions C0 ∈ RL×2 by taking the weighted mean of EI and GEI
using

the attention map A, respectively. Formally, given grid center coordinates (xc
i,j , y

c
i,j) ∈ GEI

, for
a required landmark l ∈ [0, L) with a corresponding attention map Al ∈ RHEI

×WEI , the initial
landmark query LQ l

0 and initial coordinate prediction Cl
0 are derived as:

LQ l
0 =

HEI
,WEI∑

i=0,j=0

Al
i,j · EIi,j , Cl

0 = (

HEI
,WEI∑

i=0,j=0

Al
i,j · xc

i,j ,

HEI
,WEI∑

i=0,j=0

Al
i,j · yci,j) (2)

Landmark Query Refinement. We employ a cross-modality transformer decoder, as depicted in the
third block of Figure 3, to iteratively hone the landmark queries and the predicted coordinates. This
block consists of ndec decoder layers, the first of which consumes LQ0 and C0, while the later layers
consume the output of the previous layers to implement iterative refinement. At layer deci, we first
execute self-attention on the landmark queries LQdeci−1 to exploit the inter-landmark dependencies.
Then, we deploy a deformable attention (Zhu et al., 2021) layer that consumes the locations Cdeci−1
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and performs targeted cross-modality attention between the image features and the queries from the
previous step. To reinforce the alignment between the queries and the semantic definitions of the
required landmarks, we execute a cross-attention layer between the queries from the previous step
and the image-agnostic landmark encodings EIA. Finally, we deploy a feed-forward network to yield
the decoder layer’s query output LQdeci

, operate an MLP on it to derive the coordinate offsets with
respect to Cdeci−1, and calculate the coordinate predictions as Cdeci

. For brevity, we assume the
reader to be aware of the transformer-related notations and formulations, and elucidate the above
process using simplified equations as below:

LQSA
deci = SelfAttn(LQdeci−1 ,LQdeci−1 ,LQdeci−1 ) (3)

LQDICA
deci = DeformableAttn(LQSA

deci , EI , EI , Cdeci−1) (4)

LQCA
deci = CrossAttn(LQDICA

deci , EIA, EIA) (5)

LQdeci = FFN(LQCA
deci ) (6)

Cdeci = Cdeci−1 + MLP(LQdeci ) (7)

where deci ∈ [1, ndec ] and the first three inputs to the layers in Equation 3-5 respectively assume the
roles of query, key, and value in the attention mechanism.

Given the ground truth coordinates of the required L landmarks CGT ∈ RL×2, we supervise both
our intermediate and final coordinate predictions Cdeci where deci ∈ [0, ndec ] using the Wing Loss
(Feng et al., 2018) as L =

∑ndec

deci=0 WingLoss(Cdeci
, CGT ).

4 EXPERIMENTS

Datasets. We train and evaluate our framework on three benchmark datasets: AFLW (Zhu et al.,
2015), 300W (Sagonas et al., 2013), and WFLW (Wu et al., 2018). AFLW focuses on coarse
annotations for in-the-wild images and comprises of 20000 training and 4386 test facial images, each
annotated with 19 landmarks. 300W is collected from five facial datasets and contains 3148 training
and 689 test facial images, each annotated with 68 landmarks. The test set is further divided into
common (554 images) and challenging (135 images) subsets. WFLW is collected from WIDER Face
(Yang et al., 2016) with an emphasis on challenging poses, expressions, and occlusions. It consists of
7500 training and 2500 test images, each annotated with 98 landmarks. For cross-dataset evaluation,
we consider COFW (Burgos-Artizzu et al., 2013), which contains 507 test images each annotated
with 29 landmarks, COFW68 and WFLW68, the 68 landmark variants whose face template matches
that of 300W. Collectively, these datasets provide images with diverse levels of expression, pose, and
occlusion, making them effective to evaluate a model’s generalization ability.

Implementation Details. Facial images from all datasets are cropped using the given bounding boxes
and resized to either 224 × 224 (ViT-B) or 256 × 256 (ResNet) depending on the image encoder.
Following prior works (Jin et al., 2021; Li et al., 2022; Qin et al., 2024), bounding boxes are enlarged
by 10% to include more contextual information. Data augmentation methods including random
rotations (±15◦), scaling (±20%), horizontal flipping, and translation (±10 pixels), are employed to
improve model robustness by simulating real-world variability.

We employ the lightweight pretrained SentenceBERT (Reimers and Gurevych, 2019) as the face part
text encoder, FaRL (Zheng et al., 2022) pretrained ViT-B (Dosovitskiy et al., 2021) or ResNet (He
et al., 2016) as the facial image encoder, 3 decoder layers (ndec), each with 8 attention heads, and
a model-wide feature dimension d = 256. During image cross-attention, 4 features per head are
sampled from each level of the image feature maps for each query. We train the model end-to-end on
an NVIDIA A100 GPU (40GB) for 32 epochs, with a batch size of 16, using the Adam optimizer with
a learning rate of 10−4 and a weight decay of 10−5. The learning rate is lowered to 10−5 from the
25th epoch. The image and text encoders are trained at a tenth of the running learning rate. Details
on the dataset sampling strategy can be found in Appendix A.9.

Evaluation Metrics. Following prior works (Jin et al., 2021; Li et al., 2022; Xia et al., 2022), we
evaluate the face landmark detection methods using the Normalized Mean Error (NME) percentage.
NME measures the L2 distance between the predicted and true landmarks and is normalized by either
the inter-ocular distance (NME inter−ocular ), which is used for evaluation on 300W and WFLW, or
the diagonal distance of the facial bounding box (NMEdiag ), which is used for evaluation on AFLW.
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Table 2: Comparison of our Unified Dynamic Face Landmark Detection approach with SOTA
methods on the WFLW, 300W, and AFLW-19 datasets. Our method enables fused dataset training
and dynamic landmark prediction with a negligible 0.05 − 0.1% performance drop compared to
SOTA methods on the full version of the datasets.

Method Method
Type

Trained w/
Additional
Datasets

Fused
Dataset
Training

Dynamic
Landmark
Prediction

WFLW 300W AFLW-19
Full Common Challenge Full Full

NMEinter-ocular ↓ NMEdiag ↓
FaceXFormer (Narayan et al., 2024) Generalist ✓ ✗ ✗ - 2.66 4.67 3.05 -
Faceptor (Qin et al., 2024) ✓ ✗ ✗ 4.03 2.52 4.25 2.86 0.95
PIPNet (Jin et al., 2021) ✗ ✗ ✗ 4.31 2.78 4.89 3.19 1.42
ADNet (Huang et al., 2021)

Specialist

✗ ✗ ✗ 4.14 2.53 4.58 2.93 -
SLPT (Xia et al., 2022) ✗ ✗ ✗ 4.14 2.75 4.90 3.17 -
DTLD+ (Li et al., 2022) ✗ ✗ ✗ 4.05 2.60 4.48 2.96 1.37
STAR Loss (Zhou et al., 2023) ✗ ✗ ✗ 4.02 2.52 4.32 2.87 -
Ours (ViT-B) Specialist ✗ ✓ ✓ 4.07 2.59 4.50 2.96 1.04

4.1 COMPARISON WITH SOTA METHODS

Our intention in providing quantitative comparisons with SOTA methods is to demonstrate the
competitiveness of our framework, not to establish new benchmarks. Our main contribution is the
enablement of the unified and dynamic FLD features. Additionally, as most prior works are not
open-sourced and use different backbones, direct adaptation for fair comparison is challenging.
Hence, for transparency, we cite their reported performance and explicate our model configuration.

Individual Dataset Evaluation. We compare our Unified Dynamic Face Landmark Detection (FLD)
framework against SOTA methods and present the results in Table 2. We include the generalist
approaches that use additional datasets from other tasks for reference purpose only. As seen from
the table, our best model enables the training on the fusion of multiple training datasets and allows
for dynamic landmark prediction, while performing on-par with prior works with a minor drop
of 0.05 − 0.1% in NME on the full version of all datasets. The negligible performance drop
across multiple datasets further corroborates a well-defined alignment between the face templates of
the considered datasets and proves that Face Part-Anchored Landmark Positions are conceptually
applicable to the FLD task.

Table 3: Cross-dataset evaluation comparison.
Models are supervised only on 300W.

Method 300W COFW68 WFLW68
NMEinter-ocular ↓

LAB(Wu et al., 2018) 3.49 4.62 -
AVSw/SAN(Qian et al., 2019) 3.86 4.43 -
DAG(Li et al., 2020) 3.04 4.22 -
PIPNet(Jin et al., 2021) 3.36 4.55 8.09
DTLD (Li et al., 2022) 3.07 4.42 7.23
Ours (ResNet18) 3.17 4.88 7.36
Ours (ResNet101) 3.13 4.8 7.22
Ours (ViT-B) 3.03 4.46 6.11

Table 4: Ablation study on training datasets as a
cross-dataset evaluation. * indicates exclusion of
undefined landmarks not defined in the template.
Training Datasets AFLW-19 300W WFLW COFW WFLW68 COFW68

NMEdiag ↓ NMEinter-ocular ↓
300W 2.25* 3.04 6.47* 3.85* 6.11 4.46
WFLW 2.44* 4.14 4.12 3.74 3.93 4.73
300W + WFLW 2.47* 3.03 4.16 3.74 4.46 4.39
300W + WFLW + AFLW-19 1.04 2.96 4.07 3.57 4.44 4.30

Cross-Dataset Evaluation. To verify the gen-
eralization ability of our approach, we conduct
a cross-dataset evaluation on the COFW68 and
WFLW68 datasets using our model trained only
on the 300W dataset, and present the results in Ta-
ble 3. Our method with the ResNet backbones fare
approximately on par with SOTA on the 300W and
COFW68 datasets. Using the ViT-B backbone, we
demonstrate robustness by significantly improving
performance on the challenging WFLW68 dataset,
which includes facial images with extreme poses,
expressions, occlusions, and makeup.

4.2 ABLATION STUDIES

Our model is trained on a fusion of AFLW19,
300W, and WFLW, and we conduct a dataset ab-
lation study to assess the contribution of each dataset to overall performance (Table 4). The study
evaluates the impact of training on salient dataset combinations and tests on individual datasets.
Notably, when the evaluation dataset uses a different ”N -point” template than those seen during
training, the setting is effectively near zero-shot, as many Face Part-Anchored Landmark Positions
(FPALPs) in the target dataset are unseen. Our approach is the first to conduct such cross-template
evaluations without resorting to manual interpolation techniques. The results indicate that training on
all datasets combined yields the best performance across most datasets, except for WFLW68, where
the best performance is achieved by training solely on WFLW. We attribute this to the reduction of
non-critical landmarks in the transition from the 98-point to the 68-point template and the dilution of
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challenging samples when additional datasets are introduced. It is essential to acknowledge that the
effect of incorporating new training datasets can vary based on alignment between the distribution and
label quality of the training and evaluation datasets. The observed performance gains from training on
datasets with diverse face templates suggest that exposure to different FPALPs enhances the model’s
ability to effectively represent face part curves and generalize across varied facial structures and
ambient conditions.
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Figure 5: A comparison of training curve plots
when using learnable embeddings vs. Sentence-
BERT (Reimers and Gurevych, 2019) to repre-
sent face parts.

Table 5: Performance comparison using learn-
able vs. SentenceBERT (Reimers and Gurevych,
2019).
Query Type AFLW-19 300W WFLW COFW COFW68

NMEdiag ↓ NMEinter-ocular ↓
Learnable 1.09 3.04 4.27 3.79 4.36
Language 1.04 2.96 4.07 3.57 4.30

Choices for Face Part Representation. In this
study, we investigate the impact of choosing how
face parts are represented to yield Ep

text in Equa-
tion 1. We present two options: (1) training learn-
able embeddings, or (2) leveraging the output of
pretrained text encoders. The former might seem
as the default option given the limited amount of
face parts that can be encoded. We contend that,
although simpler, training with learnable embed-
dings may not capture the nontrivial semantics
of facial structure, such as the relative positions
of face parts, the inter-face part relationships dur-
ing facial expressions (e.g., the squinting of the
eyes and broadening of the lips during a laugh),
and interactions with makeup and accessories. We
postulate that text encoders that are trained on
diverse corpora encode these intricacies. In Fig-
ure 5, we compare the training curve plots of the
model when using learnable embeddings versus
SentenceBERT (Reimers and Gurevych, 2019),
a lightweight pretrained text encoder, and in Ta-
ble 5, we compare their performance at conver-
gence. The usage of SentenceBERT to represent face parts results in a faster convergence and a more
performant model, thereby corroborating our earlier thesis and proving to be the superior choice over
learnable embeddings.

Impact of Image Encoder. We analyze the impact of different image encoders, including ResNet18,
ResNet101, and ViT-B, on the overall performance of our model as well as its generalization ability.
In Table 6a, we display the results of our model with different backbones when trained on the fusion
of the considered datasets. Although ViT-B proves to be superior on most of the evaluation datasets,
it is noteworthy that both ResNets perform competitively, at a fraction of the size of ViT-B. This
suggests that the availability of diverse “N -point” training datasets is of higher importance than
the capacity of the image encoder to achieve an overall high-performing model. In Table 6b, we
present the results of a cross-dataset evaluation conducted by training our model only on 300W, with
different image encoders, and report its performance on 300W, COFW68, WFLW, WFLW68, and
WFLWE , whose face template contains only the 28 points that are absent/undefined in 300W. We
observe that as the image encoder’s capacity increases, the performance improves drastically on most
datasets, especially on the WFLWE variant where our model executes zero-shot evaluation since
the landmarks (and their corresponding FPALPs) are unseen during training. As we constrained our
model training to only 300W, the result of this experiment suggests that the generalization ability of
our model is dependent on the capacity of the image encoder.

Table 6: (a) Performance comparison of our model trained on the fusion of all considered datasets
when using various image encoders. (b) Cross-dataset evaluation with our model trained only on
300W when using different image encoders. WFLWE refers to the WFLW dataset containing only
the 28 points that are absent/undefined in 300W.
Image
Encoder

AFLW-19 300W WFLW COFW COFW68
NMEdiag ↓ NMEinter-ocular ↓

ResNet18 1.07 3.00 4.39 3.77 4.53
ResNet101 1.04 2.92 4.25 3.71 4.47
ViT-B 1.04 2.96 4.07 3.57 4.30

(a)

Method 300W COFW68 WFLW68 WFLW WFLWE

NMEinter-ocular ↓
ResNet18 3.17 4.88 7.22 7.60 7.96
ResNet101 3.13 4.80 7.36 7.69 7.70
ViT-B 3.03 4.46 6.11 6.47 6.66

(b)
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(a) (b) (c) (d) (e)

Figure 6: An illustration of the dynamic landmark prediction capability of our system. Images are
selected from the WFLW (98-point) test set. We anchor the landmarks to the following face parts: left
and right eyes, eyebrows, and pupils, inner and outer lips, face contour, nose bridge and boundary. For
(e), we split the face contour, lips, and nose boundary into left, center, and right sub-parts. Landmark
predictions per face part are depicted using (a)-(c) a granularity multiplier of 0.5, 1, and 4 respectively,
(d) 4 landmarks per face part, and (e) a granularity multiplier of 0.5, 1, and 2 for left, center, and right
sub-parts whose landmarks are color coded as red, green, and blue respectively.

4.3 DYNAMIC LANDMARK PREDICTION

In this section, we qualitatively assess the output of our Unified Dynamic Face Landmark Detection
system. Using our model trained on the fusion of the considered datasets, we depict a variety of
dynamic landmark prediction configurations on images from the WFLW test set in Figure 6. In
contrast to prior works, which can only output a fixed landmark layout as in Figure 6b, our model
can predict landmarks pertaining to user-selected face parts and, furthermore, at various granularities
within (Figure 6a-6d) and across (Figure 6e) face parts, hence demonstrating its versatility and
applicability to an assortment of downstream applications. We observe that landmark predictions for
face parts with higher FPALP diversity, such as the face contour and the eyes, are more accurate than
those with lower FPALP diversity, such as the nose boundary. A larger diversity of face templates
within the combined training dataset increases the exposure to different FPALPs and empowers
the model to accurately predict landmarks at higher granularities. Additionally, incorporating loss
components that enforce appropriate distribution of landmark predictions across the input FPALPs
could further enhance prediction quality – a direction we leave for future work.

5 DISCUSSION AND CONCLUSION

Limitations. We acknowledge the likelihood of an imprecise alignment of the individual datasets’
face templates during the construction of the unified face template, which may hinder the scalability
of the FPALP formulation. We note from the resiliency of our model, which is trained on the
alignment of three different (14, 68, and 98-point) face templates, that only an approximate alignment
is necessary for effective face part curve learning. In cases of large misalignment, new face parts can
be defined to contain the introduced landmarks. Meaningful inter-face part relationships with the
misaligned face parts can still be forged via the landmark query refinement process in our model.

Future Work. An extension of our work can be the construction of 2D FPALPs (detailed in
Appendix A.8) to capture face part surfaces and leverage the query features to track facial artifacts
like acne, moles, and wrinkle lines. Research on integration with vision-language and generalist face
models may allow for text- or visual prompt-based face part creation, automated landmark-to-FPALP
registration, and generation of the unified face template, leading to a more versatile face landmark
detection component within a robust face analysis system.

Conclusion. In this paper, we present our Unified Dynamic Face Landmark Detection method,
wherein landmarks are treated as progression points on user-defined face parts, allowing for end-to-
end model training on the fusion of diverse “N -point” datasets and execution of unlimited on-demand
landmark predictions. With a performance competitive with to SOTA methods, our simple, yet
adaptable framework is positioned to meet the requirements of various downstream applications that
depend on a wide range of precise face landmarks.
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Valentin. 3d face reconstruction with dense landmarks. In ECCV, 2022.

Bing-Fei Wu, Bo-Rui Chen, and Chun-Fei Hsu. Design of a facial landmark detection system using a
dynamic optical flow approach. IEEE Access, 2021.

Wayne Wu, Chen Qian, Shuo Yang, Quan Wang, Yici Cai, and Qiang Zhou. Look at boundary: A
boundary-aware face alignment algorithm. In CVPR, 2018.

Jiahao Xia, Weiwei Qu, Wenjian Huang, Jianguo Zhang, Xi Wang, and Min Xu. Sparse local patch
transformer for robust face alignment and landmarks inherent relation learning. In CVPR, 2022.

Zixuan Xu, Banghuai Li, Miao Geng, Ye Yuan, and Gang Yu. Anchorface: An anchor-based facial
landmark detector across large poses. In AAAI, 2020.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Huilin Yang, Junyan Lyu, Pujin Cheng, Roger Tam, and Xiaoying Tang. Lddmm-face: Large defor-
mation diffeomorphic metric learning for cross-annotation face alignment. Pattern Recognition,
2024. ISSN 0031-3203.

Shuo Yang, Ping Luo, Chen Change Loy, and Xiaoou Tang. Wider face: A face detection benchmark.
In CVPR, 2016.

Ruiqi Zhao, Tianyi Wu, and Guodong Guo. Sparse to dense motion transfer for face image animation.
In ICCVW, 2021.

Yinglin Zheng, Hao Yang, Ting Zhang, Jianmin Bao, Dongdong Chen, Yangyu Huang, Lu Yuan,
Dong Chen, Ming Zeng, and Fang Wen. General facial representation learning in a visual-linguistic
manner. In CVPR, June 2022.

Zhenglin Zhou, Huaxia Li, Hong Liu, Nanyang Wang, Gang Yu, and Rongrong Ji. STAR Loss:
Reducing semantic ambiguity in facial landmark detection. In CVPR, 2023.

Shizhan Zhu, Cheng Li, Chen Change Loy, and Xiaoou Tang. Face alignment by coarse-to-fine shape
searching. In CVPR, 2015.

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable DETR:
deformable transformers for end-to-end object detection. In ICLR, 2021.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

A.1 RELEVANCE AND STRENGTH OF CONTRIBUTION

Our work addresses critical limitations in current 2D face landmark detection (FLD) methods and
provides an efficient, semantically flexible alternative to both dense and traditional sparse approaches:

• Unified Training Across Datasets. We introduce the FPALP representation, which enables
a single model to be trained across heterogeneous landmark templates without requiring 3D
priors or costly alignment procedures. This overcomes the fragmentation seen in prior work,
where separate models are typically needed for different datasets.

• Dynamic, Semantic Landmark Prediction. Unlike fixed-protocol models or dense outputs,
our method supports flexible, part-based landmark queries. This design offers interpretability
and adaptability for downstream tasks that demand only specific landmarks or face regions.

• Purely 2D Supervision. Our method operates entirely within the 2D domain, without
relying on 3D annotations or model-based priors. This makes it more scalable and accessible
in real-world applications where 3D data is limited or unavailable.

• Improved Generalization and Regularization. Training on diverse datasets with different
landmark configurations serves as a natural regularizer, promoting robustness and reduc-
ing overfitting. The FPALP structure aligns these heterogeneous protocols into a unified
representation that supports generalization to unseen templates.

• Compatibility with Sparse-to-Dense Learning. Our model supports zero-shot or near-
zero-shot generalization across protocols. It can be trained on sparse landmarks and still
perform well on denser configurations, laying the groundwork for bridging sparse and dense
paradigms in a single framework.

• Suitability for Low-Resource Deployment. Dynamic 2D FLD is particularly advanta-
geous for edge and mobile devices, where lightweight, semantically interpretable, and
adaptable models are essential. Our method meets these requirements, while 3D-based
approaches—due to their reliance on dense meshes, heavy computation, and 3D priors—are
ill-suited for such environments. By avoiding these constraints, our framework provides a
practical and efficient solution for real-world deployment.

A.2 LIMITATIONS CONTINUED

From our ablation studies, we infer that the generalization ability of our model, which we define
as its capacity to accurately predict landmarks at unseen Face Part-Anchored Landmark Positions
(FPALPs) – is influenced by both the diversity of training dataset face templates and the range of
facial and ambient conditions. Training on a broader variety of datasets with distinct landmark
layouts, rather than simply increasing the number of datasets with similar layouts, is likely to yield
a more generalizable model. However, as discussed in the dataset ablation section, incorporating
additional training datasets may enhance overall generalization but could also diminish performance
on specific evaluation datasets if the training and evaluation datasets differ significantly in facial and
ambient condition distributions or label quality.

We also note that FPALPs are constructed using native dataset annotations. These annotations along
face part boundaries often represent semantic progression points in 2D space. However, landmarks
generated through interpolation techniques may not align with those predicted via evenly spaced
FPALPs. For instance, consider a front-facing view of a person whose jawline narrows near the chin.
Landmarks sampled along the true jaw contour may increase in density as they approach the chin.
While these landmarks may appear equidistant in the profile view, they may not be evenly spaced in
the frontal view. Consequently, we are unable to quantitatively evaluate our method on benchmarks
that employ higher-density landmarks derived through interpolation, as it becomes challenging to
objectively identify the cases we described above.

Lastly, we acknowledge that the choice of the training dataset and the text encoder could introduce
biases or limitations when face part phrases are described using low-resource languages. In order to
mitigate such biases and limitations, the definition of face part phrases should be standardized for a
consistent interpretation across the different languages, and the text encoder would either need to
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be trained or fine-tuned on the target languages. While this is a crucial consideration for real-world
deployment in a global context, our current work limits its scope to the English language context,
deferring inter-linguistic adaptations and broader cross-cultural considerations to future research.

A.3 EXCLUSION OF DATASETS

Our framework is trained and evaluated on AFLW19 (Zhu et al., 2015), WFLW (Wu et al., 2018),
and 300W (Sagonas et al., 2013), with additional evaluation conducted on COFW (Burgos-Artizzu
et al., 2013) and its variants. However, we exclude COFW from the training set due to observed
inconsistencies in annotation quality. Preliminary experiments indicated that including COFW not
only degraded the overall performance across all datasets but also adversely impacted the quality of
denser landmark predictions. We also do not evaluate on the Enriched 300W test set proposed in
(Huang et al., 2023) as its annotations are derived through interpolation-based methods, as discussed
in the A.2 above.

A.4 CHOICE OF TEXT ENCODER

As discussed in the main paper, we employ SentenceBERT (Reimers and Gurevych, 2019) as the text
encoder to generate face part representations. In Sec. 4.2, we detailed the rationale for selecting a
language model output rather than a learnable embedding. Another plausible option was to use the
FaRL (Zheng et al., 2022) text encoder, given that we already utilize its image encoder. Although
FaRL was trained on LAION-FACE (Zheng et al., 2022), a dataset comprising facial image-text
pairs, the textual descriptions predominantly consist of general attributes such as “smiling girl with
party wig” or “the beautiful bride with the sunlight shining on her,” rather than the specific face part
intricacies discussed in Sec. 4.2. In contrast, SentenceBERT, having been pretrained on diverse and
extensive textual corpora, demonstrated a superior ability to effectively encode these more detailed
and nuanced characteristics of individual face parts.

While our study confirmed that using the FaRL text encoder yielded superior performance compared to
generic learnable embeddings, our experiments ultimately revealed that SentenceBERT outperformed
FaRL’s text encoder for our specific task. This indicated that, for generating image-agnostic landmark
encodings using face part phrases, a superior representation of the specific semantics of face parts
is achieved by using a strong pretrained text encoder. Therefore, despite the potential benefits of
image-text alignment, the pretrained, lightweight SentenceBERT proved to be the more effective
choice for encoding face part phrases in our framework.

A.5 DETAILED COMPARISON WITH CONTINUOUS LANDMARK DETECTION (CHANDRAN
ET AL., 2023)

As outlined in Sec. 2, Continuous Landmark Detection (CLD) (Chandran et al., 2023) is a recent
framework that takes as input a facial image and arbitrary 3D query locations on a canonical 3D face
surface to output corresponding 2D landmark predictions. While CLD can be trained using existing
2D face landmark datasets, it requires a layout mapping to the 3D canonical surface, imposing a
dependency on such mappings. In contrast, our Unified Dynamic FLD framework eliminates this
dependency by deriving FPALPs directly from the native coordinate system of the dataset, enabling
training on all native 2D FLD datasets without additional mappings.

Furthermore, CLD leverages 3D coordinates on the canonical face mesh as input queries, facilitating
continuous landmark detection, and is a very valuable contribution, especially in applications where
accurate dense coordinates are required to retrieve and characterize a facial surface. In contrast,
our framework is designed to provide a more interpretable and semantically driven interface for
querying FLD systems. Specifically, we construct queries based on text-defined face parts and
semantic progression points along face contours. We envisage future FLD systems being queried
using descriptive instructions, such as “Predict 10 coordinates from the left chin boundary to the end
of the jawline,” and position our framework to address such needs.

From an architectural perspective, CLD’s query encoder processes 3D query locations on a canonical
face mesh, whereas our framework encodes face part text and FPALPs. Additionally, while CLD’s
landmark predictor employs transformer layers to fuse the image encoder output and the 3D query
encoding, our framework instantiates the initial landmark queries and coordinate predictions by
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encoding the face part text and corresponding FPALPs and subsequently conditioning the image
features. We then refine the queries and coordinate predictions using self-attention and cross-attention
layers to produce the final landmark coordinates.

A.6 DETAILED FPALP FORMULATION

In this section, we revisit and elaborate on the formulation of the Face Part-Anchored Landmark
Positions (FPALPs). Referring to the FPALP formulation in the main paper, for a landmark l
positioned at pos l,p in a sequence of Np landmarks that composes the face part p with template
Tp, we denote the FPALP of l as FPALP l,p = pos l,p/(Np − 1). As observed, the landmark
layout pertaining to a face part defined by a dataset usually comprises of landmarks that are evenly
distributed on the face part boundary. The unification of individual landmark templates of the various
datasets into TU may render the collection of landmarks to be unevenly distributed along the face
part boundary. To determine pos l,p of a landmark l which originally belonged to the dataset Di with
landmark layout TDi

, we first derive the position of the face part’s starting landmark in TDi
relative

to the starting landmark of the face part in TU , and then add to it the index of l relative to the other
landmarks of the face part in TDi

. We express the above formulation for pos l,p as:

pos l,p = RelativePosition(l
TDi
start,p, l

TU
start,p) + index

TDi

l,p (8)

The FPALP formulation normalizes progression along each face part from 0 to 1 in a dataset-agnostic
manner. Crucially, the start and end points of a face-part curve in FPALPs are not fixed by any
dataset; they are defined once by the practitioner when specifying the face-part phrase and its member
landmarks. FPALPs then assign each (face part, landmark) pair a normalized position in [0,1] along
that user-defined ordering. This means that the same physical landmark can legitimately receive
different FPALP values under different, possibly overlapping, face-part phrases (e.g., “nose” = “nose
bridge + left + right boundary of nose” vs “right nasal region” = “right boundary of nose + right
nasolabial fold”), and differences in how individual datasets choose their “first” or “last” landmark
on a contour do not constrain the unified representation.

A.7 HANDLING UNDEFINED OR OCCLUDED FACE PARTS

Our current framework assumes that the queried face parts are explicitly defined in the training data.
We acknowledge that parts that are heavily occluded or undefined poses a challenge and the impact
would be dependent on the extent of visible visual context. To address such cases, the framework
could be extended in future work to dynamically infer or adapt face part boundaries:

1. We can utilize the text encoder to parse face part descriptions into latent embeddings that
can be aligned with image features. Soft spatial attention maps based on the introduced
face parts can be used to approximate the boundaries of unseen face parts, even under
occlusion. Such an extension would enable the model to infer FPALP-like progression
values for novel regions by projecting the learned attention map onto surrounding anchor
contours. Additionally, a dynamic part discovery module could be trained using contrastive
losses to bind new textual descriptions to consistent visual patterns across samples. This
could potentially enable open-vocabulary part generalization in FLD, which could be an
exciting avenue for future work.

2. We can also leverage visibility annotations per landmark, such as those provided in the
MERL-RAV (Kumar et al., 2020) dataset, to supervise the model in learning to selectively
ignore occluded regions during training. This allows the framework to learn robust part
representations even when portions of the face are not visible. Additionally, these visibility
flags can be used to guide a gating mechanism or soft-attention masking module that
modulates the contribution of occluded regions in the query or image features during
inference, improving landmark prediction reliability under occlusion.

A.8 DETAILED 2D FPALP PROPOSAL FOR FUTURE WORK

As discussed in the future work section, the proposed FPALPs can be extended to 2D space to
facilitate further advancements. Currently, FPALPs are defined in 1D space, representing semantic
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progression points along a face part curve. By treating face part curves as boundaries, 2D FPALPs can
be defined along these boundaries, capturing semantic progression both horizontally and vertically,
with either the x or y component as zero. Extending this further, regions within the face part boundary
can be described using 2D FPALPs where both x and y components are non-zero. With only the
face part boundary as input, weak supervision could be employed to predict 2D FPALPs for arbitrary
points within the face part region. Thus, transitioning from 1D to 2D FPALPs shifts the representation
from linearly traversing face part curves to encompassing face part surfaces.

While 1D FPALPs correspond to progression along a face part boundary, 2D FPALPs require a surface
parameterization that maps internal face part regions to a normalized coordinate space. Constructing
such mappings without dense annotations firstly requires us to define the boundary coordinates of
each defined face part in both spatial dimensions and further necessitates the use of weak supervision
to learn the face part surface. For example, given only the boundary of a region (e.g., the cheek or
forehead), one could generate pseudo-ground-truth 2D FPALP labels using mesh-based interpolation
to learn consistent internal representations across identities.

Incorporating 2D FPALPs would allow the model to reason over continuous face surfaces rather
than just boundary curves, enabling richer spatial representations. This would benefit tasks such
as facial expression analysis, where subtle shape changes within a region (e.g., the bulging of
cheeks or wrinkling of the forehead) may not be captured effectively through sparse boundary points.
By modeling internal face part regions with 2D FPALPs, the framework could localize and track
deformations more precisely, potentially improving performance on downstream tasks requiring
dense spatial awareness.

A.9 DETAILED TRAINING PROCEDURE

Dataset Sampling. As our model is trained on a fusion of multiple datasets, we apply dataset-level
oversampling to ensure a balanced training distribution. Each training epoch includes approximately
the same number of samples from each dataset, ensuring equal exposure to each N -point facial
landmark template.

Batch Sampling. Since each dataset uses its own N -point template, all samples within a dataset
share the same number of queried landmarks. For each training iteration, we randomly select (without
replacement) one dataset and sample a batch (equal to the batch size) from it. This ensures consistent
tensor shapes for landmark queries and avoids the need for jagged arrays.

A.10 EXPLANATION OF SLIGHT PERFORMANCE DROP ON WFLW68

We address this issue in L375–383 of the manuscript and expand on it here. As noted in L299–300,
the WFLW dataset presents a wide range of challenges, including extreme poses, expressions, and
occlusions. In our unified training setup, we apply dataset-level oversampling to maintain a balanced
exposure across all datasets. However, because other datasets often contain less challenging samples,
the model’s exposure to difficult WFLW-specific cases is reduced. This can explain the slight
performance drop on WFLW68. Importantly, while we observe a decrease in NME on the 68-point
version of WFLW, we also observe a performance gain on the full 98-point format. This suggests
that the model benefits from the additional diverse data, especially in handling the extra 30 facial
points. In other words, the gain in the 30 additional landmarks outweighs the loss in the common
68, indicating that our method generalizes well overall when exposed to a wider variety of N-point
formats.

A.11 FACE TEMPLATE ALIGNMENT STATISTICS

As detailed in Sec. 3 of the main paper, the first step in the formulation of Face Part-Anchored
Landmark Positions (FPALPs) is the synthesis of the unified face template TU through an alignment
of the individual face templates of the considered datasets. We specified that the alignment of the
face templates of AFLW19, 300W, and WFLW, resulted in tight proximal clusters having an average
intra-cluster distance of 2.22 pixels averaged over all face parts. In Table 7 we expand this statistic
by showing the per-face part mean intra-cluster distances of landmark clusters having at least two
landmark members.
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We theorize that these intra-cluster distances quantifies a blend of (1) semantic positioning incon-
sistency across multiple poses, arising from differences in how datasets define contour trajectories
under foreshortening, profile rotations, occlusions and different facial expressions, and (2) subjective
annotation noise at the annotator level. FPALPs operate under this noisy supervision yet still learn
a stable “average” contour representation. A promising direction for future work is to explicitly
model and decompose this noise, e.g., by estimating semantic curve variability separately from
annotator-level deviations and training the model to minimize the former while remaining robust to
the latter.

Table 7: Mean intra-cluster distance (in pixels) for the landmark clusters per face part during the
alignment of the face templates of the AFLW19, 300W, and WFLW datasets, into a unified face
template. A clean alignment is observed with the minimum, maximum, and mean values of the mean
intra-cluster distance taken across the face parts as 1.51, 3.82, and 2.22 pixels respectively.

Face Part Mean Intra-Cluster Distance
face contour 3.82
left eyebrow 2.11
right eyebrow 2.24
nose bridge 2.30
nose boundary 1.51
left eye 1.59
right eye 1.52
outer lip 1.82
inner lip 3.27
left pupil 2.12
right pupil 2.07

A.12 LANDMARK TO FPALP MAPPING

After we attain the unified face template TU , we assign each landmark to one or more user-defined
face parts and calculate its Face Part-Anchored Landmark Positions. We tabulate the result of this
assignment for the AFLW, COFW, 300W, and 300W datasets in Tab. Table 8-11 respectively.

A.13 SHOWCASING DYNAMIC LANDMARK PREDICTION: ADDITIONAL VISUALIZATIONS

As in Fig. 6 within Sec. 4.3 of our main paper, we qualitatively assess the output of our Generalized
Dynamic Face Landmark Detection system by depicting a variety of dynamic landmark prediction
configurations on images from the WFLW test set in Figure 7. Further, in order to depict the
robustness of our system, we visualize our landmark prediction configurations on the challenging
cases of occlusion in Figure 8 and extreme poses in Figure 9 from the WFLW test set. From the
visualizations, we observe that our framework is able to successfully reason and predict the most
likely positions for the landmarks despite the (partial and complete) occlusion of face parts, atypical
facial expressions, and extreme poses.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 7: An illustration of the dynamic landmark prediction capability of our system. All images
are selected from the WFLW test set which implements the 98-point face template. We anchor the
landmarks to the following face parts: left and right eyes, eyebrows, and pupils, inner and outer lips,
face contour, nose bridge and boundary. For (e), we split the face contour, lips, and nose boundary
into left, center, and right sub-parts. Landmark predictions per face part are depicted using (a)(f)(k) a
granularity multiplier of 0.5, (b)(g)(l) a granularity multiplier of 1, (c)(h)(m) a granularity multiplier
of 4, (d)(i)(n) 4 landmarks per face part, and (e)(j)(o) a granularity multiplier of 0.5, 1, and 2 for left,
center, and right sub-parts whose landmarks are color coded as red, green, and blue respectively.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s)

(t) (u) (v) (w)

Figure 8: An illustration of the dynamic landmark prediction capability of our system on challenging
occlusion cases from the WFLW test set. We anchor the landmarks to the following face parts: left
and right eyes, eyebrows, and pupils, inner and outer lips, face contour, nose bridge and boundary.
For (e), we split the face contour, lips, and nose boundary into left, center, and right sub-parts.
Landmark predictions per face part are depicted using (a)(f)(k) a granularity multiplier of 0.5, (b)(g)(l)
a granularity multiplier of 1, (c)(h)(m) a granularity multiplier of 4, (d)(i)(n) 4 landmarks per face
part, and (e)(j)(o) a granularity multiplier of 0.5, 1, and 2 for left, center, and right sub-parts whose
landmarks are color coded as red, green, and blue respectively.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s)

(t) (u) (v) (w)

Figure 9: An illustration of the dynamic landmark prediction capability of our system on challenging
extreme pose cases from the WFLW test set. We anchor the landmarks to the following face parts:
left and right eyes, eyebrows, and pupils, inner and outer lips, face contour, nose bridge and boundary.
For (e), we split the face contour, lips, and nose boundary into left, center, and right sub-parts.
Landmark predictions per face part are depicted using (a)(f)(k) a granularity multiplier of 0.5, (b)(g)(l)
a granularity multiplier of 1, (c)(h)(m) a granularity multiplier of 4, (d)(i)(n) 4 landmarks per face
part, and (e)(j)(o) a granularity multiplier of 0.5, 1, and 2 for left, center, and right sub-parts whose
landmarks are color coded as red, green, and blue respectively.
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Table 8: Mapping of AFLW’s 19 landmarks to their face parts and Face Part-Anchored Landmark
Positions (FPALPs).

Landmark ID Face Part FPALP
1 Face Contour 16/32
2 Left Eyebrow 0/9 or 0/2
3 Left Eyebrow 4.5/9 or 1/2
4 Right Eyebrow 0/9 or 0/2
5 Right Eyebrow 4.5/9 or 1/2
6 Middle of Left Eyebrow 0/1
7 Middle of Right Eyebrow 0/1
8 Nose Bridge 3/3
9 Nose Boundary 0/6

10 Nose Boundary 6/6
11 Left Eye 0/6
12 Left Eye 3/6 or 1/2
13 Right Eye 0/6
14 Right Eye 3/6 or 1/2
15 Outer Lip 0/12
16 Outer Lip 6/12
17 Middle of Mouth 0/1
18 Left Eye Pupil 0/1
19 Right Eye Pupil 0/1

Table 9: Mapping of COFW’s 29 landmarks to their face parts and Face Part-Anchored Landmark
Positions (FPALPs).

Landmark ID Face Part FPALP
1 Face Contour 16/32
2 Left Eyebrow 0/9
3 Left Eyebrow 2/9
4 Left Eyebrow 1/2
5 Left Eyebrow 7/9
6 Right Eyebrow 0/9
7 Right Eyebrow 2/9
8 Right Eyebrow 1/2
9 Right Eyebrow 7/9
10 Nose Bridge 3/3
11 Nose Boundary 0/6
12 Nose Boundary 3/6
13 Nose Boundary 6/6
14 Left Eye 0/8
15 Left Eye 2/8
16 Left Eye 4/8
17 Left Eye 6/8
18 Right Eye 0/8
19 Right Eye 2/8
20 Right Eye 4/8
21 Right Eye 6/8
22 Outer Lip 0/12
23 Outer Lip 3/12
24 Outer Lip 6/12
25 Outer Lip 9/12
26 Inner Lip 2/8
27 Inner Lip 6/8
28 Left Eye Pupil 0/1
29 Right Eye Pupil 0/1
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Table 10: Mapping of 300W’s 68 landmarks to their face parts and Face Part-Anchored Landmark
Positions (FPALPs).

Landmark ID Face Part FPALP Landmark ID Face Part FPALP
1 Face Contour 0/32 35 Nose Boundary 4/6
2 Face Contour 2/32 36 Nose Boundary 5/6
3 Face Contour 4/32 37 Left Eye 0/6
4 Face Contour 6/32 38 Left Eye 1/6
5 Face Contour 8/32 39 Left Eye 2/6
6 Face Contour 10/32 40 Left Eye 3/6
7 Face Contour 12/32 41 Left Eye 4/6
8 Face Contour 14/32 42 Left Eye 5/6
9 Face Contour 16/32 43 Right Eye 0/6

10 Face Contour 18/32 44 Right Eye 1/6
11 Face Contour 20/32 45 Right Eye 2/6
12 Face Contour 22/32 46 Right Eye 3/6
13 Face Contour 24/32 47 Right Eye 4/6
14 Face Contour 26/32 48 Right Eye 5/6
15 Face Contour 28/32 49 Outer Lip 0/12
16 Face Contour 30/32 50 Outer Lip 1/12
17 Face Contour 32/32 51 Outer Lip 2/12
18 Left Eyebrow 0/9 52 Outer Lip 3/12
19 Left Eyebrow 1/9 53 Outer Lip 4/12
20 Left Eyebrow 2/9 54 Outer Lip 5/12
21 Left Eyebrow 3/9 55 Outer Lip 6/12
22 Left Eyebrow 4/9 56 Outer Lip 7/12
23 Right Eyebrow 0/9 57 Outer Lip 8/12
24 Right Eyebrow 1/9 58 Outer Lip 9/12
25 Right Eyebrow 2/9 59 Outer Lip 10/12
26 Right Eyebrow 3/9 60 Outer Lip 11/12
27 Right Eyebrow 4/9 61 Inner Lip 0/8
28 Nose Bridge 0/3 62 Inner Lip 1/8
29 Nose Bridge 1/3 63 Inner Lip 2/8
30 Nose Bridge 2/3 64 Inner Lip 3/8
31 Nose Bridge 3/3 65 Inner Lip 4/8
32 Nose Boundary 1/6 66 Inner Lip 5/8
33 Nose Boundary 2/6 67 Inner Lip 6/8
34 Nose Boundary 3/6 68 Inner Lip 7/8
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Table 11: Mapping of WFLW’s 98 landmarks to their face parts and Face Part-Anchored Landmark
Positions (FPALPs).

Landmark ID Face Part FPALP Landmark ID Face Part FPALP
1 Face Contour 0/32 50 Right Eyebrow 7/9
2 Face Contour 1/32 51 Right Eyebrow 8/9
3 Face Contour 2/32 52 Nose Bridge 0/3
4 Face Contour 3/32 53 Nose Bridge 1/3
5 Face Contour 4/32 54 Nose Bridge 2/3
6 Face Contour 5/32 55 Nose Bridge 3/3
7 Face Contour 6/32 56 Nose Boundary 1/6
8 Face Contour 7/32 57 Nose Boundary 2/6
9 Face Contour 8/32 58 Nose Boundary 3/6

10 Face Contour 9/32 59 Nose Boundary 4/6
11 Face Contour 10/32 60 Nose Boundary 5/6
12 Face Contour 11/32 61 Left Eye 0/8
13 Face Contour 12/32 62 Left Eye 1/8
14 Face Contour 13/32 63 Left Eye 2/8
15 Face Contour 14/32 64 Left Eye 3/8
16 Face Contour 15/32 65 Left Eye 4/8
17 Face Contour 16/32 66 Left Eye 5/8
18 Face Contour 17/32 67 Left Eye 6/8
19 Face Contour 18/32 68 Left Eye 7/8
20 Face Contour 19/32 69 Right Eye 0/8
21 Face Contour 20/32 70 Right Eye 1/8
22 Face Contour 21/32 71 Right Eye 2/8
23 Face Contour 22/32 72 Right Eye 3/8
24 Face Contour 23/32 73 Right Eye 4/8
25 Face Contour 24/32 74 Right Eye 5/8
26 Face Contour 25/32 75 Right Eye 6/8
27 Face Contour 26/32 76 Right Eye 7/8
28 Face Contour 27/32 77 Outer Lip 0/12
29 Face Contour 28/32 78 Outer Lip 1/12
30 Face Contour 29/32 79 Outer Lip 2/12
31 Face Contour 30/32 80 Outer Lip 3/12
32 Face Contour 31/32 81 Outer Lip 4/12
33 Face Contour 32/32 82 Outer Lip 5/12
34 Left Eyebrow 0/9 83 Outer Lip 6/12
35 Left Eyebrow 1/9 84 Outer Lip 7/12
36 Left Eyebrow 2/9 85 Outer Lip 8/12
37 Left Eyebrow 3/9 86 Outer Lip 9/12
38 Left Eyebrow 4/9 87 Outer Lip 10/12
39 Left Eyebrow 5/9 88 Outer Lip 11/12
40 Left Eyebrow 6/9 89 Inner Lip 0/8
41 Left Eyebrow 7/9 90 Inner Lip 1/8
42 Left Eyebrow 8/9 91 Inner Lip 2/8
43 Right Eyebrow 0/9 92 Inner Lip 3/8
44 Right Eyebrow 1/9 93 Inner Lip 4/8
45 Right Eyebrow 2/9 94 Inner Lip 5/8
46 Right Eyebrow 3/9 95 Inner Lip 6/8
47 Right Eyebrow 4/9 96 Inner Lip 7/8
48 Right Eyebrow 5/9 97 Left Eye Pupil 0/1
49 Right Eyebrow 6/9 98 Right Eye Pupil 0/1
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