
Investment vs. reward in a competitive knapsack
problem

Oren Neumann
Institute for Theoretical Physics

Goethe University Frankfurt
Frankfurt am Main, Germany

neumann@itp.uni-frankfurt.de

Claudius Gros
Institute for Theoretical Physics

Goethe University Frankfurt
Frankfurt am Main, Germany

gros@itp.uni-frankfurt.de

Abstract

Natural selection drives species to develop brains, with sizes that increase with
the complexity of the tasks to be tackled. Our goal is to investigate the balance
between the metabolic costs of larger brains compared to the advantage they
provide in solving general and combinatorial problems. Defining advantage as
the performance relative to competitors, a two-player game based on the knapsack
problem is used. Within this framework, two opponents compete over shared
resources, with the goal of collecting more resources than the opponent. Neural
nets of varying sizes are trained using a variant of the AlphaGo Zero algorithm
[1]. A surprisingly simple relation, NA/(NA +NB), is found for the relative win
rate of a net with NA neurons against one with NB . Success increases linearly
with investments in additional resources when the networks sizes are very different,
i.e. when NA � NB , with returns diminishing when both networks become
comparable in size.

1 Introduction

Optimal resource allocation often leads to combinatorial problems, e.g. time can be minimized by
solving the travelling salesman problem. In nature, resource allocation is in many cases a competitive
process, with animals competing with each other over shared resources. A key question regards in this
context the balance between success rate and investments in computational capabilities, e.g. in terms
of metabolic cost. This question is relevant also for artificial neural networks, which are notoriously
bad at solving combinatorial problems [2], in particular when compared with the performance of
traditional, problem-specific algorithms.

Lately, there has been a rising interest to apply deep learning architectures to combinatorial problems
[3] [4] [5]. In this context we are interested in the evolutionary factors determining network sizes,
when assuming that larger nets come with correspondingly larger metabolic cost. Presently it is
however unclear how costs scale with reward, that is the precise functional dependence of success
on network size is not known. Here we investigate this question within the 0-1 knapsack problem, a
basic resource allocation task that can be generalize to a range of real-world situations [6].

The problem is defined as follows: Given n items with values vi and weights wi, maximize
n∑
i=1

vixi, xi ∈ {0, 1} , (1)

subject to a capacity constraint
n∑
i=1

wixi ≤ W , (2)

1st Workshop on Learning Meets Combinatorial Algorithms @ NeurIPS 2020, Vancouver, Canada.

where {xi} denotes the chosen subset of items and W is a constraint on the total weight. In other
words, one should select the group of items with maximal total value which does not exceed the total
weight limit. There are several algorithms developed specifically to solve the 0-1 knapsack problem
and special cases of it, such as dynamic programming and branch-and-bound algorithms [7].

Survival of the fittest pushes species to become better than their competition, when too many
individuals are fighting for the same resources. It is therefore logical to measure the success of an
agent only in comparison to other agents, rather than looking for an absolute scale. For this reason
we decided to focus on a two-player extension of the knapsack problem. In this setup, two agents
compete over the same pool of resources trying each to collect more value than the other. This
framework allowed us to use a powerful tool for training deep learning models to play turn based
games, the AlphaGo Zero (αGZ) algorithm [1]. Suitably adapted, we applied αGZ to train neural
network models of varying sizesN to play the two-player knapsack game, with the goal of comparing
their performances when playing against each other. This framework allows us to determine how
increasing the number of available neurons affects the performance of the competing networks.

2 Method

In order to simulate direct interactions between agents, we created a zero sum game for two players
which is an extension of the knapsack problem. During the course of a game, players pick items in
turns from a common item pool. Each item can be selected by at most one player, and each player
has a capacity limit for the total weight of items they can personally collect. The goal of the game is
not to maximize the total value of items collected, but rather to surpass the total value gained by the
opponent. A game progresses in the following manner:

• Each turn, a player may choose any item from the pool of free items and add it to their
collection, provided this would not cause the total weight of items collected to exceed the
weight limit. The item chosen is then removed from the common pool, and the other player
plays his turn. If no suitable item is available, the current player passes.

• The two players take their turns one after the other, until no item is picked for two consecutive
turns, meaning there are no more valid items. At this point the player with the larger total
value is declared the winner.

For our simulations we focused on games where items are unique, vi 6= vj for i 6= j, with both
players having identical capacity limits. Since generating vi, wi from a uniform distribution creates
mostly easily solvable knapsack problem instances [8], we generated weakly correlated instances [9],
which are generally harder to solve. These are defined as instances where wi is uniformly distributed
in [0, 1] and vi is uniformly distributed in a range of wi ± 0.1, confined to [0, 1]. The capacity limits
were set to W = n/4 as this avoids generating easy instances in the normal knapsack problem setting
[10]. The complexity of the two player framework is somewhat increased, as compared to the original
knapsack problem, as players need to deprive the opponent of items, in addition to optimizing their
own collection.

Training was done using an adaptation of the αGZ algorithm. The neural network agents are trained
by reinforcement learning on self generated data, without using any a priori knowledge of the game.
The networks receive as inputs the current state of the game, i.e. the weights and values of all items
and a list of all items acquired so far by each player. The output consists of a policy vector and a
value prediction:

f(s) = (~p, v) , (3)
where v is a prediction of the value of the current game position s, which is equivalent to the expected
final outcome of the game from this position. We set the possible game outcomes to be {0, 1}, for
losing/winning the game respectively, therefore implying that v ∈ [0, 1]. ~p is a probability distribution
over all available moves, which should prioritize better moves and is used to guide the Monte Carlo
tree search (MCTS). The neural net is trained on randomly picked game states that were visited in
previous games played, using the loss function:

l = (z − v)2 − ~π log ~p . (4)

Here z is the recorded game outcome and ~π is an improved policy vector generated by the MCTS.
Before each training phase, several games are played using the current version of the agent, pitched

2

against a copy of itself. During a game, each player makes use of a search tree in order to choose
every move. The tree contains a parent node holding information about the current game state, with
nodes descending from it for each possible future game state that has been explored before. Every
turn, the agent is given a certain number of iterations to expand their search tree, before deciding
which move to make.

MCTS makes use of the information stored in each node in order to expand new leaf nodes. A node
contains four parameters: The number of times the node has been visited in previous searches, N ;
the sum of all scores predicted for this node and its children, W ; the mean score Q =W/N ; and the
policy vector ~p calculated once by the agent for this game state. Each iteration of expanding the tree
traverses it by starting at the first node, i.e. the current game state, and repeatedly moving to the child
node which maximizes a quantity Q+ U until a previously unvisited node is reached. The term U is
defined according to:

U = cPa

√∑
iNi

1 +Na
, (5)

where c is a constant, Pa is the policy vector element corresponding to action a leading to the node,
Na is the node’s visit count and

∑
iNi is the sum of the visit counts of all available actions. When

an unexplored node is reached, it is added to the tree and the parameters of it and all other nodes
traversed are updated. After the expansion iterations are done a move is chosen according to an
improved policy ~π, defined by using the visit counts of all possible moves:

πi ∝ N1/τ
i (6)

With τ a temperature parameter controlling the degree of exploration, set to 1 in our case. The turn
then ends, and both players trim their search trees to remove all nodes that are now unreachable,
making the new game state the parent node of the whole tree.

We trained fully connected feed forward neural network models to play two-player knapsack games
with 16 items. Each net had 2 hidden layers with ReLU connections, both with the same number
of neurons, which changed from one net to the other. The inputs consisted of 4 vectors of length
16: A vector of the items’ weights, a vector of the values and two binary vectors encoding the items
taken by each player. The items were ordered by descending ratio of vi/wi such that a minimal
sized model could easily implement a greedy strategy of picking the items with the best ratios. The
network outputs were a policy vector with a softmax activation and a value head with a sigmoid
activation. Every net was trained on a total of 40,000 self generated games, where optimization
steps were taken every 40 games and performance was evaluated every 4,000 games, saving the
best performing version. Each evaluation step consisted of 200 games of the net against a greedy
algorithm in order to save time. The agents used 40 Monte Carlo steps per turn in all games. All
model instances were given the same number of optimization steps regardless of their sizes, without
early stopping if performance saturated. The final results presented in the next section were generated
by training four separate copies of each net and taking the average of their game outcomes.

In order to interpret our results we made use of the Elo rating system [11], a rating system for
zero-sum games that was invented for chess and gained popularity in numerous games. The expected
score, or winning probability, of player A over player B is given by the formula:

PA =
1

1 + 10(RB−RA)/400
, (7)

where RA, RB are the Elo ratings of both players. These ratings are found by repeatedly matching
players together and adjusting their ratings to fit the game outcomes.

3 Results and discussion

Combinatorial problems manifest themselves in many ways in nature, making it beneficial for
organisms to evolve ways to solve them. But unlike raw mathematical problems which have in most
cases goals and solving conditions that are defined in absolute terms, in the natural world evolution
pushes agents to overcome their competition such that merit is measured predominantly in relation to
one’s competitors. It is therefore biologically sensible to look at adversarial problems when analysing
the performance of neural networks at solving combinatorial problems. This is why we chose to
work on the two-player competitive version of the knapsack problem, where the merit of an agent in

3

(a) (b)

Figure 1: Training neural networks to play competitive knapsack problem games with 16 items. (a)
Probability of net A to win against net B, when both have differing numbers of neurons. The black
lines mark increments of 0.1 in winning probability, the red lines mark the same for the prediction
given by Eq. (8). (b) Elo rating of networks with different numbers of neurons in log scale, with the
logarithmic fit y = 400 log(N) + const in red.

relation to other agents is clearly defined by the probability of winning or losing a game against them.
Figure 1 presents the outcome of training neural nets of varying sizes to play a competitive knapsack
problem game with 16 weakly correlated items [9]. All neural nets contained two hidden layers, both
with the same number of neurons, which was changed from one net to the other.

The problem displays diminishing returns, requiring increasingly larger differences between the sizes
of competing nets in order to maintain the same win-lose statistics between them as they increase in
size. This is supported by plotting the Elo rating of the nets, which scales logarithmically in network
size. In fact the Elo rating is fitted well by y = 400 log(N) + const, where N is the number of
hidden neurons. Since 400 is the Elo scaling factor, plugging this expression into Eq. (7) reveals that
the probability of net A to win a game against net B reduces to

PA =
NA

NA +NB
, (8)

where NA, NB are the numbers of hidden neurons of nets A and B respectively. In other words, the
probability of player A to win isNA/NB times greater than that of player B, meaning the performance
of neural nets against each other in this task is determined directly by the ratio of their sizes.

A peculiar property of the Elo rating system is that it assumes the existence of an absolute rating
scale which determines game outcomes solely according to the difference in ratings between the
two players. It could be possible that other factors also affect game outcomes, which would require
a more complex model. To rule out this possibility, we plotted the full map of game outcomes for
every combination of players in Figure 1a. Lines of equal winning probability predicted by Eq. (8)
are marked in red. It is clear that the theoretical prediction matches the corresponding lines obtained
through simulations (in black) to an astonishing degree, proving that Eq. (8) holds.

This result implies a linear increase of the probability PA with network size in the regime where
NA � NB , and diminishing returns when both opponents are relatively equally matched. Therefore
a large difference between competitors can be quickly closed when they evolve to maximize their own
utility. Note that when NA ≈ NB the benefit of increasing the number of neurons by a multiplicative
factor, NA → γNA, is independent of NA, always yielding the same winning probability γ/(γ + 1).

References
[1] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur

Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of
go without human knowledge. nature, 550(7676):354–359, 2017.

4

[2] Kate A Smith. Neural networks for combinatorial optimization: a review of more than a decade
of research. INFORMS Journal on Computing, 11(1):15–34, 1999.

[3] Kenshin Abe, Zijian Xu, Issei Sato, and Masashi Sugiyama. Solving np-hard problems on
graphs with extended alphago zero. arXiv preprint arXiv:1905.11623, 2019.

[4] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. In Advances in Neural Information Processing Systems,
pages 6348–6358, 2017.

[5] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combina-
torial optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

[6] Carsten Murawski and Peter Bossaerts. How humans solve complex problems: The case of the
knapsack problem. Scientific reports, 6:34851, 2016.

[7] Silvano Martello, David Pisinger, and Paolo Toth. New trends in exact algorithms for the 0–1
knapsack problem. European Journal of Operational Research, 123(2):325–332, 2000.

[8] Kate Smith-Miles and Leo Lopes. Measuring instance difficulty for combinatorial optimization
problems. Computers & Operations Research, 39(5):875–889, 2012.

[9] David Pisinger. Where are the hard knapsack problems? Computers & Operations Research,
32(9):2271–2284, 2005.

[10] Mattias Ohlsson, Carsten Peterson, and Bo Söderberg. Neural networks for optimization
problems with inequality constraints: the knapsack problem. neural computation, 5(2):331–339,
1993.

[11] Mark E Glickman and Albyn C Jones. Rating the chess rating system. CHANCE-BERLIN
THEN NEW YORK-, 12:21–28, 1999.

5

	Introduction
	Method
	Results and discussion

