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Abstract

Prod is a seminal algorithm in full-information online learning, which has been
conjectured to be fundamentally sub-optimal for multi-armed bandits. By lever-
aging the interpretation of Prod as a first-order OMD approximation, we present
the following surprising results: 1. Variants of Prod can obtain optimal regret
for adversarial multi-armed bandits. 2. There exists a simple and (arguably)
importance-weighting free variant with optimal rate. 3. One can even achieve
best-both-worlds guarantees with logarithmic regret in the stochastic regime.
The bandit algorithms in this work use simple arithmetic update rules without the
need of solving optimization problems typical in prior work. Finally, the results
directly improve the state of the art of incentive-compatible bandits.

1 Introduction

The adversarial multi-armed bandit (MAB) problem is a seminal online learning problem with
applications in experimental design, online advertisement and more [Thompson, 1933, Lai and
Robbins, 1985, Auer et al., 2002a,b]. MABs are characterized by the limited feedback given to the
learner in every round, the so-called bandit feedback, in which the learner only observes the loss of
their selected action, unlike in the full information, also known as the experts, setting where the loss
of all actions are provided as feedback.

The first nearly optimal algorithm for the adversarial MAB problem is EXP3 [Auer et al., 2002b].
EXP3 is a direct adaptation of the Hedge algorithm [Littlestone and Warmuth, 1994, Cesa-Bianchi
et al., 1997, Freund and Schapire, 1997] with importance weighting to handle partial bandit feed-
back. Hedge and EXP3 are special versions of online mirror descent (OMD), where the Bregman
divergence is the KL divergence induced by the Negative entropy potential. The OMD view of
online learning [Abernethy et al., 2008] has lead to a wide range of MAB algorithms such as Tsallis-
INF [Audibert and Bubeck, 2009] and Logbarrier [Agarwal et al., 2017], which enjoy improved regret
guarantees. These guarantees can be attributed to regularizers more suited to the bandit feedback
setting, compared to the negative entropy regularizer. A downside of OMD is that usually the mirror
descent update is not closed form and requires (approximately) solving optimization problems at
every iteration.

Alternative full-information algorithms with simple arithmetic updates are Prod [Cesa-Bianchi et al.,
2007, Even-Dar et al., 2008, Gaillard et al., 2014], which enjoys second order regret bounds and
Multiplicative Weights Update (MWU) [Arora et al., 2012]. Prod is known to be closely related to
Hedge, both of which are different generalizations of the weighted majority algorithm [Littlestone
and Warmuth, 1994] to non-binary feedback.

More recently, Freeman et al. [2020] studied incentive-compatible online learning, a setting where
experts are not necessarily truthful but make predictions strategically with regard to the agent’s
algorithm. Motivated by deriving an algorithm where the incentives of experts align with the agent,

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



they propose WSU which can be seen as an instance of Prod. Freeman et al. [2020] further introduce
a bandit adaptation WSU-UX, the first Prod algorithm for bandits. Unfortunately, WSU-UX only
enjoys T

2
3 regret guarantees. This is not merely an issue with their analysis as has been shown via

lower bounds [Mortazavi et al., 2024] and leads to the conjecture that this might be a fundamental
separation between full-information and bandits.

We make the following contributions for understanding Prod under bandit feedback:

1. We disprove the separation conjecture by providing a simple modification of WSU-UX with
nearly optimal O(

√
KT log(K)) regret guarantees.

2. We present a Prod variant that does not require importance weighting and yet enjoys
O(
√
KT log(T )) regret bounds.

3. We present a Prod variant that achieves best of both worlds regret guarantees, i.e. it enjoys
improved O(log(T )) regret bounds when the losses are stochastic, while maintaining worst-
case O(

√
KT ) regret bounds.

Notation: For N ∈ N, let [N ] = {1, . . . , N}. We use 〈·, ·〉 to denote the regular Euclidean scalar
product and ∆(A) to denote the probability simplex over a finite set A. O is the standard Landau
notation hiding numerical constants, while Õ omits polylogaritmic factors as well. The expectation
E is always taken over all randomness of the algorithm, losses and experts, while Et[·] = E[· |Ft],
where Ft is the filtration over all randomness up to step t. I(E) denotes the indicator function
function for the event E. For a convex differentiable function F , the Bregman divergence is defined
by DF (y, x) = F (y)− F (x)− 〈y − x,∇F (x)〉.

2 Problem setting and related work

The adversarial bandit problem is formally defined as follows. In every round t = 1, . . . , T , an
(oblivious) adversary selects a loss `t ∈ [0, 1]K (it is possible to extend the loss range to [−1, 1]K)
unknown to the agent. The agent simultaneously selects an expert At ∼ πt, πt ∈ ∆([K]). The
agent incurs and observes the loss `t,At , but does not see the losses of other experts. The goal is to
minimize the pseudo-regret1

Reg = max
i∈[K]

E

[
T∑
t=1

`t,At
− `t,i

]
= max
u∈∆([K])

E

[
T∑
t=1

〈πt − u, `t〉

]
,

Popular families of algorithms for this problem setting include online mirror descent (OMD) and
follow the regularized leader (FTRL). Typically the algorithms use unbiased loss estimates of the
loss vector via importance weighting: ˆ̀

t,i =
`t,i
πt,i

I(At = i). We note that other types of importance
weighted estimators have been used in literature such as the implicit exploration estimator Kocák et al.
[2014], which has improved variance properties. The algorithms are defined by a twice-differentiable
convex potential function F : RK → R and a learning rate schedule ηt, the agent maintains a
distribution via

πt+1 = arg minπ∈∆([K])

〈
π, ηt ˆ̀t

〉
−DF (π, πt) , (OMD)

πt+1 = arg minπ∈∆([K])

〈
π, ηt

t∑
s=1

ˆ̀
s

〉
− F (π) , (FTRL)

OMD optimizes locally given the last loss and, as we will show, is most closely related to Prod.
FTRL on the other hand performs a global optimization and is generally considered superior for
adaptive bounds with time-dependent learning rates. In some special cases, such as time-independent
learning rate with potentials that satisfy ‖∇F (x)‖ → ∞ on the border of the optimization set,
both algorithms are equivalent. Common potentials in the bandit literature are given in Table 1
and we refer to their respective Bregman divergences as DKL, DTS and DLB respectively. The
negative entropy is the potential which defines Hedge and Exp-3 (and derivatives) [Littlestone and

1For the rest of the paper we refer to pseudo-regret as regret for simplicity.
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Negentropy/KL divergence 1/2-Tsallis Entropy Logbarrier
F (π)

∑K
i=1 πt,i log(πt,i) −2

∑K
i=1

√
πt,i −

∑K
i=1 log(πt,i)

Table 1: Common potential functions

Warmuth, 1994, Vovk, 1995, Freund and Schapire, 1997, Auer et al., 2002b, Kocák et al., 2014]. The
1/2-Tsallis Entropy is the key to achieving optimal best-of-both-worlds regret guarantees as was
first demonstrated by Zimmert and Seldin [2021]. The Logbarrier potential was used by Agarwal
et al. [2017] to first solve the corralling of bandits problem and has found many applications in
model-selection problems [Foster et al., 2020], regret bounds which depend on the properties of the
loss sequence [Wei and Luo, 2018, Lee et al., 2020b,a] and various other bandit problems.

2.1 Prod family of algorithms

The original version of Prod [Cesa-Bianchi et al., 2007] maintains weights wt,i for each experts
which are updated via wt+1,i = wt,i(1 − η`t,i) and the agent plays the policy πt,i ∝ wt,i. This
framework has been extended to D-Prod [Even-Dar et al., 2008], which shifts the losses in the weight
update by the loss of a fixed policy, and ML-Prod [Gaillard et al., 2014] that shifts losses by the mean
of the current policy (among other modifications). With a suitable shift in losses, one can ensure that
the weights sum up to 1 and hence operate directly on the policy space. In its simplest form, this is

π1,i =
1

K
, πt+1,i = πt,i(1− η(`t,i − λt)) , λt =

K∑
j=1

πt,j`t,j . (Vanilla-Prod/WSU)

We refer to this update as Vanilla-Prod to emphasize its connection to the Prod literature, however this
algorithm is exactly WSU [Freeman et al., 2020] derived for incentive-compatible online learning.
We consider any algorithm a variant of Prod if it performs product updates of the form πt+1,i =
πt,i(1− ηLt,i(`t;At)), where Lt,i are linear affine functions of the loss. From now on we always
assume the initial policy is πt,i = 1/K, and this holds for all algorithms presented in the paper. The
appeal of Prod algorithms lies in their simple arithmetic update rule. A second motivation for using
Prod updates is the mentioned incentive-compatibility.

2.2 Incentive-compatible online learning

In the incentive-compatible online learning setting, introduced by Freeman et al. [2020], experts
provide recommendations, for example a prediction of whether it will rain on the next day. Each
expert has an internal belief and the agent would like to receive each expert’s true beliefs in order
to learn to follow the best expert. In the simplest setting the experts make predictions about binary
outcomes, with the i-th expert having (private) belief bt,i ∈ [0, 1] about the t-th round outcome. The
expert’s belief is unknown to the agent and the expert only reports a prediction pt,i ∈ [0, 1] about
the outcome. Based on the expert predictions, {pt,i}i∈[K] the agent makes a prediction based on
p̄t =

∑K
i=1 πt,ipt,i and incurs a loss L(p̄t, rt) ∈ [0, 1] based on the realized outcome rt ∈ {0, 1}.

In the weather forecasting example the outcome is the indicator if it rains the next day and the loss
is L(p̄t, rt) = (rt − p̄t)2. In Freeman et al. [2020] the experts only care about maximizing the
probability that they are selected which does not necessarily result in truthful reporting, that is bt,i
may differ from pt,i. The agent’s goal of receiving the true beliefs, {bt,i}i∈[K], can be achieved by
playing an incentive compatible strategy which will always prefer selecting an truthful expert, that is
the probability of πt+1,i of selecting expert i when the expert reports bt,i may only decrease if the
expert reports any other pt,i instead, no matter how the remaining experts act throughout the game.
This is made precise in Definition 2.1 of Freeman et al. [2020].

Freeman et al. [2020] show that standard OMD and FTRL algorithms are in fact not incentive compat-
ible even when the loss L is restricted to be proper that is Er∼Bern(b)[L(p, r)] ≥ Er∼Bern(b)[L(b, r)]
for all p 6= b. It turns out that any update for πt+1 which is linear affine in the proper loss function
will lead to incentive compatibility and so the Prod family will ensures that experts report their true
believes in this setting, i.e. they are incentive-compatible. The state of the art for incentive-compatible
bandits is T

2
3 regret and any improvement for Prod directly transfers to better rates for this setting as

well.
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3 Modifying WSU-UX for nearly optimal regret guarantees

We begin by presenting a minimal modification of Algorithm WSU-UX which is sufficient for a
regret guarantee of the order O(

√
KT log(K)).

WSU-UX uses importance-weighted updates and injects a small uniform exploration.

π̃t,i =
γ

K
+ (1− γ)πt,i, At ∼ π̃t,i, ˆ̀

t,i = I(At = i)
`t,i
π̃t,i

πt+1,i = πt,i(1− η(ˆ̀
t,i − λt)) , λt =

K∑
j=1

πt,j ˆ̀
t,j , (WSU-UX)

where γ is the mixture coefficient. The role of uniform exploration is to ensure that the policy updates
are proper i.e. πt+1,i ∈ (0, 1). Freeman et al. [2020] uses the following key lemmas in their analysis,
which hold for any sequence of losses `t ∈ [0, 1]K . For completeness we restate the results we use
below.
Lemma 1 (Lemma 4.1 [Freeman et al., 2020]). If ηK/γ ≤ 1

2 , the WSU-UX weights πt and π̃t are
valid probability distributions for all t ∈ [T ].

Lemma 2 (Lemma 4.3 [Freeman et al., 2020]). For WSU-UX, the probability vectors {πt}t∈[T ] and
loss estimators ˆ̀

t satisfy the following second order-bound

T∑
t=1

K∑
i=1

πt,i ˆ̀t,i −
T∑
t=1

ˆ̀
t,i? ≤

log(K)

η
+ η

T∑
t=1

ˆ̀2
t,i? + η

T∑
t=1

K∑
i=1

πt,i ˆ̀
2
t,i,

where i? is the optimal expert/arm.

The bound in Lemma 2 is almost the standard regret bound that appears in the analysis of Hedge,
except for the term η

∑T
t=1

ˆ̀2
t,i? . This term is the reason why prior work can not show regret bounds

smaller than T
2
3 . Even after taking the expectation over the randomness of the agents actions, this

term scales with with 1/πt,i? , which is potentially unbounded. Alternatively this term can be written
as Ej∼π

?

t [η ˆ̀2
tj ] (where π? is the policy picking i? with probability 1) and if one could perform a

change of measure to Ej∼π̃t

t [η ˆ̀2
tj ], this term is immediately controllable.

In fact, change of measure techniques for bandits are now well established [Foster et al., 2020,
Luo et al., 2021] by introducing biases to the losses. Assume we construct a bias to the losses
˜̀
t = `t + δt, which satisfies the same regret guarantee, Reg, as the original loss sequence, then

running an algorithm over the biased loss sequence ˜̀
t which selects At ∼ π̃t ensures

E

[
T∑
t=1

`t,At
− `t,i?

]
= E

[
T∑
t=1

˜̀
t,At
− ˜̀

t,i? + δt,At
− δt,i∗

]

= Reg +E

 T∑
t=1

(Ej∼π̃t

t [δt,j ]− Ej∼π
?

t [δt,j ]︸ ︷︷ ︸
change of measure

)

 .
We introduce now the following modification to the losses

˜̀
t,i = `t,i

(
1− η

π̃t,i

)
, ˆ̀

t,i = I(At = i)
˜̀
t,i

π̃t,i
. (1)

which corresponds to δti = η`ti
π̃t,i

. This yields the change of measure term

Ej∼π̃t

t [δt,j ]− Ej∼π
?

t [δt,j ] =

K∑
i=1

η`ti − Ej∼π
?

t

[
η`tj
π̃tj

]
≤ ηK − Ej∼π

?

t [η ˆ̀2
tj ] ,

which is sufficient for controlling the term η
∑T
t=1

ˆ̀2
t,i? in Lemma 2.
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Theorem 1. Running WSU-UX with the loss estimators in Equation 1 and γ = ηK
2 , η = Θ(

√
log(K)
KT )

guarantees the following regret bound

T∑
t=1

E[`t,At
− `t,i? ] ≤ O(

√
KT log(K)).

The proof of Theorem 1 is deferred to Appendix B.

3.1 Intuition on biasing the update and the Prod family of algorithms

We provide an intuition in this section about why WSU-UX is not tight and why the bias we choose
is able to correct the regret. The modern analysis of OMD (or FTRL) with a divergence function D is
follows the template2

T∑
t=1

〈πOMD
t − π?, `t〉 =

T∑
t=1

(
〈πOMD
t − π?, `t〉+

D(π?, πOMD
t+1)−D(π?, πOMD

t )

η

)

+
D(π?, πOMD

1 )−D(π?, πOMD
T+1)

η
≤

T∑
t=1

〈πOMD
t − πOMD

t+1, `t
〉

+
D(πOMD

t+1, π
OMD
t )

η︸ ︷︷ ︸
stability

+
D(π?, πOMD

1 )

η
,

(2)

where the inequality crucially relies on πOMD
t+1 being the 1-step OMD update to the previous policy.

OMD algorithms like Hedge choose the policy that minimizes the per-step stability term in every
round, which is what allows for the stability term to be bounded appropriately. If instead of playing
πOMD
t an approximate policy πt ≈ πOMD

t is played, the template regret analysis can be changed by
adding the terms

η−1(D(π?, πt+1)−D(π?, πOMD
t+1)) ,

where πOMD
t+1 is now the 1-step OMD update from πt. When D is the KL divergence and the approxi-

mate policy πt is coming from the WSU-UX, this term contributes the undesirable η ˆ̀2
t,i? .

We now explain how our loss biasing solves this issue. The Vanilla-Prod/WSU update can be seen as
a first order approximation to the Hedge update, that is

πOMD
t+1,i = πt,i exp(−η(ˆ̀

t,i − λt)) ≈︸︷︷︸
first-order

πt,i(1− η(ˆ̀
t,i − λt)) = πt,i ,

where λt is a normalization factor. Tuning λt such that
∑K
i=1 πt+1,i = 1 recovers Vanilla-Prod/WSU.

To control the undesirable terms, we have to make the approximation tighter. The loss-biasing
introduced in the previous section acts as a correction which brings the Vanilla-Prod/WSU update
closer to the second order approximation of the Hedge update. Indeed, we have

πOMD
t+1,i = πt,i exp(−η(ˆ̀

t,i − λt)) ≈︸︷︷︸
second-order

πt,i

(
1− η(ˆ̀

t,i − λt) +
η2

2
(ˆ̀
t,i − λt)2

)
= πt,i

(
1− η(ˆ̀

t,i − λt)
(

1− η

2
(ˆ̀
t,i − λt)

))
,

and so our loss adjustment in Equation 1, ˜̀
t,i = `t,i(1 − η/π̃t,i), can be seen as a second order

correction to the term η2

2 (ˆ̀
t,i − λt)2. We cannot exactly correct the second order difference with

linear update rules, which we address by slightly overcorrecting, i.e. biasing by a larger amount than
the second order adjustments implies as necessary. That is, the correction term we use is of the order
η/π̃t,i instead of η`t,i/π̃t,i. Fortunately, the regret analysis is not sensitive towards this as we have
shown in Theorem 1.

2This might look very dissimilar from the original Hedge/EXP/MWU analysis, but it is actually equivalent
after accounting for the special form of the KL divergence.
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4 Importance weighting free adversarial MAB with LB-Prod

While our biased WSU-UX obtains optimal regret, it still has to go through the extra complexity of
injecting additional uniform exploration at a rate of γ to ensure proper updates and add bias to the
losses. As mentioned in the introduction, prior work proposed other potential functions that have
favourable properties for bandit feedback. Using the same linearization argument to derive a Prod
version based on the Logbarrier leads to a surprisingly simple algorithm without loss biasing that
is arguably importance weighting free. LB-Prod differs from WSU-UX by using the masked loss
˜̀
t,i = `t,iI(At = i) instead of the importance weighted loss and a non-symmetric normalization λt,i:

πt+1,i = πt,i(1− η(˜̀
t,i − λt,i)), λt,i = πt,i

πt,At`t,At∑K
j=1 π

2
t,j

. (LB-Prod)

It is easy to confirm ˜̀
t,i − λt,i ∈ [−1, 1] via πt,iπt,At

≤ (π2
t,i + π2

t,At
)/2 yielding proper updates for

η < 1. The following theorem shows that this simple algorithm is rate optimal under the right tuning.
Theorem 2. For any sequence of losses `t ∈ [−1, 1]K and any η < 1, LB-Prod produces valid
distributions πt ∈ ∆([K]) and its regret is bounded by

T∑
t=1

E[`t,At − `t,i? ] ≤ 2 +
K log(T )

η
+

2ηT

1− η
.

Tuning η =
√

log(T )K
2T results in a regret bound of O(

√
KT log(T )) for any T > K log(T )

2 . The
proof of Theorem 2 is deferred to the end of the section.

4.1 Intuition of LB-Prod

As mentioned before, LB-Prod is the linear approximation of OMD with Bregman divergence induced
by the Logbarrier potential, that is DLB induced by the potential fuction F (x) = −

∑K
i=1 log(xi).

The one-step Logbarrier OMD update of a policy πt with importance-weighting is known (see e.g.
[Zimmert and Seldin, 2021]) to take the form

πOMD
t+1,i =

πt,i

1 + ηπt,i(ˆ̀
t,i − λt)

≈ πt,i(1− ηπt,i(ˆ̀
t,i − λt)) = πt+1,i ,

where λt is a normalization constant that ensures πOMD
t is a probability distribution. If instead λt is

tuned so that
∑K
i=1 πt+1,i = 1, the LB-Prod update is recovered. This can be be verified by setting

˜̀
t,i = πt,i ˆ̀t,i and λt,i = πt,iλt. The curvature of the Logbarrier regularization is what ensures that

the importance weighted loss ˆ̀
t,i is always multiplied with its probability πt,i, allowing to run the

algorithm on the masked non-weighted loss sequence directly.

Additionally, the second order approximation is

πOMD
t+1,i =

πt,i

1 + ηπt,i(ˆ̀
t,i − λt)

≈︸︷︷︸
second-order

πt,i(1− ηπt,i(ˆ̀
t,i − λt) + η2π2

t,i(
ˆ̀
t,i − λt)2) .

The additional undesirable terms, unlike in the case for WSU-UX, will only contribute ηT regret if
not adjusted for as we show next.

4.2 Analysis of LB-Prod

The following technical lemma is proven in the appendix.
Lemma 3. For any timestep t and arm i, it holds

Et[˜̀t,i − λt,i] = πt,i (`t,i − ct) , Et[(˜̀
t,i − λt,i)2] ≤ 2πt,i ,

where ct ∈ [−1, 1] is an arm independent constant.

In Section 3.1 we argued that one needs to bound the additional term η−1(DLB(π?, πt+1) −
DLB(π?, πOMD

t+1)) to reduce the analysis to standard OMD. While this term is nicely bounded for LB-
Prod, it turns out that it is easier to directly bound the “prototype” of the stability term in Equation (2)
due to the fact that we have a closed form expression of πt+1.

6



Lemma 4. For any time t ∈ [T ] and any u ∈ ∆([K]), it holds

〈πt − u, `t〉+ Et
[
η−1DLB(u, πt+1)

]
− η−1DLB(u, πt) ≤

2η

1− η
.

The proof is an algebraic exercise and deferred to the supplementary material. Finally, we can prove
the main regret guarantee.

Proof of Theorem 2. To show that this algorithm outputs proper probability distributions, note that
K∑
i=1

πt+1,i =

(
K∑
i=1

πt,i

)
− ηπt,At`t,At + η

K∑
j=1

πt,At
π2
t,j∑K

k=1 π
2
t,k

`t,At =

K∑
i=1

πt,i = · · · =
K∑
i=1

π1,i = 1 .

Additionally we have seen that |˜̀t,i − λt,i| ≤ 1, hence for any η < 1, the probability of any
arm is strictly positive. For any comparator u?, we define u = u? + 1

T (π1 − u?), which satisfies∑T
t=1 〈u− u?, `t〉 ≤ 2. Using Lemma 4 and Equation (2), we obtain by the telescoping sum of

Bregman terms

E

[
T∑
t=1

〈πt − u, `t〉

]
≤ 4ηT

1− η
+ η−1 E [DLB(u, π1)−DLB(u, πT+1)] ≤ 4ηT

1− η
+
K log(T )

η
.

4.3 The perturbation analysis

We outline an alternative analysis that reuses established machinery and might be more accessible
for some readers. Our analysis begins by viewing the Prod update as an exact OMD update over a
perturbed loss sequence. Indeed, there is a sequence of perturbations {εt}t∈[T ], εt ∈ RK , such that

πOMD
t+1 =

πt,i

1 + ηπt,i(ˆ̀
t,i − εt,i − λt)

= πt,i(1− ηπt,i(ˆ̀
t,i − λt)) = πt+1,i .

The exact form of εt,i satisfies the following

εt,i =
ηπt,i(ˆ̀

t,i − λt)2

1 + ηπt,i(ˆ̀
t,i − λt)

, |Et[εt,i]| = O(η) .

Since Prod is exactly OMD over the sequence ˆ̀
t − εt, we can decompose the regret as follows

E

[∑
t=1

〈
πt − u, ˆ̀

t

〉]
= E

[∑
t=1

〈
πt − u, ˆ̀

t − εt
〉]

+ E

[∑
t=1

〈πt − u, εt〉

]
= RegOMD +O(ηT ) .

The analysis is not entirely straightforward as the loss range for the OMD update becomes [−1−
O(η), 1 + O(η)] because of the shift introduced by the perturbation of the losses, and this posses
some additional difficulties.

5 Best of both worlds algorithms

In applications where the loss is potentially more benign, for example sampled i.i.d. from a a fixed
distribution over [0, 1]K , it is desirable to obtain faster rates in nice environments while preserving
worst-case guarantees. Probably the simplest algorithm with this property is Tsallis-INF [Zimmert
and Seldin, 2021], which is FTRL with 1/2-Tsallis entropy and ηt ∝ 1/

√
t learning rate.

5.1 TS-Prod

Recall the 1/2-Tsallis regularizer is F (x) = −
∑K
i=1 2

√
xi. Unlike OMD, FTRL is not canonically

expressed as a 1-step update of the previous policy. Instead, the 1/2-Tsallis-INF policy is given with
a normalization constant Λt (see [Zimmert and Seldin, 2021])

πFTRL
t+1,i =

(
Λt+1 + ηt

t∑
s=1

ˆ̀
s,i

)−2

.
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Recursively using this expression yields

πFTRL
t+1,i =

(
Λt+1 +

ηt
ηt−1

(
1√
πFTRL
t,i

− Λt) + ηt ˆ̀t

)−2

= πFTRL
t,i

(
1 + ηt

√
πFTRL
t,i (ˆ̀

t −
ηtξt√
πFTRL
t,i

− λt)

)−2

,

where ξt = 1
η2
t
− 1

ηtηt−1
and λt = Λt+1 − ηt

ηt−1
Λt. The first order approximation is

πFTRL
t+1,i ≈︸︷︷︸

1st-order

πFTRL
t,i (1− 2ηt

√
πFTRL
t,i (ˆ̀

t,i − ξt/
√
πFTRL
t,i − λt)) .

We ensure following the approximation in expectation by directly biasing the losses with ηtξt/
√
πt,i.

Additionally, one needs to perform a second-order correction as discussed in Section 3.1. We omit a
formal derivation, but notice that WSU-UX required η/πt,i correction, while LB-Prod works without
correction because the error is of order η. As the intermediate potential between KL and Logbarrier,
Tsallis-INF turns out to require a correction of order η/√πt,i, which we tighten by an additional
factor of (1− πt,i) necessary to ensure stochastic bounds.

With this, we are ready to present

ˆ̀
t,i =

(
`t,i −

ηt(ξt + γ(1− πt,i)√
πt,i

)
I(At = i)

πt,i
, λt =

K∑
i=1

π
3
2
t,i

ˆ̀
t,i∑K

j=1 π
3
2
t,j

, ξt =
1

η2
t

− 1

ηtηt−1
,

πt+1,i = πt,i(1− 2ηt
√
πt,i(ˆ̀

t,i − λt)) . (TS-Prod)

Theorem 3. The regret of TS-Prod with ηt = 1√
K+26t

, γ = 13
2 is bounded by O(

√
KT +K log(T ))

in the adversarial setting and by O
(∑

i 6=i?
log(T )

∆i

)
in the stochastic setting.

5.2 Analysis of TS-Prod

We first show that the loss biasing is sufficient to ensure that the distribution is well defined.
Lemma 5. If ξt is a non-increasing sequence, ηt < 2√

K(ξt+γ)2
and η2

t+1 ≤ η2
t (1 − 2γη2

t ) for all

t, then the update rule of TS-Prod is proper and satisfies πt,i > (ξt + γ)2η2
t for any arm and loss

sequence at all time steps.

Next we present the moving parts of the analysis.

E[
T∑
t=1

〈πt − u, `t〉] =
T∑
t=1

E

[〈
πt − u, `t − ˆ̀

t

〉
︸ ︷︷ ︸

change of measure

+
DTS(u, πt)−DTS(u, πt+1)

ηt︸ ︷︷ ︸
proto-penalty

+
〈
πt − u, ˆ̀

t

〉
− DTS(u, πt)−DTS(u, πt+1)

ηt︸ ︷︷ ︸
proto-stability

]

The change of measure is by construction

change-of-measure =

T∑
t=1

E

[
K∑
i=1

πt,i − ui√
πt,i

(ηtξt + ηtγ(1− πt,i))

]
. (3)

We now bound the stability and penalty.
Lemma 6. For any time t such that πt,i > (ξt + γ)2η2

t , it holds〈
πt − u,Et[ˆ̀t]

〉
+ Et

[
DTS(u, πt+1)

ηt

]
− DTS(u, πt)

ηt
≤ 13

2

ηtui√
πti

(1− πti) .

The tuning of Theorem 3 satisfies the conditions.

8



Lemma 7. The proto-penalty is bounded by

T∑
t=1

DTS(u, πt)−DTS(u, πt+1)

ηt
≤

T∑
t=1

ηtξt

∑
i6=i?

2
√
πti +

K∑
i=1

ui − πti√
πti


We are ready to prove the main regret guarantee.

Proof of Theorem 3. By Lemma 5 we have a proper update rule. Using Lemma 6, equation (3),
where we tuned γ = 13

2 and Lemma 7 yields

E

[
T∑
t=1

〈πt − u, `t〉

]
≤ E

 T∑
t=1

ηt

 K∑
i=1

13

2

√
πt,i(1− πti) +

∑
i 6=i?

ξt
√
πt,i

 .
The adversarial regret follows from

∑K
i=1

√
πt,i ≤

√
K, ξt ≤ 4,

∑T
t=1 ηt = O(

√
T ). For the

stochastic regret, the proof follows standard arguments using the self-bounding trick as in Zimmert
and Seldin [2021]. For details on the self-bounding trick see the supplementary material.

5.3 TS-Prod and stabilized OMD

Even though we derived TS-Prod from FTRL, it turns out that one can also interpret the update as an
approximation of stabilized OMD proposed by Fang et al. [2022]. In Appendix E, we formalize this
connection and present a slight variation of TS-Prod. We then analyse this variant via the perturbation
technique described in Section 4.3. Our analysis also shows that the stabilized OMD algorithm
induced by the 1/2-Tsallis entropy enjoys best-of-both worlds regret guarantees which to the best of
our knowledge is novel.

6 Discussion

We have provided an extensive study of incentive-compatible bandits. We have negatively resolved
an open question of whether incentive-compatibility as defined in Freeman et al. [2020] is harder
than regular bandits. Using linear approximations, partly with second order corrections, allows to
recover results from well studied algorithms in the literature. We even obtain an algorithm with best-
of-both-world guarantees. Our algorithms are conceptually simpler than existing bandit algorithms,
they update the probability distributions with basic arithmetic operations without the need to solve
optimization problems.

Our successes make it likely that one can transfer even more sophisticated methods, such as first-order,
second-order, path-norm bounds and online learning with graph feedback to this framework. We
leave this investigation to future work.
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A Background on FTRL and OMD

We give a brief overview of the template analysis for FTRL and OMD. For an extensive discussion and
regret analysis of these two frameworks we refer the interested readers to Chapter 2 of Shalev-Shwartz
[2012], Chapter 5 of Hazan et al. [2016] or Chapter 28 of Lattimore and Szepesvári [2020].

A.1 OMD analysis overview

The OMD update

πt+1 = arg minπ∈∆([K])

〈
π, ηt ˆ̀t

〉
−DF (π, πt) (OMD)

can be written in two steps as

π̃t+1 = arg minπ∈RK

〈
π, ηt ˆ̀t

〉
−DF (π, πt)

πt+1 = arg minπ∈∆([K])DF (π, π̃t+1),

where the first step is an unconstrained optimization over the linear loss at time t together with
a regularization term given by the Bregman divergence induced by F , and the second step is the
Bregman projection onto the probability simplex. Thie first step of the OMD update can be re-written
as

∇F (π̃t+1) = ∇F (πt)− ηt ˆ̀t,

Let Ft = 1
ηt

. Since πt+1 is the minimizer of the OMD update, and DFw is convex we have that〈
πt+1 − π, ˆ̀

t

〉
≤ 〈u− πt+1,∇Ft(πt+1)−∇Ft(πt)〉

= DFt
(u, πt)−DFt

(u, πt+1)−DFt
(πt+1, π̃t).

Further, it holds that〈
πt − πt+1, ˆ̀

t

〉
= DFt

(πt+1, πt) +DFt
(πt, π̃t+1)−DFt

(π̃t+1, πt+1)

≤ DFt
(πt+1, πt) +DFt

(πt, π̃t+1).

Combining the two inequalities together we have that one step of the regret to any u ∈ ∆([K]) is
bounded as 〈

ˆ̀
t, πt − u

〉
≤ DFt

(u, πt)−DFt
(u, πt+1) +DFt

(πt, π̃t+1).

For a fixed step-size ηt = η the above telescopes to bound the regret as
T∑
t=1

〈
ˆ̀
t, πt − u

〉
≤ DF (u, π1)−DF (u, πT )

η
+

1

η

T−1∑
t=1

DF (πt, π̃t+1).

As long as F is twice differentiable, each of the terms can be bounded as DF (πt, π̃t+1) ≤
O(η2‖ˆ̀t‖2∇2(F∗)(wt)

), where F ∗ is the Fenchel conjugate of F . Controlling ‖ˆ̀t‖2∇2(F∗)(wt)
in

OCO is usually done by assuming some boundedness of the losses. In bandit literature controlling
this term is slightly more involved and depends on the choice of F .

When η is not constant, telescoping the above sum does not work and the analysis becomes much
more involved. It is possible to construct sequences of losses for which the OMD update does not
enjoy sub-linear regret for ηt = 1√

t
. Fang et al. [2022] introduce a stabilization term to the OMD

update which overcomes this problem and show that this new version does enjoy the standard OMD
regret guarantees.

A.2 FTRL analysis overview

The FTRL analysis follows similar ideas, however, the one step regret is bounded as〈
ˆ̀
t, πt − u

〉
≤ (Ft + I∆([K]))

∗(−L̂t−1)− (Ft + I∆([K]))
∗(−L̂t) +

1

ηt
DF∗(−L̂t,−L̂t−1),
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where L̂t =
∑t−1
s=1

ˆ̀
t, and I∆[K] is the characteristic function of ∆[K], i.e., I∆[K](π) = 0 if

π ∈ ∆[K] and I∆[K](π) = +∞ otherwise. The term DF∗(−L̂t,−L̂t−1) can be thought of as
the equivalent to DF (πt, π̃t+1) in the OMD analysis. The term (Ft + I∆([K]))

∗(−L̂t−1) − (Ft +

I∆([K]))
∗(−L̂t) needs to be telescoped in an appropriate way. For more details we refer the reader to

the penalty term bound of Zimmert and Seldin [2021].

B Missing Proof Section 3

Proof of Theorem 1. WLOG we assume that T ≥ K. We begin with the bound from Lemma 2. The
second and third term in the RHS of the inequality are bounded as is standard in the Exp3 analysis

η

T∑
t=1

K∑
i=1

πt,i E[ˆ̀2t,i|Ft−1] ≤ ηTK

1− γ
≤ 2ηTK, η

T∑
t=1

E[ˆ̀2t,i∗ ] ≤ η
T∑
t=1

E

[
˜̀2
t,i∗

π̃t,i∗

]
≤ η

T∑
t=1

E

[
`2t,i∗

π̃t,i∗

]
,

where Ft−1 is the filtration generated by the random play and randomness of the losses up to time
t− 1. We now consider the expectation of the LHS which evaluates to

T∑
t=1

K∑
i=1

E[πt,i ˆ̀t,i]−
T∑
t=1

E[ˆ̀t,i∗ ] =

T∑
t=1

K∑
i=1

E[πt,i ˜̀t,i]−
T∑
t=1

E[˜̀t,i∗ ] =

T∑
t=1

K∑
i=1

E[πt,i`t,i]−
T∑
t=1

E[`t,i∗ ]

+

T∑
t=1

E
[
η`t,i∗

π̃t,i

]
−

T∑
t=1

K∑
i=1

E
[
ηπt,i`t,i
π̃t,i

]
≥ η

T∑
t=1

E

[
`2t,i∗

π̃t,i

]
− 2ηTK

+

T∑
t=1

K∑
i=1

E[πt,i`t,i]−
T∑
t=1

E[`t,i∗ ].

Thus combining the bounds on the LHS and RHS we have

T∑
t=1

K∑
i=1

E[πt,i`t,i]−
T∑
t=1

E[`t,i∗ ] ≤ log(K)

η
+ 4ηTK + η

T∑
t=1

E

[
`2t,i∗

π̃t,i

]
− η

T∑
t=1

E

[
`2t,i∗

π̃t,i

]
.

To complete the proof we only note that
∑T
t=1

∑K
i=1 E[πt,i`t,i] −

∑T
t=1 E[`t,At ] ≤ 2Tγ = ηKT .

C Missing Proofs Section 4

Proof of Lemma 3. The expectation of ˜̀
ti = `tiI(At = i) is obviously πti`ti, hence by the definition

of λti, we have

Et[˜̀ti − λti] = πti

(
`ti −

∑K
j=1 π

2
tj`tj∑K

j=1 π
2
tj

)
.

For the second part, we have

Et[(˜̀
ti − λti)2] ≤ Et[˜̀2ti] + Et[λ2

ti] = πti

`2ti + π2
ti

∑K
j=1 π

3
tj`

2
tj(∑K

k=1 π
2
tk

)2

 ≤ πti

1 +
πti
∑K
j=1 π

3
tj(∑K

k=1 π
2
tk

)2

 .

The proof is completed by noting

πti
∑K
j=1 π

3
tj(∑K

k=1 π
2
tk

)2 ≤
πti
∑K
j=1 π

3
tj(∑K

k=1 π
3
tk

) 4
3

=
πti(∑K

k=1 π
3
tk

) 1
3

≤ 1 .
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Proof of Lemma 4.

〈πt − u, `t〉+ Et
[
η−1DLB(u, πt+1)

]
− η−1DLB(u, πt)

= 〈πt − u, `t〉+ Et

[
K∑
i=1

ui − πt+1,i

ηπt+1,i
− ui − πt,i

ηπt,i
+

1

η
log

(
πt+1,i

πt,i

)]

= 〈πt − u, `t〉+ Et

 K∑
i=1

ui

(
1− πt+1,i

πt,i

)
ηπt+1,i

+
1

η
log
(

1− η(˜̀
t,i − λt,i)

)
≤ 〈πt − u, `t〉+ Et

[
K∑
i=1

ui(˜̀
t,i − λt,i)

πt,i(1− η(˜̀
t,i − λt,i))

− ˜̀
t,i + λt,i

]
(log(1 + x) ≤ x)

≤ 〈πt − u, `t〉+

K∑
i=1

(
ui
πt,i
− 1

)
Et[˜̀t,i − λt,i] + η

K∑
i=1

ui
πt,i

Et

[
(˜̀
t,i − λt,i)2

1− η

]

≤ 〈πt − u, `t〉+

K∑
i=1

(ui − πt,i)(`t,i − ct) +
2η

1− η

K∑
i=1

ui =
2η

1− η
. (Lemma 3)

D Missing Proofs Section 5.2

D.1 Technical Lemmas

Lemma 8.

min
x∈[0,1]

f(x) = min
x∈[0,1]

x3

1− x
+
√

1− x ≥
√

8

9
.

Proof. We first show that the optimal point is smaller than 1
9 , by looking at the derivative

f ′(x) =
3
√
x− x 3

2 − (1− x)
3
2

2(1− x)2
.

For the enumerator, we have for all x ≥ 1
9 :

3
√
x− x 3

2 − (1− x)
3
2 > 3

√
x−max{

√
x,
√

1− x} ≥ min{2
√
x, 3
√
x− 1} ≥ 0

Hence

min
x∈[0,1]

f(x) = min
x∈[0,1/9]

f(x) > min
x∈[0,1/9]

√
1− x =

√
8

9
.

Lemma 9. For any a, b ≥ 0 such that a+ b ≥ 1, it holds

a√
b

+
b√
a
≥
√

2 .

Proof. We can assume w.l.o.g. that a = 1 − b, otherwise scale both a and b down and reduce the
objective. The resulting problem is symmetric with a = 1

2 as the unique minimizer resulting in the
statement.
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D.2 Minimal probability

Lemma 10. Assume that πti > (ξt + γ)2η2
t holds for all arms, then

Et
[
(ˆ̀
ti − λt)2

]
≤ 13(1− πti)

8πt,i
.

Proof. Let ˜̀
t,i = πt,i ˆ̀t,i and λt,i = πt,iλt. Note that ˜̀

ti ∈ [−1, 1] by the condition on πti and
˜̀
ti = 0 for i 6= It by construction of the loss estimate. Hence

Et
[
(˜̀
ti − λti)2

]
≤ πti

1− π
3
2
ti∑K

j=1 π
3
2
tj

2

E[˜̀2ti|i = It] +
∑
j 6=i

πtj

 πti
√
πtj∑K

j=1 π
3
2
tj

2

E[˜̀2tj |j = It]

≤ πti

 (
∑
j 6=i π

3
2
tj)

2 + πti
∑
j 6=i π

2
tj

(
∑K
j=1 π

3
2
tj)

2


= πti(1− πti)

 (1− πti)2(
∑
j 6=i π̃

3
2
tj)

2 + πti(1− πti)
∑
j 6=i π̃

2
tj

(π
3
2
ti + (1− πti)

3
2

∑
j 6=i π̃

3
2
tj)

2

 ,

where π̃tj =
πtj

1−πti
. We bound the two terms in the bracket separately, for the first term we have (1− πti)

∑
j 6=i π̃

3
2
tj

π
3
2
ti + (1− πti)

3
2

∑
j 6=i π̃

3
2
tj

2

≤

(
(1− πti)

π
3
2
ti + (1− πti)

3
2

)2

(
∑
j 6=i π̃tj = 1)

≤ 9

8
(Lemma 8)

The second term is

πti(1− πti)
∑
j 6=i π̃

2
tj

(π
3
2
ti + (1− πti)

3
2

∑
j 6=i π̃

3
2
tj)

2
≤

πti(1− πti)(
∑
j 6=i π̃

3
2
tj)

4
3

(π
3
2
ti + (1− πti)

3
2

∑
j 6=i π̃

3
2
tj)

2

=

 πti
√

1− πti(
∑
j 6=i π̃

3
2
tj)

2
3

+
(1− πti)(

∑
j 6=i π̃

3
2
tj)

1
3

√
πti

−2

≤ 1

2
(Lemma 9)

Lemma 11 (Lemma 5). If ξt is a non-increasing sequence, ηt < 2√
K(ξt+γ)2

and η2
t+1 ≤ η2

t (1 −

2γη2
t ) for all t, then the update rule of TS-Prod is well defined and satisfies πt,i > (ξt + γ)2η2

t for
any arm and loss sequence at all time steps.

Proof. The proof follows by induction. At t = 1 the statement is true by definition. Let the claim
hold at time t, then the probability of an arm only decreases when ˆ̀

t,i − λt is positive. We look at
the cases where At = i and At 6= i independently.

Case At = i:

πt+1,i > πt,i(1− 2ηt
√
πt,i ˆ̀t,i) = πt,i − 2ηt

(√
πt,i`t,i − ηt(ξt + γ(1− πt,i))

)
> πt,i(1− 2γη2

t )− 2ηt
√
πt,i + 2γη2

t

= (1− 2γη2
t )

(
√
πt,i −

ηt
1− 2γη2

t

)2

+ (2γ − 1

1− 2γη2
t

)η2
t
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This is a quadratic function in πt,i with minimizer η2
t

(1−2γη2
t )2 < (ξt + γ)2η2

t , hence the value is lower
bounded by setting πt,i to (ξt + γ)2η2

t

πt+1,i > (ξt + γ)2η2
t (1− 2γη2

t ) ≥ (ξt + γ)2η2
t+1 ≥ (ξt+1 + γ)2η2

t+1

Case At 6= i:

πt+1,i = πt,i − 2ηtπ
3
2
t,i

ηt((ξt + γ(1− πt,At
))− `t,At

√
πt,At∑K

j=1 π
3
2
tj


> πt,i − 2(ξt + γ)η2

t π
3
2
t,i

√
K

This is a concave function (in πt,i) so the minimizer is at either at πt,i = (ξt + γ)2η2
t or at πt,i = 1.

For the latter, we have have πt+1,i >
1
2 , so the minimum is obtained for the first case.

πt+1,i > (ξt + γ)2η2
t − 2(ξt + γ)4η5

t

√
K > (ξt + γ)2η2

t (1− 2γη2
t ) ≥ C2

t+1η
2
t+1 .

Lemma 12 (Lemma 6). For any time t such that πt,i > (ξt + γ)2η2
t , it holds

〈πt − u,Et[`t]〉+ Et
[
DTS(u, πt+1)

ηt

]
− DTS(u, πt)

ηt
≤

K∑
i=1

(
2ηt
√
πt,i(1− πt,i)−

(
1

ηt
− 1

ηt−1

)
ui − πt,i√

πt,i

)
.

Proof of Lemma 6.
〈πt − u,Et[`t]〉+ Et

[
η−1
t DTS(u, πt+1)

]
− η−1

t DTS(u, πt)

= 〈πt − u,Et[`t]〉+ Et

[
K∑
i=1

ui − πt+1,i

ηt
√
πt+1,i

− ui − πti
ηt
√
πti

+
1

ηt

(
2
√
πt+1,i − 2

√
πti
)]

= 〈πt − u,Et[`t]〉+

K∑
i=1

(
ui

ηt
√
πti

Et
[√

πti
πt+1,i

− 1

]
+

πti
ηt
√
πti

Et
[√

πt+1,i

πti
− 1

])

= 〈πt − u,Et[`t]〉+

K∑
i=1

(
ui

ηt
√
πti

Et


√√√√1 +

2ηt
√
πti(ˆ̀

ti − λt)
1− 2ηt

√
πti(ˆ̀

ti − λt)
− 1


+

πti
ηt
√
πti

Et
[√

1− 2ηt
√
πti(ˆ̀

ti − λt)− 1

])

≤ 〈πt − u,Et[`t]〉+

K∑
i=1

(
ui

ηt
√
πti

Et

[
ηt
√
πti(ˆ̀

ti − λt) +
2η2
t πti(

ˆ̀
ti − λt)2

1− 2ηt
√
πti(ˆ̀

ti − λt)

]

+
πti

ηt
√
πti

Et
[
−ηt
√
πti(ˆ̀

ti − λt)
])

≤ 〈πt − u,Et[`t]〉+

K∑
i=1

(
(ui − πti)Et

[
ˆ̀
ti − λt

]
+ 4ηtuti

√
πti Et

[
(ˆ̀
ti − λt)2

])
(Setting (ξt + γ) ≥ 4)

≤ 13

2

ηtui√
πti

(1− πti) . (Lemma 10)

We now show that the requirements of Lemma 5 are satisfied with the tuning of Theorem 3. With ηt =
1√

K+26t
, we have ct =

(
K + 26t−

√
(K + 26t)(K + 26t− 26)

)
> 2 , which is monotonically

decreasing. ct > 2 and γ = 13
2 ensures that ηt = 1√

K+26t
< 2√

K(ct+γ)2
. Further we have

η2
t+1

η2
t

=
K + 26t

K + 26(t+ 1)
= 1− 26

K + 26(t+ 1)
≤ 1− 4

K + 26t
= 1− 4η2

t .
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Proof of Lemma 7. Using η0 =∞ and DTS(u,ΠT+1) ≥ 0

T∑
t=1

DTS(u, πt)−DTS(u, πt+1)

ηt
≤

T∑
t=1

(
1

ηt
− 1

ηt−1

)
DTS(u, πt)

=

T∑
t=1

(
1

ηt
− 1

ηt−1

)
(F (u)− F (πt)− 〈u− πt,∇F (πt)〉)

=

T∑
t=1

K∑
i=1

ηtξt

(
2(
√
πt,i −

√
ut,i)− (ui − πti)

1
√
πti

)

≤
T∑
t=1

ηtξt

∑
i 6=i?

2
√
πt,i −

K∑
i=1

(ui − πti)
1
√
πti

 ,

where the last inequality follows from
∑K
i=1

√
ui ≥ 1 ≥ √πt,i? .

D.3 Self-bounding trick

We now quickly describe how to apply the self-bounding trick from Zimmert and Seldin [2021].
Assume that we have a regret bound of the form

T∑
t=1

∑
i 6=i∗

πt,i∆i ≤
T∑
t=1

∑
i 6=i∗

aπt,i + b
√
πt,i√

t
,

for some positive a and b. The above inequality implies

1

3

T∑
t=1

∑
i 6=i∗

πt,i∆i ≤
T∑
t=1

∑
i6=i∗

πt,i

(
a√
t
− ∆i

3

)
+
√
πt,i

(
b√
t
−

∆i
√
πt,i

3

)
.

For a fixed i the term
(
a√
t
− ∆i

3

)
≤ 0 if t ≥ 9a2

∆2
i

and so the maximum regret from

T∑
t=1

πt,i

(
a√
t
− ∆i

3

)
≤

b 9a2

∆2
i

c∑
t=1

a√
t
≤ 6a2

∆i
.

Further the term√πt,i
(
b√
t
− ∆i

√
πt,i

3

)
≤ 2b2

t∆i
for t ≥ 4b2

∆2
i

. This implies

T∑
t=1

√
πt,i

(
b√
t
−

∆i
√
πt,i

3

)
≤

b 4b2

∆2
i

c∑
t=1

b√
t

+

T∑
t=1

2b2

∆it
≤ 8b2

∆i
+

2b2 log(T )

∆i
.

Combining the two bounds we have

T∑
t=1

∑
i 6=i∗

πt,i∆i ≤ O

∑
i 6=i∗

b2 log(T )

∆i
+
a2

∆i

 .

E TS-Prod and stabilized OMD

The TS-Prod update is a linearization of the FTRL update as explained in Section 5.2. In this section
we show a regret bound for the TS-Prod algorithm by linearizing the OMD update as we did for
WSU-UX and LB-Prod. This comes with its own set of challenges. First, we believe that a decreasing
step-size in the OMD update is important for achieving optimal regret bounds in the stochastic setting.
Second, the vanilla OMD update with decreasing step-size might incur linear regret in the adversarial
setting. This second issue is resolved by the stabilized OMD algorithms proposed by Fang et al.
[2022]. TS-Prod turns out to be equivalent to the dual stabilized OMD algorithm of Fang et al. [2022]
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and hence will inherit the adversarial regret guarantees. In the rest of the section we sketch the regret
analysis for the stochastic setting and how we can reduce the regret analysis in the adversarial setting
to that of Fang et al. [2022].

Stabilization as introduced by Fang et al. [2022] is the process of mixing the gradient mapping,
∇F (πt), of the current iterate with the gradient mapping of the first iterate, ∇F (π1), in the mirror
descent update in the dual space, where F (x) = −

∑K
i=1 2

√
xi. This mixing turns out to be

equivalent to the negative biasing of losses in Equation TS-Prod by the ξt dependent terms.

The regret analysis begins by defining the perturbations {εt,i}t∈[T ],i∈[K] so that

πt+1,i =
πt,i

(1 + ηt+1
√
πt,i(L̂t,i + εt,i))2

, (4)

that is εt,i makes the update in Equation TS-Prod equivalent to the 1/2-Tsallis mirror descent update.
We note that the εt,i is only defined to assist with the regret analysis and it never needs to be computed
for the actual update. The perturbations, εt,i, are well controlled as we show next.

Lemma 13. For every t ∈ [T ], i ∈ [K], there exists εt,i such that εt,i ≤ 4ηt
√
πt,iL̂

2
t,i for all i and

`t,i.

Lemma 13 allows us to proceed with the analysis for the stochastic and adversarial cases by using the
standard regret decomposition into a penalty and stability terms. In the stochastic case we can bound
the two terms in the following way
Lemma 14. For stochastic losses the penalty term is bounded in expectation by

O

(E
[(∑

i 6=i∗ πt+1,i

)2
]√

K log(t)

√
t

+
1√
t
∧

E
[(∑

i 6=i∗ πt+1,i

)2
]

log(KT )

√
t

)
.

Lemma 15. For stochastic losses the stability term is bounded by

O

(
1√
t

K∑
i=1

√
πt,i(1− πt,i) +

K
√
πt,i

t2
+
K

t

)
.

The stochastic regret bound proof can now be completed by a careful self-bounding argument.

In the adversarial case we reduce the regret bound to that of Fang et al. [2022] in the following
way. Let Φ = F + I∆K−1 be potential defined by mixing the 1/2-Tsallis potential together with the
indicator function for the probability simplex. The update of Algorithm 2 (Dual Stabilized OMD)
can then be written as

ŵt+1 = ∇Φ(πt)− ηt(˜̀
t + εt),

ŷt+1 = χtŵt+1 + (1− χt)∇Φ(π1),

πt+1 = ∇Φ∗(ŷt+1).

It turns out that this update is equivalent to the OMD update with respect to L̂t,i in Equation 4. This
allows us to use the regret bound in Theorem 3 [Fang et al., 2022]. Overall the regret of the perturbed
OMD version is bounded as follows.
Theorem 4. The regret of the algorithm defined by the update in Equation 4 is bounded by

O

∑
i 6=i∗

log(T )

∆i
+
K log2(1/∆min)

∆min
+K3/2


in the stochastic case, where ∆min is the smallest gap between the expected losses. Further the
regret in the adversarial setting is bounded by O(

√
KT ).

E.1 Proof of Theorem 4

Proof of Lemma 13. We work under the following assumption which is satisfied with the choice
of ηt and γ by Lemma 5. Further, we are going to work with the following slight modification of the
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losses ˆ̀
t in the update of TS-Prod:

ˆ̀
t,i =

(
`t,i −

ηt(γ(1− πt,i)√
πt,i

)
I(At = i)

πt,i
− ηtξt√

πt,i
.

We quickly check that the variance with this definition of ˆ̀
t is bounded by Lemma 10

Et

[((
`t,i −

γ(1− πt,i)√
πt,i

)
I(At = i)

πt,i
− ηtξt√

πt,i

)2
]

=Et

[(
`t,i −

γ(1− πt,i)√
πt,i

)2
1

πt,i
+

(ηtξt)
2

πt,i
− 2

(
`t,i −

γ(1− πt,i)√
πt,i

)
ηtξt√
πt,i

]

≤Et

[(
`t,i −

γ(1− πt,i)√
πt,i

)2
1

πt,i
+

(ηtξt)
2

π2
t,i

− 2

(
`t,i −

γ(1− πt,i)√
πt,i

)
ηtξt√
πt,i

]

=Et

[((
`t,i −

ηt(ξt + γ(1− πt,i)√
πt,i

)
I(At = i)

πt,i

)2
]

Assumption 1. Assume that for all t ∈ [T ], i ∈ [K] it holds that |ηt
√
πt,iL̂t,i| ≤ 1

6 .

Lemma 13. First for non-negative ` we show that ε ∈ [0, `]. This follows by observing that 1/(1 +
3/2x)2 ≤ 1− 2x for x ∈ [0, 1/6] and 1/(1 + x)2 ≥ 1− 2x for x ≥ 0 so by the Intermediate Value
theorem there exists an ε ∈ [0, `] such that equality is obtained. Next, for ` < 0 for ε = 0 we have
1/(1 − x)2 ≥ 1 + 2x for x ≥ 0 and for ε = `/2 we have 1/(1 − x/2)2 ≤ 1 − 2x for x ∈ [0, 1/4]

and so we have ε = [− |`|2 ,
|`|
2 ].

For the second part of the lemma using the Taylor expansion around 0 of 1/(1 + x)2 implies that

1

(1 + η
√
π ˜̀)2

≤ 1− 2η
√
π ˜̀+ 3(η

√
π ˜̀)2,

and so

1− 2η
√
π(˜̀− ε) ≤ 1− 2η

√
π ˜̀+ 3(η

√
π ˜̀)2 ⇐⇒

2η
√
πε ≤ 3(η

√
π ˜̀)2 ⇐⇒

2η
√
πε ≤ 3(η

√
π(`+ ε))2 =⇒

ε ≤ 4η
√
π`2.

Stochastic bound. Let DTS
t (u,w) = 1

ηt
DTS(u, v) and let

π̃t+1,i =
πt,i

(1 + ηt+1
√
πt,i(ˆ̀

t,i + εt,i − λt))2
,

where λt = `t,At
. We note that πt+1 is now the projection of π̃t+1 onto the simplex. Further by the

3-point rule for Bregman divergence we have that

〈L̂t, πt − u〉 = DTS
t (u, πt)−DTS

t (u, π̃t+1) +DTS
t (πt, π̃t+1)

≤ DTS
t (u, πt)−DTS

t (u, πt+1) +DTS
t (πt, π̃t+1).

Penalty term.
Lemma 16 (Lemma 14). For stochastic losses the penalty term is bounded as follows

E[DTS
t+1(u, πt+1)−DTS

t (u, πt+1)] ≤ O

(E
[(∑

i 6=i∗ πt+1,i

)2
]√

K log(t)

√
t

)
,

where DTS
t (u, v) = 1

ηt
DTS(u, v) and ηt = 1√

t
.
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Proof. for u = ei∗ :

DTS
t+1(u, πt+1)−DTS

t (u, πt+1) = −
(

1

ηt+1
− 1

ηt

)
+

(
1

ηt+1
− 1

ηt

)(
1

√
πt+1,i∗

− 1

)

+

(
1

ηt+1
− 1

ηt

) K∑
i=1

√
πt+1,i

=

(
1

ηt+1
− 1

ηt

)
1−√πt+1,i∗ + πt+1,i∗

√
πt+1,i∗

+

(
1

ηt+1
− 1

ηt

)∑
i 6=i∗

√
πt+1,i

=

(
1

ηt+1
− 1

ηt

)
(1−√πt+1,i∗)2

√
πt+1,i∗

+

(
1

ηt+1
− 1

ηt

)∑
i 6=i∗

√
πt+1,i.

From the update in Equation 4 we have

1
√
πt+1,i∗

=
√
K +

t∑
s=1

ηs(L̂s,i∗ + εs,i∗),

which implies

(1−√πt+1,i∗)2

√
πt+1,i∗

≤
√
K(1−√πt+1,i∗)2 + (1−√πt+1,i∗)2

t∑
s=1

ηs(L̂s,i∗ + εs,i∗)

First we bound (1−√πt+1,i∗)2:

(1−√πt+1,i∗)2 =

1−
√

1−
∑
i 6=i∗

πt+1,i

2

=

 ∑
i 6=i∗ πt+1,i

1 +
√

1−
∑
i 6=i∗ πt+1,i

2

≤

∑
i 6=i∗

πt+1,i

2

.

In the stochastic case WLOG we can take E[`t,i∗ ] = 0,∀t ∈ [T ]. We first control L̂t,i∗ . We have

L̂t,i∗ =

(
`t,i∗ −

ηtγ(1− πt,i∗)
√
πt,i∗

)
I(At = i∗)

πt,i∗
− ηtξt√

πt,i∗
−

K∑
i=1

π
3
2
t,i

ˆ̀
t,i∑K

j=1 π
3
2
t,j

The first term, `t,i∗
I(At=i

∗)
πt,i∗

is 0 in expectation. The second term, −ηtγ(1−πt,i∗ )
√
πt,i∗

I(At=i
∗)

πt,i∗
, will be

used to cancel out the contribution from the perturbation εt,i∗ . The third term is there to help with the
adversarial setting analysis. Next, we decompose the fourth term as

K∑
i=1

π
3
2
t,i

ˆ̀
t,i∑K

j=1 π
3
2
t,j

=
1∑K

j=1 π
3/2
t,j

K∑
i=1

√
πt,i`t,iI(At = i)− ηtγ(1− πt,i)I(At = i)− πt,iηtξt.

The first part of the above has a non-positive contribution to L̂t,i∗ in expectation. The only non-
negative contribution now comes from

1∑K
j=1 π

3/2
t,j

K∑
i=1

ηt(ξt + γ(1− πt,i))I(At = i) ≤
√
K(ηtξt + ηtγ) ≤ 2

√
Kηtγ
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and so we bound

t∑
s=1

−ηs
K∑
i=1

π
3
2
s,i

ˆ̀
s,i∑K

j=1 π
3
2
s,j

≤
t∑

s=1

2ηs
√
Kηsγ ≤ 64

√
K log(t).

Next we are going to bound E[εt,i∗ ] using Lemma 10 together with Lemma 13:

E[εt,i∗ ] ≤ E[ηt
√
πt,i∗L̂

2
t,i∗ ] ≤ 13

2
E[ηt(1− πt,i∗)/

√
πt,i∗ ].

This term is exactly canceled out by ηtγ(1−πt,i∗ )
√
πt,i∗

as γ = 13
2 . For the final bound we have

E

[(
1

ηt+1
− 1

ηt

)
(1−√πt+1,i∗)2

√
πt+1,i∗

]

≤
(

1

ηt+1
− 1

ηt

)
E


∑
i6=i∗

πt+1,i

2
+ 4

(
1

ηt+1
− 1

ηt

)
E


∑
i 6=i∗

πt+1,i

2
t∑

s=1

ηs(L̂s,i∗ + εs,i∗)


≤
(

1

ηt+1
− 1

ηt

)
E


∑
i6=i∗

πt+1,i

2
+ E

( 1

ηt+1
− 1

ηt

)
(1−√πt+1,i∗)2

t∑
s=1

−ηs
K∑
i=1

π
3
2
s,i

ˆ̀
s,i∑K

j=1 π
3
2
s,j


+ E

[
t∑

s=1

ηs

(
εs,i∗ −

γηs(1− πs,i∗)
√
πs,i∗

)]

≤ 32

E
[(∑

i6=i∗ πt+1,i

)2
]√

K log(t)

√
t

.

Stability term. Recall that the stability term is DTS
t (πt, π̃t+1). This term is bounded in a standard

way. We proceed to do so as follows for any t ≥ 4
√
K:

Lemma 17 (Lemma 15). For stochastic losses the stability term is bounded as follows

E[DTS
t (πt, π̃t+1)] ≤ O

(
1√
t

K∑
i=1

√
πt,i(1− πt,i) +

1

t

)
,

where DTS
t (u, v) = 1

ηt
DTS(u, v).

21



Proof. We have the following

DTS
t (πt, π̃t+1) =

1

ηt

K∑
i=1

2
√
πt+1,i − 2

√
πt,i −

1
√
πt+1,i

(πt+1,i − πt,i)

=
1

ηt

K∑
i=1

√
πt+1,i − 2

√
πt,i +

√
πt,i

(
1 + ηt+1

√
πt,i(ˆ̀

t,i + εt,i − λt)
)

=
1

ηt

K∑
i=1

√
πt+1,i −

√
πt,i + ηt+1πt,i(ˆ̀

t,i + εt,i − λt)

=
1

ηt

K∑
i=1

√
πt,i

(
1

1 + ηt+1
√
πt,i(ˆ̀

t,i + εt,i − λt)
− 1

)
+ ηt+1πt,i(ˆ̀

t,i + εt,i − λt)

≤ 1

ηt

K∑
i=1

√
πt,i

(
−ηt+1

√
πt,i(ˆ̀

t,i + εt,i − λt) + 2η2
t+1πt,i(

ˆ̀
t,i + εt,i − λt)2

)
+ ηt+1πt,i(ˆ̀

t,i + εt,i − λt) ( 1
1+x ≤ 1− x+ 2x2 for x ≥ − 1

2 )

≤ 2ηt

K∑
i=1

π
3/2
t,i (ˆ̀

t,i + εt,i − λt)2,

where for the second to last inequality we only need to check ηt+1
√
πt,i(εt,i − λt) ≥ − 1

2 . We have
ηt+1
√
πt,iλt ≥ − 1√

t
and Lemma 13 implies

E[ηt+1
√
πt,iεt,i] ≥ −η2

t E[πt,i|L̂t,i|2] ≥ −Ω(
1

t
).

We bound E[π
3/2
t,i (ˆ̀

t,i + εt,i − λt)2] ≤ 2E[π
3/2
t,i ε

2
t,i] + 2E[η2

t+1π
3/2
t,i (ˆ̀

t,i − λt)2]. For the first term
we have

2E[η2
t π

5/2
t,i |L̂t,i|

4] ≤ O
(

1√
t

)
.

For the second term we use Lemma 10 to get E[η2
t+1π

3/2
t,i (ˆ̀

t,i − λt)
2] ≤ 13

2 E[η2
t+1
√
πt,i(1 −

πt,i)].

Self-bounding the regret for stochastic losses.

Theorem 4, stochastic losses. Combining the bound in Lemma 14 and Lemma 15 together with the
adversarial bound we have that the total regret is bounded as follows

+O

 T∑
t=T0

∑
i 6=i∗

√
πt,i

(
1√
t
−√πt,i

(
∆i −

√
K log(t)√

t

))
+

T0−1∑
t=1

πt,i
√
K log(t)√
t


+O

(
K3/2

)
In the above we bound the lower order term from the stability as

∑T
t=1

∑K
i=1 γ

2
t
√
πt,i = O(K3/2)

and decompose the regret into four parts. The first and second line correspond to the two terms from
the penalty bound. Each of the two lines are decomposed into two terms. The first term is the result
of the self-bounding trick and the second term is the additional regret for the initial number of rounds
before the self-bounding trick can be applied.

We repeatedly use the following inequality 2a
√
x − bx ≤ a2

b , which holds for a, b ≥ 0. For the

first line of the decomposition we take T0 = 8K log2(K/∆min)
∆min

, where ∆min is the smallest non-zero
expected loss. We note that
√
K log(T0)√

T0

= ∆min
log(8K log2(1/∆min))

8 log(K/∆min)
= ∆min

(
log(K)

8 log(K/∆)
+

log(16 log(1/∆min)

8 log(K/∆min)

)
≤ ∆min

2
,
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for any ∆min ≤ 1
2024 . If ∆min > 1

2024 , we take T0 = 8K log2(2024)
∆min

. The above implies

that √πt,i
(

1√
t
−√πt,i

(
∆i −

√
K log(t)√

t

))
≤ 2

t∆i
and further

∑
i 6=i∗

∑T0−1
t=1

πt,i

√
K log(t)√
t

=

O(K log2(1/∆min)
∆min

). The final regret bound is

O

∑
i6=i∗

log(T )

∆i
+
K log2(1/∆min)

∆min
+K3/2

 .

Adversarial losses. We now present the argument for the regret bound in the adversarial setting.

Theorem 4, adversarial losses. Let ˜̀
t,i =

(
`t,i − ηtγ(1−πt,i)√

πt,i

)
I(At=i)
πt,i

and χt = ηt
ηt−1

We recall the
update for Algorithm 2 in Fang et al. [2022]

ŵt+1 = ∇Φ(πt)− ηt−1(˜̀
t + εt),

ŷt+1 = χtŵt+1 + (1− χt)∇Φ(π1),

πt+1 = ∇Φ∗(ŷt+1),

where Φ is the 1/2-Tsallis potential plus the indicator function for the probability simplex ∆K−1.
Since π1 is uniform the second step of the update is equivalent to ŷt+1 = χtŵt+1. Re-writing the
first step of the update we have

−ŷt+1,i =
χt√
πt,i

+ ηt(˜̀
t,i + εt,i) =

1
√
πt,i

+ ηt+1(˜̀
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(
1
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− 1

ηt−1

)
1
√
πt,i
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1
√
πt,i

+ ηt
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(
1

ηt
− 1

ηt−1

)
1
√
πt,i

)
=

1
√
πt,i

+ ηt(ˆ̀
t,i + λt).

Since∇Φ∗ is invariant under constant vector perturbations we finally have

πt+1,i = ∇Φ∗(ŷt+1)i = ∇Φ∗
(
− 1
√
πt
− ηt(ˆ̀

t+1 + εt)

)
= ∇Φ∗

(
− 1
√
πt
− ηt(L̂t+1 + εt)

)
=

1

(1/
√
πt,i + ηt(L̂t,i + εt,i))2

=
πt,i

(1 + ηt
√
πt,i(L̂t,i + εt,i))2

.

And so the update in Algorithm 2 of Fang et al. [2022] is equivalent to the perturbed OMD update
which we have shown enjoys an optimistic regret guarantee. The regret guarantee in the adversarial
setting is now recovered from Theorem 3 in Fang et al. [2022]. In particular the theorem guarantees
that the regret is bounded as

T∑
t=1

DTS
t (πt,∇F ∗(∇F (πt)− ηt(ˆ̀

t + εt))) +
√
KT.

Every term in the sum is bounded in the same way as the stability terms, that is
DTS
t (πt,∇F ∗(∇F (πt) − ηt(ˆ̀

t + εt))) ≤
∑K
i=1 π

3/2
t,i (ˆ̀2

t,i + εt,i). We can now use the bound
in the proof of Lemma 15 to complete proof of the adversarial bound and the proof of Theorem 4.
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