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ABSTRACT

Continual learning (CL) in large language models (LLMs) remains a critical chal-
lenge, as sequential training often results in catastrophic forgetting of previously
learned knowledge. To our knowledge, no prior work has approached CL in LLMs
from a frequency perspective, despite strong evidence that spectral properties
directly govern model robustness and vulnerability to forgetting. Recent meth-
ods based on Low-Rank Adaptation (LoRA) have shown promise for parameter-
efficient CL, but remain preliminary, relying on task-specific subspace expansion
with additional regularization. We propose TUNE (Token Update via Noise-robust
Frequency Encoding), a frequency-guided token modulation mechanism that sta-
bilizes LoRA residual updates. TUNE employs a stationary wavelet transform
(SWT) to decompose token embeddings into multi-resolution subbands, where
token saliency is derived from high-frequency activations and reliability is assessed
through cross-scale agreement. These signals are fused into token-wise scaling that
amplify reliable updates while suppressing noisy fluctuations. Without introducing
additional trainable parameters beyond LoRA expansion, TUNE achieves signifi-
cant improvements over the SOTA baselines, establishing frequency-aware token
adaptation as a promising direction for CL in LLMs.

1 INTRODUCTION

Continual Learning in LLMs Continual learning (CL) aims to adapt models to new tasks while
retaining prior knowledge (Silver et al., 2013; De Lange et al., 2021). This is especially critical for
Large language models (LLMs), which operate in evolving domains at scale. Yet, when fine-tuned or
continually trained on new data, LLMs often suffer from catastrophic forgetting—the tendency to
overwrite previously acquired knowledge (Luo et al., 2023; Shi et al., 2024; Li et al., 2024). This
phenomenon limits the adaptability and reliability of LLMs, making it a critical area of research.
Existing CL paradigms include (i) rehearsal Huang et al. (2024); Pillai (2025), (ii) regularization such
as EWC/SI Kirkpatrick et al. (2017); Zenke et al. (2017), and and (iii) architecture-based subspace
isolation or expansion strategies Mallya & Lazebnik (2018); Wang et al. (2023b). While effective,
these methods are often computationally overload for LLMs due to their massive scale.
Recent advances in parameter-efficient fine-tuning (PEFT) have shifted attention toward lightweight
adaptation methods. In particular, Low-Rank Adaptation (LoRA) Hu et al. (2021) inserts small
trainable low-rank matrices while freezing the original weights, enabling efficient continual updates.
Extensions such as O-LoRA Wang et al. (2023a) and N-LoRA Yang et al. (2024) introduce explicit
regularization on inter-task orthogonality or parameter collision to mitigate forgetting while preserving
efficiency. These approaches highlight the promise of PEFT-based CL, where the cost of adaptation
is significantly reduced.

High-Frequency Drift as the Substrate of Forgetting Prior work has shown that model robustness
is closely tied to its frequency response (Yin et al., 2020; Ilyas et al., 2019; Sun et al., 2024). Spectral
analyses consistently reveal that low-frequency components encode the core global context, serving
as the primary carrier of semantics that discriminates between tasks or domains. In contrast, high-
frequency components act largely as detail enhancers—capturing local, instance-specific refinements
rather than general task-level structure (Cooley et al., 1969; Rahaman et al., 2019; Zhi-Qin John Xu
et al., 2020; Pan et al., 2023). Since they emphasize sample-wise variations, high-frequency features
are typically noisier and less stable, making them unreliable anchors for continual task adaptation.
Such abrupt feature drift in high-frequency band causes unstable representation shifts across tasks
and makes it a primary substrate of catastrophic forgetting.
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Figure 1: t-SNE visualization of SWT-decomposed token
features across 4 different tasks in standard CL Bench-
mark. Left: level-10 low-frequency coefficients (A10) ex-
hibit clear separation by task. Right: level-1 high-frequency
coefficients (D1) show overlapping clusters.

To our knowledge, no prior work has
addressed continual learning in LLMs
from a frequency perspective. In spec-
tral view, low-frequency components
provide the stable semantic backbone
for each task, while high-frequency
components capture instance-wise lo-
cal variations that are useful for cap-
turing details but also prone to drift.
This contrast is evident in Figure 1:
low-frequency coefficients (A10) form
well-separated clusters between tasks,
reflecting their role as stable semantic
carriers, whereas high-frequency co-
efficients (D1) collapse into overlap-
ping clusters scattered broadly, show-
ing their noisy property.

Motivated by the high-frequency-induced challenges in continual learning, we propose TUNE (Token
Update via Noise-robust Frequency Encoding), a spectral token gating mechanism that integrates
with LoRA residual adaptation to mitigate noisy high-frequency drift while amplifying reliable,
salient signals. TUNE implements this by applying a stationary wavelet transform (SWT) along each
token embedding sequence, decomposing it into aligned multi-resolution frequency subbands while
strictly preserving original token structure. This decomposition enables multi-scale inspection of
token activity and identifies whether the given token features are stable or noise-prone.

Specifically, TUNE introduces two complementary measures. First, a high-frequency saliency
score quantifies the strength of token-level fine-grained variation, highlighting where meaningful
novelty arises. Second, a parent-guided reliability score measures the consistency of high-frequency
activations across scales, i.e., the agreement between a child detail coefficient and its reliable parent
in the SWT hierarchy. This agreement-based reliability suppresses unstable spikes that fail to persist
across scales while emphasizing coefficients with strong cross-scale support. Combining these two
measures yields a token-dependent gating factor that rescales the LoRA residual updates, assigning
larger adaptation capacity to reliable, salient tokens while damping noisy ones. In doing so, TUNE
curbs catastrophic forgetting mainly caused by high-frequency drifts, while directing token plasticity
toward trustworthy novel signals. We summarize our main contributions as follows:

• To our knowledge, this is the first work to tackle continual learning in LLMs explicitly from a
frequency perspective, identifying high-frequency drift as a primary substrate of catastrophic
forgetting.

• We propose TUNE, a spectral token gating mechanism that integrates SWT with LoRA residual
adaptation. TUNE combines high-frequency saliency with parent-guided reliability to produce
token-dependent gating factors that regulate adaptation.

• TUNE introduces no additional trainable parameters beyond standard continual LoRA paradigm
with minimal computational overhead.

• Extensive experiments on both small- and large-scale CL benchmarks demonstrate that TUNE
consistently improves over strong state-of-the-art baselines.

2 RELATED WORKS

2.1 LORA IN CONTINUAL LEARNING

Low-Rank Adaptation (LoRA) (Hu et al., 2021) constrains task adaptation to a low-rank update
∆W = AB, enabling parameter-efficient finetuning by freezing the pretrained weights. This
approach has recently been extended to continual learning settings. In particular, Orthogonal LoRA
(O-LoRA) (Wang et al., 2023a) allocates a new LoRA subspace for each task while freezing those
from previous tasks, and further imposes an orthogonality constraint so that the update directions
of new tasks do not overlap with earlier ones. LB-CL (Qiao & Mahdavi, 2024) further develops
this line by balancing LoRA consolidation across tasks to improve stability. Non-collision LoRA
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(N-LoRA) (Yang et al., 2024) instead focuses on preventing parameter collisions by enforcing sparsity
on task-specific LoRA parameters, ensuring that updates from different tasks occupy distinct, non-
overlapping coordinates. These approaches establish LoRA as a representative backbone for continual
learning in LLMs.

2.2 FREQUENCY PERSPECTIVE ON CATASTROPHIC FORGETTING

Representation drift caused by noisy features has been identified as a major driver of catastrophic
forgetting. When models are updated on new tasks, parameters often overfit to unstable or spurious
patterns in the incoming data, producing abrupt representational change that overwrites consolidated
knowledge from earlier tasks. Prior work has shown that catastrophic forgetting is tightly linked
to such drift. Ramasesh et al. (2020) dissected layer-wise representation dynamics and found that
forgetting coincides with sharp shifts in internal activations. Caccia et al. (2022) further demonstrated
that sudden representational change across tasks is predictive of performance collapse. Toneva et al.
(2019) revealed that examples most frequently forgotten are those aligned with noisy or unstable
decision boundaries. Together, these studies suggest that catastrophic forgetting emerges from updates
driven by noisy, non-robust features that destabilize the feature space across tasks.

Building on this view, recent analyses suggest that the noisy features most responsible for drift often
reside in high-frequency components of the representation. While low-frequency bands encode
stable, task-relevant structure, high-frequency bands tend to amplify local variations and spurious
correlations that carry weak or noisy semantics (Cooley et al., 1969; Ilyas et al., 2019; Yin et al., 2020;
Pan et al., 2023; Sun et al., 2024). There is converging evidence that high-frequency components are
the primary channel for model brittleness. Ablation studies conducted in Abello et al. (2021) shows
that the largest error sensitivity is placed in mid/high bands and Wang et al. (2020) demonstrates
that small-norm adversarial attacks concentrate their perturbations at mid/high frequencies while
robust models tend to shift attribution toward low-frequency cues. These findings support treating
high-frequency activations as unstable carriers of non-robust features that are prone to triggering
abrupt shifts when emphasized during training. In continual learning setting, this implies that high-
frequency activations can serve as a marker of noisy or fragile examples that destabilize previously
learned representations if not treated carefully.

2.3 STATIONARY WAVELET TRANSFORM (SWT)

Discrete Wavelet Transform (DWT) The Fourier transform decomposes a sequence into sinusoidal
bases, fully describing its frequency content but without temporal localization, since each coefficient
reflects contributions from the entire signal. This limitation makes it less suitable for non-stationary
data such as language, where preserving the temporal structure is essential. The wavelet transform
overcomes this by analyzing a signal x(t) with functions localized in both time and frequency. These
functions are generated by shifting and scaling a prototype function, the mother wavelet ψ. This
is particularly effective for signals whose statistical properties vary over time, such as language
sequences where both global and local dependencies must be captured.

Since our focus is on language data, which naturally appears as discrete token sequences, we restrict
our attention to the discrete formulation of the transform. For discrete signals, this expansion is
realized through the discrete wavelet transform (DWT), implemented via a pair of analysis filters for
low-pass (h) and high-pass (g) decomposition, together with corresponding synthesis filters h̃, g̃ for
reconstruction. Writing convolution as (f ∗k)[n] =

∑
m f [m] k[n−m], the level-j DWT coefficients

and its reconstruction are computed as
Aj [n] = (Aj−1 ∗ h)[2n], Dj [n] = (Aj−1 ∗ g)[2n], A0 ≡ x,

Aj−1[n] = (↑ 2Aj ∗ h̃)[n] + (↑ 2Dj ∗ g̃)[n],
where ↑ 2 denotes upsampling operator by two. The recursive filtering and decimation imply that
each scale isolates a specific portion of the frequency spectrum. In the dyadic DWT with orthonormal,
ideal half-band filters, the frequency support of the coefficients is exactly partitioned as

Ω(Aj) =
{
ω : |ω| ≤ π

2 j

}
, Ω(Dj) =

{
ω : π

2 j < |ω| ≤ π
2 j−1

}
, ω ∈ [−π, π).

For practical wavelets such as Symlets and Daubechies, the separation between bands is only
approximate. Yet Aj consistently captures progressively coarser low-frequency trends, while Dj

emphasizes higher-frequency, localized variations.

3
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Figure 2: Overview of TUNE. Sequence of token embeddings are decomposed by SWT into three
subbands (A2: low-frequency approximation, D2: mid-frequency detail, D1: high-frequency detail).
Then evaluate for saliency and reliability based onD1 andD2 coefficients, producing token-dependent
scaling factors that modulate LoRA residual updates for current task k.

Stationary Wavelet Transform (SWT) While the DWT provides an efficient multi-resolution
decomposition, its use of decimation introduces shift variance, a small translation of the input
sequence can cause large changes in the wavelet coefficients. This sensitivity is undesirable for
language data, where precise token ordering is important to capture semantics. The stationary wavelet
transform (SWT), also called the undecimated or shift-invariant wavelet transform, removes the
downsampling step and instead upsamples the filters at each level. As a result, all subbands retain the
same length as the original signal, and coefficient alignment across scales is preserved.

Formally, let h(j) and g(j) denote the level-j analysis filters obtained by inserting 2j−1 − 1 zeros be-
tween each of the filter coefficients of h and g. The recursive SWT decomposition and reconstruction
are computed as

Aj [n] = (Aj−1 ∗ h(j))[n], Dj [n] = (Aj−1 ∗ g(j))[n], A0 ≡ x,

Aj−1[n] = (Aj ∗ h̃(j))[n] + (Dj ∗ g̃(j))[n].
After j levels of decomposition, the SWT produces a set of coefficient components

{Aj , Dj , Dj−1, . . . , D1},

where Aj represents the coarsest approximation (lowest-frequency trend) and {Dℓ}jℓ=1 capture
progressively finer detail bands ordered from low to high frequency. Unlike the DWT, no decimation
is applied, so each Aj and Dj has the same length as x. While this redundancy makes SWT less
efficient, it ensures shift invariance and exact token-level alignment across scales. As a result, SWT
offers a decomposition that is both semantically stable and structurally faithful to discrete token
sequences.

Interscale Correlation in SWT A distinctive property of wavelet coefficients is their persistence
across scales: significant coefficients tend to propagate from child Dj [n] to parent Dj+1[n], while
noise coefficients do not (Xu et al., 1994; Luisier et al., 2006; He et al., 2015). This phenomenon,
often referred to as the parent–child relationship, reflects strong interscale correlation, where large
(small) child coefficients are likely to correspond to large (small) parent coefficients. Xu et al. (1994)
proposed to quantify this propagation by a normalized correlation index measuring the raw coefficient
correlation between child Wj,n and parent Wj+1,n at location n. Luisier et al. (2006) further
extend this property to develop inter-scale-dependent thresholding functions where weak parent-child
correlation enforces stronger attenuation to suppress noise whereas high inter-scale consistency
preserves reliable signal structure. By exploiting this inter-scale correlation as a key indicator of
feature reliability in SWT, one can identify coefficients that carry robust linguistic information while
suppressing unstable, noise-driven activations.

3 METHOD

We now describe Token Update via Noise-robust Frequency Encoding (TUNE), our frequency-aware
mechanism for regulating LoRA residual adaptation. The key idea is to decompose token embeddings

4
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into multi-resolution subbands and construct a token-dependent gating factor that amplifies reliable
novelty while suppressing noisy, unstable fluctuations. This section details how TUNE leverages
stationary wavelet transform (SWT) to extract frequency-specific signals and integrates them into the
LoRA update path to mitigate catastrophic forgetting. See Figure 2 for full diagram.

3.1 SETTING AND NOTATION

Let x ∈ RL×D denote a token sequence with length L and hidden size D. Applying a two–level
stationary wavelet transform (SWT) with analysis filters (h, g) produces three subbands

A2, D2, D1 ∈ RL×D,

where A2 is the level-2 low-pass approximation, D2 the level-2 coarser detail, and D1 the level-1
finest detail. For practical finite impulse response (FIR) filters such as Daubechies and Symlets, the
frequency separation across bands is approximate, but the dominant ordering, high: D1 > mid: D2 >
low: A2, consistently holds.
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Figure 3: SWT decomposition of example token embeddings.
(a) A2 capture smooth global trends, while (b) D2, D1 fluctuate
with increasing oscillation at higher frequencies. (c) Distribu-
tional statistics for local oscillation strength across the sequence.

Following the inter-scale cor-
relation framework (Xu et al.,
1994; Luisier et al., 2006; He
et al., 2015), we treat D1 as the
child and D2 as its parent in
the hierarchy, while A2 provides
the low-frequency semantic back-
bone. Because SWT is undeci-
mated, all subbands retain length
L, ensuring exact positional align-
ment between coefficients across
scales. We index tokens by t ∈
{1, . . . , L} and channels by c ∈
{1, . . . , D}.

Figure 3 illustrates this fre-
quency hierarchy on 5 example
token sequences where A2 varies
smoothly and forms a stable con-
text, whereas D2 and especially D1 display stronger oscillations. Figure 3 (c) quantifies oscillation
strength : for each sequence, we compute the first-order difference of coefficients over time and
then evaluate the standard deviation within a ω-width sliding window (practically, we used ω = 7).
A larger value means the signal fluctuates more strongly within that local region, reflecting higher
oscillation strength. Together, the plots indicate that A2 provides stable global structure, D2 carries
mid-scale details, and D1 concentrates the most volatile fluctuations, which motivates the need to
assess high-frequency (D1) reliability before using it for adaptation.

3.2 HIGH-FREQUENCY SALIENCY

High-frequency coefficients D1 capture local fine-grained variation that holds the details, but also
include noise. To quantify their strength in a robust manner, we apply a soft shrinkage relative to a
per-channel noise scale σc, a MAD-derived statistic computed along the token axis. This produces
denoised details

D̃1(t, c) = sign
(
D1(t, c)

)
ReLU

(
|D1(t, c)| − σc

)
.

We then compute normalized token-wise energy and map it into [0, 1] with a sigmoid,

E(t) = σ
( 1

D

D∑
c=1

D̃1(t, c)
2

σ2
c + ε

)
, σ(u) = 1

1+e−u .

This yields a high-frequency saliency score such that tokens with strong, non-trivial energy across
feature channels receive higher E(t).

5
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3.3 PARENT-GUIDED RELIABILITY

Saliency alone may respond to unstable spikes, which can add noisy perturbation to semantically
meaningful high-frequency representations. To capture stability, we exploit the persistence of
coefficients across scales. Using level-2 details D2 as reference coefficients, we compute the inter-
scale agreement as

r(t, c) =
2D1(t, c)D2(t, c)

D1(t, c)2 +D2(t, c)2 + εσ2
c

, g(t, c) = tanh(γr(t, c)),

with sharpness control hyperparameter γ > 0. The agreement score g(t, c) takes values in [−1, 1]
and reflects both the sign and relative magnitude of D1 and D2. The score becomes stronger when
child (D1) and parent (D2) coefficients are aligned in both sign and magnitude and weaker when
they are misaligned. However, values of g near zero lie in the steep, unsaturated region of the tanh
nonlinearity, where small changes in r cause large fluctuations in g, making such scores unreliable.

To account for the instability of g around zero, we further introduce a light-weight computable
confidence term C(t, c) derived from the local sensitivity of g w.r.t. r. Since

∂g

∂r
(t, c) = γ sech2(γr(t, c)),

large derivatives occur when g is close to 0, indicating unstable response to small changes in r.
Conversely, when g saturates near ±1, the derivative vanishes, indicating strong confidence in the
agreement. We therefore define the confidence score as

C(t, c) = 1− 1

γ

(∂g
∂r

(t, c)
)
= 1− sech2(γr(t, c)) = tanh2(γr(t, c)),

which maps sensitivity into [0, 1]. The final parent-guided reliability for each token t is then given by

R(t) =
1

D

D∑
c=1

σ(g(t, c))︸ ︷︷ ︸
agreement

· C(t, c)︸ ︷︷ ︸
confidence

,

This reliability is high when child coefficients are consistent with their parent and the gate is confident
(saturated), selectively emphasizing cross-scale supported features.

Figure 4 illustrates whether the saliency and reliability measures behave in accordance with their
intended design. For this, we define per-channel token scores:

E(t, c) = σ

(
D̃1(t, c)

2

σ2
c + ε

)
, R(t, c) = σ(g(t, c)) · C(t, c).

For visualization purposes, E(t, c) and R(t, c) are further normalized to the range [0, 1]. In panel (a),
each scatter point corresponds to a coefficient pair (D1(t, c), D2(t, c)), colored by its saliencyE(t, c).
Points with larger D1(t, c) map to higher saliency, confirming that E(t, c) captures the intensity
of fine-scale variations. In panel (b), reliability R(t, c) is maximized when D1(t, c) and D2(t, c)
are aligned in both sign and magnitude, and weakest off-diagonal when they disagree. Together,
these plots show that E(t, c) highlights token-level detail, while R(t, c) refines it by emphasizing
cross-scale consistent activations and suppressing unstable ones.

3.4 TOKEN-WISE SCORE AND LORA INTEGRATION

As a final token-wise gating score, we combine saliency and reliability through a geometric mean,

S(t) =
(
E(t)

)1−λ (
R(t)

)λ
, λ ∈ [0, 1],

and map this token-level score to a scaling factor s(t) = σ(S(t)) that modulates the LoRA residual
path. As our baseline LoRA structure, we adopt orthogonal LoRA (O-LoRA) (Wang et al., 2023a),
which assigns each task a separate LoRA subspace while freezing those from previous tasks, and
imposes cross-task orthogonality constraints to reduce subspace overlap across tasks. This provides a
strong and widely used starting point for LoRA-based continual learning.

On top of this baseline, TUNE introduces token-dependent rescaling of the LoRA residual updates:

yout(t) = Wx(t) + s(t)∆WLoRA(x(t); θk),

6
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Figure 4: Scatter plots of normalized saliency E(t, c) and reliability R(t, c). Each point corre-
sponds to a coefficient pair (D1(t, c), D2(t, c)), colored by its normalized score in [0, 1]. (a) Larger
D1(t, c) values generally correspond to higher E(t, c). (b) R(t, c) is strongest along the diagonal
where D1(t, c) and D2(t, c) align in both sign and magnitude, and weak off-diagonal.

where θk denotes the learnable set of LoRA parameters for the current task k. This design provides two
complementary benefits. During the forward pass, the scaling factor s(t) adjusts the contribution of
each token, effectively regulating its influence in the residual representations and thereby controlling
token-wise attention to salient versus noisy signals. During the backward pass, treating s(t) as
constant with respect to θk yields

∂L
∂θk

=

L∑
t=1

s(t)︸︷︷︸
token-dependent LR

∂L
∂yout(t)

∂∆WLoRA(x(t); θk)

∂θk
.

Here s(t) acts as a token-dependent learning rate (LR), scaling the gradient update contributed by
each token according to its saliency and reliability. Tokens with high s(t) exert stronger influence on
parameter updates, promoting plasticity for novel yet reliable signals. In contrast, tokens with low s(t)
contribute little, helping to preserve stability against noisy or unstable activations. In this way, the
scale factor regulates not only the forward significance of each token in residual adaptation but also
its backward learning step size, effectively controlling how spectral cues shape the stability–plasticity
trade-off during optimization.

Note that TUNE adds no additional learnable parameters beyond the continual expansion of LoRA
modules already inherent to the O-LoRA framework. The scaling factors s(t) are computed directly
from spectral cues given by SWT decomposition of token embeddings without any parameterization.
A detailed analysis of the resulting computational overhead is provided in the next section.

4 EXPERIMENTS

4.1 DATASETS

We evaluate TUNE under the widely used continual learning benchmarks for LLMs. The Standard
CL benchmark consists of four text classification tasks (AG News, Amazon, Yelp, DBPedia, Yahoo)
arranged in three different orders. For a greater challenge on longer sequence of continual tasks,
we also adopt a Large-scale CL benchmark comprising fifteen different tasks: the five standard CL
benchmark tasks, four GLUE tasks (MNLI, QQP, RTE, SST-2), five SuperGLUE tasks (WiC, CB,
COPA, MultiRC, BoolQ), and IMDB reviews, also in three different orders. All task instructions
follow the unified instruction-tuning schema from prior works (Qin & Joty, 2022; Wang et al., 2023a;
Qiao & Mahdavi, 2024; Yang et al., 2024).
4.2 MODELS AND TRAINING

Experiments are conducted on two representative LLMs: the encoder–decoder T5-large (Raffel et al.,
2023) and the decoder-only LLaMA-7B (Touvron et al., 2023). LoRA modules are inserted into the
query and value projection matrices, while pretrained weights are frozen. For continual learning, we
adopt O-LoRA (Wang et al., 2023a) as the baseline framework. TUNE is integrated into this baseline
by introducing token-dependent rescaling of the LoRA residual updates. Unless otherwise noted, we

7
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Table 1: Testing performance on two standard CL benchmarks with T5-large.1 from Wang et al.
(2023a), 2 from Qiao & Mahdavi (2024), 3 reproduced by us.

Standard CL Benchmark Large Number of Tasks
Method Order-1 Order-2 Order-3 avg Order-4 Order-5 Order-6 avg
ProgPrompt1 75.2 75.0 75.1 75.1 78.0 77.7 77.9 77.9
PerTaskFT1 70.0 70.0 70.0 70.0 78.1 78.1 78.1 78.1
MTL1 80.0 80.0 80.0 80.0 76.5 76.5 76.5 76.5
SeqFT1 18.9 24.9 41.7 28.5 7.4 7.4 7.5 7.4
IncLoRA1 66.0 64.9 68.3 66.4 63.3 58.5 61.7 61.2
Replay1 55.2 56.9 61.3 57.8 55.0 54.6 53.1 54.2
EWC1 48.7 47.7 54.5 50.3 45.3 44.5 45.6 45.1
L2P1 60.3 61.7 61.1 60.7 57.5 53.8 56.9 56.1
LFPT51 67.6 72.6 77.9 72.7 70.4 68.2 69.1 69.2
O-LoRA1 75.4 75.7 76.3 75.8 72.3 64.8 71.6 69.6
LB-CL2 76.9 76.5 76.8 76.7 68.4 67.3 71.8 69.2
N-LoRA3 76.0 78.1 77.6 77.2 74.3 69.4 64.8 69.5
TUNE 78.5 78.4 78.0 78.3 75.4 73.0 75.9 74.8

follow the same experimental configurations of O-LoRA with 1-epoch training for every task except
the learning rate and TUNE-specific hyperparameters. All experiments were conducted on NVIDIA
A6000 GPUs, using the DeepSpeed framework for implementation. For evaluation, performance is
measured by Average Accuracy (AA) after training the final task, i.e., AA = 1

T

∑T
i=1 ai,T .

4.3 BASELINES

We compare TUNE against a broad set of baselines commonly used in continual learning with LLMs.
Independent training methods include PerTaskFT, which trains a separate model for each task, and
ProgPrompt (Razdaibiedina et al., 2023), which learns independent prompts. As an optimistic upper
bound, Multi-Task Learning (MTL) jointly trains on all tasks simultaneously. Non-continual fine-
tuning methods include SeqFT (de Masson d’Autume et al., 2019), which updates all parameters on
a sequence of tasks, and IncLoRA, an incremental learning of new LoRA parameters on a sequence
of tasks without any regularization or replay. Regularization and replay-based approaches are also
considered: EWC (Kirkpatrick et al., 2017) fine-tunes entire model with a regularization loss based
on Fisher information and Replay maintains a buffer of prior samples for rehearsal. Prompt-based
methods such as L2P (Wang et al., 2022) and LFPT5 (Qin & Joty, 2022) dynamically select or
generate prompts to adapt to new tasks. Finally, we compare against recent LoRA-based continual
learning methods, including O-LoRA (Wang et al., 2023a), which enforces orthogonality between
task-specific subspaces, LB-CL (Qiao & Mahdavi, 2024), which balances LoRA consolidation across
tasks and N-LoRA (Yang et al., 2024), which reduces parameter collisions via sparsity.

Note that most of the baselines are taken from O-LoRA, as we adopt same experimental setting and
codebase provided in their repository. For LB-CL, we report the results from the original paper due
to the absence of publicly available code. For N-LoRA, we observe that they increase the number of
training epochs per task from 1 (as used in O-LoRA and other baselines) to 10, which significantly
inflates computational cost while yielding only marginal performance gains. To ensure consistency
and fairness, we reproduce N-LoRA using the official codebase but adjust the training epoch to 1.

4.4 RESULTS

Table 2: Testing performance on two standard CL bench-
marks with LLaMA-7B. 1 reproduced by us.

CL Benchmark Order-1 Order-2 Order-3 avg
O-LoRA1 74.8 73.7 78.3 75.6
N-LoRA1 71.2 75.1 76.2 74.2
TUNE 77.8 78.1 79.8 78.6

Tables 1 and 2 summarize the re-
sults on the standard and large-scale
CL benchmarks with T5-large and
LLaMA-7B. On the standard 4-task
benchmark, TUNE achieves the high-
est average accuracy of 78.3, surpass-
ing all other baselines. The improve-
ment is more pronounced in the large-
scale 15-task benchmark, where TUNE reaches 74.8 as average accuracy, significantly higher than
O-LoRA (69.6) and N-LoRA (69.5). These gains indicate that token-wise frequency-guided modula-
tion provides better stability under long sequences of tasks where forgetting is most severe.
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On LLaMA-7B in Table 2, where model scale makes forgetting even more challenging, TUNE again
achieves the best performance. It improves the average accuracy on the standard benchmark to 78.6,
compared to 75.6 for O-LoRA and 74.2 for N-LoRA. This demonstrates that the effectiveness of
TUNE generalizes across architectures, showing consistent benefits in CL. Taken together, these
results highlight that TUNE not only strengthens the stability–plasticity trade-off but also scales
effectively to larger models and longer task sequences. By leveraging frequency cues to guide
token-level adaptation, TUNE delivers SOTA performance among LoRA-based continual learning
methods. We further analyze catastrophic forgetting using the Backward Transfer (BWT) metric, as
detailed in Appendix H. The results show TUNE consistently reduces negative BWT compared to
O-LoRA and N-LoRA, confirming its ability to better preserve prior knowledge across tasks.

Table 3: Comparison of training computation cost.

Method GPU Memory Num of training params
O-LoRA 23.68 GB r(m+ n)
LB-CL 28.28 GB r(m+ n) + r
N-LoRA 23.69 GB r(m+ n)
TUNE 24.02 GB r(m+ n)

Computational Analysis. TUNE
introduces no additional trainable pa-
rameters beyond O-LoRA, as shown
in Table 3, and incurs only negligi-
ble runtime overhead. The extra cost
comes from the SWT decomposition
and token-level scoring, both of which
scale linearly with BLD. This cost is
minor compared to the dominant Transformer operations such as quadratic attention O(BL2D) and
feed-forward layers O(BLD2). A more detailed complexity analysis is provided in Appendix G.

4.5 ABLATION STUDIES
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Figure 5: Ablation results on TUNE. Effect of
wavelet function choice, removal of inter-scale reli-
abilityR(t), and replacement with random scaling.

We conduct ablation studies to examine the im-
pact of different design choices in TUNE. De-
tailed analyses on wavelet properties, scaling
distributions, and additional variants are pro-
vided in Appendix D, E, and F. The main results
are highlighted in Figure 5.

Wavelet function We adopt Symlets-8 (sym8)
as the default wavelet for TUNE, as also re-
ported in Table 1. Sym8 achieves the strongest
performance due to its near-symmetry, which re-
duces phase distortion and improves cross-scale
alignment, together with a moderate filter length
that balances frequency resolution and temporal
localization. Shorter filters such as Daubechies-
4 (db4) are computationally cheaper but suffer
from stronger phase misalignment, resulting in a modest drop in accuracy. These findings show
that wavelet choice matters, with sym8 offering the most consistent gains, while TUNE remains
competitive across various filters and continues to outperform non-frequency baselines.

No reliability regulation We next ablate the inter-scale reliability term R(t). Using saliency alone
for gating tokens, i.e., s(t) = E(t), causes a clear degradation in accuracy, demonstrating that
reliability plays a critical role in filtering out unstable high-frequency activations.

Random scaling Finally, we replace TUNE’s spectral scaling with random scaling factors drawn
uniformly from the same empirical range of s(t) (0.55–0.65) driven by TUNE with sym8 (see
Appendix E). Despite matching the overall scale distribution, this variant performs substantially worse,
indicating that the gains of TUNE cannot be attributed to random scaling of token activations. Instead,
the improvements stem from the structured use of spectral cues—saliency and reliability—that
adaptively modulate tokens in a task-sensitive manner.

5 CONCLUSION

We proposed TUNE, a frequency-guided token modulation method for continual learning in LLMs.
By integrating wavelet-based saliency and reliability into token-wise LoRA updates, TUNE mitigates
forgetting while enabling stable transfer. Across standard and large-scale benchmarks, it achieves
consistent gains over strong baselines with no extra parameters and negligible overhead, establishing
frequency-aware modulation as an effective principle for stable continual learning.
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ETHICS STATEMENT.

This work does not involve human subjects, personal data, or sensitive attributes. The proposed
method builds upon publicly available benchmark datasets (CL benchmark, GLUE, SuperGLUE,
IMDB), all of which are widely used in the research community. Our contributions focus on
algorithmic improvements for continual learning in large language models, with no foreseeable risks
of ethical harm beyond those already present in standard LLM training.

REPRODUCIBILITY STATEMENT.

We have made all implementation details explicit, including hyperparameters, model configurations,
datasets, and task sequences. Detailed training settings for both T5-large and LLaMA-7B are provided
in the appendix (Tables 7, 8). All benchmark datasets are publicly accessible, and the exact task
orders used for continual learning are documented in Appendix I.2. We will release the source code
and scripts to fully reproduce the reported results upon publication.

THE USAGE OF LLMS.

In the preparation of this paper, we used large language models (LLMs) in a limited and supporting
capacity. Specifically:

• Writing aid and polishing: LLMs were employed to improve the clarity, readability, and
grammar of the manuscript. Their role was restricted to stylistic suggestions and refinement of
phrasing, without altering the scientific content, claims, or conclusions.
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A CODE AVAILABILITY

The source code for TUNE is available at https://anonymous.4open.science/r/
TUNE-C52F

B FULL ALGORITHMIC DETAILS FOR TUNE

We present the full step-by-step procedure of TUNE. The algorithm outlines how token embeddings
are decomposed by a two-level SWT, how saliency and reliability scores are computed, and how
their fusion produces a token-wise scaling factor that modulates the LoRA residual updates. All
input–output shapes are specified for clarity.

Algorithm 1 TUNE for LoRA-residual scaling

1: Input: dataset of N token sequences; stream of mini-batches {x(b)}N/B
b=1 where each x(b) ∈ RB×L×D;

two-level SWT filters (h, g); hyperparameters γ, κ, λ; numeric ε > 0.

2: for each mini-batch x(b) do
3: 2-Level SWT decomposition.
4: (A2, D2, D1)← SWT(x(b); h, g, level = 2) (A2, D2, D1 ∈ RB×L×D)

5: High-frequency saliency E(t).
6: D̃1 ← sign(D1) · ReLU(|D1| − σc)

7: where σc ∈ RB×D is a per-channel noise scale (MAD statistic along tokens).

8: E(t)← σ
(

1
D

∑D
c=1

D̃ 2
1

σ2
c+ε

)
(E ∈ [0, 1]B×L×1)

9: Parent-guided reliability R(t).

10: r(t, c)← 2D1 ⊙D2

D2
1 +D2

2 + ε σ2
c

(r ∈ RB×L×D)

11: g(t, c)← tanh(γ r); C(t, c)← tanh2(γ r) (g ∈ (−1, 1)B×L×D , C ∈ (0, 1)B×L×D)

12: R(t)← 1
D

∑D
c=1 σ(κ g(t, c))⊙ C(t, c) (R ∈ [0, 1]B×L×1)

13: Token score and scaling.
14: S(t)← E(t) 1−λ ⊙R(t)λ

15: s(t)← σ(S) (s ∈ (0, 1)B×L×1)

16: LoRA integration.
17: yout(t)←W x(b)(t) + s(t)∆LoRA(x

(b)(t); θ) (yout ∈ RB×L×dout )

18: end for

C FREQUENCY-BAND ANALYSIS OF TOKEN REPRESENTATIONS
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Figure 6: Example level 4 SWT traces on DBPedia with sym8 filter. The embedding sequence
is decomposed into approximation (A4) and detail components (D4–D1). Each subplot shows the
mean coefficient trajectory across tokens with 95% confidence intervals, illustrating how different
frequency bands emphasize smooth trends (A4) versus progressively higher-frequency fluctuations
(D4–D1).
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To better understand how token representations are distributed across frequency bands, we decompose
the embedding sequence using a four-level stationary wavelet transform (SWT). This yields one
approximation component (A4) and four detail components (D4–D1), which progressively capture
lower- to higher-frequency variations. For each token position, the coefficients are averaged across
embedding dimensions and aggregated over multiple samples to produce mean traces with confidence
intervals. Figure 6 shows an SWT-decomposed example trace across scales from the DBPedia dataset
using the Symlet-8 (sym8) wavelet filter, illustrating how different frequency bands emphasize distinct
patterns of variation along the sequence.

C.1 HIGH-FREQUENCY (D1) TRACE ADJUSTED WITH RELIABILITY (R(t))

To highlight the effect of R(t), the reliability term, we plot the z–scored amplitude of the raw high-
frequency coefficients D1(t) and their reliability–adjusted trace Dadj

1 (t) = R(t) ·D1(t). Although
R(t) is not directly used to alter high-frequency components of token embeddings in TUNE, this
visualization illustrates how it effectively suppresses spiky, unstable variations in D1.
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Figure 7: High-frequency coefficients D1(t) with reliability adjustment. Applying R(t) to D1(t)
suppresses erratic spikes in the raw D1(t) trace, yielding a smoother high-frequency profile.

C.2 TASK DISCRIMINABILITY OF FREQUENCY BANDS

To examine how different frequency bands contribute to task separation, we probe the task discrim-
inability of low- (A10), mid- (D8), and high-frequency (D1) SWT coefficients on four tasks from
the standard CL benchmark. For each band, we train a logistic regression classifier with 5-fold
cross-validation to obtain a confusion matrix, and compute inter-task distances using Maximum
Mean Discrepancy (MMD). This analysis reveals how reliably each band preserves task-specific
information versus collapsing into overlapping noise.

D CHOICE OF WAVELET FUNCTION

Selecting an appropriate wavelet is crucial for effectively decomposing token embeddings in our setup.
In practice, the choice is guided by several factors: (i) orthogonality, which ensures non-redundant
coefficient representations and stable reconstruction; (ii) symmetry, which mitigates phase distortions
and preserves temporal alignment of token features across scales; and (iii) filter length, which balances
frequency resolution against temporal localization. Longer filters (e.g., Coiflets) capture finer spectral
structure at the cost of reduced localization, while shorter filters (e.g., Daubechies-4) emphasize
compact support but often introduce greater asymmetry.

Figure 9 visualizes the filters used in our experiments. Symlets-8 (sym8) are nearly symmetric
with a moderate filter length (K = 16), ensuring that low-pass and high-pass filters remain phase-
aligned. This property reduces distortions in cross-scale comparisons and makes reliability estimation
more stable, a particularly desirable feature for language data where both local token ordering and
global semantic consistency must be preserved. Coiflets-5 (coif5) have longer filters (K = 30) with
vanishing moments for both scaling and wavelet functions, providing stronger frequency selectivity
but weaker temporal localization. Daubechies-8 (db8) extend the Daubechies family to a longer
filter length (K = 16), gaining smoothness at the cost of greater asymmetry. Finally, Daubechies-4
(db4) are short filters (K = 8) that are computationally efficient but exhibit stronger phase distortion
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Figure 8: Task discriminability across frequency bands. Left: confusion matrices from a linear
probe. Right: pairwise Maximum Mean Discrepancy (MMD) between tasks. A10 exhibits nearly
perfect separation, confirming that low-frequency components encode stable, task-specific semantics.
D8 shows partial separation, reflecting mid-frequency structure. In contrast, D1 collapses into
overlapping clusters with weak inter-task separation, highlighting its noisy and unstable nature.
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Figure 9: Wavelet filters used in our experiments. Low-pass (blue) and high-pass (green) decompo-
sition filters for Symlets-8, Coiflets-5, Daubechies-8, and Daubechies-4. Sym8 is used as the default
in the main results, while the others are considered in ablation studies.

compared to their longer counterparts. All wavelets considered (Symlets, Daubechies, Coiflets) are
orthogonal families, ensuring energy-preserving, non-redundant filters.

We adopt sym8 as the default wavelet throughout the main experiments, as it provides the most
effective balance between symmetry, frequency resolution, and temporal localization. Among these
factors, symmetry is especially critical in our setup, since it minimizes phase distortions between low-
and high-pass filters, ensuring stable cross-scale comparisons that underpin reliability estimation.
This property is particularly important for language data, where local token structure and global
semantic stability must be preserved simultaneously. Ablation studies with coif5, db8, and db4 (see
Section F) further suggest that while performance can vary with filter choice, the overall method
remains reasonably robust across different wavelet families.
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E DISTRIBUTIONS OF E(t), R(t), AND s(t)

We visualize the pooled token–level distributions of the three measures used in our SWT analy-
sis—energy/saliency E(t), reliability R(t) (the agreement score), and the combined scale s(t)—for
the DBPedia task in standard CL benchmark. Values are aggregated across all batches and samples;
each row corresponds to one wavelet family (sym8, coif5, db4), and each column to a measure.
Across filters, E(t) is right–skewed with most mass near 1.0 and a light mode around 0.6 (bimodal
shape), indicating many tokens receive high saliency while a smaller group is moderate. This re-
flects the spiky and oscillatory behavior of high-frequency band. R(t) concentrates in a mid range
(around 0.13–0.56), presenting moderate but not extreme agreement. The scale s(t) is narrow and
stable (around 0.56–0.66) with minor shifts across filters, suggesting the combined scaling behaves
consistently regardless of the wavelet choice. Vertical dashed lines mark the min/max of each pooled
distribution.
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Figure 10: Density estimates of pooled token–level measures on DBPedia. Rows: wavelet filters
(sym8, coif5, db4). Columns: saliency E(t), reliability R(t), and combined token scale s(t). Vertical
dashed lines denote the observed min/max for each distribution; y–axis is density.

F ABLATION STUDIES

Table 4: Testing performance on two standard CL benchmarks with T5-large.1:

Standard CL Benchmark Large Number of Tasks
Method Order-1 Order-2 Order-3 avg Order-4 Order-5 Order-6 avg
TUNE + sym8 (Default) 78.5 78.4 78.0 78.3 75.4 73.0 75.9 74.8
TUNE + sym4 78.9 78.8 76.8 78.2 73.9 71.8 72.5 72.7
TUNE + db8 79.0 79.1 78.0 78.7 73.0 71.3 73.1 72.5
TUNE + db4 78.4 78.5 76.4 77.8 73.6 71.9 74.9 73.5
TUNE + coif5 78.5 78.3 77.2 78.0 71.5 71.1 75.0 72.5
TUNE w/o R(t) 72.9 77.2 71.3 73.8 68.8 65.2 66.0 66.7
Random Scaling 51.5 49.8 75.8 59.0 72.2 65.2 72.0 69.3

We conduct ablation studies to examine the influence of various components of TUNE such as wavelet
choice and the role of inter-scale reliability regulation. Results are summarized in Table 4.
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For wavelet selection, we test four widely used families: Symlets-8 (sym8), Symlets-4 (sym4),
Daubechies-8 (db8), Daubechies-4 (db4), and Coiflets-5 (coif5). Among them, sym8 achieves
the highest overall performance, confirming that its balanced design—moderate filter length with
near-symmetry—offers a particularly suitable trade-off for decomposing language embeddings.
Nevertheless, other filters also yield strong results, showing that while the exact choice of wavelet
impacts final accuracy, the frequency-guided token scaling mechanism remains consistently effective
across families and outperforms non-frequency baselines.

We also ablate the reliability regulation term R(t). Removing R(t) and using saliency E(t) alone
for scaling produces a clear drop in accuracy, indicating that inter-scale reliability is crucial for
suppressing unstable high-frequency activations. Finally, we replace TUNE-driven scaling with
random scaling values drawn uniformly from [0.55, 0.65], matching the empirical range of scales
driven by TUNE (Figure 10). This variant performs far worse, highlighting that the gains of TUNE
stem from principled spectral cues rather than arbitrary rescaling.

Together, these ablations confirm that frequency-guided scaling is a robust and indispensable mecha-
nism, with sym8 serving as the most effective default wavelet for language continual learning.

G COMPUTATION ANALYSIS

We provide a detailed analysis of the additional computational cost introduced by TUNE. Let B
denote the batch size, L the sequence length, D the hidden size, k the wavelet filter length, and ℓ the
number of SWT decomposition levels.

SWT Decomposition. At each level, the stationary wavelet transform (SWT) applies both a low-
pass and a high-pass finite impulse response (FIR) filter. Thus, ℓ levels require 2ℓ FIR convolutions
in total. Each convolution costs O(BkLD), giving

TSWT = O(2ℓBkLD).

Since k is small (e.g., k ∈ [4, 16]), this cost is linear in BLD and negligible compared to quadratic
attention or large matrix multiplications.

Token Scoring. The computation of token saliency E(t) and reliability R(t) consists primarily
of elementwise operations. For saliency, squaring the high-frequency coefficients, normalizing by
per-channel variance, and applying a sigmoid costs O(BLD). Reliability involves computing the
agreement between child–parent coefficients (D1, D2), a sigmoid, and a lightweight confidence term
C(t, c), also costing O(BLD). Finally, combining saliency and reliability into the token scaling
factor s(t) requires only a few elementwise operations, adding O(BL).

Summing the above contributions, the added complexity of TUNE is TTUNE = O(2ℓBkLD) +
O(BLD), both terms scaling linearly with BLD and involving only small constants. In contrast, the
dominant Transformer costs are

Tattn = O(BL2D), TFFN = O(BLD2),

which grow quadratically with L or D. In contrast, the additional terms introduced by TUNE only
scale linearly with BLD and involve small constants tied to the filter length k and decomposition
depth ℓ. Since k ≪ D and ℓ is typically small in practice, it follows that

TTUNE ≪ Tattn, TFFN,

indicating that the extra cost of TUNE is asymptotically insignificant compared to the dominant
Transformer operations. This conclusion is further supported by the empirical memory usage
comparison in Table 3, which confirms that TUNE adds negligible overhead while preserving the
efficiency of the O-LoRA framework.
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H CATASTROPHIC FORGETTING MEASURED BY BACKWARD TRANSFER
(BWT)

Backward Transfer (BWT) quantifies catastrophic forgetting by measuring how much the accuracy
on earlier tasks degrades after training on subsequent tasks. Formally, it is defined as

BWT =
1

T − 1

T−1∑
i=1

(ai,T − ai,i),

where ai,j denotes the test accuracy on the i-th task after training up to the j-th task. A negative
BWT value indicates forgetting, with larger magnitudes corresponding to more severe degradation.

Table 5: Backward Transfer (BWT) across task orders on T5-Large.

Orders 1–3 Orders 4–6
Method 1 2 3 Avg 4 5 6 Avg

O-LoRA -2.15 -12.55 -7.80 -7.50 -9.98 -8.02 -6.67 -8.22
N-LoRA -2.68 1.00 -0.17 -0.62 -4.89 -15.09 -9.56 -9.85
TUNE -0.08 -1.60 -1.04 -0.91 -5.24 -8.74 -3.89 -5.95

Table 6: Backward Transfer (BWT) for task orders 1–3 on LLaMA-7B.

Orders 1–3
Method 1 2 3 Avg

O-LoRA -14.65 -8.70 -3.77 -9.04
N-LoRA -8.69 -0.57 -0.34 -3.20
TUNE -1.29 -3.56 -1.61 -2.15

Before delving into the details, we note that all reported BWT values are computed from the same
models whose performance is summarized in Table 1.

Table 5 reports BWT across different task orders on T5-Large. Compared to O-LoRA and N-LoRA,
TUNE consistently achieves less negative BWT, indicating reduced forgetting. On Orders 1–3,
TUNE reaches an average of −0.91, close to stable retention, while O-LoRA suffers a much larger
drop of −7.50. Although N-LoRA achieves a slightly lower average (−0.62) on Orders 1–3, it
deteriorates significantly in later tasks (Orders 4–6), where its BWT falls to −9.85. In contrast,
TUNE maintains a substantially smaller degradation (−5.95), confirming its robustness as tasks
accumulate. These results highlight that frequency-aware scaling not only preserves early tasks but
also mitigates long-term forgetting across extended sequences.

Table 6 presents the same analysis on LLaMA-7B for Orders 1–3. Here the trend is even clearer:
O-LoRA exhibits severe forgetting (−9.04 on average), while N-LoRA performs better (−3.20) but
still suffers from unstable retention across tasks. TUNE consistently achieves the best balance with an
average of −2.15, showing substantially reduced catastrophic forgetting compared to both baselines.
Together, these results across two architectures confirm that TUNE’s frequency-guided modulation
provides a principled mechanism for alleviating forgetting, improving both short-term stability and
long-term robustness.

I EXPERIMENTAL SETUP

I.1 HYPERPARAMETERS

For all experiments, we follow the same training configurations as O-LoRA (Wang et al., 2023a),
ensuring a fair comparison. The only differences are the learning rate, which we adjust for stability,
and the TUNE-specific hyperparameters (γ, κ, λ). Importantly, these hyperparameters are kept
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fixed across all tasks and orders without per-task tuning. This consistency indicates that TUNE
is robust to hyperparameter selection: the chosen values provide a balanced integration of token
saliency and reliability into the final scaling factor, without requiring task-specific adjustment. Such
stability is advantageous in continual learning, where excessive hyperparameter tuning across tasks
would undermine practicality. Tables 7 and 8 summarize the detailed settings used for T5-large and
LLaMA-7B experiments, respectively.

Table 7: Detailed training hyper-parameters and configuration for continual learning on T5-Large.

Config Order-1 Order-2 Order-3 Order-4 Order-5 Order-6

TUNE Configs
γ 2.0 2.0 2.0 2.0 2.0 2.0
κ 2.0 2.0 2.0 2.0 2.0 2.0
λ 0.7 0.7 0.7 0.7 0.7 0.7

O-LoRA Configs
lambda 1 0.5 0.5 0.5 0.5 0.5 0.5
lambda 2 0.0 0.0 0.0 0.0 0.0 0.0
lora rank per task 8 8 8 8 8 8
lora dropout 0.1 0.1 0.1 0.1 0.1 0.1
lora target modules Query, Value projection

General Configs
Epoch 1 1 1 1 1 1
Learning rate 1e-3 5e-4 4e-4 1e-3 5e-4 4e-4
Gradient Accumulation Step 1 1 1 1 1 1
Train Batch size / GPU 8 8 8 8 8 8
Eval Batch size / GPU 128 128 128 128 128 128
GPU (A6000 48G) 1 1 1 4 4 4

Table 8: Detailed training hyper-parameters and configuration for continual learning on LLaMA-7B.

Config Order-1 Order-2 Order-3

TUNE Configs
γ 2.0 2.0 2.0
κ 2.0 2.0 2.0
λ 0.7 0.7 0.7

O-LoRA Configs
lambda 1 0.5 0.5 0.5
lambda 2 0.0 0.0 0.0
lora rank per task 8 8 8
lora dropout 0.1 0.1 0.1
lora target modules Query, Value projection

General Configs
Epoch 1 1 1
Learning rate 5e-4 5e-4 5e-4
Gradient Accumulation Step 8 8 8
Train Batch size / GPU 1 1 1
Eval Batch size / GPU 16 16 16
GPU (A6000 48G) 4 4 4

I.2 DATASETS AND CL TASK SEQUENCES

We evaluate on 15 datasets spanning diverse domains and tasks, including sentiment classification,
topic classification, natural language inference, and question answering. These datasets are drawn
from established benchmarks: the standard CL benchmark with five tasks (Yelp, Amazon, DBpedia,
Yahoo, AG News), GLUE (MNLI, QQP, RTE, SST-2), SuperGLUE (WiC, CB, COPA, MultiRC,
BoolQ), and IMDB reviews. Table 9 summarizes their categories, tasks, and domains.
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To assess both short- and long-horizon continual learning, we follow prior work (Wang et al., 2023a;
Qiao & Mahdavi, 2024; Yang et al., 2024) and construct two settings. The Standard CL benchmark
includes four tasks (AG News, Amazon, Yahoo, DBPedia) arranged in three different orders. The
Large-scale CL benchmark expands to fifteen tasks by adding four GLUE tasks, five SuperGLUE
tasks, and IMDB, also evaluated under three task sequences. Table 10 details the task orders used in
our experiments.

Table 9: Datasets and Their Tasks, Categories, Domains, and Metrics

No. Dataset name Category Task Domain Metric

1 Yelp CL Benchmark sentiment analysis Yelp reviews accuracy
2 Amazon CL Benchmark sentiment analysis Amazon reviews accuracy
3 DBpedia CL Benchmark topic classification Wikipedia accuracy
4 Yahoo CL Benchmark topic classification Yahoo Q&A accuracy
5 AG News CL Benchmark topic classification news accuracy
6 MNLI GLUE NLI various accuracy
7 QQP GLUE paragraph detection Quora accuracy
8 RTE GLUE NLI news, Wikipedia accuracy
9 SST-2 GLUE sentiment analysis movie reviews accuracy
10 WiC SuperGLUE word sense disambig. lexical databases accuracy
11 CB SuperGLUE NLI various accuracy
12 COPA SuperGLUE QA blogs, encyclopedia accuracy
13 BoolQA SuperGLUE boolean QA Wikipedia accuracy
14 MultiRC SuperGLUE QA various accuracy
15 IMDB SuperGLUE sentiment analysis movie reviews accuracy

Table 10: Task Sequences for Continual Learning

Order Model Task Sequence

1 T5, LLaMA dbpedia→ amazon→ yahoo→ ag
2 T5, LLaMA dbpedia→ amazon→ ag→ yahoo
3 T5, LLaMA yahoo→ amazon→ ag→ dbpedia

4 T5 mnli→ cb→ wic→ copa→ qqp→ boolqa→ rte→ imdb→ yelp→ amazon
→ sst-2→ dbpedia→ ag→ multirc→ yahoo

5 T5 multirc→ boolqa→ wic→ mnli→ cb→ copa→ qqp→ rte→ imdb→ sst-2
→ dbpedia→ ag→ yelp→ amazon→ yahoo

6 T5 yelp → amazon → mnli → cb → copa → qqp → rte → imdb → sst-2 →
dbpedia→ ag→ yahoo→ multirc→ boolqa→ wic
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