
Under review as a conference paper at ICLR 2021

TIME ADAPTIVE RECURRENT NEURAL NETWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a learning method that, dynamically modifies the time-constants of the
continuous-time counterpart of a vanilla RNN. The time-constants are modified
based on the current observation and hidden state. Our proposal overcomes the
issues of RNN trainability, by mitigating exploding and vanishing gradient phenom-
ena based on placing novel constraints on the parameter space, and by suppressing
noise in inputs based on pondering over informative inputs to strengthen their con-
tribution in the hidden state. As a result, our method is computationally efficient
overcoming overheads of many existing methods that also attempt to improve RNN
training. Our RNNs, despite being simpler and having light memory footprint,
shows competitive performance against standard LSTMs and baseline RNN models
on many benchmark datasets including those that require long-term memory.

1 INTRODUCTION

We focus on trainability of vanilla Recurrent Neural Networks1 (RNN). Improving Vanilla RNN
performance is important since they are deployed in a number of IoT applications (Dennis et al.,
2019) due to their light memory footprint. A fundamental challenge is that, during training, the
gradient of loss back-propagated in time could suffer from exponential decay/explosion resulting in
poor generalization for processes exhibiting long-term dependencies (LTD).

There has been a long-line of work such as (Cho et al., 2014; Hochreiter, 1991; Arjovsky et al., 2016;
Kusupati et al., 2018; Chang et al., 2019) that propose matrix designs, gating and novel architectures,
to mitigate gradient explosion/decay, and improve handling of state-transition. Different from these
are works, which go back to (Rosenblatt, 1962; Funahashi & Nakamura, 1993) that draw inspiration
from ordinary differential equations (ODEs). (Chang et al., 2019) leverages stability theory of ODEs,
to identify new transition matrices, and proposes discretization of ODEs, to improve trainability.

While we also draw upon ODEs to propose solutions to improve vanilla RNN trainability, our proposal
differs from existing works in fundamental ways. To build intuition, first consider the ODE, with
λ ∈ R+, U ∈ RD×D,W ∈ RD×d, and A ∈ RD×D Hurwitz stable (Khalil, 2002):

λż(t) = Az(t) + φ(Uz(t) + Wxm) (1)

where, φ(·) is the conventional non-linear RNN activation function such as a ReLU; This particular
form, serving as an analogue2 of vanilla RNNs, is quite old (Rosenblatt, 1962). In each round, m,
we start from an initial state, z(t0) = sm−1, which corresponds to the current hidden state, and input,
xm, and evolve the ODE for a unit period of time. Subsequently, the hidden state is updated by
setting sm = z(t0 + 1), and in this way, mapping inputs to the hidden state sequence.

What is new? We introduce two novel aspects within this context. First, we allow for λ to be
time-varying, and in particular, a function of previous hidden state and input. Our reasoning is that λ
serves as a time-constant, and inherently accounts for how long we evolve the ODE in response to
the current input. To see this, let us write the ODE in integral form for a fixed λ:

sm , z(t0 + 1) = exp

(
A

1

λ

)
sm−1 +

1

λ

∫ 1

0

exp

(
A

1− t
λ

)
φ(Uz(t) + Wxm)dt (2)

1By vanilla RNNs we refer to networks that sequentially update their hidden state by means of a simple
linear transformation of the previous state and current input, followed by non-linear activation.

2Vanilla RNNs and residual variants amount to a suitable Euler discretization (see Appendix).

1

Under review as a conference paper at ICLR 2021

Then, with λ→∞, we deduce that, z(t0 + 1)→ sm−1. Namely, when time constant is large relative
to integration time, we barely process the new input, remaining essentially at our previous solution.
Alternatively, if λ→ 0, namely, when the integration time is large relative to the time-constant, we
reach equilibrium, and in this process strengthen influence of the current input. Moreover, by letting
the time-constant be a function, of sm−1, xm, we selectively adapt the amount of “pondering” that we
need on each new input. Finally, we then let λ(·) take values in RD, and thus allow for element-wise
dependence for each hidden state, leading to selective updates of hidden state components. These
ideas result in a time-adaptive RNN (TARNN).

Next, we augment the current input with the hidden state, and consider um = [um, sm−1]> as a
composite input in our ODE:

λ(um) ◦ ż(t) = Az(t) + Bum + φ(Uz(t) + Wum), z(t0) = sm−1 (3)

where ◦ represents the element-wise (Hadamard) product. To build intuition into our ODE choice,
observe from the first term in Eq. 2 that for A stable, the contribution of the hidden state, sm−1 decays
exponentially in time, and as such, the discrete transition process, s1, . . . , sT rapidly de-correlates.
We can overcome this effect by a persistent presence of the hidden state in the ODE. We also add the
linear term, Bum, as it turns out to be important for improving partial gradient properties for hidden
state sequence. As such our choice does not significantly increase model complexity of Vanilla RNN.

Our proposed ODE is sufficiently rich admitting parameter settings that completely eliminate gradient
decay and explosion, which is desirable for LTD tasks. In addition, our method is capable of
enhancing contribution from informative inputs, while suppressing noisy segments through the
pondering mechanism described above. This aspect is useful in IoT applications (Kusupati et al.,
2018; Dennis et al., 2019) such as keyword detection and wearable sensing devices.

Discretization: For simplicity we discretize our ODEs with Euler discretization to realize vanilla
RNNs. Methods that seek computational and memory efficiency in this context Chen et al. (2018);
Rubanova et al. (2019) are entirely complementary to our method. Our novelty is in the design of
state-transition with the goal of realizing desirable ODE solutions3.

Contributions: The main contributions of this work are listed below.
• TARNN learns to modulate time constants of transition function, allowing for selectively pondering

on informative inputs to strengthen their contribution, and ignoring noisy inputs. This modification
along with designing suitable transition matrices yield lossless information propagation.

• Proposed TARNN improves trainability leading to better handling of LTD tasks with a lighter
memory footprint, and as such our proposed method can be leveraged for IoT tasks.

• Our pseudo code is an RNN cell that is readily deployable in any deep learning library.
• We conduct extensive experiments on benchmark datasets, and show that we improve upon standard

LSTM performance as well as other recent proposed works. We also demonstrate robustness to
time-series distortions such as noise paddings.

Related Work. There is a rich literature on deep RNNs (Zilly et al., 2017; Bengio et al., 2013;
Mujika et al., 2017), which incorporate deep non-linear transition functions for complex and richer
representation, and is outside the scope of our work. Indeed, our work is complementary, and we
seek to improve vanilla RNN trainability. More loosely related are a growing number of works
that propose to improve vanilla RNN trainability through mitigation of vanishing and exploding
gradients. First, there are works that propose improving state-transitions, based on unitary transition
matrices (Arjovsky et al., 2016; Jing et al., 2017; Zhang et al., 2018; Mhammedi et al., 2016; Kerg
et al., 2019; Lezcano-Casado & Martı́nez-Rubio, 2019), residual connections (Jaeger et al., 2007;
Bengio et al., 2013; Kusupati et al., 2018) or gating (Hochreiter, 1991; Cho et al., 2014). While these
methods provide some evidence of mitigating gradient decay, in practice, and in theory, vanishing
gradients are not eliminated (see Appendix). Different from these works, our method is more closely
related to works that draw insights from ODEs.

ODE inspired RNNs. (Chang et al., 2019) and (Talathi & Vartak, 2015) draw upon insights from linear
system theory to guide transition matrix designs for the discrete-time RNN. Ideally, in the regime
where non-linear activation is essentially linear, explosion/decay can be eliminated, but outside
this regime we can expect gradient degradation. (Kag et al., 2020) propose Incremental-RNNs, a

3(Chen et al., 2018; Rubanova et al., 2019), also propose recurrent models to handle non-uniform input
sampling. While this is interesting, their proposals are unrelated to our goal of improving RNN trainability.

2

Under review as a conference paper at ICLR 2021

novel architecture, where like us they evolve the system until equilibrium, and show mitigation of
vanishing/exploding gradients.

Different from these efforts, we are motivated by the observation that mitigating gradient degradation
while important, is by no means sufficient (see Fig. 1). This is often the case in many IoT applications
where the signal can be bursty and there are segments that can be purely noisy. We propose methods
to supress noisy segments in addition to improving gradient explosion/decay.

Conditional Computation and Attention. Our pondering perspective can be viewed as a form
of conditional computation in time. Nevertheless, much of the conditional computation work is
aimed at gradually scaling model capacity without suffering proportional increases in computational
(inference) cost (see (Graves, 2016; Chung et al., 2016; Yu et al., 2017; Jernite et al., 2017; Hansen
et al., 2019)). Different from these works, our focus is on improving RNN trainability by suppressing
noisy observations, so that long-term dependencies can be handled by ignoring uninformative input
segments. Within this context, only (Campos et al., 2018) is closely related to our viewpoint. Like us,
(Campos et al., 2018) also proposes to skip input segment to improve RNN training, but unlike us,
since their state-transition designs are conventional, they still suffer vanishing and exploding gradients
on segments that are not skipped, and as a result suffer performance degradation on benchmark
datasets. Also, as (Campos et al., 2018) points out, our work can also be viewed as a temporal version
of hard attention mechanisms for selecting image regions. These works (see (Campos et al., 2018))
that deal with visually-based sequential tasks, have high model-complexity, and are difficult to train
on long input sequences. Others (Vaswani et al., 2017) leverage attention to bypass RNNs. In contrast,
we offer an approach that is light-weight and improves RNN trainability on long-sequences.

2 LEARNING TIME ADAPTIVE RECURRENT NEURAL NETWORK (TARNN)

In this section we further present our objective, ODE discretization and further algorithmic details.

Notation. {(u(i),y(i))}, i ∈ [N] denotes training data. Each u(i) is a T−length d−dimensional
sequential input. For classification problems, y(i) is a terminal label y(i)T , taking values in a discrete
set of C classes. For language modeling tasks, we let the true label be a process, (y

(i)
1 , y

(i)
2 , . . . , y

(i)
T).

The predictions (ŷ
(i)
1 , ŷ

(i)
2 , . . . , ŷ

(i)
T) for each input u(i) can be computed from the D−dimensional

hidden states (s
(i)
1 , s

(i)
2 , . . . , s

(i)
T) obtained by solving the ODE Eq. 3. When clear from the context

we omit superscripts. Unless stated otherwise, σ(·) denotes the sigmoid activation; φ(·) refers to any
non-linear activation such as a ReLU. We collect all model parameters in θ.

Empirical Risk Minimization. Let `(ŷ, y) be the function measuring loss incurred for predicting
value ŷ on the true value y. Our objective is to minimize the regularized empirical loss, through
back-propagation in any deep learning framework. We specify the regularizer Ω(θ) later.

L({u(i),y(i)}Ni=1) =
1

N

1

T

∑N

i=1

∑T

m=1
`(ŷim, y

i
m) + Ω(θ) (4)

Time-constants. We re-write the ODE in terms of β(·), the inverse of λ(·), since it is convenient
for describing our discretization steps. We parameterize β(um) = σ(Ussm−1 + Wxxm), where
Us ∈ RD×D,Wx ∈ RD×d are parameters to be learnt. For a component j where βj ≈ 1, then
(ż(t))j ≈ (Az(t) + Bum + φ(Uz(t) + Wum))j , and the system responds to the input um and
reaches equilibrium. On the other hand, when βj ≈ 0, then (ż(t))j ≈ 0, and the corresponding state
is frozen, with the input at time m completely skipped. In this paper we limit ourselves to a binary
behavior, i.e. whether to ponder over the input observation for a long time or not ponder at all. For
this reason, it suffices to limit the range in [0, 1] with sigmoid activation. This also avoids numerical
instabilities with unbounded non-linearities.

Setting up the ODE. To obtain a discrete implementation, first, we update the ODE Eq. 1 with the
change of variables for time-constants, resulting in the ODE:

ż(t) = β � (Az(t) + Bum + φ(Uz(t) + Wum)) , F (z(t),um); z(t0) = sm−1 (5)

where, � represents the Hadamard product. Next, we instantiate the specific parameterization for
transition matrices. Finally, an ODE solver is invoked, over a time-horizon [t0, t1] to update the state:

sm = z(t1); z(t1) = ODESolve(sm−1,um, F (·), t0, t1)

3

Under review as a conference paper at ICLR 2021

We predict the output ŷm = σ(w>sm+b) using a sigmoid activation on top of a linear layer parameter-
ized as (w, b). Since, we need A to be Hurwitz-stable, and we impose equilibrium, when a component
is active, we a priori fix A and consider two cases: (i) Decoupled with A as negative identity; (ii)
mildly coupled with upper triangular identity blocks, i.e., [A]ii = −1, [A]i(i+D/2) = 1, i ∈ [D/2],
and else zero, to enhance state interaction. All the other model parameters (B,U,W,w, b,Us,Wx)
parameterizing TARNN are learnt during training by minimizing the empirical loss in Eq. 4.

The ODE solver. A number of methods exists to numerically solve the ODE of Eq. 5 including
black-box solvers such as Neural ODEs(Chen et al., 2018) or advanced root-finding methods such as
the Broyden’s method (Broyden, 1965). While these methods could be further employed to improve
computational efficiency, for exposition we limit ourselves to Euler-recursion with K = 3 steps,
since computational efficiency as such is not the focus of our paper. We let η denote the step-size,
with zkm denoting the recursion steps:

zkm =

{
sm−1 if k = 1

zk−1m + η(F (zk−1m ,um)) if 1 < k < K
; sm = zKm (6)

As shown in the Sec. 2.1, for suitable choice of the activation function, φ(·), (includes popular
activations such as ReLU, tanh, sigmoid, etc.), these recursions in the limit, for (β)j > 0, z∗m =
limk→∞ zkm is an equilibrium solution to the ODE of Eq. 5. We provide the pseudo code in
Algorithm 1, which generates the hidden states for a sequential input {xm}Tm=1.

2.1 ANALYSIS
Algorithm 1 TARNN hidden states computation

Input : Sequence {xm}Tm=1

Model :
(
A,U,W,Us,Ws,B

)
Initialize hidden state s0 = 0
for m = 1 to T do

β = σ(Ussm−1 +Wxxm)
F (·) = β�(Az(t)+Bum+φ(Uz(t)+Wum))

z(t1) = ODESolve(sm−1, xm, F (·), t0, t1)
sm = z(t1)

end for

In this section, we show that our setup ben-
efits from several properties, and as a result,
our proposed method leads to a theoretically
sound approach for an adaptive recurrent system
that is capable of focusing attention on informa-
tive inputs and rejecting uninformative inputs.
The first few propositions establish properties
of TARNN with the proposed parameterization.
We then describe a result to assert that our adap-
tively recurrent system preserves information by showing that the partial gradients of hidden states
have unit norm. The following proposition shows that equilibrium points for the ODE of Eq. 5
exist and are unique. Although, we a priori fix A to be negative identity, or block triangular with
identity blocks, we present a more general result for the sake of completion. We impose the following
conditions, (i) there is a η0 > 0 such that for all η ∈ [0, η0], there is some α ∈ (0, 1] such that
σmax(I + ηA) ≤ 1− αη. (ii) λmax(A + A>) < −1. It is easily verified that these conditions are
satisfied in a number of cases including A -identity, A block triangular with negative identity blocks.
Proposition 1. Consider the ODE in Eq. 5 and assumptions on A described above. Suppose we
have ‖U‖ < α, and φ(·) is 1-Lipshitz function, it follows that, for any given, β, um, an equilibrium
point exists and is unique.

Remark. Note that, we impose conditions on U to derive our result. In experiments we do not
impose this condition, since for our choices for A, α ≈ 1, and as such, initializing U to a Gaussian
zero-mean, unit covariance often takes care of this requirement during training, since we generally
operate with a small learning rate.

Proof Sketch. To show this we must find a solution to the non-linear equation Az + Bum − φ(Uz +
Wum) = 0 and show that it is unique. We do this by constructing a fixed-point iterate, and show
that the iteration is contractive. The result then follows by invoking the Banach fixed point theorem
(contraction-mapping theorem). The proof is presented in the appendix 3.
Proposition 2. With the setup in Proposition 1, and regardless of β, the equilibrium point is globally
asymptotically stable, and the discrete Euler recursion converges to the equilibrium solution at a
linear rate.

We discuss the main idea and present the proof in the appendix. Let z∗ be the equilibrium solution.
We consider the Lyapunov function V (z(t)) = ‖z(t) − z∗‖2 and show that it is monotonically
decreasing along the ODE system trajectories. Observe that, as per our setup, components where

4

Under review as a conference paper at ICLR 2021

(β)j = 0 does not pose a problem, because those states remain frozen, and serve as an additional
exogenous input in our ODE.

Lossless Information Propagation. Our goal is to show that there exist parameter constraints in
Eq. 1 that can result in identity partial gradients of the hidden states. This will in turn inform our
regularization objective, Ω(θ) later. With the constraint in place, for arbitrary values, m, n ∈ Z+,
we will show that, ∂sn(j)∂sm(j) = 1. For ease of analysis we replace binary-valued β with a continuous
function and let the output be a ReLU non-linearity. Partition W = [W1,W2], B = [B1,B2],
where W2,B2 ∈ RD×D are associated with the hidden state components. To realize identity
gradients for a specific component i we need to constrain the parameter space. While there are
many possibilities, we consider following constraints, because they lead to concrete regularization
objectives, and generalize the specific A matrices we have in mind (identity, and upper-triangular).
We constrain ‖U‖ < 1 ≤ ‖A‖, and consider the following case: A±B2 = 0, U±W2 = 0.
Theorem 1. Under the above setup, as K →∞ in Eq. 6, for any m,n ∈ Z+, |∂sn(i)/∂sm(i)| → 1.

Proof Sketch (see Appendix for proof). Note that, when βj = 0, the jth component sm(j) = sm−1(j)
and the result follows trivially. Suppose now the jth component (β)j > 0, we will show that,
∂sm(j)/∂sm−1(j) = 1, which then establishes the result through chain rule.

Theorem 1 shows that there is a configuration with lossless propagation. Thus, if it is necessary, the
training algorithm will find a solution, that results in lossless propagation, even without imposing
parameter constraints stated in the theorem. However, Theorem 1 suggests a natural regularizer,
with γ1 and γ2 serving as hyperparameters. As a case in point, we could encourage parameters to
subscribe to Case (i) of theorem if we consider the following regularizer for Eq. 4:

Ω(θ) , Ω([A,B,U,W]) = γ1‖A + B2‖22 + γ2‖U + W2‖22
An interesting case is when B2 row-wise sparse. In this case, states corresponding to zero rows
operate as standard RNN (no linear term). We can ensure identity gradient holds in this case with
block-wise parametric constraints, leading to more structured regularization penalty.

3 EXPERIMENTS

Toy Example. For a sneak preview of our results, we illustrate the importance of both time-constants
and gradient mitigation on a toy example. We construct a 16-length input sequence with 4 class labels.
Information is placed in the form of binary {0, 1} values at locations 4, 12, corresponding to the four
classes, and for all other locations we assign values from a uniform distribution in the unit interval.
RNNs with a 2-dimensional state-space are trained on 50K time-traces. Due to the low-dimension, the
(terminal) state cannot replicate the entire trace, requiring generalization. On the one hand, techniques

0 2 4 6 8 10 12 14
Time Steps : m

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

St
at

e
Di

ff
No

rm
 o

r I
np

ut
 V

al
ue

Class: (t=4)=1, (t=12)=1)

Input
TARNN
SkipLSTM

(a)

0 200 400 600 800 1000 1200 1400 1600
Training Steps

10 3

10 2

10 1

100

101

lo
g

of
 ra

tio
 o

f |
s T s 1

| &
 |

s T
s T

1
|

Sequence length = 16
LSTM
FastRNN
Antisymmetric
SkipLSTM
TARNN

(b)

Algorithm Accuracy

Random Guess 25
FastRNN 45
LSTM 45

Antisymmetric 37
SkipLSTM 60

TARNN (Ours) 100

1

(c)

Figure 1: Example illustrates importance of mitigating gradient explosion/decay as well as ignoring noisy
observations. Table lists test performance of baselines focused on improving RNN training. Fig. (a) plots the
noisy input, and sequential changes in hidden state norms for (Campos et al., 2018) and proposed TARNN .
Only ours responds to informative locations. Fig. (b) plots the norm of partials of hidden states. Only (Chang
et al., 2019) and ours TARNN exhibit near identity gradients. However, only ours is effective as seen from the
table. As such we infer TARNN (a) realizes near identity gradients for partials of hidden states, thus mitigating
gradient explosion/decay, (b) zooms in on informative inputs and ignores noisy observations, and (c) By jointly
ensuring (a) and (b), it improves RNN trainability, providing good generalization.

that mitigate gradient explosion/decay like Antisymmetric (Chang et al., 2019), do so across all input
locations, but fail to output meaningful results as seen from Figure 1(c). Thus focusing solely on
vanishing/exploding gradients is not sufficient, since noise also gets amplified in latent state updates.

5

Under review as a conference paper at ICLR 2021

On the other hand, SkipLSTM (Campos et al., 2018), which is capable of pondering at informative
inputs and skipping uninformative inputs, is also ineffective. SkipLSTM (Campos et al., 2018) suffers
severe gradient degradation, leading to poor control over which locations to ponder. In contrast,
TARNN exhibits near identity gradients, skips all but locations 4, 12, and achieves 100% accuracy.

(a)
0 2000 4000 6000 8000 10000

Training Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Cr
os

sE
nt

ro
py

Sequence length = 200
LSTM
FastRNN
Antisymmetric
iRNN
TARNN

(b)
0 1000 2000 3000 4000 5000 6000 7000 8000

Training Steps

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Cr
os

sE
nt

ro
py

Sequence length = 500
LSTM
FastRNN
Antisymmetric
iRNN
TARNN

(c)
0 200 400 600 800 1000

Training Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
SE

Sequence length = 200
LSTM
FastRNN
Antisymmetric
iRNN
TARNN

(d)
0 250 500 750 1000 1250 1500 1750 2000

Training Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
SE

Sequence length = 750
LSTM
FastRNN
Antisymmetric
iRNN
TARNN

Figure 2: Following (Arjovsky et al., 2016) we display average Cross Entropy for the Copy Task (Sequence
Length (baseline memoryless strategy)): (a) 200 (0.09) (b) 500 (0.039). Mean Squared Error for the Add Task,
baseline performance is 0.167 (Sequence Length) : (c) 200 (d) 750.

3.1 EXPERIMENTAL SETUP AND BASELINES

Datasets. Our experiments have been conducted on publicly available datasets with pre-processing
and feature extraction details given in the appendix. We set aside 10% of training data for validation
to tune hyper-parameters. Finally, models are trained on full train set, and reported performance
achieved on the publicly available test set.

Code. We implemented the TARNN pseudo code shown in Algorithm 1 with tensorflow API. For
most competing methods apart from (Chang et al., 2019), which we implemented, code is publicly
available. We record the wall clock time for reporting both train and inference time. Experiments
were run on an Nvidia GTX 1080 GPU on a machine with Intel Xeon 2.60 GHz CPU with 20 cores.

Baselines: We benchmark 4 TARNN against LSTM (Hochreiter & Schmidhuber, 1997), Antisym-
metricRNN (Chang et al., 2019), FastRNN (Kusupati et al., 2018), iRNN (Kag et al., 2020). For
baselines with gated/ungated variants, we report results for the best of the two. We also tried to incor-
porate SkipRNNs (Campos et al., 2018) in our baselines, but for many of our tasks, its performance
remained similar to the corresponding RNN variant. Hence, we do not list SkipRNNs on all our tables.
Furthermore, adaptive computation time (ACT) (Graves, 2016) is not tabulated as we found that
performance of SkipLSTM is significantly better. This has also been observed in (Fojo et al., 2018),
who shows repeat-RNNs, a variant of iRNN outperforms ACT. Unitary RNN is excluded mainly
due to their significant training costs. Additionally, except for the copy task, which in particular,
Unitary RNN benefits by leveraging the modReLU function (Vorontsov et al., 2017), we find it to be
dominated by our reported competitors. We include recent Unitary/Orthogonal RNNs (Kerg et al.,
2019; Lezcano-Casado & Martı́nez-Rubio, 2019), which are computationally cheaper than earlier
proposals. Unfortunately, we do not report their train time as their code is written in PyTorch.

Hyper Parameters We used grid search on validation wherever possible to set the hyper-parameters
of each algorithm, or according to the settings published in (Kusupati et al., 2018; Arjovsky et al.,
2016). We used ReLU as the non-linearity and Adam ((Kingma & Ba, 2015)) as the optimizer

4For fair comparison, methods that leverage dataset specific heuristics are omitted.

6

Under review as a conference paper at ICLR 2021

Table 1: Results for Pixel MNIST, Permuted MNIST, Noise Padded CIFAR-10 and MNIST datasets. Since
TARNN effectively focuses on informative segments, it achieves better performance with faster convergence.

Dataset Pixel-MNIST Permute-MNIST
Hidden

Dimension
Accuracy

(%)
Train

Time (hr) #Params Hidden
Dimension

Accuracy
(%)

Train
Time (hr) #Params

FastRNN 128 97.71 16.10 18K 128 92.68 9.32 18K
LSTM 128 97.81 26.57 68K 128 92.61 19.31 68K

SkipLSTM 128 97.31 - 68K 128 93.72 23.31 68K
Antisymmetric 128 98.81 10.34 18K 128 93.59 4.75 18K

expRNN 128 97.35 - 34K 128 94.01 - 34K
nnRNN 128 97.81 - 51K 128 94.29 - 51K
iRNN 128 98.13 2.93 4K 128 95.62 2.41 8K

TARNN 32 98.43 2.13 10K 32 96.21 1.71 10K
TARNN 128 98.93 3.42 68K 128 97.13 2.96 68K
Dataset Noisy-MNIST Noisy-CIFAR

FastRNN 128 98.12 8.93 11K 128 45.76 11.61 16K
(Skip)LSTM 128 10.21 19.43 82K 128 10.41 13.31 114K

Antisymmetric 128 97.76 5.21 10K 128 54.70 7.48 41K
expRNN 128 97.92 - 37K 128 48.97 - 47K
nnRNN 128 98.06 - 54K 128 49.28 - 63K
iRNN 128 98.48 2.14 6K 128 54.50 2.47 12K

TARNN 32 98.78 1.31 8K 32 57.42 2.01 14K
TARNN 128 99.03 1.71 78K 128 59.06 1.05 100K

for all the experiments. We provide the final hyper-parameters along with the grid values for our
experiments in the appendix A.4. Our inference time is comparable to FastRNNs and iRNNs, in
contrast LSTMs take 4x longer for inference (see Appendix A.9).

3.2 SYNTHETIC AND REAL-WORLD TASKS

We list four types of datasets, all of which in some way require effective gradient propagation and
focus on informative time-segments: (1) Standard Benchmark tasks (Add & Copy tasks) that illustrate
that TARNN can rapidly learn long-term dependence (LTD); (2) Benchmark vision tasks (pixel
MNIST, perm-MNIST) that may not require long-term, but nevertheless, demonstrates that TARNN
achieves SOTA for short term dependencies but with less resources. (3) Noise Padded Vision tasks
(Noisy MNIST, Noisy CIFAR), where a large noise time segment separates information segments and
the terminal state, and so the learner must extract informative parts while rejecting the noisy parts;
(4) Sequence-sequence prediction task (PTB language modeling) that are different from terminal
prediction and have short-term dependency.

(A) Benchmark LTD Tasks (Addition & Copy Memory) TARNN rapidly learns and solves the
long term dependencies. These tasks (Hochreiter & Schmidhuber, 1997) have long been used as
benchmarks in the literature to evaluate LTD (Hori et al., 2017; Zhang et al., 2018; Arjovsky et al.,
2016; Martens & Sutskever, 2011). We follow the setup described in (Arjovsky et al., 2016) to create
the adding and copying tasks. See appendix for description.

Figure 2 shows the average performance of various methods on these tasks. For the copying task we
observe that TARNN converges rapidly to the naive baseline and is the only method except iRNN
to achieve zero average cross entropy. For the addition task, all three FastRNN, iRNN and TARNN
solves the addition task but FastRNN takes twice the number of iterations to reach desired 0 MSE. In
both the tasks, TARNN performance is much more stable across number of online training samples.
In contrast, other methods either takes a lot of samples to match TARNN ’s performance or exhibit
high variance in the evaluation metric. This shows that TARNN converges faster than the baselines
(to the desired error). We omitted reporting unitary RNN variants (see appendix for explanation).

(B) Vision Tasks (Pixel & Permute MNIST). TARNN exhibits 1.5x training speedup against the
strongest baselines achieving higher accuracy thus demonstrating rapid convergence and generaliza-
tion. We report performance on the sequential vision tasks: (a) classification of MNIST images on a
pixel-by-pixel sequence; (b) a fixed random permuted MNIST sequence (Lecun et al., 1998). These
tasks typically do not fall in the LTD categories (Chang et al., 2019), but are useful to demonstrate
faster training, which is attributed to better gradients.

TARNN outperforms all the baselines in these tasks. For the pixel-MNIST task, (Kusupati et al.,
2018) reports that it takes significantly longer time for existing (LSTMs, Unitary, Gated, Spectral)

7

Under review as a conference paper at ICLR 2021

RNNs to converge to reasonable performance. In contrast, FastRNN trains at least 2x faster than
LSTMs. Table 1 shows a 9x speedup relative to LSTMs, and 1.5x speedup in comparison to iRNN5.

(C) Noise padding (Noisy-MNIST, Noisy-CIFAR) TARNN is noise resilient, bypassing noisy time
segments. Additionally, as in (Chang et al., 2019; Kag et al., 2020), we induce LTD by padding
CIFAR-10 and MNIST with noise exactly replicating their setup, resulting in Noisy-CIFAR and
Noisy-MNIST. Intuitively we expect our model to be resilient to such perturbations and to be able
to focus on the informative segments in the signal. We attribute TARNN ’s superior performance
to the fact that it is capable of suppressing noise, and focusing on signal part of the sequence along
with well behaved gradient propagation. After processing the input signal, the state sm will cease to
update once it starts to encounter noise. Thus information from signal component is better preserved.

Results for Noisy-MNIST and Noisy-CIFAR are shown in Table 1. Note that almost all timesteps
contain noise in these datasets. LSTMs perform poorly on these tasks due to vanishing gradients as
observed earlier (Chang et al., 2019; Kag et al., 2020), while SkipLSTM performs similar to LSTM
on this task, also due poor gradients. TARNN outperforms the baselines w.r.t accuracy on CIFAR-10,
while on MNIST the gains are smaller, as it’s a relatively easier task.

Table 2: PTB Language Modeling: 1 Layer (standard small
config except the sequence length is 300 as per (Kusupati et al.,
2018) as opposed to 30 in the conventional PTB).

Algorithm Hidden
Dimension

Test
Perplexity

Train
Time (min) #Params

FastRNN 256 115.92 40.33 131K
LSTM 256 116.86 56.52 524K

SkipLSTM 256 114.23 63.52 524K
iRNN 256 113.38 34.11 100K

TARNN 128 102.42 40.23 114K
TARNN 256 94.62 53.16 262K

(D) Language Modelling. TARNN
adapts well, and achieves signicant im-
provements over competing methods on
short-term dependency tasks. We bench-
mark TARNN against sequence to se-
quence language modelling on Penn Tree
Bank (PTB) dataset. We follow (Kusu-
pati et al., 2018; Zhang et al., 2018) to
setup our PTB experiments. We only
pursue one layer language modelling,
but with more difficult sequence length
(300). This setting corresponds to the
small configuration used by (McAuley & Leskovec, 2013) which consists of only one layer, with only
difference in the sequence length. We do not report expRNN and nnRNN results are they perform
poorly in comparison to LSTM (Kerg et al., 2019). Table 2 reports all the evaluation metrics for the
PTB Language modelling task with 1 layer as setup by (Kusupati et al., 2018). It can be clearly seen
that TARNN outperforms the baselines by roughly ≈ 10 point difference in the test perplexity for
similar model complexity while it achieves ≈ 20 points for slightly larger model.

RNN Trainability. TARNN exhibits substantial improvement with respect to (a) size of memory
footprint, (b) computational efficiency (faster convergence, training and inference times), and (c)
generalization (test performance). As evident from the Tables 1, and 2 TARNN is consistently
among the models with lowest number of model parameters. TARNN enjoys faster convergence
rate as evident from the addition and copying tasks (Figure 2) and convergence plot for toy example
(see appendix). Thus improving the training time. It should also be noted that TARNN has similar
inference time as vanilla RNNs. TARNN also generalizes well as evident from the test accuracy
on multiple synthetic and real-world tasks. This is attributed to the ability to achieve near identity
gradients and effectively skipping uninformative input segments. All of these leads us to conclude that
TARNN improves vanilla RNN training. Due to the lightweight footprint TARNN is suitable for IoT
tasks. We tabulate results for IoT datasets where TARNN outperforms baselines (see Appendix 5).

4 CONCLUSION

We proposed a time adaptive RNN method for learning complex patterns in sequential data. Our
method, based on modifying the time-constants of an ODE-RNN, the continuous-counterpart of the
vanilla RNN, learns to skip uninformative inputs, while focusing on informative input segments.
Additionally, we develop parameter constraints, which leads to lossless information propagation
from informative inputs, by mitigating gradient explosion or decay. A number of experiments on
benchmark datasets validates our approach against competitors with similar complexity. Indeed,
we realize competitive performance with a lighter memory footprint, faster training time, without
suffering performance degradation or increased inference time.

5LSTMs have achieved roughly 98.9 with dataset specific heuristics (Cooijmans et al., 2016).

8

Under review as a conference paper at ICLR 2021

REFERENCES

Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, and Jorge L. Reyes-Ortiz. Hu-
man activity recognition on smartphones using a multiclass hardware-friendly support vector
machine. In Proceedings of the 4th International Conference on Ambient Assisted Living and
Home Care, IWAAL’12, pp. 216–223, Berlin, Heidelberg, 2012. Springer-Verlag. ISBN 978-3-
642-35394-9. doi: 10.1007/978-3-642-35395-6 30. URL http://dx.doi.org/10.1007/
978-3-642-35395-6_30.

Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks. In
International Conference on Machine Learning, pp. 1120–1128, 2016.

Yoshua Bengio, Nicolas Boulanger-Lewandowski, and Razvan Pascanu. Advances in optimiz-
ing recurrent networks. 2013 IEEE International Conference on Acoustics, Speech and Signal
Processing, pp. 8624–8628, 2013.

C. G. Broyden. A class of methods for solving nonlinear simultaneous equations. Journal of
Mathematics and Computation, 1965. doi: https://doi.org/10.1090/S0025-5718-1965-0198670-6.

Vı́ctor Campos, Brendan Jou, Xavier Giró i Nieto, Jordi Torres, and Shih-Fu Chang. Skip RNN: Learn-
ing to skip state updates in recurrent neural networks. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=HkwVAXyCW.

Bo Chang, Minmin Chen, Eldad Haber, and Ed H. Chi. AntisymmetricRNN: A dynamical system
view on recurrent neural networks. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=ryxepo0cFX.

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary dif-
ferential equations. In Advances in Neural Information Processing Systems, pp. 6571–6583,
2018.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder–decoder for
statistical machine translation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 1724–1734, 2014. doi: 10.3115/v1/D14-1179. URL
http://www.aclweb.org/anthology/D14-1179.

Junyoung Chung, Sungjin Ahn, and Yoshua Bengio. Hierarchical multiscale recurrent neural networks.
CoRR, abs/1609.01704, 2016. URL http://arxiv.org/abs/1609.01704.

Tim Cooijmans, Nicolas Ballas, César Laurent, Ça xglar Gülçehre, and Aaron Courville. Recurrent
batch normalization. arXiv preprint arXiv:1603.09025, 2016.

Don Dennis, Durmus Alp Emre Acar, Vikram Mandikal, Vinu Sankar Sadasivan, Venkatesh
Saligrama, Harsha Vardhan Simhadri, and Prateek Jain. Shallow rnn: Accurate time-series classifi-
cation on resource constrained devices. In Advances in Neural Information Processing Systems 32,
pp. 12916–12926. Curran Associates, Inc., 2019. URL http://papers.nips.cc/paper/
9451-shallow-rnn-accurate-time-series-classification-on-resource-constrained-devices.
pdf.

Daniel Fojo, Vı́ctor Campos, and Xavier Giró i Nieto. Comparing fixed and adaptive computation
time for recurrent neural networks, 2018. URL https://openreview.net/forum?id=
SkZq3vyDf.

Kenichi Funahashi and Yuichi Nakamura. Approximation of dynamical systems by continuous
time recurrent neural networks. Neural Networks, 6(6):801 – 806, 1993. ISSN 0893-6080.
doi: https://doi.org/10.1016/S0893-6080(05)80125-X. URL http://www.sciencedirect.
com/science/article/pii/S089360800580125X.

Chengyue Gong, Di He, Xu Tan, Tao Qin, Liwei Wang, and Tie-Yan Liu. Frage: frequency-agnostic
word representation. In Advances in Neural Information Processing Systems, pp. 1334–1345, 2018.

Alex Graves. Adaptive computation time for recurrent neural networks. CoRR, abs/1603.08983,
2016. URL http://arxiv.org/abs/1603.08983.

9

http://dx.doi.org/10.1007/978-3-642-35395-6_30
http://dx.doi.org/10.1007/978-3-642-35395-6_30
https://openreview.net/forum?id=HkwVAXyCW
https://openreview.net/forum?id=ryxepo0cFX
http://www.aclweb.org/anthology/D14-1179
http://arxiv.org/abs/1609.01704
http://papers.nips.cc/paper/9451-shallow-rnn-accurate-time-series-classification-on-resource-constrained-devices.pdf
http://papers.nips.cc/paper/9451-shallow-rnn-accurate-time-series-classification-on-resource-constrained-devices.pdf
http://papers.nips.cc/paper/9451-shallow-rnn-accurate-time-series-classification-on-resource-constrained-devices.pdf
https://openreview.net/forum?id=SkZq3vyDf
https://openreview.net/forum?id=SkZq3vyDf
http://www.sciencedirect.com/science/article/pii/S089360800580125X
http://www.sciencedirect.com/science/article/pii/S089360800580125X
http://arxiv.org/abs/1603.08983

Under review as a conference paper at ICLR 2021

Christian Hansen, Casper Hansen, Stephen Alstrup, Jakob Grue Simonsen, and Christina Lioma.
Neural speed reading with structural-jump-LSTM. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=B1xf9jAqFQ.

Josef Hochreiter. Untersuchungen zu dynamischen neuronalen net-
zen. 1991. URL http://people.idsia.ch/˜juergen/
SeppHochreiter1991ThesisAdvisorSchmidhuber.pdf.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Chiori Hori, Takaaki Hori, Teng-Yok Lee, Ziming Zhang, Bret Harsham, John R Hershey, Tim K
Marks, and Kazuhiko Sumi. Attention-based multimodal fusion for video description. In ICCV,
pp. 4203–4212, 2017.

Herbert Jaeger, Mantas Lukosevicius, Dan Popovici, and Udo Siewert. Optimization and applications
of echo state networks with leaky-integrator neurons. Neural networks : the official journal of the
International Neural Network Society, 20:335–52, 05 2007. doi: 10.1016/j.neunet.2007.04.016.

Yacine Jernite, Edouard Grave, Armand Joulin, and Tomas Mikolov. Variable computation in
recurrent neural networks. In International Conference on Learning Representations, 2017. URL
https://openreview.net/forum?id=S1LVSrcge.

Li Jing, Yichen Shen, Tena Dubcek, John Peurifoy, Scott Skirlo, Yann LeCun, Max Tegmark, and
Marin Soljačić. Tunable efficient unitary neural networks (eunn) and their application to rnns. In
International Conference on Machine Learning, pp. 1733–1741, 2017.

Anil Kag, Ziming Zhang, and Venkatesh Saligrama. Incremental {rnn}: A dynamical view. In
International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=HylpqA4FwS.

Giancarlo Kerg, Kyle Goyette, Maximilian Puelma Touzel, Gauthier Gidel, Eugene Vorontsov,
Yoshua Bengio, and Guillaume Lajoie. Non-normal recurrent neural network (nnrnn):
learning long time dependencies while improving expressivity with transient dynam-
ics. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp. 13613–
13623. Curran Associates, Inc., 2019. URL http://papers.nips.cc/paper/
9513-non-normal-recurrent-neural-network-nnrnn-learning-long-time-dependencies-while-improving-expressivity-with-transient-dynamics.
pdf.

H.K. Khalil. Nonlinear Systems. Pearson Education. Prentice Hall, 2002. ISBN 9780130673893.
URL https://books.google.com/books?id=t_d1QgAACAAJ.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICML, 2015.

Aditya Kusupati, Manish Singh, Kush Bhatia, Ashish Kumar, Prateek Jain, and Manik Varma.
Fastgrnn: A fast, accurate, stable and tiny kilobyte sized gated recurrent neural network. In
Advances in Neural Information Processing Systems, 2018.

Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. In Proceedings of the IEEE, pp. 2278–2324, 1998.

Mario Lezcano-Casado and David Martı́nez-Rubio. Cheap orthogonal constraints in neural networks:
A simple parametrization of the orthogonal and unitary group. In International Conference on
Machine Learning (ICML), pp. 3794–3803, 2019.

James Martens and Ilya Sutskever. Learning recurrent neural networks with hessian-free optimization.
In Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp. 1033–
1040, 2011.

Julian McAuley and Jure Leskovec. Hidden factors and hidden topics: Understanding rating
dimensions with review text. In Proceedings of the 7th ACM Conference on Recommender Systems,
RecSys ’13, pp. 165–172, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2409-0. doi:
10.1145/2507157.2507163. URL http://doi.acm.org/10.1145/2507157.2507163.

10

https://openreview.net/forum?id=B1xf9jAqFQ
http://people.idsia.ch/~juergen/SeppHochreiter1991ThesisAdvisorSchmidhuber.pdf
http://people.idsia.ch/~juergen/SeppHochreiter1991ThesisAdvisorSchmidhuber.pdf
https://openreview.net/forum?id=S1LVSrcge
https://openreview.net/forum?id=HylpqA4FwS
https://openreview.net/forum?id=HylpqA4FwS
http://papers.nips.cc/paper/9513-non-normal-recurrent-neural-network-nnrnn-learning-long-time-dependencies-while-improving-expressivity-with-transient-dynamics.pdf
http://papers.nips.cc/paper/9513-non-normal-recurrent-neural-network-nnrnn-learning-long-time-dependencies-while-improving-expressivity-with-transient-dynamics.pdf
http://papers.nips.cc/paper/9513-non-normal-recurrent-neural-network-nnrnn-learning-long-time-dependencies-while-improving-expressivity-with-transient-dynamics.pdf
https://books.google.com/books?id=t_d1QgAACAAJ
http://doi.acm.org/10.1145/2507157.2507163

Under review as a conference paper at ICLR 2021

Zakaria Mhammedi, Andrew D. Hellicar, Ashfaqur Rahman, and James Bailey. Efficient orthogonal
parametrisation of recurrent neural networks using householder reflections. CoRR, abs/1612.00188,
2016. URL http://arxiv.org/abs/1612.00188.

Asier Mujika, Florian Meier, and Angelika Steger. Fast-slow recurrent neural networks. In Advances
in Neural Information Processing Systems, pp. 5915–5924, 2017.

Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. How to construct deep
recurrent neural networks. arXiv preprint arXiv:1312.6026, 2013.

Jeffrey Pennington, Samuel Schoenholz, and Surya Ganguli. Resurrecting the sigmoid in deep
learning through dynamical isometry: theory and practice. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information
Processing Systems 30, pp. 4785–4795. 2017.

F. Rosenblatt. Principles of neurodynamics. Spartan Books, Washington, D.C., 1962.

Yulia Rubanova, Ricky T. Q. Chen, and David Duvenaud. Latent odes for irregularly-sampled time
series. CoRR, abs/1907.03907, 2019. URL http://arxiv.org/abs/1907.03907.

Sachin S Talathi and Aniket Vartak. Improving performance of recurrent neural network with relu
nonlinearity. arXiv preprint arXiv:1511.03771, 2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, 2017.

Eugene Vorontsov, Chiheb Trabelsi, Samuel Kadoury, and Chris Pal. On orthogonality and learning
recurrent networks with long term dependencies. In ICML, pp. 3570–3578, 2017. URL http:
//proceedings.mlr.press/v70/vorontsov17a.html.

Pete Warden. Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition. arXiv
e-prints, art. arXiv:1804.03209, April 2018.

Scott Wisdom, Thomas Powers, John Hershey, Jonathan Le Roux, and Les Atlas. Full-
capacity unitary recurrent neural networks. In D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett (eds.), Advances in Neural Information Processing Systems 29,
pp. 4880–4888. Curran Associates, Inc., 2016. URL http://papers.nips.cc/paper/
6327-full-capacity-unitary-recurrent-neural-networks.pdf.

Adams Wei Yu, Hongrae Lee, and Quoc V. Le. Learning to skim text. CoRR, abs/1704.06877, 2017.
URL http://arxiv.org/abs/1704.06877.

Jiong Zhang, Qi Lei, and Inderjit S. Dhillon. Stabilizing gradients for deep neural networks via
efficient svd parameterization. In ICML, 2018.

Jiong Zhang, Qi Lei, and Inderjit S Dhillon. Stabilizing gradients for deep neural networks via
efficient SVD parameterization. arXiv preprint arXiv:1803.09327, 2018.

Julian Georg Zilly, Rupesh Kumar Srivastava, Jan Koutnı́k, and Jürgen Schmidhuber. Recurrent
highway networks. In ICML, pp. 4189–4198. JMLR. org, 2017.

A APPENDIX

A.1 PROOFS

Proposition 3. Consider the ODE in Eq. 5 and assumptions on A described above. Suppose we have
‖U‖ < α/2, and φ(·) is 1-Lipshitz function, it follows that, for any given, β, um, an equilibrium
point exists and is unique.

11

http://arxiv.org/abs/1612.00188
http://arxiv.org/abs/1907.03907
http://proceedings.mlr.press/v70/vorontsov17a.html
http://proceedings.mlr.press/v70/vorontsov17a.html
http://papers.nips.cc/paper/6327-full-capacity-unitary-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/6327-full-capacity-unitary-recurrent-neural-networks.pdf
http://arxiv.org/abs/1704.06877

Under review as a conference paper at ICLR 2021

To prove the proposition, we must find a solution to the non-linear equation Az + Bum + φ(Uz +
Wum) = 0 and show that it is unique. We do this by constructing a fixed-point iterate, and show that
the iteration is contractive.

To this end, define Γ(z) = z+η(Az+Bum+φ(Uz+Wum)), and note that for any two z, z′ ∈ RD,
we find,

‖Γ(z)− Γ(z′)‖ ≤ ‖(I + ηA)(z− z′)‖+ η‖φ(Uz + Wum))− φ(Uz′ + Wum))‖
≤ ‖(I + ηA)(z− z′)‖+ η‖U(z− z′)‖
≤ σmax(I + ηA)‖(z− z′)‖+ η‖U(z− z′)‖
≤ σmax(I + ηA)‖z− z′‖+ η‖U‖‖z− z′‖

=⇒ ‖Γ(z)− Γ(z′)‖ ≤
(
σmax(I + ηA) + η‖U‖

)
‖z− z′‖ = γ‖z− z′‖ (7)

If the constant γ < 1, then the above inequality proves that Γ is a contraction. The result then follows
by invoking the Banach fixed point theorem (contraction-mapping theorem). All that remains to show
is that γ = σmax(I + ηA) + η‖U‖ < 1. From assumptions we have, σmax(I + ηA) ≤ 1− αη and
‖U‖ < α, where α > 0; =⇒ γ < 1− αη + αη ≤ 1.
Proposition 4. With the setup in Proposition 1, and regardless of β, the equilibrium point is globally
asymptotically stable, and the discrete Euler recursion converges to the equilibrium solution at a
linear rate.

Let z∗ be the equilibrium solution, i.e. Az∗ + Bum + φ(Uz∗ + Wum) = 0. We consider the
Lyapunov function V (z(t)) = ‖z(t)− z∗‖2 and show that it is monotonically decreasing along the
ODE system trajectories. Observe that, as per our setup, components where (β)j = 0 does not pose a
problem, because those states remain frozen, and serve as an additional exogenous input in our ODE.
Consequently, we can assume without loss of generality that (β)j = 1 for all j ∈ [D]. The gradient
of the Lyapunov function along the ODE system trajectories can be written as

dV (z(t))

dt
= (ż(t))>(z(t)− z∗) + (z(t)− z∗)>ż(t)

=(Az(t) + Bum + φ(Uz(t) + Wum))>(z(t)− z∗)

+(z(t)− z∗)>(Az(t) + Bum + φ(Uz(t) + Wum))

=(A(z(t)− z∗) + B(um − um) + φ(Uz(t) + Wxm)− φ(Uz∗ + Wum))>(z(t)− z∗)

+ (z(t)− z∗)>(A(z(t)− z∗) + B(um − um) + φ(Uz(t) + Wxm)− φ(Uz∗ + Wum))

=(A(z(t)− z∗) + φ(Uz(t) + Wxm)− φ(Uz∗ + Wum))>(z(t)− z∗)

+ (z(t)− z∗)>(A(z(t)− z∗) + φ(Uz(t) + Wxm)− φ(Uz∗ + Wum))

=(z(t)− z∗)>(A + A>)(z(t)− z∗) + 2(φ(Uz(t) + Wum)− φ(Uz∗ + Wum))>(z(t)− z∗)

We now invoke Cauchy-Schwartz inequality to bound the second term, namely,

|(φ(Uz(t) + Wum)− φ(Uz∗ + Wum))>(z(t)− z∗)| ≤‖(φ(Uz(t) + Wum)− φ(Uz∗ + Wum))‖‖z(t)− z∗‖
≤ ‖U‖‖z(t)− z∗‖‖z(t)− z∗‖ < ‖z(t)− z∗‖2

where in the last inequality we used the fact that φ(·) is 1-Lipshitz and ‖U‖ < α ≤ 1. As a result,
we have,

dV (z(t))

dt
< (λmax(A + AT) + 1)‖z− z∗‖2 ≤ 0

where the last inequality follows because, we have (λmax(A + AT) ≤ −1). This shows that the
ODE is globally asymptotically stable and converges to a unique equilibrium point. To show a linear
rate of convergence we note that K-fold iterations of the Euler method (see Prop 1), zk = Γ(zk−1) =
zk−1 + η(Azk−1 + Bum + φ(Uzk−1 + Wum)), results in,

‖zK − z∗‖ ≤ γK‖z0 − z∗‖

which follows directly from the fact that zK = Γ(zK−1), z∗ = Γ(z∗), and Γ is a contraction as
obtained by Eq. 7. This establishes the linear-rate of convergence.

12

Under review as a conference paper at ICLR 2021

Table 3: Dataset Statistics

Dataset Avg. Activity
Time

Input
Time

Sequence
Ratio #Train #Fts #Steps #Test

Noisy-MNIST 28 1000 7/250 60,000 28 1000 10,000
Noisy-CIFAR 32 1000 4/125 60,000 96 1000 10,000
Pixel-MNIST 60,000 1 784 10,000

Permuted-MNIST 60,000 1 784 10,000
PTB 929,589 300 300 82,430

Proof of Theorem 1
Note that, when βi = 0, sm(i) = sm−1(i). On the other hand when βi > 0, the system is in
equilibrium, and for those components, j, we have

(ż(t))j = (F (z(t),um))j = 0, where F (z(t),um) = β(um)◦(Az(t)+Bum+φ(Uz(t)+Wum))

Now (F (sm,um))k = 0 regardless of βk. This is because if βk(um) > 0 we reach equilibrium, and
ż(t) = 0, and on the other have if βk = 0 then (F (sm,um))k = 0 in any case. With this in mind,
define D = diag[1βj(um)>0]. We then write the vector sm = Dsm + (I −D)sm−1. Let Jm,m−1
denote the Jacobian of sm with respect to sm−1. Taking derivatives we get,

0 = ∇F (sm,um) =β(um) ◦ (A(DJm,m−1 + (I −D)) + B2)

+ β(um) ◦ (∇φ(U(DJm,m−1 + (I −D)) + W2))

+D∇σ(Ussm−1 + Wxxm)(Asm + Bum + φ(Usm + Wum))

First, note that the third term is always zero, due to the fact we noted earlier, namely, if a component
is active, then the corresponding state reaches equilibrium, and there is nothing to do if the component
is otherwise inactive. Now noting that A = B2 and U = W2, we get,

∇F (sm,um) = β(um) ◦ (AD)(Jm,m−1 − I) +∇φ(·)UD(Jm,m−1 − I)

Collecting the common terms, we have,

∇F (sm,um) = β(um) ◦ (A−∇φU)D(Jm,m−1 − I)

Now for the case in hand, ‖∇φU‖ < 1, and since ‖A‖ ≥ 1, the middle term is non-zero. This
implies that for all the active components, (Jm,m−1)kk = 1.

For the other case, the proof follows in an identical manner. Specifically, for the non-zero rows of B
the proof is identical, and the claims hold for those associated state components. For the rows with
zero rows since,

A.2 DATASET DETAILS

Table 3 lists the statistics of all the datasets described below.

Penn Treebank: 300 length word sequences were used for word level language modeling task using
Penn Treebank (PTB) corpus. The vocabulary consisted of 10,000 words and the size of trainable
word embeddings was kept the same as the number of hidden units of architecture. This is the setup
used in Kusupati et al. (2018); Zhang et al. (2018). We point out that the number of parameters
reported in the Table 2 only count the RNN parameters and omit the embeddings. We achieve
102 perplexity with lower hidden dimension, i.e. 128. This also means we require less number of
parameters for the embedding representation.

Pixel-MNIST: Pixel-by-pixel version of the standard MNIST-10 dataset 6. Each image in the dataset
has image size 28× 28. In this task, we provide the RNN, each pixel in a sequential manner resulting
in the 784 length sequential input. The dataset was zero mean - unit variance normalized during
training and prediction.

Permuted-MNIST: This is similar to Pixel-MNIST, except its made harder by shuffling the pixels
with a fixed permutation. We keep the random seed as 42 to generate the permutation of 784 pixels.

6http://yann.lecun. com/exdb/mnist/

13

Under review as a conference paper at ICLR 2021

Noisy-MNIST: To introduce more long-range dependencies to the Pixel-MNIST task, we define a
more challenging task called the Noisy-MNIST, inspired by the noise padded experiments in Chang
et al. (2019). Instead of feeding in one pixel at one time, we input each row of a MNIST image at
every time step. After the first 28 time steps, we input independent standard Gaussian noise for the
remaining time steps. Since a MNIST image is of size 28 with 1 RGB channels, the input dimension
is m = 28. The total number of time steps is set to T = 1000. In other words, only the first 28 time
steps of input contain salient information, all remaining 972 time steps are merely random noise. For
a model to correctly classify an input image, it has to remember the information from a long time ago.
This task is conceptually more difficult than the pixel-by-pixel MNIST, although the total amount of
signal in the input sequence is the same.

Noisy-CIFAR: This is exactly replica of the noise paded CIFAR task mentioned in Chang et al.
(2019). Instead of feeding in one pixel at one time, we input each row of a CIFAR-10 image at
every time step. After the first 32 time steps, we input independent standard Gaussian noise for the
remaining time steps. Since a CIFAR-10 image is of size 32 with three RGB channels, the input
dimension is m = 96. The total number of time steps is set to T = 1000. In other words, only the first
32 time steps of input contain salient information, all remaining 968 time steps are merely random
noise. For a model to correctly classify an input image, it has to remember the information from a
long time ago. This task is conceptually more difficult than the pixel-by-pixel CIFAR-10, although
the total amount of signal in the input sequence is the same.

Addition Task: We closely follow the adding problem defined in Arjovsky et al. (2016); Hochreiter
& Schmidhuber (1997) to explain the task at hand. Each input consists of two sequences of length T.
The first sequence, which we denote x, consists of numbers sampled uniformly at random U [0, 1].
The second sequence is an indicator sequence consisting of exactly two entries of 1 and remaining
entries 0. The first 1 entry is located uniformly at random in the first half of the sequence, whilst the
second 1 entry is located uniformly at random in the second half. The output is the sum of the two
entries of the first sequence, corresponding to where the 1 entries are located in the second sequence.
A naive strategy of predicting 1 as the output regardless of the input sequence gives an expected mean
squared error of 0.167, the variance of the sum of two independent uniform distributions.

Copying Task: Following a similar setup to Arjovsky et al. (2016); Hochreiter & Schmidhuber
(1997), we outline the copy memory task. Consider 10 categories, {ai}9i=0. The input takes the
form of a T + 20 length vector of categories, where we test over a range of values of T. The first
10 entries are sampled uniformly, independently and with replacement from {ai}7i=0, and represent
the sequence which will need to be remembered. The next T − 1 entries are set to a8, which can be
thought of as the ’blank’ category. The next single entry is a9, which represents a delimiter, which
should indicate to the algorithm that it is now required to reproduce the initial 10 categories in the
output. The remaining 10 entries are set to a8. The required output sequence consists of T + 10
repeated entries of a8, followed by the first 10 categories of the input sequence in exactly the same
order. The goal is to minimize the average cross entropy of category predictions at each time step of
the sequence. The task amounts to having to remember a categorical sequence of length 10, for T
time steps.

A simple baseline can be established by considering an optimal strategy when no memory is available,
which we deem the memoryless strategy. The memoryless strategy would be to predict a8 for T + 10
entries and then predict each of the final 10 categories from the set {ai}7i=0 i=0 independently and
uniformly at random. The categorical cross entropy of this strategy is 10 log(8)

T+20

A.3 BASELINE JUSTIFICATION

In our experiments section, we stated that some of the potential baselines were removed due to
experimental conditions enforced in the setup. Here we clearly justify our choice. Mostly the
reasoning is to avoid comparing complementary add-ons and compare the bare-bone cells.

• Cooijmans et al. (2016) is removed since its an add-on and can be applied to any method.
Besides its pixel-mnist results involve dataset specific heuristics.

• Gong et al. (2018) is also an add-on and hence can be applied to any method.

14

Under review as a conference paper at ICLR 2021

• Zilly et al. (2017); Pascanu et al. (2013); Mujika et al. (2017) denote deep transitioning
methods. They are add-ons for any single recurrent block and hence can be applied to any
recurrent cell.
• Unitary RNN Variants. Results for methods based on unitary transitions (such as Arjovsky

et al. (2016); Wisdom et al. (2016); Vorontsov et al. (2017); Zhang et al. (2018)) are not
reported in the main paper (when available reported in appendix) for the following reasons:
(a) They are substantially more expensive, and requiring large model sizes; (b) Apart from
the benchmark copy and add tasks, results tabulated by FastRNN and Antisymmetric authors
(see Zhang et al. (2018); Chang et al. (2019)) show that they are well below SOTA; (c)
TARNN dominates unitary-RNN variants on add-task; (d) On copy task, while unitary
invariants are superior, Vorontsov et al. (2017) attributes it to modReLU or leaky ReLU
activations. Leaky ReLUs allow for linear transitions, and copy task being a memory task
benefits from it. With hard non-linear activation, unitary RNN variants can take up to 1000’s
of epochs for even 100-length sequences (Vorontsov et al. (2017)).
We omitted reporting unitary RNN variants for Add and Copy task. On Add-task we point
out that our performance is superior. In particular, for the longer T = 750 length, Arjovsky
et al. (2016), points out that MSE does not reach zero, and uRNN is noisy. Others either
(Wisdom et al., 2016) do not report add-task or report only for shorter lengths (Zhang et al.,
2018)
• LSTM solves the addition task in (Arjovsky et al., 2016) after 10K steps while we only use

1K steps.

A.4 IMPLEMENTATION DETAILS

We acquired the publicly available code for the baselines except Antisymmetric RNN (Chang
et al., 2019) and Incremental RNN(Kag et al., 2020). We write the RNN cell implemntation for
Antisymmetric RNN and Incremental RNNs from the pseudo code provided in their papers. Before
running our grid search, we ensured that we were able to reproduce the publicly reported results.
Following which we run our experiments for suggested hidden states as per the previous works for
each dataset.

In order to avoid non-determinism in the experiments, we initialize both the numpy and tensorflow
random library with the same seed number, 1234. Our parameter matrices are initialized with a
random normal initializer with mean 0 and standard deviation 0.1 while our time-constant biases are
initialized with −3.0 and remaining biases are initialized with 0.

We provide the pseudo code in Algorithm 1 to generate the hidden states of the TARNN . In order
to implement this routine on a deep learning framework, we need to elaborate a bit more about the
ODESolve function. We implement the Euler iterations described in the practical implementations in
the method section. Following the recommendation from Kag et al. (2020) and the fact that many
of these datasets are slowly time varying, we use the K = 5 in the Euler recursions to reach the
equilibrium. Table 4 provides the number of hidden units used for different datasets.

Table 4: Various hyper-parameters to reproduce results

Dataset Hidden
Dimension (hr)

Learning
Rate (hr)

L2
regularization Init η Epochs τ Batch

Size
Pixel-MNIST 128 1e−2 4.5e−6 0.08 30 5 128

Permuted-MNIST 128 1e−2 4.5e−6 0.0008 30 5 128
Noisy-MNIST 128 1e−2 4.5e−5 0.0008 30 5 512
Noisy-CIFAR 128 1e−2 4.5e−5 0.001 30 5 256
Addition Task 128 1e−2 1.0e−5 0.001 2 - 128
Copying Task 128 1e−2 1.0e−6 0.45 - - 128

PTB 256 - - 0.001 100 -

Our experiments use hidden size as suggested by (Kusupati et al., 2018; Chang et al., 2019) i.e. 128.
We point out that this is not the setting used by (Kerg et al., 2019; Lezcano-Casado & Martı́nez-Rubio,
2019) as their best results are achieved with much larger state space i.e. 512 state dimension, thus

15

Under review as a conference paper at ICLR 2021

requiring much larger models. Thus, in order to provide fair comparison we only allow state space as
128 dimensions.

In order to enable grid search on the baseline methods, we use the method specific hyper-parameter
values suggested in the respective baselines. We allow the methods to pick the non-linearity from
the set { ReLU, tanh, sigmoid }. For Antisymmetric RNN, as per their recommendation we step
size from the set {0.01, 0.1, 1} and diffusion parameter γ ∈ {0.001.0.01, 0.1, 1.0}. For nnRNN and
expRNN methods, we follow the hyper-parameter search grid as suggested in (Kerg et al., 2019).

We use grid search for tuning the hyper-parameters for the methods. We used the values [4.5E −
6, 4.5E−5, 4.5E−4, 1E−6, 1E−5, 1E−4] for L2 regularization. We searched over [1e−2, 1e−
3, 1e− 4] as the base learning rates which are halved after each τ = [5, 10, 20] epochs have passed.
We allowed the methods to train for [30, 50, 100, 300] epochs. We use ReLU as the non-linearity
for all of our experiments except in Copy and PTB tasks where we use tanh as the non-linearity
(performs better than ReLU).

We point out that we set A = −I for all our experiments except Pixel-MNIST/Permute-MNIST tasks
where we use A to be the blocked triangular identity matrix as mentioned in the analysis Section 2.1.
This allows us to couple the linear part resulting in better performance on these tasks in comparison
to the A = −I configuration.

Note that the settings used for PTB dataset corresponds to the small configuration with 300 as the
sequence length. We piggy back on the configuration changes used in (Kusupati et al., 2018; Kag
et al., 2020; Zhang et al., 2018) which describes the learning rate along with the learning rate schedule
and the number of epochs all the methods are trained. Thus, we do not list these hyper-parameters in
the table 4.

A.5 UNITARY RNNS DO NOT SOLVE VANISHING GRADIENTS.

(Lezcano-Casado & Martı́nez-Rubio, 2019; Kerg et al., 2019) and others propose to “cheaply” de-
sign orthonormal transition matrices (OTM), appealing to Arjovsky et al. (2016) for justification.
Arjovsky et al. (2016) (Eq. 4) only shows an upper-bound with ReLU + OTM. This solves exploding
gradients, but the more pernicious vanishing gradients remains (RELU+OTM is discussed in Pen-
nington et al. (2017) [PSG17]). In Arjovsky et al. (2016)’s notation with Dk binary diagonal arising
from ReLU activations, W unitary, we would need, ‖∂C/∂hT (

∏T−1
s=t DsW

>)‖ ≥ ‖∂C/∂hT ‖.
This is generally not true due to matrix non-commutativity. E.g. for t = T − 2, this is possi-
ble if ‖DT−1W

>DT−2W
>‖ = ‖DT−1W

>DT−2‖ ≥ 1. Unless, DT−1 = DT−2 is identity,
DT−1WDT−2 is a submatrix of W , and generically has norm less than one.

A.6 RELATIONSHIP TO EXISTING RECURRENT ARCHITECTURES.

We will now briefly discuss other recurrent architectures in the literature to gain intuition into our
framework. We will refer to the ODE Eq. 5

(a) Vanilla RNNs: Setting β = 1, A = −I, B1 = 0;B2 = 0, results in the ODE, ż(t) =
−z(t) + φ(Uz(t) + Wxm); z(t0) = sm−1. Euler discretization of this ODE with only one step
results in Vanilla RNNs.

(b) Fast/Antisymmetric RNNs: Setting β = 1, A = 0, B1 = 0;B2 = 0, results in the ODE,
ż(t) = φ(Uz(t) + Wxm); z(t0) = sm−1. Euler discretization of this ODE with only one step
results in Kusupati et al. (2018); Chang et al. (2019).

(c) Incremental RNNs: Setting β = 1, A = −I, B1 = 0;B2 = I, results in the ODE, ż(t) =
−z(t) + φ(Uz(t) + Wxm); z(t0) = sm−1. Since the initial state of the ODE, z(t0) = sm−1, we
can write it into ż(t) = −(z(t)− sm−1) + φ(U(z(t)− sm−1) + Wxm) with z(t0) = 0. This ODE
is equivalent to Kag et al. (2020).

A.7 ADDITIONAL PLOTS FOR TOY EXAMPLE.

We add additional figures for the toy example in order to describe the following properties: (a)
TARNN achieves faster convergence than the baselines, (b) TARNN time constants activate at the

16

Under review as a conference paper at ICLR 2021

correct locations where the markers are placed and hence we get the hidden state transitions at these
locations, and finally (c) we plot a the hidden state norms in order to demonstrate that SkipLSTM
does focus at the input markers while TARNN ends up changing the hidden states at these locations.

0 200 400 600 800 1000 1200 1400 1600
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Cr
os

sE
nt

ro
py

Sequence length = 16

LSTM
FastRNN
Antisymmetric
SkipLSTM
TARNN

(a)

0 2 4 6 8 10 12 14
Time Steps : m

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Va
lu

e

Class: (t=4)=1, (t=12)=1)
input
s1

m

s2
m

(b)

0 2 4 6 8 10 12 14
Time Steps : m

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

St
at

e
No

rm
 o

r I
np

ut
 V

al
ue

Class: (t=4)=1, (t=12)=1)

Input
TARNN
SkipLSTM

(c)

Figure 3: Toy Example. (a) TARNN converges quickly to the 0.0 cross-entropy error. (b) shows time constant
β along with the input, at locations t = 4, 12, both the input and time constants are in sync resulting in the state
update while everywhere else the time constant does not allow the state to update (see s1m state which captures
the update or skip state part). (c) shows the norm of the hidden state for SkipLSTM and TARNN .

A.8 GOOGLE-30, HAR-2 DATASETS

In order to verify that our method works well for IoT tasks, we use popular datasets from previous
works (Kusupati et al. (2018)). These datasets primarily focus on detecting activitiy embedded in a
longer sequence. We pick two datasets namely: (a) HAR-2 Anguita et al. (2012), i.e. Human Activity
Recognition from an accelerometer and gyroscope on a Samsung Galaxy S3 smartphone, and (b)
Google-30 Warden (2018), i.e. detection of utterances of 30 commands plus background noise and

17

Under review as a conference paper at ICLR 2021

silence. For these tasks, light footprint of the model also becomes extremely important given that
these models are deployed on resource constrained IoT devices.

Table 5 shows accuracy, model size, training time, inference time, and the number of parameters.
TARNN beats the baselines in terms of test accuracy. TARNN has model size, inference time
comparable to iRNN and hence well suited for IoT tasks.

Table 5: Results for Activity Recoginition (IoT) Datasets.

Data set Algorithm Accuracy
(%)

Model
Size (KB)

Train
Time (hr)

Test
Time (ms) #Params

HAR-2 FastRNN 94.50 29 0.063 0.01 7.5k
LSTM 93.65 74 0.183 0.04 16k

Antisymmetric 93.15 29 0.087 0.01 7.5k
iRNN 96.30 18 0.018 0.03 4k

TARNN 96.59 17 0.03 0.02 3.7k
Google-30 FastRNN 91.60 96 1.30 0.01 18k

LSTM 90.31 219 2.63 0.05 41k
Antisymmetric 90.91 64 0.54 0.01 12k

iRNN 94.23 45 0.44 0.05 8.5k
TARNN 94.93 20 0.38 0.01 9k

A.9 INFERENCE TIME

As the table 5 shows that the inference time for TARNN is similar to FastRNN and about at least
one-half of the inference time for the LSTMs.

18

	Introduction
	Learning Time Adaptive Recurrent Neural Network (TARNN)
	Analysis

	Experiments
	Experimental Setup and Baselines
	Synthetic and Real-World Tasks

	Conclusion
	Appendix
	Proofs
	Dataset Details
	Baseline Justification
	Implementation Details
	Unitary RNNs do not solve vanishing gradients.
	Relationship to existing Recurrent architectures.
	Additional plots for Toy Example.
	Google-30, HAR-2 datasets
	Inference time

