
Under review as a conference paper at ICLR 2024

ON THE POWER OF GRAPH NEURAL NETWORKS AND
THE ROLE OF THE ACTIVATION FUNCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

In this article we present new results about the expressivity of Graph Neural Net-
works (GNNs). We prove that for any GNN with piecewise polynomial activations,
whose architecture size does not grow with the graph input sizes, there exists a pair
of non-isomorphic rooted trees of depth two such that the GNN cannot distinguish
their root vertex up to an arbitrary number of iterations. The proof relies on tools
from the algebra of symmetric polynomials. In contrast, it was already known that
unbounded GNNs (those whose size is allowed to change with the graph sizes)
with piecewise polynomial activations can distinguish these vertices in only two
iterations. Our results imply a strict separation between bounded and unbounded
size GNNs, answering an open question formulated by Grohe (2021). We next
prove that if one allows activations that are not piecewise polynomial, then in
two iterations a single neuron perceptron can distinguish the root vertices of any
pair of nonisomorphic trees of depth two (our results hold for activations like the
sigmoid, hyperbolic tan and others). This shows how the power of graph neural
networks can change drastically if one changes the activation function of the neural
networks. The proof of this result utilizes the Lindemann-Weierstrauss theorem
from transcendental number theory.

1 INTRODUCTION

Graph Neural Networks (GNNs) form a popular framework for a variety of computational tasks
involving network data, with applications ranging from analysis of social networks, structure and func-
tionality of molecules in chemistry and biological applications, computational linguistics, simulations
of physical systems, techniques to enhance optimization algorithms, to name a few. The interested
reader can look at Zitnik et al. (2018); Bronstein et al. (2017); Ding et al. (2019); Defferrard et al.
(2016); Scarselli et al. (2008); Hamilton (2020); Duvenaud et al. (2015); Khalil et al. (2017); Stokes
et al. (2020); Zhou et al. (2020); Battaglia et al. (2016); Cappart et al. (2021); Sanchez-Gonzalez et al.
(2020), which is a small sample of a large and actively growing body of work.

Given the rise in importance of inference and learning problems involving graphs and the use of GNNs
for these tasks, significant progress has been made in recent years to understand their computational
capabilities. See the excellent recent survey Jegelka (2022) for an exposition of some aspects of
this research. One direction of investigation is on their so-called separation power which is the
ability of GNNs to distinguish graphs with different structures. In this context, it becomes natural to
compare their separation power to other standard computation models on graphs, such as different
variants of the Wesfeiler-Lehman algorithm Cai et al. (1992); Xu et al. (2018); Huang & Villar (2021),
and the very closely related color refinement algorithm Grohe (2021). These investigations are
naturally connected with descriptive complexity theory, especially to characterizations in terms of
certain logics; see Grohe (2017; 2021) for excellent introductions to these different connections. A
closely related line of work is to investigate how well general functions on the space of graphs can be
approximated using functions represented by GNNs; see Azizian & Lelarge (2021); Keriven & Peyré
(2019); Maron et al. (2019); Geerts & Reutter (2022) for a sample of work along these lines. Our
work in this paper focuses on improving our understanding of the separation power of GNNs.

At a high level, the computational models of GNNs, Wesfeiler-Lehman/color refinement type algo-
rithms and certain logics in descriptive complexity are intimately connected because they all fall
under the paradigm of trying to discern something about the global structure of a graph from local

1

Under review as a conference paper at ICLR 2024

neighborhood computations. Informally, these algorithms iteratively maintain a state (a.k.a. “color”)
for each vertex of the graph and in every iteration, the state of a vertex is updated by performing
some predetermined set of operations on the set of current states of its neighbors (including itself).
The different kinds of allowed states and allowed operations determine the computational paradigm.
For instance, in GNNs, the states are typically vectors in some Euclidean space and the operations for
updating the state are functions that can be represented by deep neural networks. As another example,
in the color refinement algorithm, the states are multisets of some predetermined finite class of labels
and the operations are set operations on these multisets. A natural question then arises: Given two of
these models, which one is more powerful, or equivalently, can one of the models always simulate
the other? Several mathematically precise answers to such questions have already been obtained. For
instance, it has been proved independently by Morris et al. (2019) and Xu et al. (2018) that the color
refinement algorithm precisely captures the expressiveness of GNNs in the sense that there is a GNN
distinguishing two nodes of a graph (by assigning them different state vectors) if and only if color
refinement assigns different multisets to these nodes. Such a characterization holds for unbounded
GNNs, i.e. GNNs for which the underlying neural network sizes can grow with the size of the input
graphs. This implies a characterisation of the distinguishability of nodes by GNNs as being equivalent
to what is known as Graded Modal Counting Logic (GC2); see Barceló et al. (2020) for some recent,
quantitatively precise results in this direction.

Reviewing these equivalences in a recent survey Grohe (2021), Grohe emphasizes the fact that
the above mentioned equivalence between the separation power of GNNs and the color refinement
algorithm has only been established for unbounded GNNs whose neural network sizes are allowed to
grow as a function of the size of the input graphs. Question 1 on his list of important open questions in
this topic asks what happens if one considers bounded GNNs, i.e., the the size of the neural networks
is fixed a priori and cannot change as a function of the size of the input graphs. Do bounded GNNs
have the same separation power as unbounded GNNs and color refinement? We answer this question
in the negative, by constructing, for any given bounded GNN, two non isomorphic rooted trees of
depth two such that their root nodes cannot be distinguished by the GNN. Interestingly, only the sizes
of the trees depend on the GNN, but their depth does not. This result is stated formally in Theorem
3 and it holds for bounded GNNs with piecewise polynomial activations (this includes, e.g., ReLU
activations). We prove a second result that shows how the activation function dramatically impacts
the expressivity of bounded size GNNs: if one allows activation functions that are not piecewise
polynomial, all root nodes of rooted trees of depth two can be distinguished by a single neuron
perceptron. This result is formally stated in Theorem 4.

The rest of this article is organized as follows. In Section 2 we present the main definitions and formal
statement of our results. In Section 3 we give an overview of the proofs. Sections 4 and 5 fill in the
technical details.

2 FORMAL STATEMENT OF RESULTS

We assume graphs to be finite, undirected, simple, and vertex-labelled: a graph is a tuple
G = (V (G), E(G), P1(G), ..., Pℓ(G)) consisting of a finite vertex set V (G), a binary edge relation
E(G) ⊂ V (G)2 that is symmetric and irreflexive, and unary relations P1(G), · · · , Pℓ(G) ⊂ V (G)
representing ℓ > 0 vertex labels. In the following, the number ℓ of labels, which we will also call
colors, is supposed to be fixed and does not grow with the size of the input graphs. When there is
no ambiguity about which graph G is being considered, N(v) refers to the set of neighbors of v in
G not including v. |G| will denote the number of vertices of G. We use simple curly brackets for a
set X = {x ∈ X} and double curly brackets for a multiset Y = {{y ∈ Y }}. For a set X , |X| is the
cardinal of X . When m is a positive integer, Sm is the set of permutations of {1, · · · ,m}.
Definition 1 (Piecewise polynomial). Let m be a positive integer. A function f : Rm → R is
piecewise polynomial iff there exist multivariate polynomials P1, · · · , Pr ∈ R[X1, · · · , Xm] such
that for any x ∈ Rm, there exists i ∈ {1, · · · , r} such that f(x) = Pi(x). The degree of a piecewise
polynomial function f is deg(f) := max{deg(P1), · · · , deg(Pr)}. The number of polynomial pieces
of a piecewise polynomial f is the smallest r such that f can be represented as above.
Definition 2 ((Elementary) Symmetric polynomial). For any positive integer m, a polynomial
P ∈ R[X1, · · · , Xm] is said to be symmetric if for any permutation π ∈ Sm of {1, · · · ,m} and any
v1, . . . , vm ∈ R, P (vπ(1), · · · , vπ(m)) = P (v1, · · · , vm) . For any k ∈ {1, · · · ,m}, the elementary
symmetric polynomial sk is given by sk(X1, · · · , Xm) :=

∑
1≤j1<j2<···<jk≤m Xj1 · · ·Xjk .

2

Under review as a conference paper at ICLR 2024

Definition 3 (Embedding, equivariance, and refinement). Given a set X , an embedding ξ is a function
that takes as input a graph G and a vertex v ∈ V (G), and returns an element ξ(G, v) ∈ X for each
vertex v of the graph. An embedding is equivariant if and only if for any pair of isomorphic graphs
G,G′, and any isomorphism f from G to G′, it holds that ξ(G, v) = ξ(G′, f(v)). We say that ξ refines
ξ′ if and only if for any graph G and any v ∈ V (G), ξ(G, v) = ξ(G, v′) =⇒ ξ′(G, v) = ξ′(G, v′).
Definition 4 (Color refinement). Given a graph G, and v ∈ V (G), let (G, v) 7→ col(G, v) be the
function which returns the color of the node v. The color refinement refers to a procedure that returns
a sequence of equivariant embeddings crt, computed recursively as follows:

- cr0(G, v) = col(G, v)

- For t ≥ 0, crt+1(G, v) := (crt(G, v), {{crt(G,w) : w ∈ N(v)}})
In each round, the algorithm computes a coloring that is finer than the one computed in the previous
round, that is, crt+1 refines crt. For some t ≤ n := |G|, this procedure stabilises: the coloring does
not become strictly finer anymore.
Remark 1. We refer the reader to the seminal work (Cai et al., 1992, Sections 2 and 5) for comments
about the history and connections between the color refinement and Weisfeiler-Lehman algorithms.
Definition 5 (Graph Neural Network (GNN)). A GNN is a recursive embedding of vertices of a
labelled graph by relying on the underlying adjacency information and node features. Each vertex v
is attributed an indicator vector ξ0(v) of size ℓ, encoding the color of the node v: the colors being
indexed by the palette {1, · · · , ℓ}, ξ0(v) = ei (the i-th canonical vector) if the color of the vertex v is
i. The GNN is fully characterized by:

◦ A combination function comb : R2ℓ −→ Rℓ which is a feedforward neural network with given
activation function σ : R −→ R.

◦ The update rule of the GNN at iteration t ∈ N for any labelled graph G and vertex v ∈ V (G), is
given as follows:

ξ0(v) is the indicator vector of the color of v, ξt+1(v) = comb(ξt(v),
∑

w∈N(v)

ξt(w))

Remark 2. This type of GNN is sometimes referred to as a recurrent GNN. The general definition (cf.
for instance Grohe (2021)) usually considers a sequence of combine and aggregation functions which
may depend on the iteration t. The aggregation functions replaces the sum over the neighborhood,
i.e. at each iteration comb(ξt(v), agg({{ξt(w) : w ∈ N(v)}})) is applied. It has been proved in Xu
et al. (2018) that for any agg function, there is a GNN (of potentially larger size) whose aggregation
function is the summation and which refines any GNN with this aggregation function. The results of
this article extend to GNNs whose combination and aggregation functions are allowed to be different
in different iterations, but are multivariate piecewise polynomials. For ease of presentation, we
restrict to recurrent GNNs.

Given these definitions, we can now formally state the previously known results about the expressivity
of unbounded GNNs (Theorems 1 and 2). Namely, in Theorem 2, the size of the GNN is allowed to
grow with n.
Theorem 1. Grohe (2021); Xu et al. (2018); Morris et al. (2019) Let d ≥ 1, and let ξd be a vertex
invariant computed by a GNN after d iterations. Then crd refines ξ, that is, for all graphs G,G′ and
vertices v ∈ V (G), v′ ∈ V (G′), crd(v) = crd(v′) =⇒ ξd(G, v) = ξd(G′, v′).
Theorem 2. (Grohe, 2021, Theorem VIII.4)Xu et al. (2018); Morris et al. (2019) Let n ∈ N. Then
there is a recurrent GNN such that for all t = 0, · · · , n, the vertex invariant ξt computed in the t-th
iteration of the GNN refines crt on all graphs of order at most n.

In contrast, we prove Theorems 3 and 4 for bounded GNNs:
Theorem 3. For any GNN, i.e., choice of combination function, represented by a feedforward neural
network with piecewise polynomial activation, and any natural number I ∈ N, there exists a pair of
rooted trees T and T ′ (unicolored, i.e. ℓ = 1) of depth two with root nodes s and s′ respectively such
that:

• cr2(T, s) ̸= cr2(T ′, s′), i.e. s and s′ can be distinguished with color refinement in two
iterations.

3

Under review as a conference paper at ICLR 2024

• ξt(T, s) = ξt(T ′, s′) for all t ≤ I , i.e s and s′ cannot be distinguished by the GNN until
iteration I + 1.

Theorem 4. In two iterations, a single neuron perceptron with an activation that is not piecewise
polynomial such as σ ∈ {exp, sigmoid, cosh, sinh, tanh} can distinguish the root nodes of any pair
of non-isomorphic rooted trees of depth two.
Remark 3. Furthermore, our proof also shows that for a GNN to distinguish the source vertices of
any pair of trees of depth 2 (displayed in Figure 1) with m vertices at depth one and with prescribed
degrees k1, · · · , km ∈ {1, · · ·M}, it is necessary that the number of regions r of the underlying
neural network of degree q verifies:

r ≥
(
M +m+ 1

m

)
1

Mq2(
(
m
q

)
q)q

(1)

This condition may not be sufficient, as the polynomial regions have also to be correctly placed. In
particular, for ReLU neural networks (q = 1), there exist upper bounds for the number of regions
given the number of layers and neurons per each layer (cf. Montufar et al. (2014); Montúfar (2017)
and Serra et al. (2018) for refinements). Therefore, for a ReLU neural network with L layers, input
dimension n0 and with n1, · · · , nL neurons per layer, it is necessary that

L−1∏
l=1

⌊ nl

n0

⌋n0

·
n0∑
j=0

(
nL

j

)
≥
(
M +m+ 1

m

)
1

M ·m

One could also derive similar lower bounds in the general piecewise polynomial case if provided an
upper bound on the number of polynomial regions given the number of layers and neurons per layer.

3 OVERVIEW OF THE PROOFS

To establish our first result, we will use rooted trees of the form shown in Figure 1 which is a tree
of depth two whose depth one vertices have prescribed degrees k1, . . . , km, with k1, . . . , km ≥ 1.
Given a GNN with piecewise polynomial activation and a natural number I ∈ N, we will show that
there exist two sets of integers k1, · · · , km and k′1, · · · , k′m that are not the same up to permutations,
such that for the corresponding rooted trees T [k1, · · · , km] and T [k′1, · · · , k′m], the GNN cannot
distinguish s and s′ for the first I iterations, i.e. ξt(T, s) = ξt(T ′, s′) for any t ∈ {1, · · · , I}. Note
that the natural numbers m, and k1, · · · , km and k′1, · · · , k′m will depend on I , the activation and the
size of the neural network considered.

The proof of the first result is structured as follows. Since the trees are parameterized by m-tuples
of integers k1, . . . , km, the embedding of the root node computed by the GNN at any iteration is a
function of these m integers. Since the activations are piecewise polynomials, these embeddings
of the root node are also piecewise multivariate symmetric polynomial functions of k1, . . . , km
(Lemma 3). Then, we show that there exists a large enough region of Rm on which this piecewise
polynomial function is evaluated by the same polynomial. This region is large enough in the following
sense: we prove that it contains more integral vectors than the number of possible values a symmetric
polynomial with bounded degree can take on these vectors, even after identifying vectors up to
permutations of the coordinates. This implies that the polynomial will take the same value on two
distinct integral vectors whose coordinates are not identical up to permutations. When translating this
result back to the world of GNNs, this implies that the two embeddings of the root nodes of the trees
corresponding to these two vectors will coincide. To conclude a separation between bounded and
unbounded GNNs, we justify that the unbounded ones can seperate these two vertices. This is based
on the previous result (Theorem 2) stating that unbounded GNNs refine color refinement.

Our second result states that for activations that are not piecewise polynomial, a one neuron perceptron
GNN can distinguish the root nodes of any pair of nonisomorphic trees of depth two. In particular,
we prove this when the activation function is the exponential, the sigmoid or the hyperbolic sine,
cosine or tangent functions. This is done by showing that the condition ξ2(s) = ξ2(s) corresponds
to a relation between the exponentials of the integers k1, · · · , km and k′1, · · · , k′m. Applying the
Lindemann-Weirstrass Theorem in transcendental number theory (Lemma 4 and Theorem 5) leads
to the conclusion that k′1, . . . , k

′
m must be a permutation of k1, . . . , km, showing that the trees are

isomorphic.

4

Under review as a conference paper at ICLR 2024

s

x1 x2 xm

k1 − 1 vertices k2 − 1 vertices · · · km − 1 vertices

Figure 1: T [k1, · · · , km]

4 COLLISION WITH PIECEWISE POLYNOMIAL ACTIVATIONS

The following statement is a reformulation of the fundamental theorem of symmetric polynomials,
where we added a constraint on the degree of the decomposition. We provide a proof for completeness.

Lemma 1. Let P be a symmetric multivariate polynomial of m variables of degree q with q ≤ m.
Then P can be written as a polynomial of degree q of the elementary symmetric polynomials
s1, · · · , sq .

Proof. For α = (α1, · · · , αm) ∈ Nm, define the multidegree of a monomial
mdeg(Xα1

1 · · ·Xαm
m) :=

∑m
i=1 αi(q + 1)m−i. By definition, the leading term of a polynomial

is the monomial with greatest multidegree. We present a proof by induction on the multidegree of P .
We first need the following claim.

Claim: Let P ∈ R[X1, · · · , Xm] be a symmetric polynomial. Let cαXα = cαX
α1
1 · · ·Xαm

m be the
leading term of P (cα ̸= 0). Then cαX

π(α) is also a monomial in P , for every permutation π of
{1, · · · ,m}.

Proof of the claim. Define ϕπ : R[X1, · · · , Xm] → R[X1, · · ·Xm], be the linear map between
polynomials which maps variable Xi to Xπ(i). Since P is symmetric, then ϕπ(P) = P (we use
here the equivalence between equality of ϕπ(P) and P as functions and as formal algebraic objects).
Since cαX

α is a term in P and cαX
π(α) is a monomial in ϕπ(P) for any permutation π, we must

have cαX
π(α) as a monomial in P .

Base case. The property is true for any polynomial of multidegree 0 (constant polynomial).

Induction step. Let cαXα be the leading term of P . Then cαX
π(α) is a monomial in P for every

π ∈ Sm by the previous claim. Therefore, the leading term’s exponent α = (α1, · · · , αm) must
satisfy α1 ≥ α2 ≥ · · · ≥ αm. Since P has degree q then αi = 0 for any i ≥ q + 1.

Let dm = αm, dm−1 = αm−1 − αm, · · · , di = αi − αi+1, · · · , d1 = α1 − α2. Define
Q′(X1, · · · , Xm) := sd1

1 · · · sdm
m . Q′ is a polynomial of s1, · · · , sq and the leading term of Q′

is c′αX
α where c′α ̸= 0. In particular, deg(Q′) ≤ q.

Now, let P ′ := P − cα
c′α
Q′. Then mdeg(P ′) < mdeg(P), and P ′ is symmetric because P and

Q′ are. Applying the induction hypothesis to P ′, get Q′′ such that P ′ = Q′′(s1, · · · , sq). Define
Q := cα

c′α
Q′ +Q′′. Q is a polynomial of degree at most q of s1, · · · , sq and Q = P , which completes

the induction step.

Lemma 2. Let q be a positive integer. Then, there exists m ∈ N and two integral vectors
(k1, · · · , km) ∈ Nm and (k′1, · · · , k′m) ∈ Nm that are not equal up to a permutation such that
for any sequence of symmetric piecewise polynomial functions (fp : Rp → R)p∈N satisfying
deg(fp) ≤ q for all p ∈ N (bounded degree condition on each polynomial piece for any p),
fm(k1, · · · , km) = fm(k′1, · · · , k′m).

5

Under review as a conference paper at ICLR 2024

Proof. Let m be any natural number such that m > max{q2, 2q}. For any natural number M ,
let FM be the box {(k1, · · · , km) ∈ Zm : ∀i 1 ≤ ki ≤ M}. Let ΩM := {{{x1, · · · , xm}} :
(x1, · · · , xm) ∈ Fm}; in other words, ΩM is the set of multisets of size m whose elements, when
arranged as vectors, are in the box FM

1. Consider

Φ : ΩM −→ Zq

S 7→ (s1(S), s2(S), · · · , sq(S))
which is well-defined because of the symmetry of the elementary symmetric polynomials s1, . . . , sq .
Note that for any i = 1, . . . , q, si is a sum of

(
m
i

)
monomials whose maximum value is M i on

FM . Therefore, |Im(Φ)| ≤ (
∑q

i=1

(
m
i

)
M i)q ≤ Mq2(

(
m
q

)
q)q where the last inequality follows from(

m
i

)
≤
(
m
q

)
because m > 2q.

On the other hand, |Dom(Φ)| =
(
M+m−1

m

)
(number of multisets of size m whose elements are

taken from a set of size M). Now, let fm : Rm → R be the m-th function in the given sequence of
symmetric piecewise polynomial functions where each polynomial piece has degree at most q. Let r
be the number of pieces of fm. Then, there is a subset of Dom(Φ) with at least 1

r

(
M+m−1

m

)
elements

where fm is a symmetric polynomial P of degree at most q. Lemma 1 tells us that P can be expressed
as a polynomial of degree at most q of the elementary symmetric polynomials s1, · · · , sq . Due to the
pigeonhole principle, any such polynomial will be equal on two distinct multisets {{k1, · · · , km}}
and {{k′1, · · · , k′m}} in ΩM as soon as:

1

r

(
M +m− 1

m

)
︸ ︷︷ ︸

number of points

> Mq2(

(
m

q

)
q)q ≥ |Im(Φ)|︸ ︷︷ ︸

number of values P can take at most

(2)

Such a value for M can be found by noticing that
(
M+m−1

m

)
is a polynomial of M of degree m

whereas Mq2(
(
m
q

)
q)q is a polynomial of M of degree q2. Since we chose m to be greater than q2,

there exists M ∈ N such that Equation 2 is true. Hence there exist k and k′ whose coordinates are not
equal up any permutation and such that si(k1, · · · , km) = si(k

′
1, · · · , k′m) for any i ∈ {1, · · · ,m}.

In turn fm(k1, · · · , km) = fm(k′1, · · · , k′m).

Lemma 3. Let ξt(T [k1, . . . , km], s) be the embedding obtained via a GNN with piecewise activation
functions after t iterations, where ξ0(v) = 1 for all vertices v ∈ V (T [k1, . . . , km]). Then, for
any iteration t, there exists a symmetric multivariate piecewise polynomial function F such that
ξt(T [k1, . . . , km], s) = F (k1, · · · , km). Furthermore, the degree of F does not depend on m, but
only on the underlying neural network and t.

Proof. We first prove by induction on t that, for any vertex v ∈ V (T [k1, · · · , km]),
ξt(T [k1, . . . , km], v) is a piecewise polynomial function of the ki’s.

Base case: for t = 0 this is trivial since all vertices are initialised with the constant polynomial 1,
whose degree does not depend on m.

Induction step: Suppose the property is true at iteration t, i.e for each node w, ξt(T [k1, . . . , km], w)
is a multivariate polynomial of the ki’s. Since

ξt+1(T [k1, . . . , km], v) = ϕ(ξt(T [k1, . . . , km], v),
∑

w∈N(v)

ξt(T [k1, . . . , km], w))

where ϕ is a piecewise multivariate polynomial of k1, · · · , km, by composition
ξt+1(T [k1, . . . , km], v) is a multivariate polynomial of k1, · · · , km. By induction the degree
of ξt+1(T [k1, . . . , km], v) depends only on t and the degree of ϕ, which does not depend on m.

Finally, we know from (Grohe, 2021, Theorem VIII.1) that the color refinement algorithm refines any
GNN at any iteration. Since the tuple obtained by color refinement for the vertex s is invariant with
respect to permutations of the ki’s, ξt(T [k1, . . . , km], s) is also invariant with respect to permutations
of the ki’s.

1Another way to define ΩM is as the orbits of the action of the symmetric group Sm on FM .

6

Under review as a conference paper at ICLR 2024

Proof of Theorem 3. We already know Grohe (2021) that color refinement refines any recurrent GNN
(even with an architecture of unbounded size). We prove the existence of pairs of graphs that can be
separated by the color refinement algorithm, but cannot be separated by a recurrent GNN of fixed
(but arbitrary) size. We use T [k1, · · · , km] to refer to the tree illustrated in Figure 1. This tree has
depth two, a root node s, and contains m nodes at depth one. Each vertex i at depth 1 has exactly
ki − 1 “children” at depth two (and therefore ki neighbors, where ki is a positive integer). In the
following, all vertices have color label 1.

Claim: Let T [k1, · · · , km] and T ′[k′1, · · · , k′m] be two rooted trees given by Figure 1. If the ki’s and
k′i’s are not equal up to a permutation, the color refinement distinguishes s and s′ after two iterations,
i.e. cr2(s) ̸= cr2(s′).

Proof of claim. Simply note that

cr2(s) = (cr1(s), {{cr1(x1), · · · , cr1(xm)}})

cr1(s) = (1︸︷︷︸
cr0(s)

, {{1, · · · , 1︸ ︷︷ ︸
m times

}})

∀i ∈ {1, · · · ,m} cr1(xi) = (1︸︷︷︸
cr0(xi)

, {{1, · · · , 1︸ ︷︷ ︸
ki times

}})

hence cr2(s) is uniquely determined by the multiset {{k1, · · · , km}}.

Let T > 0 be a positive integer, and for 0 ≤ t ≤ T , let ft(k1, · · · , km) := ξt(T [k1, . . . , km], s)
be the value returned by a GNN with piecewise polynomial activation after t iterations (note that
the embeddings are one-dimensional because only one color is used). Due to Lemma 3, for any
t ∈ {0, · · · , T}, ((k1, · · · , km) 7→ ft(k1, · · · , km))m∈N is a sequence of symmetric piecewise
multivariate polynomials with bounded degrees (the degree of ft does not depend on m). Lemma 2
tells us that there exists m ∈ N, and two vectors k ∈ Nm and k′ ∈ Nm whose coordinates are not
equal up to permutations, such that for any t ∈ {0, · · · , T}, ft(k1, · · · , km) = ft(k

′
1, · · · , k′m).

Remark 4. Note that in Theorem 3, depth two is minimal: for any pair of non isomorphic rooted
trees of depth one, any GNN with one neuron perceptron, an injective activation function, weights
set to one, and zero bias can distinguish their root vertex in one iteration. Indeed, in that case,
ξ1(s) = σ(1 + deg(s)) if the GNN is recurrent with a combine function given by ϕ : R2 →
R, (x1, x2) 7→ σ(x1+x2). Hence, ξ1(s) ̸= ξ1(s′) as soon as σ is injective and s and s′ have distinct
degree.

5 ACTIVATIONS THAT ARE NOT PIECEWISE POLYNOMIAL

In this Section we present a proof of Theorem 4. We prove that for any pair of non isomorphic
rooted trees of depth two, i.e. trees of the form T [k1, · · · , km] and T ′[k′1, · · · , k′n] (here the ki’s
and k′i’s are all greater than or equal to 1, cf. Figure 1) can be distinguished by a bounded GNN
with any of the following activation functions: exponential, sigmoid, or a hyperbolic sine, cosine
or tangent function. Consider the following 1-neuron perceptron ϕ with activation function σ,
ϕ : R2 → R, ϕ(x1, x2) = σ(x1 + x2). Then it is easy to see that:

∀v ∈ V (T [k1, · · · , km]) ξ1(v) = σ(ξ0(v) +
∑

w∈N(v)

ξ0(w)) = σ(1 + deg(v))

ξ2(v) = σ(σ(1 + deg(v)) +
∑

w∈N(v)

σ(1 + deg(w))

In particular ξ2(s) = σ(σ(1 +m) +
∑m

i=1 σ(ki + 1)) Now suppose σ is either injective on R, or
nonnegative and injective on R+ (this is the case for the exponential, the sigmoid, the hyperbolic
tan, and the hyperbolic cosine and sine), s and s′ are vertices of two trees with potentially different
number of leaves m and n, then

ξ2(s) = ξ2(s′) ⇐⇒
m∑
i=0

σ(ki + 1) =

n∑
i=0

σ(k′i + 1) (3)

7

Under review as a conference paper at ICLR 2024

where k0 := 1 + m and k′0 := 1 + n. The goal of the remainder of this section is to prove that
the right hand side equality of Statement 3 implies m = n and ki’s are the same as k′i’s, up to a
permutation, for the activation functions σ of Theorem 4.
Theorem 5 (Lindemann-Weierstrass Theorem, 1885). If α1, · · · , αn are distinct algebraic numbers,
then the exponentials eα1 , · · · , eαn are linearly independent over the algebraic numbers.
Lemma 4. Let n and m be positive integers, and α1, · · · , αn and α′

1, · · · , α′
m be algebraic numbers.

Then
∑n

i=1 e
αi =

∑m
i=1 e

α′
i if and only if m = n and the αi’s and α′

i’s are equal up to a permutation.

Proof. (⇐=) is clear. For (=⇒), by contradiction suppose that the αi’s and α′
i’s are not equal up

to a permutation. First, if the αi’s (resp. α′
i’s) are not distinct one can group them by their number

of occurrences in both sums. Then, we would have a linear dependence with integer coefficients of
exponentials of integers. This contradicts Theorem 5 (Linderman-Weirstrass).

Proof of Theorem 4. Without loss of generality, suppose the ki’s and k′i’s are ordered in increasing
order. For ease of notation, let α and α′ be the vectors defined as αi = ki + 1 for all i ∈ {1, · · · ,m}
and α′

i = k′i + 1 for all i ∈ {1, · · · , n}. We will now prove that Statement 3 implies α = α′ in each
case.

- σ ∈ {sigmoid, tanh}. In the case of the sigmoid, Statement 3 yields the following equation after
multiplication by the the product of the denominators:(∑m

i=1 e
αi

(∏m
j=1
j ̸=i

(1 + eαj)

))∏n
i=1(1 + eα

′
i) =

(∑n
i=1 e

α′
i

(∏n
j=1
j ̸=i

(1 + eα
′
j)

))∏m
i=1(1 + eαi)

After developing and grouping each hand side into linear combinations of exponentials we obtain an
equation of the form:∑

S⊆{1,··· ,m}
T⊆{1,··· ,n}

γS,T exp(αS + α′
T) =

∑
S⊆{1,··· ,m}
T⊆{1,··· ,n}

γS,T exp(α′
S + αT) (4)

where for S ⊆ {1, · · · ,m}, αS :=
∑

i∈X αi (resp. for T ⊆ {1, · · · , n}, α′
T :=

∑
i∈X α′

i). Note
that γ∅,T = 0 for all subsets T ⊆ {1, . . . , n}. We will prove by induction on m (the size of the vector
α) that in these conditions, Equation 4 implies that m = n and α = α′.

Base case: If α has size one and α′ has size n > 0, then the equation boils down to exp(α1) =∑n
i=1 exp(α

′
i) which is true if and only if n = 1 and α1 = α′

1 using Lemma 4.

Induction step: We suppose the following property true for some nonnegative integer m: For any
nonnegative integers α1, · · · , αm and α′

1, · · · , α′
n,
∑m

i=1 σ(αi) =
∑n

i=1 σ(α
′
i) =⇒ m = n and

k = k′.

Suppose now that
∑m+1

i=1 σ(αi) =
∑n

i=1 σ(α
′
i). Since γ∅,T = 0 for all T ⊆ {1, . . . , n}, the smallest

term on the left hand side of equation 4 is exp(α1) and the smallest term on the right hand side is
exp(α′

1) . Using Lemma 4, this implies that α1 = α′
1. Therefore

∑m+1
i=2 σ(αi) =

∑n
i=2 σ(α

′
i). We

can apply the induction assumption on the vector (α2, · · · , αm+1) of size m to obtain that m = n−1
and (αk2 , · · · , αm+1) = (αk′

2
, · · · , α′

m+1). This proves that m + 1 = n and α = α′, which ends
the induction.

If σ = tanh = exp(2·)+1
exp(2·)−1 . Equation 3 becomes after multiplication by the the product of the

denominators:(∑n
i=1(e

2αi − 1)
∏n

j=1,j ̸=i(e
2αj + 1)

)∏m
j=1(1 + e2α

′
j) =

(∑m
i=1(e

2α′
i − 1)

∏m
j=1,j ̸=i(e

2α′
j + 1)

)∏n
j=1(1 + e2αj)

After developing into a linear combination of exponentials on each side, the arguments containing αT

with T ̸= ∅ on the left hand side and α′
T with T ̸= ∅ on the right hand side have positive algebraic

coefficients. There are also arguments of the form α′
T on the left hand side and αT on the right

hand side (in other words, γ∅,T ̸= 0, unlike the sigmoid case). However, note that the coefficients
corresponding to these terms are (algebraic and) negative. Hence, as a consequence of Lemma 4, the
arguments with negative coefficients in front of the exponentials must match up on each side, and we
are left with an equation similar to Equation 4 (the arguments have a factor 2), where again γ∅,T = 0.
We can apply the same reasoning by induction as for the sigmoid case, to prove that α = α′.

8

Under review as a conference paper at ICLR 2024

- σ ∈ {sinh, cosh}. If σ = cosh, then Equation 3 becomes:(
n∑

0=1

exp(iαj)−
m∑

0=1

exp(iα′
j)

)
+

 m∑
j=0

exp(−iα′
j)−

n∑
0=1

exp(−iαj)

 = 0

Due to Lemma 4, this can only happen if m = n and for all j ∈ {1, · · · , n}, αj = α′
j , because

iαj , iα′
j are algebraic for any j ∈ {1, · · · , n}, and the αj’s and α′

j’s are ordered and positive. We
conclude that α = α′. The case σ ∈ {sinh} can be treated similarly.

REFERENCES

Waı̈ss Azizian and Marc Lelarge. Expressive power of invariant and equivariant graph neural networks.
In ICLR 2021-International Conference on Learning Representations, 2021.

Pablo Barceló, Egor V Kostylev, Mikael Monet, Jorge Pérez, Juan Reutter, and Juan-Pablo Silva.
The logical expressiveness of graph neural networks. In 8th International Conference on Learning
Representations (ICLR 2020), 2020.

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks
for learning about objects, relations and physics. Advances in neural information processing
systems, 29, 2016.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric
deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42,
2017.

Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables
for graph identifications. Combinatorica, 12(4):389–410, 1992.

Quentin Cappart, Didier Chételat, Elias Khalil, Andrea Lodi, Christopher Morris, and Petar
Veličković. Combinatorial optimization and reasoning with graph neural networks. arXiv preprint
arXiv:2102.09544, 2021.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. Advances in neural information processing systems,
29, 2016.

Ming Ding, Chang Zhou, Qibin Chen, Hongxia Yang, and Jie Tang. Cognitive graph for multi-hop
reading comprehension at scale. arXiv preprint arXiv:1905.05460, 2019.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán
Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
fingerprints. Advances in neural information processing systems, 28, 2015.

Floris Geerts and Juan L Reutter. Expressiveness and approximation properties of graph neural
networks. arXiv preprint arXiv:2204.04661, 2022.

Martin Grohe. Descriptive complexity, canonisation, and definable graph structure theory, volume 47.
Cambridge University Press, 2017.

Martin Grohe. The logic of graph neural networks. In 2021 36th Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS), pp. 1–17. IEEE, 2021.

William L Hamilton. Graph representation learning. Synthesis Lectures on Artifical Intelligence and
Machine Learning, 14(3):1–159, 2020.

Ningyuan Teresa Huang and Soledad Villar. A short tutorial on the weisfeiler-lehman test and its
variants. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 8533–8537. IEEE, 2021.

Stefanie Jegelka. Theory of graph neural networks: Representation and learning. arXiv preprint
arXiv:2204.07697, 2022.

9

Under review as a conference paper at ICLR 2024

Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks.
Advances in Neural Information Processing Systems, 32, 2019.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. Advances in neural information processing systems, 30,
2017.

Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the universality of invariant
networks. In International conference on machine learning, pp. 4363–4371. PMLR, 2019.

Guido Montúfar. Notes on the number of linear regions of deep neural networks. 2017.

Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of linear
regions of deep neural networks. Advances in neural information processing systems, 27, 2014.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 4602–4609, 2019.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In International conference
on machine learning, pp. 8459–8468. PMLR, 2020.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Thiago Serra, Christian Tjandraatmadja, and Srikumar Ramalingam. Bounding and counting linear
regions of deep neural networks. In International Conference on Machine Learning, pp. 4558–4566.
PMLR, 2018.

Jonathan M Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-Ruiz, Nina M
Donghia, Craig R MacNair, Shawn French, Lindsey A Carfrae, Zohar Bloom-Ackermann, et al. A
deep learning approach to antibiotic discovery. Cell, 180(4):688–702, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications.
AI open, 1:57–81, 2020.

Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polypharmacy side effects with
graph convolutional networks. Bioinformatics, 34(13):i457–i466, 2018.

10

	Introduction
	Formal statement of results
	Overview of the proofs
	Collision with piecewise polynomial activations
	Activations that are not piecewise polynomial

