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ABSTRACT

In this work, we introduce a new perspective on comparative image assessment
by representing an image pair as a structured composition of its regions. In con-
trast, existing methods focus on whole image analysis, while implicitly relying on
region-level understanding. We extend the intra-image notion of a scene graph
to inter-image, and propose a novel task of Distortion Graph (DG). DG treats
paired images as a structured topology grounded in regions, and represents dense
degradation information such as distortion type, severity, comparison and quality
score in a compact interpretable graph structure. To realize the task of learn-
ing a distortion graph, we contribute (i) a region-level dataset, PANDASET, (ii) a
benchmark suite, PANDABENCH, with varying region-level difficulty, and (iii) an
efficient architecture, PANDA, to generate distortion graphs. We demonstrate that
PANDABENCH poses a significant challenge for state-of-the-art multimodal large
language models (MLLMs) as they fail to understand region-level degradations
even when fed with explicit region cues. We show that training on PANDASET or
prompting with DG elicits region-wise distortion understanding, opening a new
direction for fine-grained, structured pairwise image assessment.
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Figure 1: DG Task Overview. Top: Given two images, PANDA learns the proposed Distortion Graph (DG).
Bottom: Grounded Subgraphs illustrate how DG grounds regions in terms of distortion information.

1 INTRODUCTION

In humans, perceptual decisions1 are often cognitively involved, deliberate, and contextual (Ding &
Gold, 2013). Studies have argued that any model of such perceptual decision making should consider
the representation of the relevant sensory input and how that representation is formed (Gold & Ding,
2013). In the case of visual stimuli, one example of such perceptual decisions is distortion analysis.
Yet, when it comes to computational perceptual decision making, often, current design choices favor
a top-down approach considering a global view of the input for analyses tasks (Zhang et al., 2025;
Li et al., 2025; Wu et al., 2024c; You et al., 2024b; Wu et al., 2023).

Such design choices are inherently limiting because they do not lend themselves to fine-grained un-
derstanding (Rahmanzadehgervi et al., 2024). Further, in multimodal language models (MLLMs),

1any categorical decision about the presence or identity of a sensory stimulus

1
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has better quality, and why?

Pairwise Images

Answer (Region Query): 
1. Person: The image has a moderate level of 
distortion, with pixelation and blurring. The colors 
appear to be washed out, and there is a loss of 
detail in the person's face and clothing. The 
quality is average.
2. Sheep: The image has significant distortion, with 
pixelation and blurring that make it difficult to 
discern fine details. The colors are also somewhat 
muted. The quality of this image is poor.
3. Sky: ? Missed
4. Mountain: Image has minimal distortion, with a 
clear mountain landscape in the background. The 
quality is good with no noticeable distortion.

<sys> Compare two images A: 
<img1>, B: <img2> in terms of its 
regions <reg1>…<regN> and for same
regions in each image answer (i) 
which image is better, (ii) what 
distortion is present, (iii) what 
is the severity of the distortion,
(iv) and assign a quality score...

SFT Query

The first image has accurate exposure, rich colors, and sufficient lighting,
which contribute to a clearer and more detailed image. Although the focus is not accurate,
resulting in some distortion and blurriness, the main subject is still recognizable. On
the other hand, the second image has poor lighting, dark colors, and a lot of noise, which
make the image less clear and detailed. The main subject is also blurry, and the texture
details are lost, making it difficult to identify the subject.
The first image has better quality than the second image.
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3. Mountain: Significantly better in A, but has blur distortion.
B has increased noise artifacts.
4. Sky: Unchanged, and remains clean in both images.
Overall: Image B shows noticeable distortions compression, noise,
blur, while Image A preserves more fine detail.
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Figure 2: Motivation. Current MLLMs (e.g., Co-Instruct (2024c)) fail at region-level understand-
ing, struggling even when given explicit region details (name, description, bounding box). DG
grounds assessment in regions, relating distortions and attributes to provide a structured view. Op-
tionally, the graph can be fed to an MLLM for region-wise language descriptions. Scene relations
(yellow) are not predicted. Best viewed zoomed-in.

they restrict distortion-specific visual question answering (VQA), ranking, descriptive understand-
ing, and even quality scoring to image-level (Li et al., 2025; Jiang et al., 2024; You et al., 2024b).
With instruction tuning (Liu et al., 2023) on a limited instruction set as the learning paradigm,
more often than not, the outcome is a rigid multi-billion parameter model that parrots template re-
sponses (Zeng et al., 2023; Chu et al., 2025), see fig. 2. One reason for the prevalence of a top-down
approach is the lack of a structured representation that is grounded in image regions.

In this work, we offer a novel perspective on learning a structured representation between image
pairs for assessment, and introduce the task of a Distortion Graph (DG). DG is a general-purpose
pairwise graph structure, with regions as atomic components. Each node corresponds to a region,
while inter-region edges capture comparative relationships (predicates). Nodes encode the local
distortion and severity type as well as a region-level quality score (attributes), enabling region-first
reasoning over paired images, see fig. 1. We argue that DG is a pertinent structured approach for
pairwise comparative purposes since such information aggregates to image-level judgments, while
vice-versa is often not true. We position DG such that it can complement MLLMs in offering
region-wise distortion analysis in natural language, see fig. 2 for illustration.

To realize the task of learning a distortion graph, we introduce a region-level distortion dataset,
termed as PANDASET. By design, PANDASET comprises of over 500K image pairs degraded by
15 different distortions, ranging from sensor-induced and equipment failure distortions to weather
distortions, with four different severity levels. Each region has an associated quality score indicating
on what end of the distortion spectrum (from clean to severely degraded) it lies. We show that
the proposed task is indeed computationally tractable and design an efficient architecture, termed
PANDA, that learns to predict region-level attributes and predicates to generate DG.

To enable systematic evaluation, we introduce PANDABENCH, a benchmark derived from PAN-
DASET with three splits of increasing region-level difficulty. We evaluate both open-source and
closed-source frontier MLLMs on the proposed benchmark under zero-shot and fine-tuned setups.
We empirically show that distortion-specific MLLMs suffer greatly when reasoning over image re-
gions and often resort to template responses, even when explicitly prompted with region-wise visual
markers. Further, such methods are limited by the context length in terms of processing variable
number of regions. On the other hand, frontier MLLMs are less rigid and have superior instruction
following abilities, yet their performance is not much better than random chance. Additionally, as a
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showcase application, we demonstrate that DG in chain-of-thought prompting encourages emergent
capabilities of MLLMs for distortion understanding.

2 RELATED WORK

Distortion MLLMs. One of the earliest efforts towards enabling low-level vision understanding
in MLLMs is Q-Instruct, wherein Wu et al. (2024b) introduced a new dataset, Q-Pathways, and
instruction-tuned LLaVA-v1.5 (Liu et al., 2024a) for distortion identification and VQA. Several
works followed suit, introducing improved benchmarks, training recipes, and methods. Zhang et al.
(2025) proposed an extension to Q-Pathways, and unified the task of image quality assessment in
terms of numerical scores and descriptive analysis in MLLMs. Wu et al. (2024a) introduced a
benchmark Q-Bench comprising low-level attribute and descriptive tasks, along with quality score
regression to evaluate MLLMs’ ability on low-level vision. However, all of these works focus on
single image analysis. Towards comparative assessment, You et al. (2024b) proposed a new dataset,
M-BAPPS, and fine-tuned Vicuna-v1.5 (Chiang et al., 2023) on quality comparison task in the full-
reference setting (i.e., a clean reference image should be available). DepictQA (You et al., 2024a)
introduced a general-purpose dataset, DQ495K, to let MLLMs perform similar comparative tasks but
even without any reference image. Co-Instruct (Wu et al., 2024c) introduced MICBench, a bench-
mark to evaluate MLLMs performance on comparative tasks, but the introduced method allowed
multiple images to be compared. Note that specialist models in pre-MLLM era often focused on
learning a numerical score for image quality assessment (IQA), and several works exist in literature
along this direction (Chen et al., 2024a; Agnolucci et al., 2024; Wang et al., 2023a).

Region Understanding. None of the above mentioned work is region-first by design. Further,
the MLLMs fine-tuned on these datasets can not extend to regions since that is an out-of-domain
setting (Rajani et al., 2025), also see fig. 2. Literature, however, has made efforts to enable general-
purpose region-level understanding in MLLMs. Set-of-Mark (SoM) prompting (Yang et al., 2023)
introduced visual markers overlayed on regions to prompt MLLMs to reason about regions. Wang
et al. (2023b) proposed to utilize region-of-interest (RoI) features to generate region-level tokens
for MLLMs. Omni-RGPT (Heo et al., 2025) introduced token markers for region-level comprehen-
sion in images and videos. One particular work, Seagull (Chen et al., 2024c), explored region-level
descriptive distortion analysis, but only for single image setting. Seagull utilized mask pooling
to generate region-level tokens for MLLMs, and introduced a dataset for the analysis task. Q-
Ground (Chen et al., 2024b) introduced QGround100K, built on top of Q-Instruct (Wu et al., 2023),
a single-image dataset of image, textual descriptions, and region-level segmentation and trained an
MLLM to jointly provide the explanation, and pixel-level distortion masks for 5 distortion types. Its
grounding is thus phrased as mapping quality descriptions onto segmentation masks within one im-
age. Similarly, Grounding-IQA (Chen et al., 2024d) operates in a single-image setting, and defined
two sub-tasks: GIQA-DES which considers quality descriptions with bounding boxes and GIQA-
VQA which refers to region-wise quality QA. It introduced a dataset GIQA-160K plus GIQA-Bench
to fine-tune and evaluate MLLMs on grounding quality attributes to local regions. Note that none
of these work are simultaneously (i) comparative in nature, (ii) region-first, and (iii) provide dense
distortion annotations, for a diverse set of distortions, at the region level (distortion type, severity,
quality scores) plus region-wise comparative labels between two images.

3 DISTORTION GRAPH

Consider a pair of images denoted by IA and IT referred to as anchor and target, respectively. A
Distortion Graph (DG) is defined as a 4-tuple, i.e.,

G = {OIA ,OIT ,ED,ES}, (1)

where OIA ,OIT are sets of object (or regions) nodes in images IA (anchor), and IT (target), respec-
tively. ED and ES are sets of distortion and scene edges denoting relations among the objects. Given
a set of distortion relations denoted by RD, we can formally say ED ⊆ OIA ×RD ×OIT . Similarly,
given a set of scene relations denoted by RS , we can write ES ⊆ (OIA ×RS ×OIA)∪ (OIT ×RS ×
OIT), where O := OIA ∪ OIT . Let AD denote the set of distortion attributes, and AS denote the
set of scene attributes, then each object oji ∈ O takes the form oji = (cji ,m

j
i , Ij,AD,i,AS,i), where

3
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j ∈ {A,T}, cji is the class of the object, Ij denotes the image the object belongs to, AD,i ⊆ AD,
and AS,i ⊆ AS . Let γ denote a map written as γ : O → M with M denoting a set of binary masks
and M := MIA ∪MIT . In other words, γ maps each object oji ∈ O to its binary mask mj

i ∈ M, i.e.,
γ(oji ) = mj

i , effectively grounding the object in its image. Note that, in eq. (1), ES is optional, and
subsequently, RS and AS are also optional, since distortion graph generalizes scene graph (Johnson
et al., 2015; Li et al., 2024) to distortions and scene information (relations or attributes) is orthogonal
to DG semantics. For the sake of completeness, however, we define DG with scene information.

3.1 PROPERTIES OF DISTORTION GRAPH

A Distortion Graph (DG) obeys three important properties to meaningfully describe an image pair
in terms of its regions, namely the validity, ordering, and functional comparison.

Preliminaries. There exists a finite index set J and two injective enumerations (oAi )i∈J ⊆ OIA

and (oTi )i∈J ⊆ OIT , such that for each i ∈ J, oAi and oTi denote the same object (or region) across
two images (anchor and target). By convention, if i ̸= j then oAi ̸= oAj and oTi ̸= oTj . We refer to
(oAi , o

T
i ) as the ith matched region (or object) pair.

Definition 1 (Validity of Distortion Edges). For every (o, r, o′) ∈ ED, there exists i ∈ J with
o = oAi ∈ OIA , o′ = oTi ∈ OIT , and r ∈ RD. In particular, no intra-image triplets belong to ED.
Formally, we define validity as:

ED ⊆ {(oAi , r, oTi ) : i ∈ J, r ∈ RD} ⊆ OIA × RD ×OIT . (2)

Definition 2 (Ordering of Distortion Relations). The distortion relation set (or comparative relation
set) RD is interpreted as anchor relative to target. Accordingly, distortion edges are always ordered
and written as (oAi , r, o

T
i ). Formally,

ED ⊆ OIA × RD ×OIT and ∀i ∈ J,∀r ∈ RD : (oTi , r, o
A
i ) /∈ ED. (3)

Definition 3 (Functional Comparison). For every matched region pair (oAi , o
T
i ) where i ∈ J, exactly

one distortion relation r ∈ RD compares them. Formally, we can write:

∀i ∈ J :
∣∣{r ∈ RD : (oAi , r, o

T
i ) ∈ ED}

∣∣ = 1. (4)

3.2 GENERATING DISTORTION GRAPH

We propose a simple and efficient method, termed as PANDA to learn Panoptic Pairwise Distortion
Graph for an image pair. PANDA is a neural network parametrized by θ that takes input a pair
of images, referred to as anchor and target, and predicts for each region, distortion relationship
(comparative relation), type of distortion afflicting the region, severity of the distortion, and a quality
score through multiple heads in DETR-like (Carion et al., 2020) fashion, see fig. 3 for illustration
of the architecture. We treat comparative relation, distortion and severity type as categorical values
with categorical cross-entropy as the loss function of choice for their respective heads, while L1

loss function penalizes the score regression head. Each head is a simple 3-layer MLP. PANDA is
trained for a total of 30 epochs with AdamW (Loshchilov & Hutter, 2017) as the optimizer, and a
learning rate of 1e−4 with weight decay of 0.01. The total loss function is L = λ1L

rel
CE+λ2L

dist
CE+

λ3L
sev
CE + λ4L

score
1 . We search for the optimal values of the learning rate, and each λ; see details

in appendix E.

3.2.1 PANDA ARCHITECTURE

Given an image pair IA and IT, we feed both to a pretrained encoder (e.g., DINOv2 (Oquab et al.,
2023)) to get a feature map Fj ∈ RH×W×C , where H,W denote the spatial dimensions, C is
the number of channels, and j ∈ {IA, IT}. A panoptic segmentation method (e.g., SAM (Kirillov
et al., 2023)) acts as the map function (γ) to segment each region into corresponding binary masks
mj

i ∈M. Let NR denotes the number of regions in each image. We make sure that all regions align
across both images in the pair for one-to-one correspondence in regions, i.e., NR = NA

R = NT
R . For

exposition, we only use NR here onward.

4
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Figure 3: Architecture Diagram. Illustration of the proposed PANDA architecture to learn Distor-
tion Graph (DG). A pair of image goes as input, and for each region in the pair, their comparative
relationship (predicates), distortion type, severity type and quality score (attributes) are predicted.

Token Pool. To associate each region with the image, we maintain a token pool comprising learnable
vectors called tokens of same spatial shape as the binary masks, similar in spirit to Heo et al. (2025).
We define a token pool as a set of learnable vectors for each image in the pair TIA and TIT wherein
each tji ∈ RH×W×1, j ∈ {IA, IT}, and

∣∣TIA
∣∣ = ∣∣TIT

∣∣ = K where K is the total number of tokens.
From their respective pools, we sample NR indices uniformly and without replacement to obtain
TIA
NR

= {tIA
i }

NR
i=1 and TIT

NR
= {tIT

i }
NR
i=1 or more generally with abuse of notation, we can write

tji ∈ Tj
NR
∈ RNR×H×W . Every ith region mj

i is one-to-one matched with ith token tji . We then
compute the Hadamard product hj

i = mj
i ⊙ tji where hj

i ∈ Hj and Hj ∈ RNR×H×W , and project
it with a convolutional layer to match the dimensions and combine it with the respective image
features, i.e., Ĥj = Conv(Hj)⊙Fj ∈ RNR×H×W×C . Additionally, we let the pretrained features
be learnable through a 1×1 convolutional layer and obtain F̂j = Conv(Fj). This procedure allows
variable number of regions to borrow information from respective images with minimal compute.

Degradation Decoder. Given the feature map for a batch B of image pairs F̂k where k ∈ {IA, IT},
and the region features Ĥj where j ∈ {IA, IT} and j ̸= k, we feed them through L Transformer
layers (Dosovitskiy et al., 2020) followed by four prediction heads to decode each region into rela-
tions and distortion attributes. At l-th layer, we first reshape F̂k ∈ RB×H×W×C to F̂k ∈ RB×D×C

where D = H × W and denotes the number of patches, and add positional embedding to each
patch, i.e., F̂k = F̂k + PE. We, then, project F̂k to obtain QF̂k ,KF̂k ,VF̂k ← F̂kW F̂k

matrices,
and compute multi-head attention (MHA) (Vaswani et al., 2017) followed by a skip connection to
obtain

ySA
F̂k =

[
MHA(QF̂k ,KF̂k ,VF̂k) + F̂k

]
∈ RB×D×C . (5)

We then let each region in image j attend to the image features and learn its correspondence with
its matched region in the other image k. In other words, we compute cross-attention where query
comes from Ĥj , and key and value matrices come from F̂k. Similar to F̂k, we reshape Ĥj ∈
RB×NR×H×W×C to R(B×NR)×D×C by combining regions in the batch dimension and D denotes
the number of patches of each region. For each region in batch dimension and for each patch
associated with the region, we add positional embedding, i.e., Ĥj = Ĥj + PENR

+ PE. We,
then, project Ĥj to obtain the query matrix QĤj ← ĤjW Ĥj

, and key and value matrices come
from ySA

F̂k
, i.e., KySA ,VySA ← ySAWySA

. For brevity, we drop the subscript F̂k from ySA. Since
QĤj ∈ R(B×NR)×D×C , we repeat both KySA and VySA NR times and compute multi-head cross-
attention followed by a skip connection to obtain

yCA
j→k =

[
MHA(QĤj ,KF̂k ,VF̂k) + Ĥj

]
∈ R(B×NR)×D×C . (6)

The output feature map goes through an MLP and we obtain yj→k = MLP(yCA
j→k) which summa-

rizes how each region in image j compares with image k. In other words, such a procedure lets

5
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Benchmark Region
First

Comparative
Nature

Diverse
Distortions

Severity
Levels

Quality
Score

Q-Bench (Wu et al., 2024a) ✗ ✗ ✗ ✗ ✓
DQ495K (You et al., 2024a) ✗ ✓ ✓ ✓ ✗
Seagull-100w (Chen et al., 2024c) ✓ ✗ ✗ ✓ ✓
Q-Pathways (Wu et al., 2023) ✗ ✗ ✓ ✗ ✓
MICBench (Wu et al., 2024c) ✗ ✓ ✓ ✗ ✓
Q-Insight (Li et al., 2025) ✗ ✓ ✗ ✓ ✓
Q-Ground100K (Chen et al., 2024b) ✓ ✗ ✗ ✗ ✓
GIQA-Bench (Chen et al., 2024d) ✓ ✗ ✗ ✗ ✗

PANDABENCH ✓ ✓ ✓ ✓ ✓

Table 1: Benchmark Summary. A comparison of PANDABENCH with prior distortion benchmarks
in literature. Note that, none of these benchmarks are both region-first and comparative by design.

each region in one image find its corresponding region in the other image in a pair. Note that, before
attention and MLP layers, we project the input through a layernorm (Ba et al., 2016).2

Prediction Heads. A simple global average pool (GAP) averages the spatial dimension of the ob-
tained output feature map, i.e., Gj→k = GAP(yj→k) ∈ RB×NR×C . We feed Gj→k to four 3-layer
MLPs with layernorm (Ba et al., 2016) and GELU activation (Hendrycks & Gimpel, 2016), i.e.,
y = GELU(LN(FC(Gj→k))) followed by ŷ = FC(GELU(LN(FC(y)))) ∈ RB×NR×c, where LN is
layernorm, FC is a fully-connected layer, ŷ is the output, and c is the output dimension which can
either be the number of classes or a single score accordingly. We omit scene prediction heads, as
scene information is out of scope, though the architecture trivially accommodates them.

4 DATASET & BENCHMARK

Given the lack of a dataset for the purpose of region-level pairwise comparative distortion anal-
ysis, see table 1, we propose a new dataset, termed as PANDASET, and a benchmark, termed as
PANDABENCH. We build our dataset on two publicly available datasets, namely PSG (Yang et al.,
2022), and Seagull-100w (Chen et al., 2024c). PSG (Yang et al., 2022) is an intersection of Vi-
sual Genome (Krishna et al., 2017) with COCO (Lin et al., 2014), i.e., combining scene information
with region-level panoptic segmentation. While Seagull-100w contains images with real distortions,
simulated through varying the parameters of an ISP, and region-wise segmentation maps.

4.1 PANDASET

We sample 2, 200 high-quality unique images depicting diverse set of scenes in both indoor and
outdoor settings captured in various lighting settings with different camera angles. Around 1, 592
images are taken from PSG, and 608 images come from Seagull-100w. We divide the dataset into
train, validation and test sets with 2, 000 images in train, 50 images in validation, and 150 images in
test set. Each image has variable number of regions with a maximum of 112, and a mean of 18. In
total, PANDASET contains 528K image pairs across train, validation and test sets.

Distortions. We extend 11 categories of distortions from DepictQA (You et al., 2024a) with three
weather-induced distortions, namely, rain, snow and haze, yielding a total of 14 distortion cate-
gories: blur, brightness, compression, contrast strengthen, contrast weaken, darken, haze, noise,
oversharpen, pixelate, rain, saturation strengthen, saturation weaken, and snow. Each distortion is
further sub-categorized (different types of noise, blur, compression methods, etc.), giving a total of
32 sub-types. We also consider the mixed distortion setting, where each region is degraded differ-
ently by uniformly sampling from the list of distortions. In case of Seagull-100w, however, we keep
the ISP degradation wherever an overlap exists with the chosen distortion for a particular region,
i.e., ISP noise or blur for a region is picked over synthetic noise or blur.

2We use pre-norm residual blocks.
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Methods Comparison Distortion Severity Scores
A P R F1 A P R F1 A P R F1 SR PL

Q-Sit (2025) – – – – 0.18 0.09 0.07 0.05 – – – – – –
Q-Insight (2025) – – – – 0.16 0.16 0.09 0.07 0.19 0.19 0.24 0.11 – –
DepictQA (2024b) – – – – 0.15 0.11 0.13 0.10 0.27 0.12 0.20 0.11 – –
Seagull (2024c) – – – – 0.23 0.25 0.20 0.18 0.32 0.34 0.26 0.26 – –
Gemma-3 27B (2025) – – – – 0.27 0.31 0.24 0.20 0.30 0.31 0.30 0.27 – –
DepictQA† (2024b) 0.49 0.48 0.38 0.42 0.75 0.82 0.71 0.76 0.55 0.53 0.45 0.48 0.78 0.77
GPT-5 Nano (2025) 0.34 0.26 0.28 0.26 0.37 0.37 0.29 0.28 0.29 0.28 0.27 0.21 0.39 0.44
GPT-5 Mini (2025) 0.31 0.32 0.31 0.26 0.49 0.54 0.44 0.44 0.36 0.32 0.31 0.29 0.52 0.54
GPT-4o (2024) 0.26 0.29 0.26 0.23 0.46 0.60 0.41 0.44 0.33 0.34 0.29 0.27 0.54 0.56
Gemini 2.5 Pro (2025) 0.22 0.29 0.25 0.18 0.39 0.59 0.36 0.41 0.29 0.32 0.25 0.26 0.59 0.60
Random 0.20 0.20 0.20 0.19 0.07 0.07 0.07 0.06 0.25 0.25 0.25 0.25 0.00 0.00
Linear Probe 0.37 0.35 0.22 0.15 0.20 0.16 0.09 0.07 0.27 0.25 0.26 0.15 0.12 0.14
Attentive Probe 0.47 0.47 0.42 0.43 0.40 0.38 0.42 0.39 0.29 0.26 0.27 0.26 0.37 0.44

PANDA 0.58 0.61 0.54 0.56 0.78 0.79 0.81 0.79 0.59 0.61 0.58 0.59 0.79 0.83

Table 2: PANDABENCH Easy. Results of different MLLMs on the Easy set. indicates open
source/open-weight, and denotes closed-source MLLMs, stands for baselines. † indicates
method is trained on PANDASET. A: Accuracy, P: Precision, R: Recall, SR: SRCC & PL: PLCC.

This forms the basis of pairs wherein we sample two images with different distortions but same
scenes forming a total of 16P2 = 240 permutations, and, hence, 480K pairs for training, 12K pairs
for validation, and 36K pairs for testing. We add distortions region-wise by uniformly sampling
from 14 distortions with 80% probability that a region is degraded, and 20% probability that it is
clean. A region can either be degraded with one of the 14 distortions or it can be clean giving a total
of 15 different distortion types; samples are shown in fig. 7.

Severity & Quality Scores. For each region, the chosen distortion is added with one of three
severity levels: minor, moderate, and severe. In case of no distortion, clean with 20% probability,
the severity is set to none, giving a total of four severity types. The intensity of each distortion
varies with each severity level, and we follow You et al. (2024a) to vary the intensity of non-weather
distortions. For weather-induced distortions such as rain, and snow, we utilize various rain and snow
overlays (Garg & Nayar, 2006; Liu et al., 2018), while for haze, we vary the atmospheric light and
haze density parameters in the atmospheric scattering model following Guo et al. (2024). For quality
scores, we compute full-reference TOPIQ (Chen et al., 2024a) score (∈ [0, 1]) between the distorted
region and the ground-truth region to serve as a quantitative indication of region quality. We present
a visual summary of the entire PANDASET in appendix, see fig. 5. Regions are uniformly distributed
among different distortions, around ≈ 3.5%, and each severity category spans ≈ 15% of regions.

Comparative Relationships. In DG, inter-region edges are labeled with relationships (or predi-
cates) that compare them. We find that TOPIQ (Chen et al., 2024a) accurately indicates the severity
of a distortion in terms of a numerical score. For simplicity we adopt TOPIQ as the basis of com-
parative relationships, however, more complex preferences can be used. For every region pair, we
define a threshold on the difference between scores of the region in the anchor and the target image.
If the difference is less than |0.1|, we label the region as same, while it is slightly better or worse
in the interval ±[0.1, 0.3). Similarly, if the difference is more than 0.3, we label it as significantly
better or worse depending on which pair (anchor or target) scores higher.

4.2 PANDABENCH

Three representative splits from the test set of PANDASET, termed Easy, Medium, and Hard, com-
prise the proposed benchmark, PANDABENCH. In Easy, we only consider pairs where all the regions
in an image are degraded by a single type of distortion, but with either same or different severity
levels. In Medium, one of the images in the pair is from the mixed setting, i.e., each region exhibits
different degradation and level of severity. In case of Hard, both images are degraded with mixed
distortions and severity. In each setting, we randomly sample 300 image pairs. This spectrum of
splits, with increasing difficulty from Easy to Hard, enables thorough evaluation of the methods to
benchmark region-level understanding for distortion analysis. A few illustrative examples from each
setting are presented in the appendix, see fig. 15.
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Methods Comparison Distortion Severity Scores
A P R F1 A P R F1 A P R F1 SR PL

Q-Sit (2025) – – – – 0.16 0.07 0.05 0.04 – – – – – –
Q-Insight (2025) – – – – 0.21 0.05 0.06 0.04 0.24 0.16 0.21 0.12 – –
DepictQA (2024b) – – – – 0.10 0.06 0.08 0.05 0.24 0.17 0.20 0.10 – –
Seagull (2024c) – – – – 0.13 0.10 0.13 0.08 0.25 0.25 0.21 0.18 – –
Gemma-3 27B (2025) – – – – 0.13 0.09 0.09 0.07 0.25 0.26 0.25 0.22 – –
DepictQA† (2024b) 0.33 0.21 0.18 0.19 0.22 0.12 0.09 0.09 0.30 0.24 0.23 0.22 0.18 0.17
GPT-5 Nano (2025) 0.21 0.17 0.16 0.16 0.19 0.09 0.07 0.06 0.25 0.20 0.18 0.17 0.02 0.04
GPT-5 Mini (2025) 0.18 0.19 0.20 0.15 0.17 0.10 0.10 0.09 0.27 0.22 0.21 0.20 0.09 0.13
GPT-4o (2024) 0.16 0.19 0.16 0.14 0.15 0.09 0.07 0.08 0.23 0.21 0.18 0.18 0.06 0.08
Gemini 2.5 Pro (2025) 0.12 0.20 0.14 0.12 0.11 0.10 0.07 0.08 0.17 0.21 0.13 0.16 0.10 0.14
Random 0.21 0.20 0.20 0.19 0.07 0.07 0.07 0.06 0.25 0.25 0.25 0.24 0.0 0.0
Linear Probe 0.43 0.28 0.21 0.14 0.30 0.11 0.09 0.06 0.24 0.29 0.26 0.14 0.22 0.23
Attentive Probe 0.39 0.23 0.21 0.18 0.10 0.08 0.08 0.07 0.24 0.25 0.25 0.23 0.02 0.02

PANDA 0.40 0.31 0.25 0.24 0.27 0.22 0.18 0.19 0.33 0.34 0.33 0.33 0.36 0.38

Table 3: PANDABENCH Hard. Results of different MLLMs on the Hard set. indicates open
source/open-weight, and denotes closed-source MLLMs, stands for baselines. † indicates
method is trained on PANDASET. A: Accuracy, P: Precision, R: Recall, SR: SRCC & PL: PLCC.

5 EXPERIMENTS

Given that we propose the task of learning a Distortion Graph (DG), there exist no specialist meth-
ods in literature. Hence, we consider several open-source and closed-source (frontier) MLLMs to
conduct thorough experiments on the proposed PANDABENCH. Several current MLLMs such as
Q-Instruct (Wu et al., 2023), Co-Instruct (Wu et al., 2024c), Janus-Pro-7B (Chen et al., 2025), and
LLaVA v1.5 (Liu et al., 2024a) fail to reliably3 perform comparative analysis at region-level. Meth-
ods like Q-Instruct (Wu et al., 2023) are not suited for multi-image tasks and are biased to the order
in which multiple images are fed. While Co-Instruct (Wu et al., 2024c), Janus-Pro-7B (Chen et al.,
2025), and LLaVA v1.5 (Liu et al., 2024a) can accept multiple images, but, if they are instruction
tuned for distortion tasks such as Co-Instruct (Wu et al., 2024c) is, they have trouble following new
instructions (Chu et al., 2025); see fig. 2 for example. General purpose open-source MLLMs, on
the other hand, suffer in distortion analysis tasks, likely due to their lack of exposure to degraded
images as well as differences in training data, objectives, and scale compared to frontier models. We
present a few case studies, including failure cases and discussion on their behavior, for each of these
methods in appendix C.

Open-Source MLLMs. A few open-source/open-weights MLLMs such as Q-Sit (Zhang et al.,
2025), Q-Insight (Li et al., 2025), DepictQA (You et al., 2024a), Gemma-3 27B (Team et al., 2025),
and Seagull (Chen et al., 2024c) understand distortions, where Gemma-3 is general-purpose, and
others are distortion-specific MLLMs. While they still can not do region-wise comparative tasks,
they can classify distortion type and level of severity. We prompt open-source methods with a single
region at a time overlayed with a visual marker in the form of a bounding box covering region of
interest (RoI), while the rest of the image is dimmed4, see appendix fig. 8 for sample prompt. We
find that only in this manner, the output responses can be parsed and scored.

Closed-Source MLLMs. We also evaluate four frontier LLMs GPT-5 Nano (OpenAI, 2025), GPT-5
Mini (gpt-5-mini-2025-08-07) (OpenAI, 2025), GPT-4o (gpt-4o-2024-11-20) (Hurst
et al., 2024), and Gemini 2.5 Pro (Comanici et al., 2025). Unsurprisingly, these frontier LLMs un-
derstand regions better than open-source MLLMs, and are able to perform region-wise comparative
assessment. For closed-source MLLMs, we prompt them with one image pair at a time, providing
each region’s description and bounding box, and ask for region-wise outputs including comparison,
distortion type, severity level, and a quality score within the specified range, see appendix fig. 9 for
sample prompt.

Baselines. Lastly, we evaluate three baselines Random, Linear Probe, and Attentive Probe. In Linear
Probe, linear heads on top of DINOv2 (Oquab et al., 2023) backbone predict relations and attributes,

3We use ‘reliably’ to mean the output responses from these methods are uninformative and can not be
scored.

4Passing in just the cropped region renders these methods blind due to variable size of regions.
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Figure 4: Emergent Results. Feeding predicted DG in prompt as chain-of-thought (CoT) results in
improvement of ≈ 15% (accuracy) in region-wise distortion understanding of GPT-5 Mini.

while in Attentive Probe, a Transformer block with a cross-attention layer using a learnable query
acts as the output head.

5.1 RESULTS & DISCUSSION

In tables 2, 3 and 4, we present results on the Easy, Hard, and Medium settings of PANDABENCH.
For comparison, distortion, and severity type, we measure accuracy, precision, recall, and F1 score.
While for quality score, we report SRCC/PLCC following Mean Opinion Score (MOS) litera-
ture (Chen et al., 2024a). In all the cases, higher is better. Across all three settings and all four
tasks, our proposed method PANDA achieves the best performance. DepictQA (You et al., 2024a),
despite being a much larger model (7B parameters, Vicuna v1.5 (Chiang et al., 2023) backbone),
lags significantly behind PANDA, which we attribute to the absence of region-first design consid-
eration. DepictQA, like any other open-source MLLM, suffers from context limitations, and fre-
quently hallucinates or omits regions. As a result, these models often fail to provide complete
and faithful region-wise assessments.5 This limitation reinforces that a structure is necessary to
compactly represent pairwise information. We show that fine-tuning DepictQA† on PANDASET en-
courages region-first distortion understanding, resulting in second-best performance. A consistent
trend across methods is performance decline from Easy to Hard settings, highlighting the difficulty
of fine-grained distortion understanding under complex degradations. Notably, PANDA exhibits the
smallest performance drop in Hard setting suggesting its efficacy. We conduct ablation studies on
design choices, and discuss it in appendix B.

Distortion & Severity Performance. In terms of distortion and severity classification, the evalua-
tion reveals two consistent trends. First, closed-source MLLMs achieve notably higher accuracy on
distortion classification than open-source counterparts in the Easy setting, indicating a substantial
performance gap. This gap, however, diminishes as the task difficulty increases, with all models
converging to about a difference of less than 12% under the Hard setting. Second, in severity clas-
sification, several models, including strong closed-source ones, degrade to the point of performing
worse than random baseline in the Hard setting.

Comparative & Quality Score Performance. All of the open-source methods we compare, in ta-
bles 2, 3 and 4, struggle on region-wise comparison and quality score prediction task, including
Gemma 3 (Team et al., 2025) which is a 27B parameter model. While closed-source frontier MLLMs
perform better, their performance trends mirror those of distortion and severity classification. Across
Easy, Medium, and Hard, every method suffers a consistent drop in accuracy, with several MLLMs
degrading to near-chance performance under the Hard setting. These results underscore both the
current limitations of state-of-the-art models and the value of PANDABENCH in highlighting failure
modes that remain hidden under other simpler evaluation benchmarks.

5.2 SHOWCASE APPLICATION

In principle, a distortion graph can be learned for any task where comparative assessment informs
downstream use cases. On the application front, we consider the downstream task of distortion

5Because of this limitation, we prompt open-source MLLMs per-region.
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understanding. We follow the experimental setup of Mitra et al. (2024), and adopt predicted DG in
a chain-of-thought to prompt GPT-5 Mini (gpt-5-mini-2025-08-07) (OpenAI, 2025). Our
findings on easy and hard splits of PANDABENCH, in fig. 4, indicate that coupling DG in chain-of-
thought elicits emergent capabilities of LLMs in region-wise distortion understanding. We expand
the discussion on the motivation of learning a DG, and its potential use-cases in appendix A.

6 CONCLUSION

In this work, we introduced the task of Distortion Graph (DG), a region-grounded topological repre-
sentation for pairwise image assessment. We argued that structured representations like DG provide
an efficient, compact, and interpretable means for comparative evaluation. To support this task,
we contributed PANDABENCH, a benchmark for assessing the region-level distortion understanding
of MLLMs, and demonstrated that current open-source models exhibit clear gaps in region-aware
analysis. Our experiments showed that either training on PANDASET or prompting with DG as part
of reasoning chains substantially improves region-wise assessment. We hope this work motivates
further exploration of region-first representations for distortion understanding and establishes DG
as a useful data structure for fine-grained comparative reasoning.
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and Rainer Lienhart. Copa-sg: Dense scene graphs with parametric and proto-relations. arXiv
preprint arXiv:2506.21357, 2025.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Chancharik Mitra, Brandon Huang, Trevor Darrell, and Roei Herzig. Compositional chain-of-
thought prompting for large multimodal models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 14420–14431, 2024.

OpenAI. Gpt-5 system card, 8 2025. URL https://cdn.openai.com/pdf/
8124a3ce-ab78-4f06-96eb-49ea29ffb52f/gpt5-system-card-aug7.pdf.
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APPENDIX

PANDASET

S
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Region Diversity
Weather 
Distortion

Camera/
Equipment 
Distortion

Digital
Distortion

Light
Distortion

Figure 5: PANDASET Summary. Left: A word cloud of region names indicating diversity of the
objects in images. Right: A region-wise summary of PANDASET in terms of distortions & severity.
All 15 of the distortions are uniformly distributed across the regions, and we broadly categorize the
distortions in super categories: weather, camera/equipment, digital, light, and clean.

Methods Comparison Distortion Severity Scores
A P R F1 A P R F1 A P R F1 SR PL

Q-Sit (2025) – – – – 0.18 0.09 0.07 0.05 – – – – – –
Q-Insight (2025) – – – – 0.19 0.08 0.07 0.05 0.21 0.19 0.22 0.12 – –
DepictQA (2024b) – – – – 0.13 0.09 0.11 0.07 0.27 0.14 0.20 0.11 – –
Seagull (2024c) – – – – 0.19 0.18 0.16 0.13 0.28 0.27 0.22 0.20 – –
Gemma-3 27B (2025) – – – – 0.21 0.21 0.17 0.13 0.26 0.27 0.26 0.23 – –
DepictQA† (2024b) 0.32 0.30 0.25 0.27 0.47 0.56 0.41 0.46 0.43 0.40 0.34 0.36 0.44 0.42
GPT-5 Nano (2025) 0.25 0.21 0.22 0.20 0.26 0.20 0.16 0.16 0.28 0.26 0.23 0.21 0.18 0.24
GPT-5 Mini (2025) 0.22 0.22 0.25 0.19 0.31 0.29 0.24 0.24 0.32 0.28 0.25 0.25 0.29 0.34
GPT-4o (2024) 0.19 0.20 0.21 0.17 0.28 0.25 0.21 0.22 0.27 0.26 0.22 0.22 0.28 0.33
Gemini 2.5 Pro (2025) 0.14 0.21 0.18 0.13 0.24 0.34 0.20 0.23 0.24 0.29 0.19 0.23 0.31 0.34
Random 0.20 0.20 0.20 0.19 0.07 0.07 0.07 0.06 0.25 0.25 0.25 0.25 0.00 0.00
Linear Probe 0.38 0.29 0.21 0.14 0.24 0.16 0.09 0.06 0.28 0.27 0.26 0.15 0.17 0.20
Attentive Probe 0.39 0.34 0.29 0.29 0.24 0.25 0.24 0.23 0.26 0.25 0.26 0.24 0.16 0.21

PANDA 0.44 0.44 0.38 0.40 0.52 0.55 0.50 0.52 0.47 0.49 0.47 0.48 0.56 0.61

Table 4: PANDABENCH Medium. Results of different MLLMs on the Medium set. indicates
open source/open-weight, and denotes closed-source MLLMs, stands for baselines. † indicates
method is trained on PANDASET. A: Accuracy, P: Precision, R: Recall, SR: SRCC & PL: PLCC.

A MOTIVATION

It is well-studied and understood that a proper structured representation enables many of the visual
intelligence tasks in humans (Swoyer, 1991) and machines (Chiou, 2022) alike: spatial understand-
ing (Zhang et al., 2024; Lorenz et al., 2025), visual planning (Gu et al., 2024), video reasoning (Wang
et al., 2025), and even similarity comparisons in visual input in the case of humans (Hodgetts et al.,
2023). One of the fundamentals of human decision making are pairwise comparisons. Classic psy-
chophysics has established that pairwise comparison produces reliable and interpretable perceptual
scales compared to absolute ratings (Saffir, 1937), and enable principled selection. It is, thus, natural
to consider if a structured representation can also aid such comparative decisions. We argue that our
proposed Distortion Graph (DG) offers a general-purpose structure and acts as a scaffold towards
these decisions.

DG as a General Comparative Formalism. Unlike conventional approaches that rely on holistic
embeddings or scalar quality scores, DG decomposes perceptual differences into object-anchored
nodes, attribute descriptors, and explicit comparative relations across paired inputs. This formal-
ism provides several advantages. First, DG offers a general abstract: the same formalism that en-
codes region-wise distortions in images can naturally extend to other setups and modalities, such
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as pose differences in paired videos for video action differencing task (Burgess et al., 2025), region
grounded differences for forgery detection (Sun et al., 2025; Xu et al., 2023), pairwise CT scan as-
sessment (Hoeijmakers et al., 2024), benchmarking image signal processors (ISPs) (Yunfan et al.,
2024), compressing redundant frames in memory based on similarity (Reza et al., 2025), etc. Sec-
ond, DG is inherently interpretable, i.e., each edge explicitly localizes where and how two inputs
diverge, enabling fine-grained analysis that opaque embedding distances can not provide. Third, by
relying on a fixed predicate set (such as for comparisons in image quality assessment), DG encour-
ages compositional reasoning. Finally, the structured format of DG makes it a natural scaffold for
multimodal large language models (MLLMs), which often benefit from symbolic context to reduce
hallucination and improve grounding. DG also lifts the requirement of Supervised Finetuning (SFT)
the MLLMs on a fixed distortion set, and general purpose LLMs, with better instruction following
abilities, can be coupled as is. We illustrate this in fig. 4.

Taken together, these properties suggest that DG offers structured reasoning over differences in the
visual input, and is a step toward a unifying comparative formalism for assessment tasks.

B ABLATION STUDIES

Linear and Attentive probes in tables 2, 3 and 4 serve as ablations of proposed decoder in PANDA
architecture. Their performance drop shows that DINOv2 (Oquab et al., 2023) features alone are
insufficient, and that the decoder is crucial for enabling each region to retrieve complementary in-
formation from its pair to learn distortion relationships and attributes. We conduct two more ab-
lations on feature extractors and the number of Transformer blocks in the decoder. Our default
backbone, DINOv2 (ViT-s), yields features of 384 dimensions, and we ablate DINOv2 (ViT-b)
and SigLip (Zhai et al., 2023) with a dimension size of 768. By default, we adopt four Transformer
blocks in the decoder of PANDA. We also ablate its sufficiency by considering two and six blocks
as variations. Figure 6 shows that design choices in PANDA are an optimal balance in network size
and performance.

Easy Medium Hard
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Comparison Accuracy
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SigLip Panda TBlock-2 TBlock-6 DINOv2-768d

Figure 6: Design Choice Ablation. Accuracy comparison of different design choices: backbone
feature extractors (solid line) and Transformer blocks (dotted line). PANDA maintains balance in
size, performance, and efficiency.

Whole Image vs. Region-Wise. Our findings indicate that MLLMs performance is dependent on
the granularity of decision-making. If whole image, i.e., global view, is considered, the performance
is non-trivial, but the same MLLMs suffer when reasoning over regions due to (i) lack of region-wise
design considerations and (ii) rigidity induced by SFT on a fixed set of distortions/settings. PAND-
ABENCH illustrates this struggle in tables 2, 3 and 4. Recall that in the easy split of PANDABENCH,
a single distortion afflicts the whole image. While we reason over regions even in that split, it is pos-
sible to query an MLLM at the whole-image level for the distortion classification task. In table 5,
we report results of an ablation study towards this end with DepictQA (You et al., 2024a). Depic-
tQA achieves low but non-trivial performance when asked to classify distortions at the whole-image
level. In contrast, when queried region-wise, the performance sharply drops to chance.

Cost to Query MLLMs. We analyze the cost to query MLLMs, both in terms of computation
and monetary value. We also report the configuration of the MLLM, the LLM and vision tower,
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Type Distortion Classification
Accuracy ↑ Precision ↑ Recall ↑ F1 ↑

Region Wise 0.15 0.11 0.13 0.10
Whole Image 0.26 0.32 0.28 0.26

Table 5: Region-wise vs. Whole Image. Comparison of DepictQA (You et al., 2024a) across two
different evaluation setups: whole image and region-wise for distortion classification task.

Method LLM Vision Tower Compute Cost
/ Image Pair (secs)

Monetary Value
/ Image Pair (USD)

Parameters
(Billion)

Q-SiT (2025) Qwen2 LLM SigLIP 57.74 N/A 7
Q-Insight (2025) Qwen2.5 LLM Qwen2.5 274.74 N/A 7
DepictQA (2024a) Vicuna v1.5 CLIP 245.42 N/A 7
Seagull (2024c) Vicuna v1.1 CLIP 38.19 N/A 7
GPT-5 Nano (2025) Proprietary Proprietary N/A 0.002 Proprietary
GPT-5 Mini (2025) Proprietary Proprietary N/A 0.007 Proprietary
GPT-4o (2024) Proprietary Proprietary N/A 0.028 Proprietary
PANDA N/A DINOv2 3.53 N/A 0.028

Table 6: Cost Analysis. A summary of compute and monetary costs of different methods computed
for a single image pair with 14 regions.

Clean Compression Darken Oversharpen Saturate Decrease

Blur Contrast Decrease Haze Pixelate Saturate Increase

Brightness Contrast Increase Noise Rain Snow

Figure 7: All Distortion Types. We visualize all 15 different distortion types on the same image
taken from PANDASET. Each distortion degrades the image differently. Some distortions ruin the
perceptual quality of the image more than others (e.g., haze, contrast decrease).

along with model size in parameters in table 6. For closed-source models, we do not compare the
compute cost since they are exposed through an API. While for open-source models, we do not
report monetary value given it is hard to estimate. All costs are reported on a single NVIDIA v100
GPU (32GB) with batch size 1 and an image pair with 14 regions. Notably, PANDA is significantly
cheaper in terms of computational cost and parameters.

B.1 DISTORTION GRAPH FORMALISM AGGREGATES TO WHOLE-IMAGE

We argue that region-first distortion analysis aggregates to and complements whole-image assess-
ment naturally. We consider the instant rating task wherein given two images, the task is to rank
which better image is perceptually superior. We adopt the KADID10k dataset (Lin et al., 2019). Due
to lack of region information in KADID10k, we query Segment Anything (SAM) (Kirillov et al.,
2023) to generate region masks. We do zero-shot inference with PANDA trained on PANDASET, and
report performance on the ranking task using the predicted quality score or the comparative rela-
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Method Ranking
Accuracy ↑

Inference
Time ↓

Q-Insight (Li et al., 2025) 0.6970 8 hours
GPT-5 Mini (OpenAI, 2025) 0.8472 N/A

PANDA (ZS) Score Based 0.7883 4 mins
PANDA (ZS) Predicate Based 0.7690 4 mins

Table 7: Whole-Image Instant Ranking. DG (generated by PANDA) aggregates naturally to whole-
image assessment.

Anchor Target Region Focus

Region Crop

System Prompt: You are a careful vision inspector. Respond with a SINGLE JSON object only. Do not include any extra text 
before or after the JSON.
Content: Analyze only the specified region, bench, in red bounding box: [423, 295, 473, 357] (x1,y1,x2,y2). You are given two 
images: 1) A region crop of bench 2) The full image with everything outside the region of interest (in red) dimmed. Classify 
the region into one of the following distortion types: [‘blur’, ‘brightness’, ‘clean’, ‘compression’, ‘contrast-decrease’, 
‘contrast-increase’, ‘darken’, ‘haze’, ‘noise’, ‘oversharpen’, ‘pixelate’, ‘rain’, ‘saturate-decrease’, ‘saturate-increase’, 
‘snow’], and one of the following severity types: [‘minor’, ‘moderate’, ‘none’, ‘severe’]. For example: {“distortion”: ..., 
“severity”: ...} and replace ... with appropriate distortion and severity type.

Figure 8: Prompt Type (a). A template of prompt for open-source MLLMs. The tags for keywords
like image, input, user, assistant, output, etc. that each method requires are added as necessary.

Anchor Target

Content: Provide an image quality assessment for each of the regions in image A and image B based on their bounding boxes and 
names. Identify the distortion present in each region, and pick one for each region from this list [‘blur’, ‘brightness’, 
‘clean’, ‘compression’, ‘contrast-decrease’, ‘contrast-increase’, ‘darken’, ‘haze’, ‘noise’, ‘oversharpen’, ‘pixelate’, 
‘rain’, ‘saturate-decrease’, ‘saturate-increase’, ‘snow’].
Identify the severity of distortion for each region from: [0, 1, 2, 3], where 0 means clean, and 3 means highest severity. 
Compare the regions in image A and image B, and rank them based on image A. 
These are the rankings to choose from: {0: 'same', 1: 'slightly-worse', 2: 'significantly-worse', 3: 'slightly-better', 4: 
'significantly-better’}. 
Give a score between 0 and 1 for each region, based on the degradation and their severity, where 0 means severely bad image, 
and 1 means clean image.
Regions:
1. Region: field | Box: [x1=0.0, y1=290.0, x2=1023.0, y2=675.0] ... N. Region: ... | Box: [x1...]

System: You are an image 
quality assessor. Respond 
with **JSON only** matching:
{"regions": [{"index": 
int>=1, "a": {"distortion": 
one of [dist-list], 
"severity": 0..3, "score": 
0..1}, "b": {"distortion": 
same set, "severity": 0..3, 
"score": 0..1}, "comparison": 
one of [comp-set]  # A 
relative to B} x n_regions]}
Note: Regions in image A are 
same as regions in image B.

Figure 9: Prompt Type (b). A template of prompt for closed-source MLLMs. Frontier methods
have superior instruction following ability, and can reason about the regions from the prompt.

tionships (predicates). PANDA was not originally trained to provide whole-image ranking, and we
directly use predicted relationship predicates or region-wise scores with a naive control logic, e.g., if
more regions in image A are better (or score higher), then image A is better, to compute the ranking
accuracy in table 7. Distortion graph (DG) naturally extends to whole-image assessment.
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Ground Truth Anchor Target Region on Anchor

{“anchor”: {“distortion”: “clean”, 
“severity”: 0, “score”: 0.9678}, “target”: 
{“distortion”: “brightness”, “severity”: 1, 
“score”: 0.9241}, “comparison”: “same”}

{“anchor”: {“distortion”: “darken”, 
“severity”: 2, “score”: 0.8915}, “target”: 
{“distortion”: “brightness”, “severity”: 1, 
“score”: 0.9241}, “comparison”: “same”}

Predicted DG (Hint to GPT-5 Mini)

GPT-5 Mini Prediction

{“anchor”: {“distortion”: 
“clean”,...}, “target”: 
{“distortion”: “clean”,...}, 
“comparison”: “same”}

{“anchor”: {“distortion”: 
“oversharpen”,...}, “target”: 
{“distortion”: “clean”,...}, 
“comparison”: “significantly_worse”}

Predicted DG (Hint to GPT-5 Mini)

GPT-5 Mini Prediction

Sky

Bag

Figure 10: Analysis of DG as Prompt. Illustrative figure analyzing showcase application wherein
predicted DG is fed as context to GPT-5 Mini. Top: Sample taken from PandaBench Easy, Bottom:
Sample taken from PandaBench Hard. GPT-5 Mini indeed overrides the predicted DG when the
pixels disagree with DG.

B.2 ANALYSIS OF DISTORTION GRAPH AS CONTEXT

In section 5.2, we demonstrated a showcase application in which the predicted DG is provided as
contextual input to GPT-5 Mini (OpenAI, 2025) for distortion understanding. In fig. 4, we observed
a clear performance gain when GPT-5 Mini is given access to DG. Here, we analyze why this
improvement occurs and whether GPT-5 Mini simply copies the DG predictions verbatim. We
explicitly instruct GPT-5 Mini to treat DG as a hint and to fall back to the input pixels whenever
a conflict arises, and we find that it often does override DG when the visual evidence disagrees
(see fig. 10). For example, in the PandaBench Easy sample (top row of fig. 10), DG incorrectly
predicts the distortion type on the anchor region as clean, while GPT-5 Mini correctly identifies it
as darken; this requires actually comparing the anchor and target images rather than copying the
graph. Likewise, in the PandaBench Hard sample, DG mislabels the bag region as clean, but GPT-
5 Mini correctly infers oversharpen. We observe several such cases where GPT-5 Mini corrects
DG using pixel evidence. At the same time, when there is little or no contradictory signal in the
pixels, GPT-5 Mini tends to trust DG. In the Easy example, for instance, the target sky region is
predicted as brightness by DG, and GPT-5 Mini repeats this label even though the ground-truth
degradation is clean. We emphasize that this behavior is precisely the intended usage: DG acts as
an additional structured cue that the MLLM may either leverage directly or override when its own
visual understanding disagrees.

B.3 GENERALITY OF DISTORTION GRAPH REPRESENTATION

Methods Accuracy ↑
mPLUG-Owl2 (2024) 48.5
LLaVA-1.6 (2024b) 57.0
Q-Instruct (2024b) 55.0
PANDA (Predicate) 78.4
PANDA (Score) 77.8

Table 8: Generality of DG Represen-
tation.

Although PandaBench is specifically designed for region-
first, pairwise comparison, we find that the Distortion
Graph formalism generalizes beyond our protocol and
naturally aggregates to whole-image ranking on standard
human-annotated MOS benchmarks. In table 7, we eval-
uate PANDA on KADID10k (Lin et al., 2019) by using
the predicted DG to rank image pairs and comparing
against ground-truth Mean Opinion Scores. Using the
DG’s scalar score attribute as the ranking signal yields an
accuracy of 78.83%, while using the comparative predi-
cate over regions yields 76.90%, indicating that a model
trained on TOPIQ-derived region labels can still produce
image-level rankings that align well with human judgments. To further test robustness, we repeat
the same protocol on TID2013 (Ponomarenko et al., 2015), another widely used IQA dataset with
diverse distortion types and human-annotated MOS, see table 8. Here, PANDA again achieves strong
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Anchor Target

Answer: The overall clarity of this image 
is very low, with weak lighting. The main 
subject, the trees, have lost most of their 
texture details. There is some noise 
present, and the composition is poor, with 
a slight tilt. The background is also 
blurry. Quality of this image is very poor.

Prompt (b): Provide an image quality assessment 
for each of the regions in image A (first) and 
image B (second) ... Bounding boxes and names...

Answer: The overall clarity of this image 
is very low, with weak lighting. The main 
subject, the trees, have lost most of their 
texture details. There is some noise 
present, and the composition is poor, with 
a slight tilt. The background is also 
blurry. Quality of this image is very poor.

Prompt (b): Provide an image quality assessment 
for each of the regions in image A (first) and 
image B (second) ... Bounding boxes and names...

No Comparative Assessment, No Score, Incomplete Degradation Identification, Insensitive to Image Order
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Figure 11: Q-Instruct Behavior. An illustration of output from Q-Instruct (Wu et al., 2023) when
prompted for multiple instructions. It is insensitive to the order of image, even when explicitly
specified, misses degradation, struggles to follow instruction, and repeats irrelevant information.

performance, 77.8% accuracy when ranking with DG scores and 78.4% with DG predicates, out-
performing MLLM-based baselines such as mPLUG-Owl2 (Ye et al., 2024), LLaVA-1.6 (Liu et al.,
2024b), and Q-Instruct (Wu et al., 2024b). These results support that DG is not merely a dataset-
specific construct for PandaBench but a generally useful representation that (i) can be collapsed
into reliable whole-image rankings and (ii) transfers effectively to real-distortion, human-labeled
benchmarks.

C ANALYSIS OF MULTIMODAL LARGE LANGUAGE MODELS

In this section, we present analysis of the behavior of different Multimodal Large Language Models
(MLLMs), both open-source and closed-source, considered in this manuscript on region-wise dis-
tortion understanding. We divide the analysis into three settings based on the results in tables 2, 3
and 4 (i) methods considered, but not reported, (ii) open-source methods considered, and reported,
and (iii) closed-source methods considered, and reported. As discussed in section 5, we divide the
prompt templates into two categories: (a) open-source prompts and (b) closed-source prompts. This
is because open-source MLLMs fail to provide an answer since they can either consider the whole
image or just one region at a time. In contrast, closed-source models have superior instruction fol-
lowing abilities and can predict distortion and severity type, along with comparative assessment and
quality score for all the regions in the image pair. We present samples of both prompt types (a)
in fig. 8 and (b) in fig. 9. Note that in prompt (a) fig. 8, three images are fed to the MLLM, namely
the anchor or the target, region focus and crop of the region for the respective image.

C.1 METHODS CONSIDERED, NOT REPORTED

Recall that among open-source methods, we also explored Q-Instruct (Wu et al., 2023) (LLaVA
v1.5 (Liu et al., 2024a)), Co-Instruct (Wu et al., 2024c), and Janus-Pro-7B (Chen et al., 2025), but
did not report in tables 2, 3 and 4 due to unreliability in their respective outputs (see section 5). We
detail their respective behavior on PANDABENCH, illustrate with sample outputs, and briefly discuss
the reasons.

Q-Instruct. Q-Instruct (Wu et al., 2023), a distortion MLLM, is designed for single image distortion
analysis, but not for comparative assessment. A common workaround for multi-image inputs is to
stack two images before prompting, as in Fu et al. (2024). However, we observe that Q-Instruct does
not consistently adapt to the change in order of stacked images. For example, when the left image
(anchor) is labeled as noise and the right image (target) as compression, flipping their order does not
necessarily flip the predicted degradations. This order-dependence makes the outputs unreliable for
comparative tasks, so we do not report Q-Instruct results. An illustrative example of such behavior
is presented in fig. 11.
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Co-Instruct. Co-Instruct (Wu et al., 2024c) is a distortion MLLM designed for multi-image com-
parisons. Given two (or more) input images, it can describe the quality of the images and compare
or rank them. Our experiments show that it struggles with the multi-instruction setting required by
PANDABENCH. In practice, it often omits regions due to output length limits or repeats the same
region until tokens are exhausted. Moreover, it fails to generalize to tasks outside its supervised
fine-tuning regime such as the four region-level tasks in PANDABENCH (distortion classification,
severity classification, predicate identification, and quality score prediction). An example of this
behavior is shown in fig. 12.

<sys> Compare two images A: 
<img1>, B: <img2> in terms of its 
regions <reg1>…<regN> and for same
regions in each image answer (i) 
which image is better, (ii) what 
distortion is present, (iii) what 
is the severity of the distortion,
(iv) and assign a quality score... Answer (Region Query): 

1. Person: The image has a moderate level of distortion, with pixelation and blurring. The colors appear to 
be washed out, and there is a loss of detail in the person's face and clothing. The quality is average.
2. Sheep: The image has significant distortion, with pixelation and blurring that make it difficult to 
discern fine details. The colors are also somewhat muted. The quality of this image is poor.

3. Sky: ? Missed
4. Mountain: Image has minimal distortion, with a clear mountain landscape in the background. The 
quality is good with no noticeable distortion.

Region Query

No Comparative Assessment, No Score, & Wrong Degradation Identification

Figure 12: Co-Instruct Behavior. An illustration of output from Co-Instruct (Wu et al., 2024c)
when prompted for multiple instructions. It fails to perform comparative assessment, frequently
misses regions, and struggles with instruction following.

Janus-Pro-7B. Unlike Q-Instruct (Wu et al., 2023) and Co-Instruct (Wu et al., 2024c), Janus-Pro-
7B (Chen et al., 2025) is a general-purpose open-source MLLM designed for various multimodal
tasks. However, when applied to low-level vision, its effectiveness remains limited, reflecting a
broader trend among open-source general-purpose MLLMs. We prompt Janus-Pro-7B with prompt
type (a), see fig. 8, on PANDABENCH Medium split, and observe that it almost invariably predicts
the same distortion and severity label for nearly every region. This indicates that the method lacks
reliable distortion understanding ability and is insensitive to degradation inherent in the inputs, mak-
ing its performance uninformative. The output is similar to the one presented in fig. 13, except for
each region predicted distortion and severity class are clean.

C.2 OPEN-SOURCE METHODS CONSIDERED, REPORTED

As discussed earlier, in open-source methods, we consider Q-Insight (Li et al., 2025), Q-SiT (Zhang
et al., 2025), Gemma 3-27B (Team et al., 2025), Seagull (Chen et al., 2024c), and DepictQA (You
et al., 2024a). Other than Gemma 3-27B, all other methods are distortion-specific MLLMs. Given
that images in PANDABENCH have variable number of regions, and these methods are limited in
the number of new tokens they can generate, we adopt prompt type (a), see fig. 8. We modify the
prompt with special tokens as necessary for each method. Our findings indicate that their perfor-
mance is generally limited, especially on Hard split of PANDABENCH indicating a broader trend in
lack of region-wise image understanding towards distortion analysis. While Seagull (Chen et al.,
2024c) is a region-first method, it struggles with following instructions and can not do comparative
assessment. Since the maximum new generated tokens are limited, we query all of these methods
region-wise for each image pair, i.e., a separate forward pass for each region in each pair. Hence,
we do not report performance on comparative task. For quality score prediction, we observe that the
outputs are largely static, varying only in coarse steps of 0.25. This behavior leads to low pearson
linear correlation coefficient (PLCC) and spearman rank-order correlation coefficient (SRCC), and
thus we consider the results unreliable and do not report them. A typical prompt/output example
representative of open-source methods is presented in fig. 13.

C.3 CLOSED-SOURCE METHODS CONSIDERED, REPORTED

We evaluate four frontier closed-source LLMs on PANDABENCH, namely GPT-5 Nano (Ope-
nAI, 2025), GPT-5 Mini (gpt-5-mini-2025-08-07) (OpenAI, 2025), GPT-4o
(gpt-4o-2024-11-20) (Hurst et al., 2024), and Gemini 2.5 Pro (Comanici et al., 2025).
Compared to open-source models, closed-source frontier MLLMs exhibit stronger instruction-
following abilities and are not constrained by output length. In practice, we find that a limit of 8192
tokens is sufficient to cover all regions in PANDABENCH images. Based on this observation, we
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Region Crop

Anchor Target Region Focus

Region Crop

Region Focus

Answer: 
{“anchor”: {“distortion”: “pixelate”, 
“severity”: “moderate”}, “target”:
{“distortion”: “blur”, “severity”: “severe”}}

Prompt (a): Analyze only the specified region, 
trees, in red bounding box: ... (x1,y1,x2,y2). 
You are given two images: 1) A region crop of 
bench 2) The full image with everything outside 
the region of interest (in red) dimmed. Classify 
the region into one of the following distortion 
types: ... and one of the following severity 
types: ... For example: {“distortion”: ..., 
“severity”: ...} and replace ... with appropriate 
distortion and severity type.

Figure 13: Open-Source MLLM Prompt/Output. A representative example of prompt type (a)
along with output for all open-source MLLMs evaluated in this work.

Anchor Target

Prompt (b): Provide an image quality assessment 
for each of the regions in image A (first) and 
image B (second) ... Bounding boxes and names...

Answer: 
1. A: {dist: blur, sev: minor, score: 0.78}, 
B: {dist: saturate-increase, sev: moderate, 
score: 0.85}, comparison: slightly-worse} 
...
16. A: {dist: contrast-decrease, sev: minor, 
score: 0.88}, B: {dist: contrast-increase, 
severity: minor, score: 0.92}, comparison: 
slightly-worse}

Figure 14: Closed-Source MLLM Prompt/Output. A representative example of prompt type (b)
along with output for all closed-source MLLMs evaluated in this work. Note that, in this example,
the image has 16 regions.

Standard Deviation GPT-5 Nano GPT-5 Mini GPT-4o Gemini 2.5 Pro

PANDABENCH
Hard

Distortion 0.0077 0.0016 0.0075 0.0029
Severity 0.0086 0.0025 0.0083 0.0033
Comparison 0.0065 0.0027 0.0105 0.0060
SRCC 0.0099 0.0076 0.0067 0.0070
PLCC 0.0097 0.0050 0.0077 0.0081

PANDABENCH
Medium

Distortion 0.0025 0.0076 0.0115 0.0104
Severity 0.0084 0.0015 0.0040 0.0106
Comparison 0.0059 0.0055 0.0138 0.0062
SRCC 0.0116 0.0054 0.0078 0.0079
PLCC 0.0103 0.0102 0.008 0.0077

PANDABENCH
Easy

Distortion 0.0061 0.0239 0.0271 0.0090
Severity 0.0065 0.0122 0.0183 0.0094
Comparison 0.0088 0.0121 0.0118 0.0083
SRCC 0.0207 0.0100 0.0052 0.0063
PLCC 0.0309 0.0072 0.0064 0.0055

Table 9: Standard Deviation on Accuracy Metric. The standard deviation for accuracy metric on
all four tasks of PANDABENCH computed over three independent runs of each method. We do not
report standard deviation for precision, recall and F1 score for brevity, but they follow similar trends.

employ prompt template type (b) (see fig. 9) for these models. For each split, we conduct three
independent runs per method and report the mean performance across runs in tables 2, 3 and 4.
We additionally report corresponding standard deviations in table 9 for accuracy metric on all four
tasks of PANDABENCH. A typical prompt/output example representative of closed-source methods
is presented in fig. 14.
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D ILLUSTRATION OF PANDABENCH

PANDABENCH comprises three splits, Easy, Medium, and Hard, taken from the test set of proposed
dataset PANDASET. From Easy to Hard, the task difficulty progressively increases. Recall that in
Easy split, both images in each pair are degraded by the same distortion type applied uniformly
across all regions, but with differing levels of severity. In the Medium split, one image is consis-
tently degraded by a single distortion across all regions, while its paired image exhibits region-wise
distortions sampled randomly from the full distortion set. We illustrate the three splits in fig. 15.
Notice how in PandaBench Hard, each region has different degradation, e.g., the ground in middle
image (last row) has noise, while it is free of noise in its pair on left (last row).
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Figure 15: PANDABENCH. Representative samples from Easy, Medium, and Hard splits of PAND-
ABENCH. In Easy split, only one distortion afflicts the entire image (and its regions, but with varied
severity), while in Medium, mixed has region-wise distortions (see the person in blue jacket). In
Hard split, the distortion varies by region in both images (see ground, bike, trees, etc.). Taken
together, they represent a spectrum of difficulty with subtle degradations inherent in the image to
complicated region-wise distortions.

E HYPERPARAMETER SENSITIVITY ANALYSIS

The optimization objective of PANDA is L = λ1L
rel
CE + λ2L

dist
CE + λ3L

sev
CE + λ4L

score
1 . We search

for the value of each λ ∈ {0.01, 0.1, 1.0, 5.0} using cross-validation. A set of baseline values
(obtained with each λ set as 1.0) serve as an indication for early stopping, and we only train for
full 30 epochs if a particular combination is better than the baseline. We set the final objective as
L = 0.1 × Lrel

CE + 1.0 × Ldist
CE + 0.1 × Lsev

CE + 1.0 × Lscore
1 , where λ1 = 0.1, λ2 = 1.0, λ3 =

0.1, λ4 = 1.0. Note that each λ is common for both its respective heads, i.e., for both anchor
and target the same λ is used. We present results of different runs in fig. 16 wherein each grey
point denotes an experiment that performed significantly worse and we label top five settings with
colored × mark. PANDA is trained for 30 epochs with a batch size of 6 on 8× NVIDIA v100
32GB GPUs, and it processes all regions for an image pair simultaneously. PANDA takes around
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Figure 16: Hyperparmeter Sweep. Plot of optimization objective hyperparameter sweep with
cross-validation on validation set of PANDASET. Each grey point denotes an experiment that per-
formed noticeably worse, and we label top five settings with colored × mark. A denotes anchor, T
denotes Target, Dist. denotes distortion, Sev. is short for severity, and Acc. denotes accuracy.

1.5 days to train for all 30 epochs, and in inference we employ one NVIDIA v100 32GB GPU. For
learning rate, we swept through {1e−2, 1e−4, 1e−6}, and found that 1e−4 best balanced speed of
optimization and convergence of optimization procedure. As shown in fig. 16, performance remains
largely consistent across most hyperparameter configurations, as shown by the tight cluster of grey
points around similar performance values, with only a few extreme combinations yielding noticeable
differences. This suggests that PANDA is not overly sensitive to hyperparameter selection, and that
reasonable choices are sufficient for stable performance.
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Distortion 
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Scene Rels

Figure 17: Distortion Graph Sample 01. Left image is Anchor (purple nodes in graph), Right
image is Target (green nodes in graph). Legend is presented, and ’rels’ is short for relations.

F DISTORTION GRAPHS

We present a few distortion graphs including the ones already presented in figs. 1 and 2, DG for
better visualization in figs. 17 to 19. We also discuss a few limitations of this work, PANDA, detail
directions for future work, and present a reproducibility and data statement.

F.1 LIMITATIONS & FUTURE WORK

PANDA serves as a minimal yet necessary baseline for learning the proposed distortion graph
task. While DG provides a complete intra- (semantics) and inter-image (distortions) representation,
PANDA remains intentionally simple and leaves room for improvement, particularly in handling
complex regions. An interesting future direction would be to employ DG as a separate intermediate
step where the graph is generated as part of the reasoning chains for region-wise distortion reasoning
before final answer is generated. Furthermore, as DG provides a general formalism for comparative
reasoning, an interesting avenue for future work is to extend it beyond distortion analysis to broader
comparative tasks in vision and multimodal settings.

Another potential avenue for future work pertains to the construction of PANDASET. While its
scenes are natural, and we preserve the real-world ISP distortions, from Seagull-100w (Chen et al.,
2024c), when they overlap with chosen distortion category, e.g., noise, blur, etc., the remaining
distortions are synthetic following (You et al., 2024b;a). This design is intentional because control-
lable distortions are what makes it possible to (i) assign deterministic region-level quality scores, (ii)
match regions with comparative labels, and (iii) systematically vary difficulty from Easy to Hard in
PANDABENCH. We show that our design choices are aligned with human preferences, see tables 7
and 8, but it is possible that comparative relations inherit underlying IQA model’s, TOPIQ (Chen
et al., 2024a), perceptual biases. More broadly, the lack of a large-scale, region-grounded, real-world
comparative dataset in the literature is a key limiting factor. Building PANDASET with human-
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Figure 18: Distortion Graph Sample 02. Left image is Anchor (purple nodes in graph), Right
image is Target (green nodes in graph). Legend is presented, and ’rels’ is short for relations.

Anchor
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Dist
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Scene Rels

Figure 19: Distortion Graph Sample 03. An example of an image pair with several regions result-
ing in a dense distortion graph. Left image is Anchor (purple nodes in graph), Right image is Target
(green nodes in graph). Legend is presented, and ’rels’ is short for relations.

annotated region-level comparative relations at similar scale would require a substantial annotation
effort, which we leave to the future work.
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We, therefore, view PANDASET as the first dataset that enables large-scale, region-wise distortion
understanding, and PANDABENCH as the first benchmark that supports systematic evaluation of
such region-wise comparative reasoning. We hope that this work catalyzes scientific research on
region-grounded comparative quality assessment, and our proposed distortion graph task serves as a
foundation towards that end.

F.2 REPRODUCIBILITY STATEMENT

We provide all the necessary details to reproduce our work, along with architecture details in sec-
tion 3, experimental setup in section 5, hyperparameter details, and compute requirements in ap-
pendix E. We will publicly release our code, trained models, and proposed dataset and benchmark
to help further scientific research on comparative assessment and region-level understanding.

F.3 DATA STATEMENT

As we discuss in section 4, PANDASET is built with two open-source datasets (i) PSG (Yang et al.,
2022) and (ii) Seagull-100w (Chen et al., 2024c). Both of these datasets have region-level segmenta-
tion maps, and scene information. In PSG, since it is an intersection of COCO Lin et al. (2014) and
Visual Genome (Krishna et al., 2017), scene level relationships (or predicates) are provided. While
Seagull-100w provides a short description of each region, we use a scene parser (Wu et al., 2019)
to parse region relations from these descriptions. Further, images in PANDASET vary in resolution
and orientation, e.g., portrait in fig. 13 and landscape in fig. 14, with a minimum spatial resolution
of 640× 480. We will release PANDASET with the same license as the original datasets.

27


	Introduction
	Related Work
	Distortion Graph
	Properties of Distortion Graph
	Generating Distortion Graph
	Panda Architecture


	Dataset & Benchmark
	PandaSet
	PandaBench

	Experiments
	Results & Discussion
	Showcase Application

	Conclusion
	Motivation
	Ablation Studies
	Distortion Graph formalism Aggregates to Whole-Image
	Analysis of Distortion Graph as Context
	Generality of Distortion Graph Representation

	Analysis of Multimodal Large Language Models
	Methods Considered, Not Reported
	Open-Source Methods Considered, Reported
	Closed-Source Methods Considered, Reported

	Illustration of PandaBench
	Hyperparameter Sensitivity Analysis
	Distortion Graphs
	Limitations & Future Work
	Reproducibility Statement
	Data Statement


