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ABSTRACT

Generalization in EEG-based motor imagery (MI) brain-computer interfaces (BCIs)
is hampered by cross-subject and cross-session variability. Although large-scale
EEG pretraining has advanced representation learning, their practical deployment
is hindered by the need for costly fine-tuning to overcome significant domain
shifts. Test-time adaptation (TTA) methods that adapt models during inference
offer a promising solution. However, existing EEG-TTA methods either rely on
gradient-based fine-tuning (suffering from high computational cost and catastrophic
forgetting) or data alignment strategies (failing to capture shifts in temporal pre-
dictive embeddings). To address these limitations, we propose BTTA-DG, a novel
Bayesian Test-Time Adaptation framework that performs efficient, gradient-free
adaptation by modeling the distribution of temporal predictive embeddings. Our
approach first employs a lightweight SincAdaptNet with learnable filters to extract
task-specific frequency bands. We then introduce a novel Dirichlet feature projec-
tion that maps temporal embeddings onto a compact and interpretable parameter
space, effectively capturing the concentration of time-varying predictive evidence.
Adaptation is achieved via a GMM-driven Bayesian inference mechanism, which
models the historical distribution of these Dirichlet parameters and fuses this evi-
dence with the model’s prior predictions to calibrate outputs for the target domain.
Extensive experiments show that BTTA-DG significantly outperforms previous
EEG-TTA methods, achieving state-of-the-art accuracy while running at real-time
speed. Furthermore, visualizations confirm the physiological interpretability of our
learned filters and the robust class separability of our Dirichlet feature space.

1 INTRODUCTION

Electroencephalography (EEG)–based brain–computer interfaces (BCIs) decode cortical activity to
control external devices (Clerc, 2013). Among them, motor-imagery (MI) BCIs leverage sensorimotor
rhythms (SMRs) (Neuper et al., 2006) and have shown promise in stroke rehabilitation (López-Larraz
et al., 2018) and assistive control (Fernández-Rodríguez et al., 2016; Noda et al., 2012). Recent
advances in large-scale EEG pretrained models (Wang et al., 2024; Jiang et al., 2024; Kim et al., 2024),
trained on massive datasets, have demonstrated unprecedented capabilities in learning general and
reliable representations. However, deploying such models in real-world scenarios remains challenging
due to significant data shifts in EEG recordings (Huang et al., 2023). These shifts stem primarily
from the non-stationarity of EEG signals, driven by cross-subject or cross-session neurophysiological
differences (Apicella et al., 2024). Consequently, bridging these distributional gaps requires robust
adaptive strategies beyond pretraining alone (Xu et al., 2020; Wimpff et al., 2025; Liu et al., 2025).

Test-time adaptation (TTA), which adapts models during inference using online unlabeled data (Li
et al., 2023), presents a promising solution for practical BCI deployment. However, existing EEG-
TTA methods fall into two paradigms with critical trade-offs. Gradient-based approaches update
model parameters through techniques such as entropy minimization (Wang et al., 2020), pseudo-
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label optimization (Lee et al., 2013; Wang et al., 2022), and consistency regularization. While
effective, these methods suffer from high computational overhead due to gradient backpropagation
and risk catastrophic forgetting when continuously updating pre-trained representations. For in-
stance, OTTA (Wimpff et al., 2024) integrates data alignment with entropy-based batch normalization
finetuning, while T-TIME (Li et al., 2023) employs ensemble learning with conditional entropy mini-
mization, both requiring substantial computational resources. Conversely, non-gradient approaches
avoid parameter updates by recalibrating domain-specific statistics, such as batch normalization
layer recalculation (Schneider et al., 2020) or data alignment (Wimpff et al., 2024; Bakas et al.,
2025). While computationally efficient, these methods rely on shallow alignment techniques that
inadequately capture the complex, domain shifts inherent in EEG representations across subjects and
sessions. This creates a fundamental challenge: to develop a TTA framework that is both computa-
tionally efficient and capable of modeling deep distributional changes, all while being theoretically
grounded and avoiding destructive model updates.

To address these challenges, we propose BTTA-DG, a Bayesian Test-Time Adaptation framework that
achieves high-performance, gradient-free adaptation via Dirichlet feature projection and GMM-driven
inference. Our approach introduces the Dirichlet distribution to EEG-TTA, treating it as a "distribution
over categorical distributions" to model prediction uncertainty (Wong, 1998).” Our method first
employs a Sinc-based adaptive network (SincAdaptNet) to extract powerful, task-specific features. We
then introduce a novel Dirichlet feature projection, which maps temporal predictive embeddings onto a
compact, interpretable parameter space. Unlike conventional EEG-TTA methods that rely on heuristic
data (Zanini et al., 2017; He & Wu, 2019) or shallow statistics alignment (Schneider et al., 2020),
this probabilistic representation effectively models the concentration of the model’s time-varying
predictive distribution, allowing us to capture shifts in temporal predictive embeddings in the new
domain, which is a significant advance. To ensure stable and efficient adaptation, we design a Gaussian
Mixture Model (GMM)-driven Bayesian inference mechanism. A GMM models the historical
distribution of Dirichlet parameters from the target domain, and Bayesian inference fuses this
likelihood with the deep model’s prior predictions. This entire process is gradient-free, calibrating the
model’s outputs without destructive updates to its pre-trained weights, thereby preventing catastrophic
forgetting. Our contributions include:

• We construct a Sinc-based adaptive network (SincAdaptNet) that leverages learnable Sinc-
filters to extract task-specific frequency bands. It enhances the representation of temporal
embeddings by isolating the most informative spectral components.

• We are the first to introduce the Dirichlet distribution to EEG-TTA, creating a low-
dimensional projection that provides a robust and interpretable representation of deep
distributional shifts, overcoming the limitations of prior heuristic and shallow alignment
methods.

• We propose a novel GMM-driven Bayesian inference mechanism that enables gradient-free
adaptation. By modeling the historical Dirichlet parameter distribution, the GMM retains
global-neighborhood knowledge of the test data. Bayesian inference then combines the
GMM likelihood with prior predictions to yield calibrated posterior predictions.

Across four public MI datasets, BTTA-DG achieves state-of-the-art cross-subject accuracy with
real-time speed. Visualization analyses confirm the physiological interpretability of our learned
spatial and spectral filters, which isolate MI-specific scalp topographies (frontal, central, parietal, and
occipital regions) and frequency bands (mu, beta, gamma). Furthermore, we show that our Dirichlet
feature space yields robust class separability, evidenced by low intra-class covariance (<0.27) and
high inter-class KL divergence (>31.85). These results validate BTTA-DG as a lightweight, robust,
and theoretically grounded framework for practical test-time adaptation in BCIs.

2 METHODOLOGY

Notations In MI-TTA research, a cross-subject setting is commonly considered, where leave-
one-subject-out (LOSO) cross-validation is widely adopted (Altaheri et al., 2023). Each subject in
turn serves as the unlabeled target, with all other subjects’ data forming the source. Let {Dl

src}Ll=1
denote the source domain containing labeled EEG trials from L subjects, where Dl

src = {(sil,yi
l )}N

l

i=1
consists of N l trials for subject l. Each trial sil ∈ RC×T is a C-channel EEG signal of length T ,
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with class label yi
l ∈ L. The target domain Dtgt = {si}

Ntgt
i=1 contains Ntgt unlabeled test trials arriving

sequentially from one single subject. A deep classification model fθ = fcls ◦ genc, with parameters
θ, is pre-trained on {Dl

src}Ll=1. Here, the encoder genc : RC×T → R|L|×T maps the EEG trials to
embeddings of dimension |L| × T , and the classifier fcls : R|L|×T → R|L| produces predictions for
|L| classes. The goal is to adapt fθ to Dtgt via online MI-TTA framework without requiring target
labels or source data. In addition, within-subject adaptation across sessions is also discussed in
Appendix H.

2.1 SINC-BASED ADAPTIVE BANDPASS FILTERING NETWORK

We propose a lightweight Sinc-based Adaptive Bandpass Filtering Network (SincAdaptNet) to serve
as the deep classification model fθ within the MI-TTA framework. The network comprises: Spat-
Conv→ Sinc-Conv→ IncCh-Conv→ Cls-Conv, with layer normalization inserted after temporal
filtering and channel expansion to avoid batch-statistics dependence when the online batch size is
one (Ba et al., 2016).

Spat-Conv performs spatial filtering with Fspat kernels of size (C × 1), reducing channel redundancy
while retaining task-relevant spatial patterns, akin to data-driven CSP (Blankertz et al., 2007). Sinc-
Conv is an interpretable, parametrized temporal convolution inspired by SincNet (Ravanelli &
Bengio, 2018; Zhang et al., 2024): rather than learning free-form kernels, it learns low cutoff flow
and bandwidth fband (thus fhigh = flow + fband), from which a windowed-sinc band-pass kernel
is generated. This yields MI-relevant mu (8–13 Hz), beta (13–30 Hz) McFarland et al. (2000);
Pfurtscheller et al. (2006), and gamma (> 30 Hz) Darvas et al. (2010) rhythms with few parameters
and clear spectral interpretability. The Sinc-Conv layer comprises Fsinc adaptive bandpass filters of
size (1×Nsinc) and uses “SAME” padding to preserve temporal dimension. IncCh-Conv expands
channels to 2Fsinc to enrich representation, and Cls-Conv maps features to |L| × T embeddings,
where |L| denotes the number of motor imagery classes and T denotes the temporal length.

Critically, inspired by the SwAV framework (Caron et al., 2020), normalized probability spaces
enable more stable and interpretable representation learning under domain shift. For each EEG trial,
its temporal predictive embeddings are mapped through a softmax function to follow time-varying
categorical distributions, denoted by X = genc (s) = [x1,x2, . . . ,xT ] ∈ R|L|×T . Each xj ∈ R|L|

encodes an instantaneous class probability vector at timestep j, collectively forming a trajectory
of time-varying uncertain predictions. The model’s prior prediction is obtained through temporal
averaging: fcls(X) = 1

T

∑T
j=1 xj ∈ R|L|. This averaging process integrates the dynamic prediction

information over time, providing a robust and informative prior for subsequent Bayesian inference.
Complete architectural details of SincAdaptNet are provided in Appendix B.

2.2 BAYESIAN TEST-TIME ADAPTATION VIA DIRICHLET FEATURE PROJECTION AND
GMM-DRIVEN INFERENCE

To address challenges in current MI-TTA methods–catastrophic forgetting from gradient-based up-
dates and insufficient modeling of deep feature shifts–we propose a probabilistic test-time adaptation
framework that integrates Dirichlet feature projection with GMM-driven Bayesian inference. This
approach dynamically calibrates the deep model’s prior predictions fθ(s) through Bayesian inference,
enabling efficient, gradient-free and theoretically grounded online test-time adaptation.

Overall, the Dirichlet feature projection method first projects the post-softmax temporal predictive
embeddings X to the low-dimensional Dirichlet parameters. It preserves the prior concentration
towards each class for temporal predictive embeddings that follow a time-varying categorical dis-
tribution. Second, in GMM-driven Bayesian inference, the Dirichlet parameters estimated from
historical EEG trials are clustered by a GMM, which efficiently encodes both global information of
the historical test trials and the neighborhood information of the current calibrating trial. Bayesian
inference is then used to combine the GMM likelihood with the prior prediction of deep model to
obtain the calibrated posterior.

1) DIRICHLET FEATURE PROJECTION FOR DEEP-FEATURE MODELING

The core of our method is the Dirichlet feature projection. The Dirichlet distribution, as a "dis-
tribution over distributions (Wong, 1998)", is a probability distribution over the parameter space
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Figure 1: Dirichlet distributions for varying parameter settings. Each subplot displays 1000 samples
(blue points) and the mean (red points) within the probability simplex (red lines). (a)-(c) illustrate
that increasing the total scale α0 yields lower uncertainty (lower variance). Comparing (b) and (d)
illustrates that elevating a component αi shifts the prior concentration toward its corresponding class.

of categorical distribution. It can encode temporal predictive embeddings of categorical distri-
butions for an EEG trial rather than a fixed categorical distribution. Let the temporal predictive
embeddings output from SincAdaptNet’s encoder be X = [x1,x2, . . . ,xT ] ∈ R|L|×T , where each
xj = (x1j , x2j , . . . , x|L|j)

⊤ ∈ ∆|L|−1 represents instantaneous categorical probability vector at
timestep j. The probability simplex ∆|L|−1 is defined as

∆|L|−1 =

xj ∈ R|L| :

|L|∑
i=1

xij = 1, xij ≥ 0

 . (1)

The Dirichlet distribution offers interpretable parameter α, where each component αi reflects the
concentrated prior probability towards class i of temporal predictive embeddings, and the scale
α0 =

∑|L|
i=1 αi indicates the overall uncertainty across T time steps (Ng et al., 2011) (see Figure 1).

It is important to note that α (and thus α0) is obtained by maximum-likelihood estimation via a
fixed-point algorithm rather than by manual tuning.

Assume that the temporal predictive embeddings X follow a Dirichlet distribution, denoted as
X ∼ Dir(α), with parameter vector α = (α1, . . . , α|L|) ∈ R|L|

+ . Each categorical probability vector
xj is an i.i.d. sample from Dir(α). The support of Dir(α) is also confined to ∆|L|−1.

We define a projection map P that transforms the temporal predictive embeddings X ∈ R|L|×T into
its low-dimensional Dirichlet parameters α ∈ R|L|

+ via maximum likelihood estimation (MLE),

P : R|L|×T → R|L|
+ , X 7→ α̂MLE = argmax

α

T∑
j=1

logD(xj ;α), (2)

where the Dirichlet probability density function is given by

D(xj ;α) =
Γ(α0)∏|L|
i=1 Γ(αi)

|L|∏
i=1

xαi−1
ij . (3)

Here, Γ(·) is the Gamma function.

This projection effectively compresses the temporal dynamics of the deep features into a single,
semantically rich vector that parameterizes the model’s predictive distribution for that trial. The
Dirichlet parameter estimate, α̂MLE, could be efficiently computed using a established fixed-point
iteration algorithm (Minka, 2012), detailed in

αnew
i = ψ−1

ψ(αold
0 ) +

1

T

T∑
j=1

log xij

 , (4)

where ψ (u) = d
duΓ (u) denotes the Digamma function. Full algorithmic details for computing the

post-projection Dirichlet parameters are provided in Appendix C.
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2) GMM-DRIVEN BAYESIAN INFERENCE FOR GRADIENT-FREE CALIBRATION

For historical test EEG trials s, we compute their Dirichlet parameters via the projection α̂MLE =
P(genc(s)) and store parameters of high-confidence trials in a memory bank My organized by their
(calibrated) predicted label. This Dirichlet feature projection is performed independently for each
trial and depends only on its own temporal predictive embeddings. A Gaussian Mixture Model
(GMM) (Reynolds et al., 2009) is then employed to cluster the historical Dirichlet parameters in
My for each class to build a non-parametric density estimate of the historical Dirichlet parameters
accumulated from the target domain, yielding a class-specific GMM likelihood:

pGMM(α | y) =
K∑

k=1

πy,kN (α;µy,k,Σy,k), (5)

where K is the number of mixture components for class y, πy,k are the weights satisfying∑K
k=1 πy,k = 1 and πy,k > 0, and µy,k and Σy,k are the mean and covariance of the kth Gaus-

sian component, respectively.

The GMM encodes the global distribution of the historical test EEG trials and each component model
preserves the neighborhood information of the current test trial to be calibrated. Any proximity of the
current test trial to a particular cluster results in a relatively large GMM likelihood.

For a current test EEG trial si with parameter α̂MLE, the calibrated posterior is computed by combining
the GMM likelihood pGMM(α̂MLE | y) with the deep model’s prior prediction pθ(y) = fθ(s

i) via
Bayesian inference:

pcal(y | α̂MLE) =
pGMM(α̂MLE | y) pθ(y)∑|L|

y′=1 pGMM(α̂MLE | y′) pθ(y′)
. (6)

Thus, the historical GMM influences only the posterior through the term pGMM(α̂MLE | y), while the
Dirichlet-projected feature α̂MLE itself remains purely trial-specific. The final calibrated prediction is
then obtained via ŷcal = argmaxy∈L pcal(y | α̂MLE). Subsequently, the Dirichlet parameter α̂MLE of
the current test EEG trial is updated into the memory bank according to its confidence and predicted
label. We maintain a fixed-size memory bank and discard the oldest entries when full, while only
inserting trials that satisfy both a confidence threshold τconf and an entropy threshold τent. In this
way, highly uncertain or noisy recent trials are prevented from entering the memory, very old trials
are gradually forgotten. Each inserted trial contributes at most 1/M to the GMM fitting, so a small
set of recent trials cannot dominate the GMM posterior fusion. After each insertion, we refit the
class-specific GMM on the corresponding memory bank using standard Expectation–Maximization
(EM). This is feasible because the Dirichlet features are very low-dimensional, so full EM refitting
incurs only small overhead, whereas more sophisticated incremental or online clustering would
introduce unnecessary complexity without empirical benefits in our setting.

Algorithm 1 summarizes the pseudo-code of the proposed BTTA-DG framework (see Appendix D).

Mŷcal ←Mŷcal ∪ {α̂MLE}. (7)

3) THEORETICAL ANALYSIS FOR ENHANCED TEST-TIME ADAPTABILITY

The central innovation of our work is the shift from adapting on point estimates (i.e., pseudo-labels)
to adapting on probabilistic distributional representations. Conventional TTA methods are highly
sensitive to the noise and uncertainty inherent in single predictions from a domain-shifted model.
Furthermore, shallow alignment techniques fail to capture how the complex space of temporal
predictive embeddings deforms in a new domain. Our key insight is that the domain shift is more
reliably expressed in the distribution of the model’s sequential predictions rather than in any single
prediction.

Instead of directly using the model’s output point estimates, we introduce Dirichlet feature projection
to model the entire distribution of the sequential categorical embeddings for each trial. This yields
a low-dimensional Dirichlet parameter vector α. The vector α provides a richer representation of
a trial’s predictive characteristics than a simple class prediction. Each component αi reflects the
“concentration” or evidence for class i, while the total scale α0 relates to the predictive uncertainty or
variance throughout the trial. When encountering a new domain, inherent signal differences cause

5



Published as a conference paper at ICLR 2026

shifts in these predictive distributions. Our Dirichlet projection explicitly captures this distributional
shift in a compact parametric form. This is a more robust and informative feature for adaptation, as it
encodes not just what the model predicts, but also how confident and consistent that prediction is
across time, which is crucial for characterizing a new domain.

This principled representation is what enables superior test-time adaptability. By capturing the essence
of the domain shift in a low-dimensional parameter space, we can perform effective calibration using
well-established density estimation (GMM) and inference (Bayesian) techniques. This completely
bypasses the need for gradient-based optimization, thus circumventing catastrophic forgetting and
computational inefficiency. The theoretical soundness is empirically validated through visualization
analysis (Figure 3), demonstrating well-separated class clusters with high inter-class KL divergence
(>31.85) and low intra-class covariance (<0.27), confirming successful mapping of domain-shifted
signals into a discriminative latent space.
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3 EXPERIMENTAL RESULTS

3.1 IMPLEMENTATION

Datasets The BTTA-DG framework was evaluated on three MOABB (Jayaram & Barachant, 2018)
motor–imagery datasets BNCI2014001, BNCI2014002, and BNCI2015001, and additionally SHU
MI dataset (Ma et al., 2022). Key characteristics are summarized in Table 1. A cross-subject leave-
one-subject-out (LOSO) protocol was adopted, using only the first session from each dataset. The
source model was pretrained on the training set, and during test-time adaptation, test trials arrived
sequentially one-by-one in the online adaptation setting. Preprocessing included only a 1–48 Hz
bandpass filter and Euclidean Alignment (He & Wu, 2019).

Table 1: Summary of the four MI EEG datasets

Dataset Number of
subjects

Number of
channels

Sampling
rate (Hz)

Trial
length (s)

Number of
sessions

Trials in
1st session

Types of
imaginations

BNCI2014001 9 22 250 4 2 144 left hand, right hand
BNCI2014002 14 15 512 5 1 100 right hand, both feet
BNCI2015001 12 13 512 5 3 200 right hand, both feet
SHU MI Dataset 25 32 512 4 5 100 left hand, right hand
BCI C IV 2b 9 3 250 4 5 120 left hand, right hand

Baselines To comprehensively assess the performance of BTTA-DG, we compared it against
traditional classification methods, Transformer-based method, optimal transport-based method and
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Table 2: Cross-subject adaptation accuracy (%) on BNCI2014001, with an asterisk(*) denoting the
significance level (*: p<0.05).

Setting Method S0 S1 S2 S3 S4 S5 S6 S7 S8 Avg.

Source
CSP 83.33 52.08 97.92 75.00 56.25 67.36 72.22 88.19 71.53 73.77
EEGNet 83.19 60.28 92.08 67.92 57.22 72.50 64.86 86.11 79.44 73.73±1.11

EEG conformer 81.18 64.16 96.80 74.44 58.47 70.76 64.17 92.71 79.03 75.75±2.15

SincAdaptNet 84.97 63.93 97.68 77.13 56.22 72.68 67.26 93.86 79.56 77.03±1.31

Online TTA

BN-adapt 84.97 63.93 97.68 77.13 56.22 72.68 67.26 93.86 79.56 77.03±1.31

Tent 75.97 57.92 94.51 68.54 52.22 65.21 59.38 90.14 68.19 70.23±3.28

PL 76.46 56.67 97.92 70.34 52.29 66.32 60.42 93.89 72.15 71.83±3.21

CoTTA 85.00 63.68 98.05 76.32 57.22 72.08 67.64 94.63 80.48 77.24±1.51

SAR 84.24 63.40 97.36 76.25 54.72 69.10 67.50 93.54 80.28 76.27±1.92

T-TIME 84.44 61.94 97.43 76.11 56.60 69.38 63.13 94.65 79.38 75.90±1.95

OTTA 84.43 63.60 97.14 77.63 57.63 73.04 66.44 95.26 83.14 77.58±1.33

BTTA-DG 87.51* 66.67* 98.61* 77.08 57.64 73.61 68.75* 95.83* 82.64 78.70∗
±1.32

Table 3: Cross-subject adaptation accuracy (%) on BNCI2014002, with an asterisk(*) denoting the
significance level (*: p<0.05).

Setting Method S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 Avg.

Source
CSP 62.00 82.00 98.00 76.00 79.00 70.00 84.00 67.00 94.00 72.00 68.00 63.00 59.00 44.00 72.71
EEGNet 65.00 80.00 83.00 80.20 74.20 68.20 88.80 54.60 91.20 75.00 81.00 72.00 59.80 51.40 73.17±0.59

EEG conformer 66.50 80.50 95.00 78.10 80.10 70.30 90.50 70.20 92.40 73.00 79.50 75.80 58.20 47.30 75.53±1.85

SincAdaptNet 67.90 80.10 99.00 79.30 81.00 72.20 93.10 76.10 94.00 75.90 81.20 80.90 60.40 51.60 78.05±2.48

Online TTA

BN-adapt 67.90 80.10 99.00 79.30 81.00 72.20 93.10 76.10 94.00 75.90 81.20 80.90 60.40 51.60 78.05±2.48

Tent 57.20 70.40 90.30 70.70 67.10 68.30 88.10 64.30 91.60 64.10 77.10 70.40 52.30 49.20 70.08±4.30

PL 57.70 72.30 99.80 73.80 71.60 67.70 92.10 65.80 93.60 64.80 78.70 68.40 53.10 49.20 72.04±3.54

CoTTA 66.80 79.90 99.90 79.40 81.50 72.30 93.80 75.50 95.00 76.30 81.50 80.50 59.30 52.00 78.12±1.71

SAR 66.20 80.10 99.60 77.20 80.80 72.70 91.90 74.40 94.40 74.10 81.30 79.40 57.00 49.10 77.02±2.03

T-TIME 67.10 78.80 99.40 79.60 82.70 70.50 91.80 74.20 92.80 73.80 79.60 79.30 57.70 48.60 76.85±2.34

OTTA 67.40 83.00 98.50 78.10 81.30 74.40 94.60 70.00 94.70 78.60 77.20 82.50 63.90 51.80 78.29±1.68

BTTA-DG 69.00* 83.00 100.00 82.00* 83.00 75.00 95.00 80.00* 95.00 77.00 84.00* 83.00 63.40 54.60* 80.29∗
±1.07

state-of-the-art TTA methods, including CSP (Blankertz et al., 2007), EEGNet (Lawhern et al., 2018),
EEG Conformer (Song et al., 2022), BN-adapt (Schneider et al., 2020), Tent (Wang et al., 2020),
PL (Lee et al., 2013), SAR (Niu et al., 2023), CoTTA (Wang et al., 2022), T-TIME (Li et al., 2023),
and OTTA (Wimpff et al., 2024). All experiments were run independently 10 times, and the average
results are reported. Detailed experimental settings, including dataset descriptions, baseline methods,
and hyperparameters, are provided in Appendix E.

3.2 MAIN RESULTS

Table 2 reports the cross-subject accuracies on BNCI2014001, including the source model and
online TTA techniques. Our proposed BTTA-DG achieves state-of-the-art performance with an
average accuracy of 78.70%. Notably, BTTA-DG excels in most subjects, highlighting its robust
generalization capabilities across different subjects. We also observe that several gradient-based
TTA baselines drop after applying TTA. Because in EEG’s online single-trial adaptaion (batch size
= 1), noisy trials induce misleading gradients that update BN weights and overwrite pre-trained
structure—i.e., catastrophic forgetting. BTTA-DG avoids this failure mode by freezing the network
and adapting in a probabilistic parameter space, yielding gradient-free calibration without destructive
updates. Table 3 and Table 4 summarize LOSO cross-subject accuracies on BNCI2014002 and
BNCI2015001. Results on SHU MI dataset and detailed statistical significance analysis are presented
in Appendix F. Given the practical constraints of portable EEG hardware, we further evaluated
BTTA-DG on BCI Competition IV 2b, which contains only three EEG channels. (Appendix G)

In addition, we also assessed the performance of BTTA-DG in a within-subject cross-session experi-
ment. We pretrained the model on the first session and tested it on the second session of BNCI2014001,
simulating session shifts in the same subject’s motor imagery. The results of this cross-session adap-
tation are presented in Table 5, demonstrating that BTTA-DG effectively adapts to different sessions
too (86.50%± 2.49%). Statistical significance analysis are presented in Appendix H. Additionally,
a sliding-window experiment on BNCI2014001 further shows that BTTA-DG also improves over
the source model in online BCIs requiring low latency and continuous feedback. (Appendix I).
Furthermore, to relate the cross-subject TTA gains to each subject’s intrinsic "decodeability", we
report three-fold within-subject k-fold adaptation accuracies on BNCI2014001 in Appendix J.
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Table 4: Cross-subject adaptation accuracy (%) on BNCI2015001, with an asterisk(*) denoting the
significance level (*: p<0.05).

Setting Method S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 Avg.

Source
CSP 93.50 93.50 86.50 85.00 79.00 62.00 65.00 59.00 59.50 65.00 59.50 56.50 72.00
EEGNet 91.50 95.00 75.70 85.90 81.30 68.60 65.20 64.30 63.00 66.50 57.50 55.20 72.48±0.52

EEG conformer 94.00 95.20 83.10 86.50 84.80 66.40 68.50 64.10 63.50 65.00 58.30 56.40 73.82±1.65

SincAdaptNet 97.35 94.70 90.70 87.65 87.30 64.10 72.30 65.30 64.75 63.15 59.80 58.70 75.48±1.84

Online TTA

BN-adapt 97.35 94.70 90.70 87.65 87.30 64.10 72.30 65.30 64.75 63.15 59.80 58.70 75.48±1.84

Tent 80.30 68.65 73.75 68.05 68.80 55.15 56.60 57.15 54.45 55.55 51.60 50.25 61.69±4.33

PL 97.85 90.50 77.30 80.10 70.30 56.30 58.00 56.75 54.25 55.70 51.60 49.90 66.55±4.17

CoTTA 97.90 95.35 90.80 88.45 88.00 63.65 72.10 65.20 65.75 63.45 58.90 58.50 75.67±2.21

SAR 96.85 87.75 90.60 73.30 87.65 64.60 72.65 64.80 65.25 62.75 60.70 57.45 73.70±3.32

T-TIME 95.40 93.70 89.65 86.40 83.45 63.25 73.25 62.50 64.45 60.10 59.00 57.10 74.02±2.40

OTTA 98.95 95.00 89.05 85.45 87.70 71.55 69.70 67.55 61.45 66.45 62.60 59.00 76.20±1.50

BTTA-DG 98.50 96.00* 92.00* 90.80* 88.50 65.50 75.50 67.50 65.75 65.50 64.50* 65.00* 77.92∗
±1.76

Table 5: Cross-session adaptation accuracy (%) on BNCI2014001, with an asterisk(*) denoting the
significance level (*: p<0.05).

Setting Method S0 S1 S2 S3 S4 S5 S6 S7 S8 Avg.

Source
CSP 88.19 54.17 97.22 65.97 48.61 70.14 68.06 94.44 90.97 75.31
EEGNet 86.81 63.54 94.65 70.97 72.92 68.61 73.26 93.47 92.71 79.66±2.52

EEG Conformer 87.92 58.75 97.15 70.35 75.83 68.54 77.77 95.63 89.23 80.13±3.18

SincAdaptNet 84.69 56.64 98.51 70.32 86.22 72.06 82.47 97.54 92.47 82.33±2.62

Online TTA

BN-adapt 84.69 56.64 98.51 70.32 86.22 72.06 82.47 97.54 92.47 82.33±2.62

Tent 80.35 51.18 99.03 57.92 64.38 62.22 64.51 93.06 90.83 73.72±4.77

PL 77.71 51.74 98.75 58.13 75.28 64.58 68.75 97.01 91.46 75.93±4.72

CoTTA 85.63 54.51 99.44 69.03 86.46 72.36 82.71 98.33 93.06 82.39±2.83

SAR 86.32 55.00 99.24 71.11 86.11 70.49 82.92 96.53 91.88 82.18±2.99

T-TIME 78.40 54.03 98.33 69.79 81.94 70.49 80.69 97.50 91.53 80.30±3.42

OTTA 89.71 55.89 96.79 72.42 91.58 73.67 87.49 96.03 91.58 83.91±2.25

BTTA-DG 85.42 62.50 100.00* 76.39* 91.67 77.78* 90.97 100.00* 93.75 86.50∗
±2.49

Table 6: Quantitative alignment of learned Sinc filter passbands with known MI-EEG rhythms on
BNCI2014001. Values denote, for each subject, the percentage (%) of filters whose passbands overlap
each band.

Frequency band S0 S1 S2 S3 S4 S5 S6 S7 S8 Avg.

µ (8–13 Hz) 24.17 25.83 25.83 23.33 24.17 27.50 24.17 24.17 25.00 24.91
β (13–30 Hz) 32.50 35.00 28.33 28.33 43.33 25.83 30.00 28.33 29.17 31.20
γ (30–45 Hz) 35.83 30.83 34.17 40.00 26.67 40.00 40.00 40.00 36.67 36.02
Other 7.50 8.33 11.67 8.33 5.83 6.67 5.83 7.50 9.17 7.87

To verify that SincAdaptNet’s Sinc-Conv layer learns meaningful bandpass filters, Figure 2 illustrates
the frequency responses of each learned filter on BNCI2014001 and their cumulative response in
cross-subject LOSO setting (training set: S1–S8; test set: S0). Learned filters partition into three
physiologically meaningful ranges – mu rhythm (8-13 Hz, Filters 1-7), beta rhythm (13-30 Hz,
Filters 8-17), and gamma rhythm (30-68.5 Hz, Filters 18-24). Cumulative response (black curve)
peaks in the mu (11.2 Hz), beta (30.5 Hz), and gamma (55.3 Hz) bands, demonstrating significant
energy concentration of MI EEG. Similar spectral patterns emerge across different test subjects (see
Appendix K). Beyond these qualitative plots, Table 6 summarizes a quantitative alignment analysis
on BNCI2014001 (see Appendix L for calculation details). On average, about 25% of filters align
with the µ band, 31% with the β band, and 36% with the low-γ band, leaving fewer than 8% outside
these MI rhythms. This concentration on well-established sensorimotor frequencies further supports
the physiological interpretability of the SincAdaptNet front-end.

Figure 14 (in Appendix M) presents the 16 spatial kernels learned by SincAdaptNet’s Spat-Conv
layer as scalp topographies, each displaying a distinct electrode weighting akin to those produced by
the CSP (Blankertz et al., 2007). The range of frontal, central, parietal, and occipital patterns (Decety,
1996; Lesser et al., 1998) highlights the model’s capacity to learn multiple spatial representations of
EEG activity.
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Figure 4: Sensitivity of BTTA-DG to key hyperparameters.

Figure 3 visualizes the low-dimensional Dirichlet parameter estimated from test EEG trials and
GMM clustering outcomes on BNCI2014001 in cross-subject LOSO setting (training set: S1–S8;
test set: S0). The low-dimensional Dirichlet parameter of EEG representation exhibits good class
separability, with misclassified samples predominantly located near class boundaries. Moreover, a
high inter-class KL divergence (31.85) and a low intra-cluster covariance (0.27) indicate that GMM
effectively captures both global and local information of Dirichlet parameter distribution, providing a
robust statistical foundation for Bayesian inference. The geometry of Dirichlet parameters and cluster
remains stable for other test subjects (see Appendix N).

Computational efficiency To assess the computational efficiency of BTTA-DG, we measured the
average inference time and the number of floating-point operations (FLOPs) per trial for each method
on the BNCI2014001 dataset. As presented in Table 7, BTTA-DG achieves real-time performance
with an average inference time of 15.7 ms per trial – 17.8% faster than T-TIME (Li et al., 2023) and
24.2% faster than OTTA (Wimpff et al., 2024), which are the recent baselines for EEG-TTA. BN-
adapt is the fastest method because it merely recomputes batch-normalization statistics without any
gradient-based optimization or probabilistic inference. Detailed computational complexity analysis
and memory usage are in Appendix O.

Ablation study To dissect the contributions of our proposed components, we conducted an ablation
study, with the results summarized in Table 8. We start with the SincAdaptNet (Source Only) model
as our baseline. We then incorporate Euclidean Alignment (+ EA) to establish the performance of
a standard domain alignment technique. We further evaluate BTTA-DG w/o EA, which removes
EA but retains the Dirichlet feature projection and GMM-driven inference. We also include Sin-
cAdaptNet + EA + GMM, which performs GMM-driven inference directly on the time-averaged
class-probability vector. The crucial next step isolates the effectiveness of our Dirichlet projection by
applying the Dirichlet Projection without the GMM-driven inference (+ Dirichlet Projection),
instead using a simple classifier on the projected parameters. Finally, our BTTA-DG (Full Model)
integrates all components. Across all datasets and settings, EA provides an initial improvement over
SincAdaptNet, and BTTA-DG w/o EA also yields gains over the source-only model, indicating that
the Dirichlet+GMM module has standalone adaptation capability. Introducing GMM calibration on
the mean class-probability (+ EA + GMM) leads to marginal improvements over + EA. Consistently,
SincAdaptNet + EA + Dirichlet outperforms both + EA and + EA + GMM, while the full BTTA-DG,
which combines EA, Dirichlet projection and GMM-based Bayesian inference, achieves the best
performance in every setting, with absolute gains of roughly 2–6% over the source-only baseline.

Sensitivity analysis To assess the robustness of BTTA-DG, sensitivity analyzes were conducted
on three key hyperparameters: the number of GMM components K, the minimum confidence
threshold τconf and the maximum entropy threshold τent. τconf and τent govern the conditions under
which Dirichlet parameters of test trials are stored in the memory bank: Dirichlet parameters are
retained if the confidence of trials exceeds τconf and their entropy is below τent, ensuring that only
high-certainty, low-uncertainty test data contribute to the adaptation process. As shown in Figure 4,
BTTA-DG exhibits robustness across parameter variations. Accuracy remains stable (78.2%–78.7%)
for K ∈ [2, 12]. Higher thresholds (0.53–0.65) improve accuracy from 78.0% to 78.7%, filtering
low-confidence trials to reduce noise in adaptation. Low entropy (0.65–0.70) sustains accuracy at
78.0%–78.7%, ensuring only high-certainty trials enter the memory bank.

9



Published as a conference paper at ICLR 2026

Sensitivity to Online Class Imbalance To evaluate the robustness of BTTA-DG in practical
scenarios where data flow may not be uniformly distributed, we conducted an experiment on the
BNCI2014001 dataset under artificially induced online class imbalance. We systematically varied the
class ratio in the test set from a balanced 1:1 distribution to a severely imbalanced 1:0.25. Table 9
reports the class-wise and overall accuracies under these ratios. While the overall accuracy gracefully
degrades with increasing imbalance, we observe that the accuracy for the minority class (Class 1)
conversely improves as its prevalence decreases. These results indicate that BTTA-DG does not
collapse under imbalance but instead specializes to rare events, which is desirable for many real-world
BCI scenarios. A more detailed interpretation is provided in Appendix P.

Table 7: Average inference time and FLOPs per trial on BNCI2014001.
Method BN-adapt Tent PL CoTTA SAR T-TIME OTTA BTTA-DG

Time (ms) 5.1 18.4 17.8 23.0 32.5 18.5 19.5 15.7
FLOPs (M / trial) 133.3 266.7 266.7 333.4 466.9 266.7 330.5 141.6

Table 8: Ablation Study across settings and MI datasets. Mean ± s.d. accuracy (%).

Method BNCI2014001 BNCI2014002 BNCI2015001 SHU MI

cross-session cross-subject cross-subject cross-subject cross-subject

SincAdaptNet (Source Only) 80.62± 2.70 75.30± 1.82 76.40± 1.62 73.92± 1.95 61.02± 1.70

BTTA-DG w/o EA 81.88± 2.58 76.85± 1.65 77.55± 1.59 75.06± 1.88 61.90± 1.68

SincAdaptNet + EA 82.33± 2.62 77.03± 1.31 78.05± 2.48 75.48± 1.84 62.42± 1.72

SincAdaptNet + EA + GMM 82.47± 2.59 77.55± 1.35 78.25± 2.36 75.62± 1.82 62.58± 1.70

SincAdaptNet + EA + Dirichlet 84.04± 2.55 77.61± 1.43 78.88± 1.47 76.36± 1.78 63.24± 1.78

BTTA-DG (Full Model) 86.50± 2.49 78.70± 1.32 80.29± 1.07 77.92± 1.76 64.06± 1.92

Table 9: Performance of BTTA-DG under varying online class imbalance ratios on the BNCI2014001
dataset. As imbalance increases, the model specializes, improving minority class accuracy.
Class Ratio (0 : 1) Accuracy Class 0 (%) Accuracy Class 1 (%) Overall Accuracy (%)

1 : 1 77.01± 1.53 80.40± 1.45 78.70± 1.32
1 : 0.75 74.07± 1.44 80.45± 1.34 76.81± 1.25
1 : 0.5 69.75± 1.52 83.02± 1.42 74.17± 1.28

1 : 0.25 64.67± 1.18 85.19± 1.64 68.77± 1.19

4 CONCLUSION

In this paper, we presented BTTA-DG, a novel gradient-free and efficient TTA framework for MI-EEG
decoding. By projecting temporal predictive embeddings into a compact Dirichlet parameter space,
our method captures predictive uncertainty and models the target domain’s feature distribution. A
GMM is employed to summarize historical Dirichlet parameters, preserving global and neighborhood
information of test trials. Subsequent Bayesian inference integrates learned historical evidence with
the network’s priors, effectively bridging domain gaps without the risk of catastrophic forgetting.
Our extensive experiments validate that BTTA-DG achieves state-of-the-art adaptation performance,
significantly outperforming existing EEG-TTA methods while operating at real-time speeds. Although
density estimation on the memory buffer benefits from reasonably balanced EEG data, our online
class-imbalance study indicates that BTTA-DG remains robust even under imbalanced class ratios.
The explicit handling more extreme or non-stationary imbalance is an interesting direction for future
work. Beyond MI-EEG, the same principle of Dirichlet feature projection plus GMM-based Bayesian
calibration could in principle be transferred to other neural modalities (e.g., fNIRS, ECoG) and to
broader BCI settings. In future work, we also commit to integrate BTTA-DG with large pretrained
EEG models to explore whether the gains are additive. By enabling high-performance adaptation
without requiring new labeled data, our framework reduces user burden and represents a significant
step towards the development of practical, real-world BCI systems.
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A RELATED WORK

Recent years have witnessed remarkable progress in large-scale EEG pretrained models trained
on massive datasets. Representative models include BENDR (Kostas et al., 2021), BIOT (Yang
et al., 2023), LaBraM (Jiang et al., 2024), EEGPT (Wang et al., 2024), CBraMod (Wang et al.,
2025) and CoMET (Li et al., 2025). These foundation models demonstrate impressive capabilities
in learning general representations across diverse EEG paradigms. However, their effectiveness in
MI decoding remains limited despite their scale. As shown in Table A, lightweight architectures
achieve competitive or superior performance compared to large-scale models while being orders of
magnitude more parameter-efficient. For instance, SincAdaptNet matches or surpasses all considered
large-scale models, and it trails EEGPT by less than 1% on BCIC-IV-2a while outperforming it on
BCIC-2b, despite using roughly four orders of magnitude fewer parameters.

Table A. Comparison of large-scale pretrained EEG models and lightweight models on BCIC-IV-2a-
4class and BCIC-2b (LOSO).

Scale Methods Number of Params (M) BCIC-IV-2a-4class BCIC-2b

Large-scale foundation models BENDR 4.0 0.4899 0.7067
BIOT 3.2 0.4590 0.6409
LaBraM 5.8 0.5613 0.6851
EEGPT 25.0 0.5846 0.7212
CBraMod 4.0 0.5585 0.6735

Lightweight models EEGNet 0.003 0.5685 0.7429
EEGConformer 0.55 0.5341 0.7361
SincAdaptNet 0.0015 0.5764 0.7632

This performance gap stems from two fundamental challenges. First, MI-induced EEG signals are
inherently weak and highly variable compared to other paradigms like visual evoked potentials. Unlike
P300 or SSVEP which show consistent patterns across subjects, MI relies on subjective imagination
to trigger sensorimotor rhythm ERD/ERS. This results in subtle power changes in specific bands (e.g.
µ: 8–13 Hz, β: 18–30 Hz) that are often masked by noise. Moreover, these subtle power changes
vary significantly across subjects. Some subjects demonstrate clear µ-rhythm ERD/ERS while others
show only minimal changes, which is the "BCI illiteracy" phenomenon Dreyer et al. (2023). This
extreme weakness and variability make unified feature extraction challenging. Large-scale models
may not capture these subtle subject-specific nuances without task-aligned pretraining.

Second, current pre-training strategies for EEG foundation models may face limitations. Most
foundation models are trained with objectives like masked reconstruction or contrastive learning
that are inherited from NLP and vision tasks, to learn general representations from unlabeled EEG
data Yuxuan et al. (2025). However, these objectives may not align with task-specific requirements.
For instance, masked reconstruction encourages the model to recover missing signal segments
based on contextual patterns. These patterns may emphasize global temporal structure that relates
to noise rather than task-relevant features. In addition, many models mix diverse data without
task/subject differentiation Chen et al. (2025), leading to "averaged" representations of unclear utility.
This explains why simple linear classifiers perform poorly on these pretrained representations in
certain case, where the features lack linearly separable task-relevant information Yang et al. (2026).
Consequently, they require substantial non-linear adaptation during fine-tuning, which can negate the
benefits of pretraining and risk overfitting on limited downstream datasets.

These limitations highlight the need for specialized adaptation approaches that can handle MI’s
inherent variability. Online test-time adaptation (TTA) methods adapt source models and make
simultaneous predictions during inference, utilizing unlabeled online target data (Liang et al., 2025;
Xiao & Snoek, 2024). Over the past year, TTA methods have been extended from computer vision to
MI EEG signal decoding.

Traditional TTA techniques (batch normalization calibration (Zhao et al., 2023), entropy minimiza-
tion (Wang et al., 2020; Niu et al., 2023), pseudo-labeling (Lee et al., 2013; Iwasawa & Matsuo, 2021)
and consistency regularization(Brahma & Rai, 2023)) can be broadly categorized into parameter
finetuning and non-finetuning methods. Non-finetuning methods adjust domain-specific statistics
without gradient backpropagation, offering high computational efficiency but limited adaptability.
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For example, BN-Adapt (Schneider et al., 2020) recalculated BN layer statistics in target domain
to mitigate distribution shifts. Parameter finetuning methods, on the other hand, include partial
and full finetuning. Partial finetuning methods update only a subset of the network’s parameters to
balance adaptability and efficiency. For instance, Tent (Wang et al., 2020) minimized entropy by
updating only the BN affine parameters. SAR (Niu et al., 2023) further introduced sharpness-aware
entropy minimization technique to suppress noisy test samples with large gradients, stabilizing TTA.
Full finetuning methods update the entire network using losses calculated by pseudo-labels. For
example, Pseudo-Label (Lee et al., 2013) employed the model’s high-confidence predictions as
pseudo-labels for self-training, whereas CoTTA (Wang et al., 2022) utilized data augmentation to
generate pseudo-labels and incorporates weight stochastic restoration to alleviate error accumulation
and forgetting.

In MI decoding domain, to address the complexity of EEG signals, state-of-the-art MI-TTA frame-
works integrate data alignment techniques with multiple parameter finetuning techniques. Specifically,
OTTA (Wimpff et al., 2024) integrated Euclidean Alignment (EA) (Zanini et al., 2017) or Rieman-
nian Alignment (RA) (He & Wu, 2019) techniques with entropy minimization of BN finetuning to
reduce cross-subject domain shifts. MI-FTTA (Peng et al., 2025) combines teacher-student mutual
learning and time-constrained sample selection to filter noisy pseudo labels, and employed BN
statistics recalculation and prototype-based contrastive learning to enhance adaptation performance.
T-TIME (Li et al., 2023) used ensemble learning for label prediction and finetuned classifiers by
conditional entropy minimization and adaptive marginal distribution regularization, achieving higher
performance. Latent alignment method (Bakas et al., 2025) introduced deep sets to EEG decoding and
aligned distributions in the deep learning model’s feature space. For large-scale online MI decoding,
continual finetuning strategies (Wimpff et al., 2025) combined with TTA methods have been also
explored to improve BCI performance in real-world applications. In addition to these unsupervised
TTA approaches, Sartzetaki et al. (Sartzetaki et al., 2023) present a comprehensive multi-dataset
study of fine-tuning, showing that even a small amount of labeled target data can boost MI decoding
performance and highlighting the potential of supervised adaptation when such labels are available.

Despite the advancements, critical challenges persist. 1) Computational efficiency: Full finetuning
methods incur high cost due to gradient updates, limiting real-time applicability. 2) Catastrophic
forgetting: Continuous parameter updates risk overwriting pre-trained knowledge for MI decoding. 3)
Shallow statistics-based adaptation: Methods lack theoretical modeling of deep feature shifts across
domains. Therefore, developing lightweight, robust, and theoretically grounded MI-TTA methods
remains a challenge.

16



Published as a conference paper at ICLR 2026

B SINCADAPTNET DETAILS

Figure 5: Architecture of SincAdaptNet. A compact four-layer encoder for MI EEG: Spat-Conv
(spatial filtering)→ Sinc-Conv (learnable, sinc-parameterized band-pass)→ IncCh-Conv (channel
expansion)→ Cls-Conv (per-time class embeddings). Layer normalization is applied after temporal
filtering and channel expansion to avoid reliance on batch statistics in online inference.

SincAdaptNet has only four convolutional layers. From a statistical perspective, MI decoding is
largely governed by low-dimensional structure in the time–frequency domain (e.g., µ/β rhythms
over a small set of motor channels), so a very deep architecture is more likely to increase variance
than to capture additional task-relevant structure under limited MI-EEG data. SincAdaptNet imposes
a strong inductive bias by parameterizing each temporal filter with only two spectral parameters (low
cut-off and bandwidth), favoring band-limited solutions aligned with known MI neurophysiology
and yielding a favorable bias–variance trade-off. Empirically, this lightweight encoder does not
weaken representation capacity. Across all datasets in our experiments, SincAdaptNet matches or
outperforms deeper backbones such as EEG Conformer while remaining computationally efficient
for online TTA.

Moreover, the explicit frequency-band extraction of the Sinc-Conv layer directly benefits our Bayesian
TTA framework. The learnable Sinc filters isolate physiologically critical µ and β bands and suppress
irrelevant spectral noise in raw EEG, producing a more stable and less ambiguous sequence of
predictive embeddings over each trial. This cleaner input leads to more robust fixed-point Dirichlet
estimation, improving the quality of the probabilistic representation that our GMM-based TTA module
adapts on, and thereby enhancing robustness to non-stationarity in realistic online BCI scenarios
while keeping the overall system efficient and interpretable.

The Sinc-Conv layer is not a standard convolution but is parametrically defined by the sinc function
with learnable cutoff frequencies, making it highly interpretable. Full hyperparameter settings
for the network are detailed in Appendix E. We have created an architecture diagram to visually
clarify the network structure (Figure 5). Besides, we added the following SincAdaptNet architecture
equations. Let s ∈ RC×T be an input EEG trial with C channels and T time points. The four-layer
SincAdaptNet processes the input as follows:

Spat-Conv Spatial filtering with Fspat filters of size (C × 1): sspat = Wspat ∗ s , where Wspat ∈
RFspat×C×1 are the spatial convolution kernels.

Sinc-Conv Adaptive bandpass filtering with Fsinc sinc-based filters: ssinc = hsinc ∗ sspat. The sinc
kernel hsinc is parametrically generated from learnable cutoff frequencies flow and bandwidth fband,
with fhigh = flow + fband. The frequency response of the ideal bandpass filter is:

H(f) = rect
(

f

2fhigh

)
− rect

(
f

2flow

)
(8)

The time-domain impulse response is derived via the inverse Fourier transform,

h(n) = 2fhigh sinc(2πfhighn)− 2flow sinc(2πflown), −∞ < n <∞. (9)
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Since this ideal response is infinitely long, it is truncated and a Hamming window w(n) is applied to
mitigate spectral leakage, resulting in the convolution kernel,

hwindowed(n) = h(n) · w(n), −Nsinc

2fs
< n <

Nsinc

2fs
, (10)

where Nsinc denotes the truncated length and fs is the sampling frequency. The Sinc-Conv layer
comprises Fsinc adaptive bandpass filters of size (1×Nsinc) and uses “SAME” padding to preserve
temporal dimension.

IncCh-Conv Channel expansion with 2Fsinc filters of size (Fspat × 1): sinc = Winc ∗ ssinc, where
Winc ∈ R2Fsinc×Fspat×1.

Cls-Conv Final layer with |L| filters: X = Wcls∗sinc, where Wcls ∈ R|L|×2Fsinc×1, yielding output
X ∈ R|L|×T . Each column is passed through a softmax to form a time-varying categorical vector,
and the temporal average provides a robust prior for Bayesian calibration in our TTA framework.

C DIRICHLET PARAMETER ESTIMATION DETAILS

This section details the efficient algorithm used to compute the Maximum Likelihood Estimate (MLE)
of the Dirichlet parameters α from a sequence of categorical probability vectors X = [x1, . . . ,xT ]
with xj ∈ ∆|L|−1. The method is based on the well-established fixed-point iteration algorithm by
Minka (2012), which we implement with accelerated convergence for our online TTA framework.

Fixed-point iteration for MLE Let X = [x1,x2, . . . ,xT ] be a set of T samples, where each
xj = (x1j , x2j , . . . , x|L|j)

⊤ is a categorical probability vector sampled from a Dirichlet distribution
with parameters α = (α1, . . . , α|L|). The goal is to estimate P(X) = α̂MLE, the MLE of α. The
log-likelihood function for the Dirichlet distribution is employed.

L(α) =

T∑
j=1

logD(xj ;α). (11)

The maximum likelihood estimator α̂MLE can be obtained by iteratively computing

αnew
i = ψ−1

ψ(αold
0 ) +

1

T

T∑
j=1

log xij

 . (12)

where ψ (u) = d
duΓ (u) denotes the Digamma function.

Thus, if the inverse Digamma function ψ−1 can be obtained, the iterative rule (12) is used to estimate
the Dirichlet parameters for temporal predictive embeddings of each test EEG trial.

To accelerate convergence, we initialize the Dirichlet parameters αinit using the empirical mean x̄i
and variance σ2

i of the categorical probability vectors from temporal predictive embeddings. From
the properties of the Dirichlet distribution, the mean and variance satisfy:

x̄i =

∑T
j=1 xij

T
=
αi

α0
, (13)

σ2
i =

1

T

T∑
j=1

(xij − x̄i)
2
=
x̄i (1− x̄i)

α0 + 1
. (14)

Therefore, an initial estimate αinit can be computed as,

αinit
0 ≈

1

|L|

|L|∑
i=1

(
x̄i (1− x̄i)

σ2
i

− 1

)
, (15)

αinit
i = αinit

0 x̄i. (16)
By iterating rule (12) with these initial estimates and solving for ψ−1 via Newton’s method (described
below), we efficiently converge to the Dirichlet parameters α̂MLE.
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Newton’s iteration for calculating inverse Digamma The Digamma function is defined by

ψ (u) =
d

du
Γ (u) = −γ +

∞∑
n=0

(
1

n+ 1
− 1

n+ u

)
, (17)

where Euler constant γ = −ψ (1). To solve for u = ψ−1(v) from the equation ψ(u)− v = 0, we
employ Newton’s iteration (Gil et al., 2007). Given v = ψ(αold

0 ) + 1
T

∑T
j=1 log xij in rule (12), the

Newton iteration is formulated as,

unew = uold − ψ(uold)− v
ψ′(uold)

, (18)

where ψ′(u) denotes the Trigamma function.

To further accelerate convergence of Newton’s iteration, the initial value uinit is initialized using an
approximate inverse function ψ̃−1 (v), where

ψ(u) = ψ̃(u) =

{
log (u− 1/2) if u ≥ 0.6,

− 1
u − γ if u < 0.6,

(19)

Yelds,

uinit = ψ̃−1 (v) =

{
exp

(
v + 1

2

)
, if v ≥ −2.22

− 1
v+γ , if v < −2.22 (20)

Once convergence is reached, we substitute ψ−1(v) = unew into fixed-point iteration rule (12) to
update αnew

i = unew. Iterating this process yields the estimated Dirichlet parameters α̂MLE.

Numerical stability. We clip xij to [10−7, 1− 10−7] to avoid zeros, and early-stop when ∥αnew −
αold∥/∥αold∥ < 10−4. In all datasets, the method converges within O(Iiter) iterations per trial, where
Iiter typically remains under 5–10.
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D THE PSEUDO-CODE OF BTTA-DG

Algorithm 1 summarizes the pseudo-code of the proposed BTTA-DG framework.

Algorithm 1: BTTA-DG Framework
Input: Pretrained model fθ, memory banks My , test trial s, tolerance ε, K GMM components,

the minimum confidence threshold τconf and the maximum entropy threshold τent.
Output: Calibrated label ŷcal.

// Feature extraction
X ← genc(s)
pθ(y)← fcls(X) // Obtain priori

// Accelerated Dirichlet parameter estimation
// Initialize αinit

for i = 1 to |L| do
x̄i ← 1

T

∑T
j=1 xij

σ2
i ← 1

T

∑T
j=1

(
xij − x̄i

)2
αinit
0 ← 1

|L|
∑|L|

i=1

(
x̄i(1−x̄i)

σ2
i
− 1

)
αinit
i ← αinit

0 x̄i
end
αnew
i ← αinit

i , αnew
0 ← αinit

0

// Fixed-point iteration for MLE
while ∥αnew −αold∥ > ε do

αold ← αnew

for i = 1 to |L| do
v ← ψ

(
αold
0

)
+ 1

T

∑T
j=1 log xij

u← NewtonSolver(v, ε) // Using Equations (18), (19), and (20)
αnew
i ← u

end
αnew
0 ←

∑|L|
i=1 α

new
i

end
α̂MLE ← αnew

// GMM-driven Bayesian inference
for y ∈ L do

Fit GMM: {πy,k, µy,k, Σy,k}Kk=1 ← EM(My,K)

pGMM

(
α̂MLE | y

)
←

∑K
k=1 πy,kN

(
α̂MLE | µy,k, Σy,k

)
pcal

(
y | α̂MLE

)
←

pGMM

(
α̂MLE|y

)
pθ(y)∑|L|

y′=1
pGMM

(
α̂MLE|y′

)
pθ(y′)

end
// Final prediction and memory bank update
ŷcal ← argmaxy∈L pcal

(
y | α̂MLE

)
confidence← pcal( ŷcal | α̂MLE)
entropy ← −

∑
y pcal(y | α̂MLE) log pcal(y | α̂MLE)

if confidence ≥ τconf and entropy ≤ τent then
Drop oldest if |Mŷcal | ≥ buffer_size
Mŷcal ←Mŷcal ∪ {α̂MLE}

end
return ŷcal
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E IMPLEMENTATION DETAILS

This appendix provides further details on the datasets, baseline methods, and experimental configura-
tions.

Dataset descriptions

• BNCI2014001: Derived from BCI Competition IV-2a Tangermann et al. (2012), this dataset
includes data from 9 subjects performing four-class MI tasks (left hand, right hand, feet,
tongue) recorded using 22 EEG electrodes at 250 Hz. Each subject completed two sessions
(288 trials per session) with a trial duration of 4 seconds. Only trials of left hand and right
hand were used for analysis.

• BNCI2014002: This dataset contains data from 14 subjects performing two-class MI tasks
(right hand vs. feet) recorded using 15 EEG electrodes at 512 Hz. Each subject participated
in one session comprising 160 trials, with a trial duration of 5 seconds. Only the first 100
trials per subject were used for analysis.

• BNCI2015001: This dataset comprises data from 12 subjects performing two-class MI tasks
(right hand vs. feet) recorded using 13 EEG electrodes at 512 Hz, each subject completed
three sessions with 200 trials per session and a trial duration of 5 seconds.

• SHU MI Dataset (Ma et al., 2022). This dataset is particularly relevant as it was specifically
designed to study long-term variability, containing data from 25 subjects recorded over 5
different days. Following the evaluation protocol provided with the dataset’s official code,
we performed a rigorous Leave-One-Subject-Out (LOSO) experiment on the last 10 subjects.

Baselines To comprehensively evaluate BTTA-DG, we compared it against:

• CSP Blankertz et al. (2007): A traditional machine learning method that constructs spatial
filters to maximize the variance of one class while minimizing that of another, thereby
enhancing class separability.

• EEGNet Lawhern et al. (2018): A compact convolutional neural network that integrates
spatial-temporal feature extraction from EEG signals. BN-adapt Schneider et al. (2020):
Adjusts BN statistics to better adapt the target distribution.

• EEG Conformer (Song et al., 2022): A Transformer-based architecture designed to capture
complex temporal dependencies in EEG signals. This baseline tests whether architectural
advances alone are sufficient to overcome the domain shift challenge.

• Tent Wang et al. (2020): Optimizes affine parameters of BN via entropy minimization.
• PL Lee et al. (2013): Uses high-confidence predictions as pseudo-labels for self-training.
• SAR Niu et al. (2023): Incorporates reliable entropy minimization and sharpness-aware

optimization to suppress noisy samples with large gradients.
• CoTTA Wang et al. (2022): Adapts the model using pseudo-labels generated through data

augmentation and stochastic weight restoration to mitigate catastrophic forgetting.
Data augmentation techniques implemented include Gaussian noise, time shift, frequency
shift, phase perturbations, time dropout, channel dropout, channel shuffle, bandstop filter,
and channel symmetry Rommel et al. (2022).

• T-TIME Li et al. (2023): Uses ensemble learning where multiple classifiers predict each
unlabeled test EEG sample, updating classifiers via conditional entropy minimization and
adaptive marginal distribution regularization.

• OTTA Wimpff et al. (2024): Integrats Euclidean Alignment or Riemannian Alignment
techniques with entropy minimization of BN finetuning to reduce cross-subject domain
shifts.

Pre-training and test-time adaptation configurations The SincAdaptNet was pre-trained on train
set using the AdamW optimizer with a learning rate of 1e-3, a batch size of 32, for 100 epochs. For
fair comparison, all TTA methods (except CSP and EEGNet) used SincAdaptNet as the backbone
and applied EA preprocessing. SincAdaptNet processes EEG trials s ∈ RB×1×C×T through:
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(1) Spatial filtering via 2D convolution (kernel_size = (C, 1), Fspat = 16 outputs), (2) Temporal
filtering with Sinc FIR bandpass filters (4-30Hz) via SincConv (kernel_size = (1, 51), Fsinc = 16
outputs), (3) Layer normalization, (4) Increasing-Channel convolution with ELU activation, (5) Layer
normalization, and (6) Classifing convolution with LogSoftmax activation.

During test-time adaptation, the model was adapted using a batch size of 1, for 1 epoch. Compared
with mini-batch settings, this single-trial setting is both more realistic and more challenging, because
many TTA methods (e.g., batch-norm–based approaches like BN-adapt) rely on batch statistics and
degrade or fail when only one sample is available. In contrast, our method works robustly with
batch size of 1 thanks to the use of layer normalization and a probabilistic GMM over Dirichlet
features instead of batch statistics. The same adaptation mechanism can be directly applied to larger
mini-batches without any modification.. The memory bank size was set to 1000. The convergence
tolerance for Dirichlet parameter estimation was set to ε = 1e − 3. As shown in the sensitivity
analysis in Figure 4, our method is robust to moderate variations in hyperparameters of our adaptation
process. The final values for GMM components, confidence threshold, and entropy threshold were
determined based on a grid search over a reasonable range, with the optimal values selected based on
the average performance on a held-out validation set created from the source domain subjects. This
standard validation procedure ensures that the hyperparameter tuning is fair and does not use any
information from the target domain. The GMM was configured with 8 components. The minimum
confidence threshold τconf was set to 0.596, and the maximum entropy threshold τent was set to 0.673.

Experiments were implemented via Python 3.10 and PyTorch 2.1.0, and ran on a server with NVIDIA
TITAN V GPU and an Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz.

F TABLES OF CROSS-SUBJECT ADAPTATION ACCURACY AND STATISTICAL
SIGNIFICANCE ANALYSIS

Table 10 summarize LOSO cross-subject accuracies on SHU MI dataset for online adaptation methods.
Our BTTA-DG framework consistently outperforms all competing TTA methods. However, the
performance gain is not statistically significant. We have investigated this and believe it stems from
the lower EEG quality and higher complexity (5 sessions) of this particular dataset. This has limited
the effectiveness of the feature extractors. When the baseline feature discriminability is lower, it
becomes inherently more difficult for any TTA method to demonstrate large, statistically significant
gains.

We assess statistical significance by conducting pairwise one-way ANOVA tests between BTTA-DG
and each baseline. Table 11 , 12 and 13 list per-subject and overall ANOVA p-values comparing
BTTA-DG against each baseline. In most subjects, BTTA-DG demonstrated a significant difference
from the baseline method (p < 0.05), further validating the statistical superiority of the BTTA-DG.

Table 10: Cross-subject adaptation accuracy (%) on SHU MI dataset.
Setting Method Avg. (%)

Source
CSP 59.24
EEGNet 61.07±1.10

EEG conformer 61.36±1.65

SincAdaptNet 62.42±1.72

Online TTA

BN-adapt 62.42±1.72

Tent 56.23±2.96

PL 56.65±2.82

CoTTA 62.73±1.78

SAR 58.33±2.37

T-TIME 62.37±1.75

OTTA 63.29±1.20

BTTA-DG 64.06±1.92
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Table 11: Pairwise ANOVA p-values comparing BTTA-DG to each baseline on BNCI2014001 for
cross-subject adaptation.

Method S0 S1 S2 S3 S4 S5 S6 S7 S8 Overall

SincAdaptNet 3.5e-07 1.2e-08 8.4e-11 9.0e-01 6.2e-02 5.1e-02 2.2e-02 1.2e-04 1.7e-04 1.1e-03
BN-adapt 3.5e-07 1.2e-08 8.4e-11 9.0e-01 6.2e-02 5.1e-02 2.2e-02 1.2e-04 1.7e-04 1.1e-03
Tent 1.4e-06 6.1e-08 6.8e-04 1.6e-10 2.5e-07 6.9e-07 9.7e-12 7.6e-05 2.0e-08 4.6e-05
PL 1.5e-07 7.4e-11 2.7e-06 8.5e-07 4.6e-04 2.1e-06 1.6e-06 3.7e-03 3.9e-05 4.9e-04
CoTTA 9.5e-07 2.9e-05 1.1e-05 1.9e-01 5.7e-01 1.6e-03 8.3e-02 8.0e-03 2.9e-03 1.2e-03
SAR 9.9e-06 7.3e-05 9.0e-05 4.4e-02 3.1e-07 7.6e-05 7.2e-02 6.6e-03 3.0e-02 2.7e-04
T-TIME 1.1e-05 4.1e-05 4.4e-04 1.3e-01 2.6e-01 2.0e-07 1.3e-07 4.1e-03 1.4e-03 1.5e-03
OTTA 2.3e-06 4.7e-07 1.7e-08 3.8e-01 9.9e-01 1.4e-01 1.1e-03 2.4e-04 4.1e-02 4.8e-02

Table 12: Pairwise ANOVA p-values comparing BTTA-DG to each baseline on BNCI2014002 for
cross-subject adaptation.

Method S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 Overall

SincAdaptNet 4.5e-02 2.9e-10 0.00 5.8e-05 1.6e-04 3.5e-07 3.7e-09 1.0e-07 0.00 1.7e-04 9.0e-08 5.8e-04 9.4e-05 3.2e-07 4.4e-07
BN-adapt 4.5e-02 2.9e-10 0.00 5.8e-05 1.6e-04 3.5e-07 3.7e-09 1.0e-07 0.00 1.7e-04 9.0e-08 5.8e-04 9.4e-05 3.2e-07 4.4e-07
Tent 8.2e-11 1.8e-08 1.3e-04 8.9e-07 9.3e-08 1.3e-03 6.7e-04 2.0e-08 1.2e-02 6.0e-08 9.7e-08 6.0e-06 6.4e-13 1.9e-13 2.3e-07
PL 1.3e-09 6.3e-07 3.3e-01 1.6e-06 1.9e-04 5.8e-04 1.1e-05 1.5e-08 9.0e-08 6.7e-07 2.5e-03 2.0e-09 1.0e-09 1.9e-13 1.8e-05
CoTTA 3.8e-03 1.4e-05 3.3e-01 1.3e-02 5.6e-03 1.4e-03 1.1e-05 3.9e-05 1.0e+00 1.5e-02 9.9e-04 1.2e-03 8.0e-04 5.4e-03 4.1e-05
SAR 2.2e-03 3.1e-08 8.7e-02 5.4e-04 1.2e-02 1.9e-03 2.2e-05 2.6e-06 3.7e-02 2.0e-04 2.2e-07 3.1e-06 1.9e-06 4.0e-04 7.2e-06
T-TIME 5.6e-03 9.4e-05 3.7e-02 2.6e-02 7.3e-01 1.4e-04 6.8e-06 2.4e-04 5.9e-08 3.9e-06 2.6e-06 8.0e-04 6.4e-06 2.4e-05 5.9e-06
OTTA 2.0e-02 1.0e+00 2.7e-06 2.6e-04 8.8e-03 4.8e-01 1.5e-01 6.9e-08 6.5e-02 4.2e-04 2.1e-11 3.3e-01 1.2e-01 2.3e-05 3.7e-02

Table 13: Pairwise ANOVA p-values comparing BTTA-DG to each baseline on BNCI2015001 for
cross-subject adaptation.

Method S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 Overall

SincAdaptNet 5.8e-08 4.6e-07 2.9e-02 3.8e-08 8.3e-02 6.2e-03 3.1e-02 4.8e-03 3.2e-01 2.9e-05 2.8e-05 7.4e-11 5.5e-04
BN-adapt 5.8e-08 4.6e-07 2.9e-02 3.8e-08 8.3e-02 6.2e-03 3.1e-02 4.8e-03 3.2e-01 2.9e-05 2.8e-05 7.4e-11 5.5e-04
Tent 8.2e-06 1.5e-10 2.2e-06 6.0e-14 1.1e-09 7.7e-10 4.4e-10 7.0e-11 5.5e-09 1.3e-08 8.4e-18 2.0e-21 7.0e-07
PL 1.3e-02 2.7e-02 2.7e-05 8.8e-04 1.6e-12 1.4e-07 4.2e-06 1.8e-11 9.8e-11 8.5e-08 3.0e-17 4.7e-22 8.0e-06
CoTTA 9.9e-03 3.7e-02 1.9e-01 1.3e-04 5.7e-01 1.6e-02 2.8e-02 2.9e-02 7.6e-01 2.5e-02 1.1e-07 1.8e-09 4.6e-03
SAR 1.2e-02 6.2e-03 1.5e-02 3.9e-06 6.6e-02 3.6e-01 1.1e-02 5.0e-03 5.7e-01 7.3e-04 2.0e-03 4.3e-07 1.2e-02
T-TIME 1.7e-06 7.0e-05 2.9e-03 5.4e-07 2.9e-07 1.2e-04 1.4e-01 4.2e-05 7.0e-03 5.5e-07 2.8e-03 2.7e-07 3.1e-05
OTTA 1.9e-02 3.9e-07 2.1e-03 1.9e-06 4.3e-02 5.5e-14 1.3e-06 8.9e-01 2.2e-07 4.4e-02 2.2e-03 2.8e-12 5.0e-02

G ADAPTATION ON LOW-CHANNEL EEG

Given the practical constraints of portable EEG hardware, we further evaluated BTTA-DG on
BCI Competition IV 2b, which contains only three EEG channels. We followed the same LOSO
cross-subject protocol as in the main experiments. All architectural, training, and adaptation hyperpa-
rameters were kept identical, except for adjusting the input channel dimension.

Table 14 reports cross-subject accuracies for source models and online TTA baselines. Despite the
extremely low sensor density, BTTA-DG achieves the highest average accuracy of 78.76%, with
statistically significant gains over the SincAdaptNet source model. These results confirm that the
proposed Dirichlet–GMM adaptation mechanism remains effective even under minimal channel
configurations, supporting its practical relevance for low-density BCI systems.

Table 14: Cross-subject adaptation accuracy (%) on BCI Competition IV 2b (3 channels). An asterisk
(*) denotes statistical significance leverl (*: p < 0.05).

Setting Method S0 S1 S2 S3 S4 S5 S6 S7 S8 Avg.

Source

CSP 70.09 61.25 63.68 77.17 78.21 68.21 74.20 73.82 72.51 71.01
EEGNet 74.28 63.90 68.32 82.35 80.16 70.05 77.84 76.61 75.10 74.29±1.46

EEG conformer 72.23 62.45 66.17 83.12 79.21 69.10 76.30 76.56 76.56 73.61±2.62

SincAdaptNet 74.57 64.73 72.07 89.67 80.93 71.32 79.72 80.00 73.85 76.32±0.89

Online TTA

BN-adapt 74.57 64.73 72.07 89.67 80.93 71.32 79.72 80.00 73.85 76.32±0.89

Tent 67.27 65.22 66.60 69.75 67.42 66.18 68.27 71.58 67.85 67.79±1.24

PL 67.77 65.48 67.08 70.52 70.33 66.57 73.17 72.70 68.45 69.12±1.63

CoTTA 74.78 64.73 72.30 90.05 82.02 71.93 80.38 80.30 74.65 76.79±1.29

SAR 75.08 67.42 71.88 79.02 81.03 74.03 80.48 76.83 69.30 75.01±3.01

T-TIME 75.92 64.18 72.00 91.68 80.53 72.85 81.02 79.78 72.92 76.77±1.53

OTTA 78.55 67.60 70.78 84.78 81.42 67.70 81.98 79.00 75.32 76.34±1.05

BTTA-DG 77.50 67.00 74.33∗ 91.50 84.17∗ 76.50∗ 83.58 82.83∗ 76.50 78.76∗
±1.69
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H WITHIN-SUBJECT CROSS-SESSION EXPERIMENTS

To verify that BTTA-DG can adapt not only across subjects but also across sessions for the same
subject, we conducted a within-subject cross-session study on BNCI2014001. Specifically, we
pretrained SincAdaptNet on 1st session of each subject and then performed test-time adaptation
on that subject’s 2nd session, simulating session shifts on different days. Table 5 reports the
classification accuracies for cross-session adaptation. BTTA-DG achieves an average of 86.50%±
2.49%, significantly outperforming all competing TTA methods (asterisks denote p < 0.05 by
pairwise ANOVA against each baseline).

Table 15 presents the corresponding pairwise ANOVA p-values comparing BTTA-DG to each baseline
across subjects S0–S8, as well as an overall p-value computed on per-subject mean accuracies. Most
comparison reach statistical significance, confirming that our gradient-free Bayesian calibration
maintains its advantage even under within-subject cross-session drift.

Table 15: Pairwise ANOVA p-values comparing BTTA-DG to each baseline on BNCI2014001 for
cross-session adaptation.

Method S0 S1 S2 S3 S4 S5 S6 S7 S8 Overall

SincAdaptNet 1.7e-01 3.2e-07 8.6e-09 3.1e-04 1.6e-03 2.2e-06 6.2e-04 1.1e-11 1.9e-06 1.8e-03
BN-adapt 1.7e-01 3.2e-07 8.6e-09 3.1e-04 1.6e-03 2.2e-06 6.2e-04 1.1e-11 1.9e-06 1.8e-03
Tent 1.6e-01 1.0e-14 6.5e-04 1.3e-11 1.1e-15 2.4e-11 1.1e-10 3.6e-02 8.7e-03 4.5e-03
PL 3.2e-06 3.8e-14 1.0e-06 4.2e-12 4.7e-05 1.7e-07 1.9e-05 1.1e-03 5.6e-02 3.0e-03
CoTTA 7.8e-01 9.8e-09 8.4e-04 3.8e-05 3.4e-03 9.4e-06 1.6e-03 2.5e-09 3.5e-03 7.2e-03
SAR 2.8e-01 1.6e-05 8.9e-04 8.3e-04 9.6e-05 3.2e-06 3.1e-04 1.3e-07 7.6e-04 3.7e-03
T-TIME 9.7e-06 1.5e-08 2.5e-05 5.6e-04 2.9e-07 9.6e-06 3.0e-04 5.4e-07 9.6e-03 4.8e-04
OTTA 3.1e-10 3.0e-08 6.9e-17 3.3e-02 8.4e-01 4.0e-06 1.1e-01 3.0e-13 3.0e-09 3.7e-02

I SLIDING-WINDOW ONLINE ADAPTATION

To directly address the concern about whole-trial processing versus low-latency online BCIs, we
evaluated BTTA-DG in a sliding-window setting on BNCI2014001 under the same cross-subject
setting as in the main experiments. Each 4 s trial was segmented into non-overlapping 1 s windows,
and adaptation and inference were performed per window, while all other training and adaptation
settings were kept identical.

Table 16 reports window-level accuracies for the source models and online TTA baselines. As ex-
pected, overall accuracies are lower than in the full-trial setting. Nevertheless, BTTA-DG still achieves
the best average performance (76.49%) and provides a clear improvement over the SincAdaptNet
source model (74.52%). This shows that the proposed Dirichlet–GMM adaptation mechanism
is compatible with online windows (batch size = 1) and can effectively operate in a low-latency,
continuous-feedback regime, mitigating the practical limitation that the main experiments use full
trials.

Table 16: Sliding-window adaptation accuracy (%) on BNCI2014001 with 1-s windows. An asterisk
(∗) denotes statistical significance level (*: p < 0.05).

Setting Approach S0 S1 S2 S3 S4 S5 S6 S7 S8 Avg.

Source

CSP 74.17 66.48 79.02 61.25 55.44 74.44 67.99 83.78 83.95 71.84
EEGNet 74.80 67.13 80.31 61.74 57.60 75.64 69.90 85.95 85.33 73.16± 1.35
EEGConformer 75.80 67.63 80.91 62.04 57.80 75.94 70.40 86.55 86.03 73.68± 1.94
SincAdaptNet 76.60 68.33 81.81 62.64 58.40 76.74 70.90 87.85 87.43 74.52± 1.30

Online TTA

BN-adapt 76.60 68.33 81.81 62.64 58.40 76.74 70.90 87.85 87.43 74.52± 1.30
Tent 70.97 63.61 76.25 57.71 54.72 71.60 64.87 79.44 79.51 68.74± 2.89
PL 73.40 63.89 78.47 58.33 54.10 72.29 66.18 81.25 85.00 70.32± 3.26
CoTTA 76.83 68.85 82.18 63.08 57.94 76.97 70.93 88.43 88.22 74.82± 1.50
SAR 76.86 66.24 79.01 60.54 56.86 74.22 70.61 83.39 84.01 72.42± 2.29
T-TIME 76.00 67.53 83.01 62.60 57.04 76.97 69.61 89.89 87.73 74.48± 1.68
OTTA 76.63 67.42 81.58 63.39 52.00 75.33 70.06 89.68 89.96 74.01± 1.96
BTTA-DG 77.39 72.53∗ 83.64 64.89 60.03 78.08 73.22∗ 90.58 87.81 76.49∗ ± 1.41

24



Published as a conference paper at ICLR 2026

J WITHIN-SUBJECT K-FOLD ADAPTATION ON BNCI2014001

To understand the intrinsic “decodeability” of each subject and its relationship with TTA effectiveness,
we conducted a three-fold within-subject cross-validation on BNCI2014001. For each subject, we
merged the two sessions, split trials into three folds, and performed within-subject training and testing.
This setting enables a direct comparison with the cross-subject TTA results in the main text.

Table 17 summarizes within-subject accuracies across source models and online TTA baselines.
Overall, within-subject training yields high decodeability for most subjects (e.g., SincAdaptNet
reaches an average of 84.46%), while BTTA-DG further improves performance to 87.30%. For some
subjects (e.g., S1, S2 and S3), the cross-subject SincAdaptNet accuracy in Table 2 exceeds their
within-subject baselines. This observation is consistent with the hypothesis that pretraining on other
subjects can benefit "bad-performing" subjects. For the majority of subjects, however, within-subject
accuracies remain higher than cross-subject baselines, indicating that inter-subject variability can
induce negative transfer and highlighting that the gains from BTTA-DG primarily stem from effective
test-time adaptation.

Table 17: Within-subject k-fold adaptation accuracy (%) on BNCI2014001. An asterisk (∗) denotes
statistical significance over the SincAdaptNet source model (paired t-test, p < 0.05).

Setting Method S0 S1 S2 S3 S4 S5 S6 S7 S8 Avg.

Source

CSP 90.26 51.53 95.81 67.48 70.65 74.23 72.80 93.55 88.41 78.30
EEGNet 91.58 53.20 95.24 72.88 85.46 74.50 83.20 96.48 89.15 82.41±2.55

EEGConformer 92.19 52.81 96.14 73.56 86.27 75.83 84.51 97.24 89.80 83.15±3.10

SincAdaptNet 93.38 54.66 96.64 74.66 88.58 76.92 86.81 97.82 90.67 84.46±2.98

Online TTA

BN-adapt 93.38 54.66 96.64 74.66 88.58 76.92 86.81 97.82 90.67 84.46±2.98

Tent 94.03 52.60 97.01 68.89 86.94 72.47 79.62 98.13 89.69 82.15±3.04

PL 93.37 51.94 97.57 67.70 89.76 73.26 83.65 98.58 90.80 82.96±3.39

CoTTA 94.20 54.82 97.60 74.90 90.14 77.81 87.81 98.65 91.35 85.25±2.85

SAR 94.13 53.75 97.05 72.99 87.12 75.83 86.39 98.13 89.72 83.90±3.17

T-TIME 92.53 52.60 97.29 72.19 89.65 76.42 85.69 98.68 89.90 83.89±3.40

OTTA 93.00 57.84 97.38 77.18 92.28 76.41 91.86 98.08 90.68 86.08±2.35

BTTA-DG 96.49∗ 58.64 98.57 78.78∗ 90.93 79.82∗ 90.24 99.96 92.32 87.30±3.59

K FIGURES OF FREQUENCY RESPONSES OF THE LEARNED SINCCONV
FILTERS

To provide a comprehensive view of how SincAdaptNet’s learnable band-pass filters operate across
all subjects, this appendix presents the complete frequency responses of each of the 24 Sinc-Conv
filters for every LOSO test fold. These figures substantiate the interpretability and effectiveness of
Sinc-Conv as a data-driven substitute for hand-crafted bandpass filtering in EEG analysis.
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Figure 6: Training set: others; test set: S1
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Figure 7: Training set: others; test set: S2
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Figure 8: Training set: others; test set: S3
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Figure 9: Training set: others; test set: S4
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Figure 10: Training set: others; test set: S5
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Figure 11: Training set: others; test set: S6
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Figure 12: Training set: others; test set: S7
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Figure 13: Training set: others; test set: S8
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L QUANTITATIVE ALIGNMENT OF SINC FILTER PASSBANDS WITH MI-EEG
RHYTHMS

To complement the main-text analysis in Table 6, we briefly describe how the quantitative alignment
was computed. For each learned Sinc filter on BNCI2014001, we first obtained its lower and upper
cut-off frequencies and then checked whether its passband overlapped a ±2Hz tolerance around
the standard µ (8–13 Hz), β (13–30 Hz), and low-γ (30–45 Hz) bands. For each subject, we then
calculated the proportion of filters whose passbands fell into each of these bands or outside them,
yielding the percentages reported in Table 6.

M TOPOGRAPHIC VISUALIZATION OF THE LEARNED SPATCONV KERNELS

The use of spatial convolution is a standard and effective technique in EEG deep learning models (e.g.,
EEGNet (Lawhern et al., 2018), ATCNet (Altaheri et al., 2022), EEG conformer (Song et al., 2022),
M-FANet (Qin et al., 2024), and etc.) to learn spatial filters. While EEG channel ordering is arbitrary,
the “C x 1” convolution learns a weighted sum of all channels (not only local adjacent channels),
effectively creating data-driven spatial filters that can capture relationships between physically distant
but functionally related brain regions (e.g., bilateral motor cortices). Our topographic visualizations
in Figure 14 show that the learned kernels are not limited to local neighbors but capture diverse and
physiologically meaningful scalp-wide patterns, confirming its ability to learn non-local inter-channel
relationships.

Figure 14 shows all 16 spatial kernels from SincAdaptNet’s Spat-Conv layer, rendered on a standard
10–20 montage Nomenclature (1991) scalp map. Together, these topographies span frontal, central,
parietal, and occipital cortices, demonstrating that SincAdaptNet automatically learns multiple
physiologically meaningful spatial filters—much like CSP but in a fully data-driven, end-to-end
fashion.

Figure 14: Topographic visualization of Spat-Conv kernels for SincAdaptNet trained on
BNCI2014001 (22 channels). Each subplot displays one spatial kernel mapped onto the 2D electrode
layout (standard 10-20 montage), where the color scale indicates the weight amplitude.
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N FIGURES OF DIRICHLET PARAMETER DISTRIBUTION WITH GMM
CLUSTERING

To provide a comprehensive view of how our Dirichlet–GMM pipeline captures class-specific structure
in the low-dimensional embedding space across all subjects, this appendix presents the complete
scatters of Dirichlet parameter representation and GMM clustering outcome for every LOSO test fold.
These figures illustrate the stability and separability of the Dirichlet parameter representation across
test trials, and how a Gaussian mixture model (GMM) clusters these parameters into coherent groups.
This analysis validates our choice of Dirichlet projection to compactly encode prediction uncertainty
and our use of GMM to preserve both global and local neighborhood information in BTTA-DG.
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Figure 16: Training set: others; test set: S2

3 4 5 6 7 8 9
1

3

4

5

6

7

8

9

2

Left
0: 0.17

Left
1: 0.12 Left

2: 0.17

Left
3: 0.13

Left
4: 0.21

Left
5: 0.01

Left
6: 0.01

Left
7: 0.17Right

0: 0.17

Right
1: 0.31

Right
2: 0.12

Right
3: 0.09

Right
4: 0.05

Right
5: 0.07

Right
6: 0.18

Right
7: 0.02Inter-class KL Div > 31.53

Intra-class Avg. Cov of Clusters < 0.15 Left hand
Right hand
Error

Figure 17: Training set: others; test set: S3
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Figure 18: Training set: others; test set: S4
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Figure 19: Training set: others; test set: S5
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Figure 20: Training set: others; test set: S6
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Figure 21: Training set: others; test set: S7

2 4 6 8 10
1

2

3

4

5

6

7

2

Left
0: 0.15

Left
1: 0.07

Left
2: 0.17

Left
3: 0.27

Left
4: 0.02

Left
5: 0.12

Left
6: 0.10

Left
7: 0.09Right

0: 0.07

Right
1: 0.29

Right
2: 0.02

Right
3: 0.20

Right
4: 0.14

Right
5: 0.14

Right
6: 0.11

Right
7: 0.03

Inter-class KL Div > 46.77
Intra-class Avg. Cov of Clusters < 0.21 Left hand

Right hand
Error

Figure 22: Training set: others; test set: S8
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O COMPUTATIONAL COMPLEXITY

This appendix summarizes the space and time complexity of BTTA-DG’s test-time pipeline, covering
Dirichlet parameter estimation, memory maintenance, and GMM-based calibration. Let M be the
size of the memory bank, |L| the number of classes (i.e., the Dirichlet dimension d = |L|), and K the
number of mixture components per class.

Space complexity. For each trial we store only its low-dimensional Dirichlet parameter vector
α ∈ Rd

+, so the memory bank costs O(Md). GMM parameters per class add O(Kd) for means and
O(Kd) for diagonal variances (plus O(K) for weights). Since M is fixed and d ∈ {2, 4} in our
MI-EEG settings, the overall cost is minimal.

Concretely, in a 2-class MI task (d = 2) with a memory bank size of M = 1000 trials per class, the
bank stores 2 buffers× 1000 trials× 2 floats/trial× 4 bytes/float32 values, corresponding to roughly
16KB per subject. Even for d = 4 classes with the same M , the total memory remains on the order
of 64KB per subject. The GMM parameters with a small number of components K add at most a few
additional kilobytes. Since BTTA-DG is instantiated per target user at deployment, this memory cost
scales linearly in the number of adapted users rather than in the size of the pre-training source user.

Time complexity.

• Dirichlet MLE. For a trial with T time steps, computing sufficient statistics si =
1
T

∑T
j=1 log xij costsO(Td); the fixed-point updates with Newton refinement for ψ−1 then

cost O(d Iiter), where the number of iterations Iiter is typically < 5–10 (see Appendix C).
Hence, Dirichlet projection: O(Td+ d Iiter) ≈ O(Td).

• Memory update. Appending a single vector (and evicting the oldest when full) is a queue
operation with O(1).

• GMM re-fitting. Re-fitting by EM over the memory bank has per-EM-iteration cost
O(MKd2). For IEM iterations, the per-trial overhead is O

(
IEM MKd2

)
.

Given that d ≤ 4, K is small, and M is bounded, the end-to-end overhead is negligible in practice
while enabling robust, gradient-free adaptation. In terms of FLOPs, the Dirichlet projection and
GMM steps contribute only a small fraction of the total cost relative to a SincAdaptNet forward
pass, which is reflected in the modest increase from 133.3M to 141.6M FLOPs per trial reported for
BN-adapt and BTTA-DG in Table 7.

P DETAILED ANALYSIS OF CLASS IMBALANCE SENSITIVITY

This appendix provides additional interpretation of the class-imbalance experiment reported in Table 9
in the main text.

As noted there, while the overall accuracy gracefully degrades with increasing imbalance, we observe
that the accuracy for the minority class (Class 1) conversely improves as its prevalence decreases. For
the minority class, our confidence and entropy thresholds ensure that only high-certainty trials of
the rare class are added to its memory bank. This creates a highly "pure" and compact GMM, which
becomes exceptionally good at identifying these specific, ideal minority-class trials.

Conversely, the GMM for the majority class must account for a much larger and more diverse set
of trials, causing its distribution to become more diffuse. This can lead to a decrease in its own
classification accuracy as the decision boundary shifts. Taken together, this finding highlights that our
method does not simply fail under severe online class imbalance; instead, it adapts by specializing its
model for rare events, which is a desirable robustness property for real-world applications.

Q DECLARATION OF LARGE LANGUAGE MODEL (LLM) USAGE

The LLM is used only for writing, editing, or formatting purposes and does not impact the core
methodology, scientific rigorousness, or originality of the research.
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