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ABSTRACT

Generalization in EEG-based motor imagery (MI) brain-computer interfaces (BCIs)
is severely hampered by cross-subject and cross-session variability. Although
large-scale EEG pretraining has advanced representation learning, their practi-
cal deployment is hindered by the need for costly fine-tuning to overcome sig-
nificant domain shifts. Test-time adaptation (TTA) methods that adapt models
during inference offer a promising solution. However, existing EEG-TTA meth-
ods either rely on gradient-based fine-tuning (suffering from high computational
cost and catastrophic forgetting) or data alignment strategies (failing to capture
shifts in deep feature distributions). To address these limitations, we propose
BTTA-DG, a novel Bayesian Test-Time Adaptation framework that performs
efficient, gradient-free adaptation by directly modeling the distribution of deep
features. Our approach first employs a lightweight SincAdaptNet with learnable
filters to extract task-specific frequency bands. We then introduce a novel Dirich-
let feature projection that maps high-dimensional sequential embeddings onto a
compact and interpretable parameter space, effectively capturing the concentra-
tion of time-varying predictive evidence. Adaptation is achieved via a GMM-
driven Bayesian inference mechanism, which models the historical distribution
of these Dirichlet parameters and fuses this evidence with the model’s prior pre-
dictions to calibrate outputs for the target domain. Extensive experiments show
that BTTA-DG significantly outperforms previous EEG-TTA methods, achiev-
ing state-of-the-art accuracy while running at real-time speed. Furthermore, vi-
sualizations confirm the physiological interpretability of our learned filters and
the robust class separability of our Dirichlet feature space. Code is available at
https://anonymous.4open.science/r/BTTA-DG-main-25A1.

1 INTRODUCTION

Electroencephalography (EEG)–based brain–computer interfaces (BCIs) decode cortical activity to
control external devices (Clerc, 2013). Among them, motor-imagery (MI) BCIs leverage sensorimotor
rhythms (SMRs) (Neuper et al., 2006) and have shown promise in stroke rehabilitation (López-Larraz
et al., 2018) and assistive control (Fernández-Rodríguez et al., 2016; Noda et al., 2012). Recent
advances in large-scale EEG pretrained models (Wang et al., 2024; Jiang et al., 2024; Kim et al., 2024),
trained on massive datasets, have demonstrated unprecedented capabilities in learning general and
reliable representations. However, deploying such models in real-world scenarios remains challenging
due to significant data shifts in EEG recordings (Huang et al., 2023). These shifts stem primarily
from the non-stationarity of EEG signals, driven by cross-subject or cross-session neurophysiological
differences (Apicella et al., 2024). Consequently, bridging these distributional gaps requires robust
adaptive strategies beyond pretraining alone (Xu et al., 2020; Wimpff et al., 2025; Liu et al., 2025).

Test-time adaptation (TTA), which adapts models during inference using online unlabeled data (Li
et al., 2023), presents a promising solution for practical BCI deployment. However, existing EEG-
TTA methods fall into two paradigms with critical trade-offs. Gradient-based approaches update
model parameters through techniques such as entropy minimization (Wang et al., 2020), pseudo-
label optimization (Lee et al., 2013; Wang et al., 2022), and consistency regularization. While
effective, these methods suffer from high computational overhead due to gradient backpropagation
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and risk catastrophic forgetting when continuously updating pre-trained representations. For in-
stance, OTTA (Wimpff et al., 2024) integrates data alignment with entropy-based batch normalization
finetuning, while T-TIME (Li et al., 2023) employs ensemble learning with conditional entropy mini-
mization, both requiring substantial computational resources. Conversely, non-gradient approaches
avoid parameter updates by recalibrating domain-specific statistics, such as batch normalization
layer recalculation (Schneider et al., 2020) or data alignment (Wimpff et al., 2024; Bakas et al.,
2025). While computationally efficient, these methods rely on shallow alignment techniques that
inadequately capture the complex, high-dimensional domain shifts inherent in EEG representations
across subjects and sessions. This creates a fundamental challenge: to develop a TTA framework
that is both computationally efficient and capable of modeling deep distributional changes, all while
being theoretically grounded and avoiding destructive model updates.

To address these challenges, we propose BTTA-DG, a Bayesian Test-Time Adaptation framework that
achieves high-performance, gradient-free adaptation via Dirichlet feature projection and GMM-driven
inference. Our approach introduces the Dirichlet distribution to EEG-TTA, treating it as a "distribu-
tion over categorical distributions" to model prediction uncertainty (Wong, 1998).” Our method first
employs a Sinc-based adaptive network (SincAdaptNet) to extract powerful, task-specific features.
We then introduce a novel Dirichlet feature projection, which maps high-dimensional sequential em-
beddings onto a compact, interpretable parameter space. Unlike conventional EEG-TTA methods that
rely on heuristic data (Zanini et al., 2017; He & Wu, 2019) or shallow statistics alignment (Schneider
et al., 2020), this probabilistic representation effectively models the concentration of the model’s time-
varying predictive distribution, allowing us to capture deep feature shifts in the new domain, which
is a significant advance. To ensure stable and efficient adaptation, we design a Gaussian Mixture
Model (GMM)-driven Bayesian inference mechanism. A GMM models the historical distribution of
Dirichlet parameters from the target domain, and Bayesian inference fuses this likelihood with the
deep model’s prior predictions. This entire process is gradient-free, calibrating the model’s outputs
without destructive updates to its pre-trained weights, thereby preventing catastrophic forgetting. Our
contributions include:

• We construct a Sinc-based adaptive network (SincAdaptNet) that leverages learnable Sinc-
filters to extract task-specific frequency bands. It enhances the representation of temporal
embeddings by isolating the most informative spectral components.

• We are the first to introduce the Dirichlet distribution to EEG-TTA, creating a low-
dimensional projection that provides a robust and interpretable representation of deep
distributional shifts, overcoming the limitations of prior heuristic and shallow alignment
methods.

• We propose a novel GMM-driven Bayesian inference mechanism that enables gradient-free
adaptation. By modeling the historical Dirichlet parameter distribution, the GMM retains
global-neighborhood knowledge of the test data. Bayesian inference then combines the
GMM likelihood with prior predictions to yield calibrated posterior predictions.

Across four public MI datasets, BTTA-DG achieves state-of-the-art cross-subject accuracy with
real-time speed. Visualization analyses confirm the physiological interpretability of our learned
spatial and spectral filters, which isolate MI-specific scalp topographies (frontal, central, parietal, and
occipital regions) and frequency bands (mu, beta, gamma). Furthermore, we show that our Dirichlet
feature space yields robust class separability, evidenced by low intra-class covariance (<0.27) and
high inter-class KL divergence (>31.85). These results validate BTTA-DG as a lightweight, robust,
and theoretically grounded framework for practical test-time adaptation in BCIs.

2 METHODOLOGY

Notations In MI-TTA research, a cross-subject setting is commonly considered, where leave-
one-subject-out (LOSO) cross-validation is widely adopted (Altaheri et al., 2023). Each subject in
turn serves as the unlabeled target, with all other subjects’ data forming the source. Let {Dl

src}Ll=1
denote the source domain containing labeled EEG trials from L subjects, where Dl

src = {(sil,yi
l )}N

l

i=1
consists of N l trials for subject l. Each trial sil ∈ RC×T is a C-channel EEG signal of length T ,
with class label yi

l ∈ L. The target domain Dtgt = {si}
Ntgt
i=1 contains Ntgt unlabeled test trials arriving

sequentially from one single subject. A deep classification model fθ = fcls ◦ genc, with parameters
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θ, is pre-trained on {Dl
src}Ll=1. Here, the encoder genc : RC×T → R|L|×T maps the EEG trials to

embeddings of dimension |L| × T , and the classifier fcls : R|L|×T → R|L| produces predictions for
|L| classes. The goal is to adapt fθ to Dtgt via online MI-TTA framework without requiring target
labels or source data. In addition, within-subject adaptation across sessions is also discussed in
Appendix G.

2.1 SINC-BASED ADAPTIVE BANDPASS FILTERING NETWORK

We propose a lightweight Sinc-based Adaptive Bandpass Filtering Network (SincAdaptNet) to serve
as the deep classification model fθ within the MI-TTA framework. The network comprises: Spat-
Conv→ Sinc-Conv→ IncCh-Conv→ Cls-Conv, with layer normalization inserted after temporal
filtering and channel expansion to avoid batch-statistics dependence when the online batch size is
one (Ba et al., 2016).

Spat-Conv performs spatial filtering with Fspat kernels of size (C × 1), reducing channel redundancy
while retaining task-relevant spatial patterns, akin to data-driven CSP (Blankertz et al., 2007). Sinc-
Conv is an interpretable, parametrized temporal convolution inspired by SincNet (Ravanelli &
Bengio, 2018; Zhang et al., 2024): rather than learning free-form kernels, it learns low cutoff flow
and bandwidth fband (thus fhigh = flow + fband), from which a windowed-sinc band-pass kernel
is generated. This yields MI-relevant mu (8–13 Hz), beta (13–30 Hz) McFarland et al. (2000);
Pfurtscheller et al. (2006), and gamma (> 30 Hz) Darvas et al. (2010) rhythms with few parameters
and clear spectral interpretability. The Sinc-Conv layer comprises Fsinc adaptive bandpass filters of
size (1×Nsinc) and uses “SAME” padding to preserve temporal dimension. IncCh-Conv expands
channels to 2Fsinc to enrich representation, and Cls-Conv maps features to |L| × T embeddings,
where |L| denotes the number of motor imagery classes and T denotes the temporal length.

Critically, inspired by the SwAV framework (Caron et al., 2020), normalized probability spaces
enable more stable and interpretable representation learning under domain shift. For each EEG
trial, its sequential embeddings are mapped through a softmax function to follow time-varying
categorical distributions, denoted by X = genc (s) = [x1,x2, . . . ,xT ] ∈ R|L|×T . Each xj ∈ R|L|

encodes an instantaneous class probability vector at timestep j, collectively forming a trajectory
of time-varying uncertain predictions. The model’s prior prediction is obtained through temporal
averaging: fcls(X) = 1

T

∑T
j=1 xj ∈ R|L|. This averaging process integrates the dynamic prediction

information over time, providing a robust and informative prior for subsequent Bayesian inference.
Complete architectural details of SincAdaptNet are provided in Appendix B.

2.2 BAYESIAN TEST-TIME ADAPTATION VIA DIRICHLET FEATURE PROJECTION AND
GMM-DRIVEN INFERENCE

To address challenges in current MI-TTA methods–catastrophic forgetting from gradient-based up-
dates and insufficient modeling of deep feature shifts–we propose a probabilistic test-time adaptation
framework that integrates Dirichlet feature projection with GMM-driven Bayesian inference. This
approach dynamically calibrates the deep model’s prior predictions fθ(s) through Bayesian inference,
enabling efficient, gradient-free and theoretically grounded online test-time adaptation.

Overall, the Dirichlet feature projection method first projects the post-softmax sequential embeddings
X to the low-dimensional Dirichlet parameters. It preserves the prior concentration towards each
class for sequential embeddings that follow a time-varying categorical distribution. Second, in
GMM-driven Bayesian inference, the Dirichlet parameters estimated from historical EEG trials are
clustered by a GMM, which efficiently encodes both global information of the historical test trials
and the neighborhood information of the current calibrating trial. Bayesian inference is then used
to combine the GMM likelihood with the prior prediction of deep model to obtain the calibrated
posterior.

1) DIRICHLET FEATURE PROJECTION FOR DEEP-FEATURE MODELING

The core of our method is the Dirichlet feature projection. The Dirichlet distribution, as a "distribution
over distributions (Wong, 1998)", is a probability distribution over the parameter space of categorical
distribution. It can encode sequential embeddings of categorical distributions for an EEG trial rather
than a fixed categorical distribution. Let the sequential embeddings output from SincAdaptNet’s en-
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Figure 1: Dirichlet distributions for varying parameter settings. Each subplot displays 1000 samples
(blue points) and the mean (red points) within the probability simplex (red lines). (a)-(c) illustrate
that increasing the total scale α0 yields lower uncertainty (lower variance). (b) and (d) illustrate that
elevating a component αi shifts the prior concentration toward its corresponding class.

coder be X = [x1,x2, . . . ,xT ] ∈ R|L|×T , where each xj = (x1j , x2j , . . . , x|L|j)
⊤ ∈ ∆|L|−1 rep-

resents instantaneous categorical probability vector at timestep j. The probability simplex ∆|L|−1 is
defined as

∆|L|−1 =

xj ∈ R|L| :

|L|∑
i=1

xij = 1, xij ≥ 0

 . (1)

The Dirichlet distribution offers interpretable parameter α, where each component αi reflects the
concentrated prior probability towards class i of sequential embeddings, and the scale α0 =

∑|L|
i=1 αi

indicates the overall uncertainty across T time steps (Ng et al., 2011) (see Figure 1).

Assume that the sequential embeddings X follow a Dirichlet distribution, denoted as X ∼ Dir(α),
with parameter vector α = (α1, . . . , α|L|) ∈ R|L|

+ . Each categorical probability vector xj is an i.i.d.
sample from Dir(α). The support of Dir(α) is also confined to ∆|L|−1.

We define a projection map P that transforms the high-dimensional sequential embeddings X ∈
R|L|×T into its low-dimensional Dirichlet parameters α ∈ R|L|

+ via maximum likelihood estimation
(MLE),

P : R|L|×T → R|L|
+ , X 7→ α̂MLE = argmax

α

T∑
j=1

logD(xj ;α), (2)

where the Dirichlet probability density function is given by

D(xj ;α) =
Γ(α0)∏|L|
i=1 Γ(αi)

|L|∏
i=1

xαi−1
ij . (3)

Here, Γ(·) is the Gamma function.

This projection effectively compresses the temporal dynamics of the deep features into a single,
semantically rich vector that parameterizes the model’s predictive distribution for that trial. The
Dirichlet parameter estimate, α̂MLE, could be efficiently computed using a established fixed-point
iteration algorithm (Minka, 2012), detailed in

αnew
i = ψ−1

ψ(αold
0 ) +

1

T

T∑
j=1

log xij

 , (4)

where ψ (u) = d
duΓ (u) denotes the Digamma function. Full algorithmic details for computing the

post-projection Dirichlet parameters are provided in Appendix C.

2) GMM-DRIVEN BAYESIAN INFERENCE FOR GRADIENT-FREE CALIBRATION

For historical test EEG trials s, we compute their Dirichlet parameters via the projection α̂MLE =
P(genc(s)) and store parameters of high-confidence trials in a memory bank My organized by their
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(calibrated) predicted label. A Gaussian Mixture Model (GMM) (Reynolds et al., 2009) is then
employed to cluster the historical Dirichlet parameters in My for each class to build a non-parametric
density estimate of the historical Dirichlet parameters accumulated from the target domain, yielding
a class-specific GMM likelihood:

pGMM(α | y) =
K∑

k=1

πy,kN (α;µy,k,Σy,k), (5)

where K is the number of mixture components for class y, πy,k are the weights satisfying∑K
k=1 πy,k = 1 and πy,k > 0, and µy,k and Σy,k are the mean and covariance of the kth Gaus-

sian component, respectively.

The GMM encodes the global distribution of the historical test EEG trials and each component model
preserves the neighborhood information of the current test trial to be calibrated. Any proximity of the
current test trial to a particular cluster results in a relatively large GMM likelihood.

For a current test EEG trial si with parameter α̂MLE, the calibrated posterior is computed by combining
the GMM likelihood pGMM(α̂MLE | y) with the deep model’s prior prediction pθ(y) = fθ(s

i) via
Bayesian inference:

pcal(y | α̂MLE) =
pGMM(α̂MLE | y) pθ(y)∑|L|

y′=1 pGMM(α̂MLE | y′) pθ(y′)
. (6)

The final calibrated prediction is then obtained via ŷcal = argmaxy∈L pcal(y | α̂MLE). Subsequently,
the Dirichlet parameter α̂MLE of the current test EEG trial is updated into the memory bank according
to its confidence (as discussed in Sensitivity analysis) and predicted label. Algorithm 1 summarizes
the pseudo-code of the proposed BTTA-DG framework (see Appendix D).

Mŷcal ←Mŷcal ∪ {α̂MLE}. (7)

3) THEORETICAL ANALYSIS FOR ENHANCED TEST-TIME ADAPTABILITY

The central innovation of our work is the shift from adapting on point estimates (i.e., pseudo-labels)
to adapting on probabilistic distributional representations. Conventional TTA methods are highly
sensitive to the noise and uncertainty inherent in single predictions from a domain-shifted model.
Furthermore, shallow alignment techniques fail to capture how the complex, high-dimensional space
of deep features deforms in a new domain. Our key insight is that the domain shift is more reliably
expressed in the distribution of the model’s sequential predictions rather than in any single prediction.

Instead of directly using the model’s output point estimates, we introduce Dirichlet feature projection
to model the entire distribution of the sequential categorical embeddings for each trial. This yields
a low-dimensional Dirichlet parameter vector α. The vector α provides a richer representation of
a trial’s predictive characteristics than a simple class prediction. Each component αi reflects the
“concentration” or evidence for class i, while the total scale α0 relates to the predictive uncertainty or
variance throughout the trial. When encountering a new domain, inherent signal differences cause
shifts in these predictive distributions. Our Dirichlet projection explicitly captures this distributional
shift in a compact parametric form. This is a more robust and informative feature for adaptation, as it
encodes not just what the model predicts, but also how confident and consistent that prediction is
across time, which is crucial for characterizing a new domain.

This principled representation is what enables superior test-time adaptability. By capturing the essence
of the domain shift in a low-dimensional parameter space, we can perform effective calibration using
well-established density estimation (GMM) and inference (Bayesian) techniques. This completely
bypasses the need for gradient-based optimization, thus circumventing catastrophic forgetting and
computational inefficiency. The theoretical soundness is empirically validated through visualization
analysis (Figure 3), demonstrating well-separated class clusters with high inter-class KL divergence
(>31.85) and low intra-class covariance (<0.27), confirming successful mapping of domain-shifted
signals into a discriminative latent space.

5
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Figure 2: Frequency responses of the 24 learned
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Figure 3: Scatter of Dirichlet parameter estimated
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3 EXPERIMENTAL RESULTS

3.1 IMPLEMENTATION

Datasets The BTTA-DG framework was evaluated on three MOABB (Jayaram & Barachant, 2018)
motor–imagery datasets BNCI2014001, BNCI2014002, and BNCI2015001, and additionally SHU
MI dataset (Ma et al., 2022). Key characteristics are summarized in Table 1. A cross-subject leave-
one-subject-out (LOSO) protocol was adopted, using only the first session from each dataset. The
source model was pretrained on the training set, and during test-time adaptation, test trials arrived
sequentially one-by-one in the online adaptation setting. Preprocessing included only a 1–48 Hz
bandpass filter and Euclidean Alignment (He & Wu, 2019).

Table 1: Summary of the four MI EEG datasets

Dataset Number of
subjects

Number of
channels

Sampling
rate (Hz)

Trial
length (s)

Number of
sessions

Trials in
1st session

Types of
imaginations

BNCI2014001 9 22 250 4 2 144 left hand, right hand
BNCI2014002 14 15 512 5 1 100 right hand, both feet
BNCI2015001 12 13 512 5 3 200 right hand, both feet
SHU MI Dataset 25 32 512 4 5 100 left hand, right hand

Baselines To comprehensively assess the performance of BTTA-DG, we compared it against
traditional classification methods, Transformer-based method, optimal transport-based method and
state-of-the-art TTA methods, including CSP (Blankertz et al., 2007), EEGNet (Lawhern et al.,
2018), EEG Conformer (Song et al., 2022), BN-adapt (Schneider et al., 2020), Tent (Wang et al.,
2020), PL (Lee et al., 2013), SAR (Niu et al., 2023), CoTTA (Wang et al., 2022), T-TIME (Li et al.,
2023), OTTA (Wimpff et al., 2024), and DOT-MDA (Ju & Guan, 2025). All experiments were
run independently 10 times, and the average results are reported. Detailed experimental settings,
including dataset descriptions, baseline methods, and hyperparameters, are provided in Appendix E.

3.2 MAIN RESULTS

Table 2 reports the cross-subject accuracies on BNCI2014001, including the source model and
online TTA techniques. Our proposed BTTA-DG achieves state-of-the-art performance with an
average accuracy of 78.70%. Notably, BTTA-DG excels in most subjects, highlighting its robust
generalization capabilities across different subjects. We also observe that several gradient-based
TTA baselines drop after applying TTA. Because in EEG’s online single-trial adaptaion (batch size
= 1), noisy trials induce misleading gradients that update BN weights and overwrite pre-trained

6
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Table 2: Cross-subject adaptation accuracy (%) on BNCI2014001, with an asterisk(*) denoting the
significance level (*: p<0.05).

Setting Method S0 S1 S2 S3 S4 S5 S6 S7 S8 Avg.

Source
CSP 83.33 52.08 97.92 75.00 56.25 67.36 72.22 88.19 71.53 73.77
EEGNet 83.19 60.28 92.08 67.92 57.22 72.50 64.86 86.11 79.44 73.73±1.11

EEG conformer 81.18 64.16 96.80 74.44 58.47 70.76 64.17 92.71 79.03 75.75±2.15

SincAdaptNet 84.97 63.93 97.68 77.13 56.22 72.68 67.26 93.86 79.56 77.03±1.31

Online TTA

BN-adapt 84.97 63.93 97.68 77.13 56.22 72.68 67.26 93.86 79.56 77.03±1.31

Tent 75.97 57.92 94.51 68.54 52.22 65.21 59.38 90.14 68.19 70.23±3.28

PL 76.46 56.67 97.92 70.34 52.29 66.32 60.42 93.89 72.15 71.83±3.21

CoTTA 85.00 63.68 98.05 76.32 57.22 72.08 67.64 94.63 80.48 77.24±1.51

SAR 84.24 63.40 97.36 76.25 54.72 69.10 67.50 93.54 80.28 76.27±1.92

T-TIME 84.44 61.94 97.43 76.11 56.60 69.38 63.13 94.65 79.38 75.90±1.95

DOT-MDA 81.25 62.50 97.22 78.47 65.97 70.83 61.81 86.81 70.83 75.08±1.19

OTTA 84.43 63.60 97.14 77.63 57.63 73.04 66.44 95.26 83.14 77.58±1.33

BTTA-DG 87.51* 66.67* 98.61* 77.08 57.64 73.61 68.75* 95.83* 82.64 78.70∗
±1.32

Table 3: Cross-subject adaptation accuracy (%) on BNCI2014002, with an asterisk(*) denoting the
significance level (*: p<0.05).

Setting Method S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 Avg.

Source
CSP 62.00 82.00 98.00 76.00 79.00 70.00 84.00 67.00 94.00 72.00 68.00 63.00 59.00 44.00 72.71
EEGNet 65.00 80.00 83.00 80.20 74.20 68.20 88.80 54.60 91.20 75.00 81.00 72.00 59.80 51.40 73.17±0.59

EEG conformer 66.50 80.50 95.00 78.10 80.10 70.30 90.50 70.20 92.40 73.00 79.50 75.80 58.20 47.30 75.53±1.85

SincAdaptNet 67.90 80.10 99.00 79.30 81.00 72.20 93.10 76.10 94.00 75.90 81.20 80.90 60.40 51.60 78.05±2.48

Online TTA

BN-adapt 67.90 80.10 99.00 79.30 81.00 72.20 93.10 76.10 94.00 75.90 81.20 80.90 60.40 51.60 78.05±2.48

Tent 57.20 70.40 90.30 70.70 67.10 68.30 88.10 64.30 91.60 64.10 77.10 70.40 52.30 49.20 70.08±4.30

PL 57.70 72.30 99.80 73.80 71.60 67.70 92.10 65.80 93.60 64.80 78.70 68.40 53.10 49.20 72.04±3.54

CoTTA 66.80 79.90 99.90 79.40 81.50 72.30 93.80 75.50 95.00 76.30 81.50 80.50 59.30 52.00 78.12±1.71

SAR 66.20 80.10 99.60 77.20 80.80 72.70 91.90 74.40 94.40 74.10 81.30 79.40 57.00 49.10 77.02±2.03

T-TIME 67.10 78.80 99.40 79.60 82.70 70.50 91.80 74.20 92.80 73.80 79.60 79.30 57.70 48.60 76.85±2.34

DOT-MDA 66.50 78.00 98.80 78.20 82.50 71.30 90.10 72.50 92.00 78.00 79.10 77.50 56.80 48.80 76.44±1.62

OTTA 67.40 83.00 98.50 78.10 81.30 74.40 94.60 70.00 94.70 78.60 77.20 82.50 63.90 51.80 78.29±1.68

BTTA-DG 69.00* 83.00 100.00 82.00* 83.00 75.00 95.00 80.00* 95.00 77.00 84.00* 83.00 63.40 54.60* 80.29∗
±1.07

structure—i.e., catastrophic forgetting. BTTA-DG avoids this failure mode by freezing the network
and adapting in a probabilistic parameter space, yielding gradient-free calibration without destructive
updates. Table 3 and Table 4 summarize LOSO cross-subject accuracies on BNCI2014002 and
BNCI2015001. Results on SHU MI dataset and detailed statistical significance analysis are presented
in Appendix F.

In addition, we also assessed the performance of BTTA-DG in a within-subject cross-session ex-
periment. We pretrained the model on the first session and tested it on the second session of
BNCI2014001, simulating session shifts in the same subject’s motor imagery. The results of this
cross-session adaptation are presented in Table 5, demonstrating that BTTA-DG effectively adapts to
different sessions too (86.50%±2.49%). Statistical significance analysis are presented in Appendix G

To verify that SincAdaptNet’s Sinc-Conv layer learns meaningful bandpass filters, Figure 2 illustrates
the frequency responses of each learned filter on BNCI2014001 and their cumulative response in
cross-subject LOSO setting (training set: S1–S8; test set: S0). Learned filters partition into three
physiologically meaningful ranges – mu rhythm (8-13 Hz, Filters 1-7), beta rhythm (13-30 Hz, Filters
8-17), and gamma rhythm (30-68.5 Hz, Filters 18-24). Cumulative response intensity (black curve)
peaks in the mu (11.2 Hz), beta (30.5 Hz), and gamma (55.3 Hz) bands, demonstrating significant
energy concentration of MI EEG. Similar spectral patterns emerge across different test subjects (see
Appendix I), confirming robust cross-subject adaptation.

Figure 6 (in Appendix H) presents the 16 spatial kernels learned by SincAdaptNet’s Spat-Conv layer
as scalp topographies, each displaying a distinct electrode weighting akin to those produced by the
CSP (Blankertz et al., 2007). The range of frontal, central, parietal, and occipital patterns (Decety,
1996; Lesser et al., 1998) highlights the model’s capacity to learn multiple spatial representations of
EEG activity.

Figure 3 visualizes the low-dimensional Dirichlet parameter estimated from test EEG trials and
GMM clustering outcomes on BNCI2014001 in cross-subject LOSO setting (training set: S1–S8;
test set: S0). The low-dimensional Dirichlet parameter of EEG representation exhibits good class
separability, with misclassified samples predominantly located near class boundaries. Moreover, a
high inter-class KL divergence (31.85) and a low intra-cluster covariance (0.27) indicate that GMM
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Table 4: Cross-subject adaptation accuracy (%) on BNCI2015001, with an asterisk(*) denoting the
significance level (*: p<0.05).

Setting Method S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 Avg.

Source
CSP 93.50 93.50 86.50 85.00 79.00 62.00 65.00 59.00 59.50 65.00 59.50 56.50 72.00
EEGNet 91.50 95.00 75.70 85.90 81.30 68.60 65.20 64.30 63.00 66.50 57.50 55.20 72.48±0.52

EEG conformer 94.00 95.20 83.10 86.50 84.80 66.40 68.50 64.10 63.50 65.00 58.30 56.40 73.82±1.65

SincAdaptNet 97.35 94.70 90.70 87.65 87.30 64.10 72.30 65.30 64.75 63.15 59.80 58.70 75.48±1.84

Online TTA

BN-adapt 97.35 94.70 90.70 87.65 87.30 64.10 72.30 65.30 64.75 63.15 59.80 58.70 75.48±1.84

Tent 80.30 68.65 73.75 68.05 68.80 55.15 56.60 57.15 54.45 55.55 51.60 50.25 61.69±4.33

PL 97.85 90.50 77.30 80.10 70.30 56.30 58.00 56.75 54.25 55.70 51.60 49.90 66.55±4.17

CoTTA 97.90 95.35 90.80 88.45 88.00 63.65 72.10 65.20 65.75 63.45 58.90 58.50 75.67±2.21

SAR 96.85 87.75 90.60 73.30 87.65 64.60 72.65 64.80 65.25 62.75 60.70 57.45 73.70±3.32

T-TIME 95.40 93.70 89.65 86.40 83.45 63.25 73.25 62.50 64.45 60.10 59.00 57.10 74.02±2.40

DOT-MDA 96.00 92.50 88.00 88.50 86.00 63.00 71.50 63.50 65.50 61.00 58.00 56.00 74.13±2.95

OTTA 98.95 95.00 89.05 85.45 87.70 71.55 69.70 67.55 61.45 66.45 62.60 59.00 76.20±1.50

BTTA-DG 98.50 96.00* 92.00* 90.80* 88.50 65.50 75.50 67.50 65.75 65.50 64.50* 65.00* 77.92∗
±1.76

Table 5: Cross-session adaptation accuracy (%) on BNCI2014001, with an asterisk(*) denoting the
significance level (*: p<0.05).

Setting Method S0 S1 S2 S3 S4 S5 S6 S7 S8 Avg.

Source
CSP 88.19 54.17 97.22 65.97 48.61 70.14 68.06 94.44 90.97 75.31
EEGNet 86.81 63.54 94.65 70.97 72.92 68.61 73.26 93.47 92.71 79.66±2.52

EEG Conformer 87.92 58.75 97.15 70.35 75.83 68.54 77.77 95.63 89.23 80.13±3.18

SincAdaptNet 84.69 56.64 98.51 70.32 86.22 72.06 82.47 97.54 92.47 82.33±2.62

Online TTA

BN-adapt 84.69 56.64 98.51 70.32 86.22 72.06 82.47 97.54 92.47 82.33±2.62

Tent 80.35 51.18 99.03 57.92 64.38 62.22 64.51 93.06 90.83 73.72±4.77

PL 77.71 51.74 98.75 58.13 75.28 64.58 68.75 97.01 91.46 75.93±4.72

CoTTA 85.63 54.51 99.44 69.03 86.46 72.36 82.71 98.33 93.06 82.39±2.83

SAR 86.32 55.00 99.24 71.11 86.11 70.49 82.92 96.53 91.88 82.18±2.99

T-TIME 78.40 54.03 98.33 69.79 81.94 70.49 80.69 97.50 91.53 80.30±3.42

DOT-MDA 75.92 60.42 97.22 73.61 81.80 69.67 73.83 93.97 91.67 79.79±2.36

OTTA 89.71 55.89 96.79 72.42 91.58 73.67 87.49 96.03 91.58 83.91±2.25

BTTA-DG 85.42 62.50 100.00* 76.39* 91.67 77.78* 90.97 100.00* 93.75 86.50∗
±2.49

effectively captures both global and local information of Dirichlet parameter distribution, providing a
robust statistical foundation for Bayesian inference. The geometry of Dirichlet parameters and cluster
remains stable for other test subjects (see Appendix J).

Computational efficiency To assess the computational efficiency of BTTA-DG, we measured the
average inference time per trial on the BNCI2014001 dataset. As presented in Table 7, BTTA-DG
achieves real-time performance with an average inference time of 15.7 ms per trial – 17.8% faster
than T-TIME (Li et al., 2023) and 24.2% faster than OTTA (Wimpff et al., 2024), which are the recent
baselines for EEG-TTA. Detailed computational complexity analysis is in Appendix K.

Ablation study. To dissect the contributions of our proposed components, we conducted an ablation
study, with the results summarized in Table 6. We start with the SincAdaptNet (Source Only) model
as our baseline. We then incorporate Euclidean Alignment (+ EA) to establish the performance of a
standard domain alignment technique. The crucial next step isolates the effectiveness of our Dirichlet
feature projection by applying the Dirichlet Projection without the GMM-driven inference (+
Dirichlet Projection), instead using a simple classifier on the projected parameters. Finally, our
BTTA-DG (Full Model) integrates all components. While EA provides a initial alignment (+1.73%),
we respectfully argue that the subsequent gain from our novel TTA module is not marginal. The
+0.58% gain from "Dirichlet Projection (w/o GMM)" involves no test-time adaptation (classifying
by a softmax). GMM-driven Bayesian inference, provides the actual test-time adaptation, yielding
a further +1.09% improvement. Collectively, our proposed probabilistic TTA module provides a
+1.67% improvement over the strong EA baseline.

Sensitivity analysis To assess the robustness of BTTA-DG, sensitivity analyzes were conducted
on three key hyperparameters: the number of GMM components K, the minimum confidence
threshold τconf and the maximum entropy threshold τent. τconf and τent govern the conditions under
which Dirichlet parameters of test trials are stored in the memory bank: Dirichlet parameters are
retained if the confidence of trials exceeds τconf and their entropy is below τent, ensuring that only
high-certainty, low-uncertainty test data contribute to the adaptation process. As shown in Figure 4,
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Figure 4: Sensitivity of BTTA-DG to key hyperparameters.

BTTA-DG exhibits robustness across parameter variations. Accuracy remains stable (78.2%–78.7%)
for K ∈ [2, 12]. Higher thresholds (0.50–0.65) improve accuracy from 76.9% to 78.7%, filtering
low-confidence trials to reduce noise in adaptation. Low entropy (0.65–0.75) sustains accuracy at
77.6%–78.7%, ensuring only high-certainty trials enter the memory bank.

Sensitivity to Online Class Imbalance. To evaluate the robustness of BTTA-DG in practical
scenarios where data flow may not be uniformly distributed, we conducted an experiment on the
BNCI2014001 dataset under artificially induced online class imbalance. We systematically varied the
class ratio in the test set from a balanced 1:1 distribution to a severely imbalanced 1:0.25. While the
overall accuracy gracefully degrades with increasing imbalance, we observe that the accuracy for the
minority class (Class 1) conversely improves as its prevalence decreases. We present the detailed
results and analysis of this phenomenon in Appendix L.

Table 6: Ablation Study on BNCI2014001 Dataset. Cross-subject Mean ± s.d. accuracy (%).

Method Accuracy (%)

SincAdaptNet (Source Only) 75.30± 1.82

SincAdaptNet + EA 77.03± 1.31

SincAdaptNet + EA + Dirichlet Projection (w/o GMM) 77.61± 1.43

BTTA-DG (Full Model) 78.70± 1.32

Table 7: Average inference time (ms) on BNCI2014001.

Method BN-adapt Tent PL CoTTA SAR T-TIME OTTA BTTA-DG

Time 5.1 18.4 17.8 23.0 32.5 18.5 19.5 15.7

4 CONCLUSION

In this paper, we presented BTTA-DG, a novel gradient-free and efficient TTA framework for MI-
EEG decoding. By projecting sequential embeddings into a compact Dirichlet parameter space,
our method captures predictive uncertainty and models the target domain’s feature distribution. A
GMM is employed to summarize historical Dirichlet parameters, preserving global and neighborhood
information of test trials. Subsequent Bayesian inference integrates learned historical evidence with
the network’s priors, effectively bridging domain gaps without the risk of catastrophic forgetting.
Our extensive experiments validate that BTTA-DG achieves state-of-the-art adaptation performance,
significantly outperforming existing EEG-TTA methods while operating at real-time speeds. While
the framework assumes that each trial’s time-varying possibility vectors of embeddings are i.i.d.
sampled from the Dirichlet distribution. Although real EEG data often exhibit abrupt non-stationarities
(e.g.,artifacts) that can locally violate this assumption and momentarily degrade parameter estimates,
our framework demonstrates robustness under mild departures. The principles of BTTA-DG would
be extended to other modalities, such as fNIRS and ECoG. By enabling high-performance adaptation
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without requiring new labeled data, our framework reduces user burden and represents a significant
step towards the development of practical, real-world BCI systems.

ETHICS STATEMENT

The authors adhere to the ICLR Code of Ethics. The datasets utilized in this research are publicly
available for all researchers in Brain-Computer Interface. No new data was collected from human
subjects for this study. The original data collection was conducted by its respective creators under
appropriate ethical protocols, including institutional review board (IRB) approval and informed
consent from all participants. Our work is confined to the analysis of this existing, anonymized data
and does not introduce new ethical concerns regarding human subjects.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. The complete source code for our
proposed BTTA-DG framework, as well as the scripts to replicate all experiments, is provided at
https://anonymous.4open.science/r/BTTA-DG-main-25A1. All experiments were
conducted on the publicly accessible datasets. Comprehensive implementation details, including data
preprocessing steps, model architecture, optimizer settings, and the full set of hyperparameters along
with the strategy for their selection, are thoroughly documented in Section 3.1 and Appendix E.
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A RELATED WORK

Online test-time adaptation (TTA) methods adapt source models and make simultaneous predictions
during inference, utilizing unlabeled online target data (Liang et al., 2025; Xiao & Snoek, 2024). Over
the past year, TTA methods have been extended from computer vision to MI EEG signal decoding.

Traditional TTA techniques (batch normalization calibration (Zhao et al., 2023), entropy minimiza-
tion (Wang et al., 2020; Niu et al., 2023), pseudo-labeling (Lee et al., 2013; Iwasawa & Matsuo, 2021)
and consistency regularization(Brahma & Rai, 2023)) can be broadly categorized into parameter
finetuning and non-finetuning methods. Non-finetuning methods adjust domain-specific statistics
without gradient backpropagation, offering high computational efficiency but limited adaptability.
For example, BN-Adapt (Schneider et al., 2020) recalculated BN layer statistics in target domain
to mitigate distribution shifts. Parameter finetuning methods, on the other hand, include partial
and full finetuning. Partial finetuning methods update only a subset of the network’s parameters to
balance adaptability and efficiency. For instance, Tent (Wang et al., 2020) minimized entropy by
updating only the BN affine parameters. SAR (Niu et al., 2023) further introduced sharpness-aware
entropy minimization technique to suppress noisy test samples with large gradients, stabilizing TTA.
Full finetuning methods update the entire network using losses calculated by pseudo-labels. For
example, Pseudo-Label (Lee et al., 2013) employed the model’s high-confidence predictions as
pseudo-labels for self-training, whereas CoTTA (Wang et al., 2022) utilized data augmentation to
generate pseudo-labels and incorporates weight stochastic restoration to alleviate error accumulation
and forgetting.

In MI decoding domain, to address the complexity of EEG signals, state-of-the-art MI-TTA frame-
works integrate data alignment techniques with multiple parameter finetuning techniques. Specifically,
OTTA (Wimpff et al., 2024) integrated Euclidean Alignment (EA) (Zanini et al., 2017) or Rieman-
nian Alignment (RA) (He & Wu, 2019) techniques with entropy minimization of BN finetuning to
reduce cross-subject domain shifts. MI-FTTA (Peng et al., 2025) combines teacher-student mutual
learning and time-constrained sample selection to filter noisy pseudo labels, and employed BN
statistics recalculation and prototype-based contrastive learning to enhance adaptation performance.
T-TIME (Li et al., 2023) used ensemble learning for label prediction and finetuned classifiers by
conditional entropy minimization and adaptive marginal distribution regularization, achieving higher
performance. Latent alignment method (Bakas et al., 2025) introduced deep sets to EEG decoding and
aligned distributions in the deep learning model’s feature space. For large-scale online MI decoding,
continual finetuning strategies (Wimpff et al., 2025) combined with TTA methods have been also
explored to improve BCI performance in real-world applications.

Despite the advancements, critical challenges persist. 1) Computational efficiency: Full finetuning
methods incur high cost due to gradient updates, limiting real-time applicability. 2) Catastrophic
forgetting: Continuous parameter updates risk overwriting pre-trained knowledge for MI decoding. 3)
Shallow statistics-based adaptation: Methods lack theoretical modeling of deep feature shifts across
domains. Therefore, developing lightweight, robust, and theoretically grounded MI-TTA methods
remains a challenge.

B SINCADAPTNET DETAILS

SincAdaptNet has only four convolutional layers. The Sinc-Conv layer is not a standard con-
volution but is parametrically defined by the sinc function with learnable cutoff frequencies,
making it highly interpretable. Full hyperparameter settings for the network are detailed in Ap-
pendix E. We have also provided the source code at https://anonymous.4open.science/
r/BTTA-DG-main-25A1. We have created an architecture diagram to visually clarify the network
structure (Figure 5). Besides, we added the following SincAdaptNet architecture equations. Let
s ∈ RC×T be an input EEG trial with C channels and T time points. The four-layer SincAdaptNet
processes the input as follows:

Spat-Conv Spatial filtering with Fspat filters of size (C × 1): sspat = Wspat ∗ s , where Wspat ∈
RFspat×C×1 are the spatial convolution kernels.
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Figure 5: Architecture of SincAdaptNet. A compact four-layer encoder for MI EEG: Spat-Conv
(spatial filtering)→ Sinc-Conv (learnable, sinc-parameterized band-pass)→ IncCh-Conv (channel
expansion)→ Cls-Conv (per-time class embeddings). Layer normalization is applied after temporal
filtering and channel expansion to avoid reliance on batch statistics in online inference.

Sinc-Conv Adaptive bandpass filtering with Fsinc sinc-based filters: ssinc = hsinc ∗ sspat. The sinc
kernel hsinc is parametrically generated from learnable cutoff frequencies flow and bandwidth fband,
with fhigh = flow + fband. The frequency response of the ideal bandpass filter is:

H(f) = rect
(

f

2fhigh

)
− rect

(
f

2flow

)
(8)

The time-domain impulse response is derived via the inverse Fourier transform,

h(n) = 2fhigh sinc(2πfhighn)− 2flow sinc(2πflown), −∞ < n <∞. (9)

Since this ideal response is infinitely long, it is truncated and a Hamming window w(n) is applied to
mitigate spectral leakage, resulting in the convolution kernel,

hwindowed(n) = h(n) · w(n), −Nsinc

2fs
< n <

Nsinc

2fs
, (10)

where Nsinc denotes the truncated length and fs is the sampling frequency. The Sinc-Conv layer
comprises Fsinc adaptive bandpass filters of size (1×Nsinc) and uses “SAME” padding to preserve
temporal dimension.

IncCh-Conv Channel expansion with 2Fsinc filters of size (Fspat × 1): sinc = Winc ∗ ssinc, where
Winc ∈ R2Fsinc×Fspat×1.

Cls-Conv Final layer with |L| filters: X = Wcls∗sinc, where Wcls ∈ R|L|×2Fsinc×1, yielding output
X ∈ R|L|×T . Each column is passed through a softmax to form a time-varying categorical vector,
and the temporal average provides a robust prior for Bayesian calibration in our TTA framework.

C DIRICHLET PARAMETER ESTIMATION DETAILS

This section details the efficient algorithm used to compute the Maximum Likelihood Estimate (MLE)
of the Dirichlet parameters α from a sequence of categorical probability vectors X = [x1, . . . ,xT ]
with xj ∈ ∆|L|−1. The method is based on the well-established fixed-point iteration algorithm by
Minka (2012), which we implement with accelerated convergence for our online TTA framework.

Fixed-point iteration for MLE Let X = [x1,x2, . . . ,xT ] be a set of T samples, where each
xj = (x1j , x2j , . . . , x|L|j)

⊤ is a categorical probability vector sampled from a Dirichlet distribution
with parameters α = (α1, . . . , α|L|). The goal is to estimate P(X) = α̂MLE, the MLE of α. The
log-likelihood function for the Dirichlet distribution is employed.

L(α) =

T∑
j=1

logD(xj ;α). (11)
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The maximum likelihood estimator α̂MLE can be obtained by iteratively computing

αnew
i = ψ−1

ψ(αold
0 ) +

1

T

T∑
j=1

log xij

 . (12)

where ψ (u) = d
duΓ (u) denotes the Digamma function.

Thus, if the inverse Digamma function ψ−1 can be obtained, the iterative rule (12) is used to estimate
the Dirichlet parameters for sequential embeddings of each test EEG trial.

To accelerate convergence, we initialize the Dirichlet parameters αinit using the empirical mean
x̄i and variance σ2

i of the categorical probability vectors from sequential embeddings. From the
properties of the Dirichlet distribution, the mean and variance satisfy:

x̄i =

∑T
j=1 xij

T
=
αi

α0
, (13)

σ2
i =

1

T

T∑
j=1

(xij − x̄i)
2
=
x̄i (1− x̄i)

α0 + 1
. (14)

Therefore, an initial estimate αinit can be computed as,

αinit
0 ≈

1

|L|

|L|∑
i=1

(
x̄i (1− x̄i)

σ2
i

− 1

)
, (15)

αinit
i = αinit

0 x̄i. (16)
By iterating rule (12) with these initial estimates and solving for ψ−1 via Newton’s method (described
below), we efficiently converge to the Dirichlet parameters α̂MLE.

Newton’s iteration for calculating inverse Digamma The Digamma function is defined by

ψ (u) =
d

du
Γ (u) = −γ +

∞∑
n=0

(
1

n+ 1
− 1

n+ u

)
, (17)

where Euler constant γ = −ψ (1). To solve for u = ψ−1(v) from the equation ψ(u)− v = 0, we
employ Newton’s iteration (Gil et al., 2007). Given v = ψ(αold

0 ) + 1
T

∑T
j=1 log xij in rule (12), the

Newton iteration is formulated as,

unew = uold − ψ(uold)− v
ψ′(uold)

, (18)

where ψ′(u) denotes the Trigamma function.

To further accelerate convergence of Newton’s iteration, the initial value uinit is initialized using an
approximate inverse function ψ̃−1 (v), where

ψ(u) = ψ̃(u) =

{
log (u− 1/2) if u ≥ 0.6,

− 1
u − γ if u < 0.6,

(19)

Yelds,

uinit = ψ̃−1 (v) =

{
exp

(
v + 1

2

)
, if v ≥ −2.22

− 1
v+γ , if v < −2.22 (20)

Once convergence is reached, we substitute ψ−1(v) = unew into fixed-point iteration rule (12) to
update αnew

i = unew. Iterating this process yields the estimated Dirichlet parameters α̂MLE.

Numerical stability. We clip xij to [10−7, 1− 10−7] to avoid zeros, and early-stop when ∥αnew −
αold∥/∥αold∥ < 10−4. In all datasets, the method converges within O(Iiter) iterations per trial, where
Iiter typically remains under 5–10.
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D THE PSEUDO-CODE OF BTTA-DG

Algorithm 1 summarizes the pseudo-code of the proposed BTTA-DG framework.

Algorithm 1: BTTA-DG Framework
Input: Pretrained model fθ, memory banks My , test trial s, tolerance ε, K GMM components,

the minimum confidence threshold τconf and the maximum entropy threshold τent.
Output: Calibrated label ŷcal.

// Feature extraction
X ← genc(s)
pθ(y)← fcls(X) // Obtain priori

// Accelerated Dirichlet parameter estimation
// Initialize αinit

for i = 1 to |L| do
x̄i ← 1

T

∑T
j=1 xij

σ2
i ← 1

T

∑T
j=1

(
xij − x̄i

)2
αinit
0 ← 1

|L|
∑|L|

i=1

(
x̄i(1−x̄i)

σ2
i
− 1

)
αinit
i ← αinit

0 x̄i
end
αnew
i ← αinit

i , αnew
0 ← αinit

0

// Fixed-point iteration for MLE
while ∥αnew −αold∥ > ε do

αold ← αnew

for i = 1 to |L| do
v ← ψ

(
αold
0

)
+ 1

T

∑T
j=1 log xij

u← NewtonSolver(v, ε) // Using Equations (18), (19), and (20)
αnew
i ← u

end
αnew
0 ←

∑|L|
i=1 α

new
i

end
α̂MLE ← αnew

// GMM-driven Bayesian inference
for y ∈ L do

Fit GMM: {πy,k, µy,k, Σy,k}Kk=1 ← EM(My,K)

pGMM

(
α̂MLE | y

)
←

∑K
k=1 πy,kN

(
α̂MLE | µy,k, Σy,k

)
pcal

(
y | α̂MLE

)
←

pGMM

(
α̂MLE|y

)
pθ(y)∑|L|

y′=1
pGMM

(
α̂MLE|y′

)
pθ(y′)

end
// Final prediction and memory bank update
ŷcal ← argmaxy∈L pcal

(
y | α̂MLE

)
confidence← pcal( ŷcal | α̂MLE)
entropy ← −

∑
y pcal(y | α̂MLE) log pcal(y | α̂MLE)

if confidence ≥ τconf and entropy ≤ τent then
Drop oldest if |Mŷcal | ≥ buffer_size
Mŷcal ←Mŷcal ∪ {α̂MLE}

end
return ŷcal
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E IMPLEMENTATION DETAILS

This appendix provides further details on the datasets, baseline methods, and experimental configura-
tions.

Dataset descriptions

• BNCI2014001: Derived from BCI Competition IV-2a Tangermann et al. (2012), this dataset
includes data from 9 subjects performing four-class MI tasks (left hand, right hand, feet,
tongue) recorded using 22 EEG electrodes at 250 Hz. Each subject completed two sessions
(288 trials per session) with a trial duration of 4 seconds. Only trials of left hand and right
hand were used for analysis.

• BNCI2014002: This dataset contains data from 14 subjects performing two-class MI tasks
(right hand vs. feet) recorded using 15 EEG electrodes at 512 Hz. Each subject participated
in one session comprising 160 trials, with a trial duration of 5 seconds. Only the first 100
trials per subject were used for analysis.

• BNCI2015001: This dataset comprises data from 12 subjects performing two-class MI tasks
(right hand vs. feet) recorded using 13 EEG electrodes at 512 Hz, each subject completed
three sessions with 200 trials per session and a trial duration of 5 seconds.

• SHU MI Dataset (Ma et al., 2022). This dataset is particularly relevant as it was specifically
designed to study long-term variability, containing data from 25 subjects recorded over 5
different days. Following the evaluation protocol provided with the dataset’s official code,
we performed a rigorous Leave-One-Subject-Out (LOSO) experiment on the last 10 subjects.

Baselines To comprehensively evaluate BTTA-DG, we compared it against:

• CSP Blankertz et al. (2007): A traditional machine learning method that constructs spatial
filters to maximize the variance of one class while minimizing that of another, thereby
enhancing class separability.

• EEGNet Lawhern et al. (2018): A compact convolutional neural network that integrates
spatial-temporal feature extraction from EEG signals. BN-adapt Schneider et al. (2020):
Adjusts BN statistics to better adapt the target distribution.

• EEG Conformer (Song et al., 2022): A Transformer-based architecture designed to capture
complex temporal dependencies in EEG signals. This baseline tests whether architectural
advances alone are sufficient to overcome the domain shift challenge.

• Tent Wang et al. (2020): Optimizes affine parameters of BN via entropy minimization.

• PL Lee et al. (2013): Uses high-confidence predictions as pseudo-labels for self-training.

• SAR Niu et al. (2023): Incorporates reliable entropy minimization and sharpness-aware
optimization to suppress noisy samples with large gradients.

• CoTTA Wang et al. (2022): Adapts the model using pseudo-labels generated through data
augmentation and stochastic weight restoration to mitigate catastrophic forgetting.
Data augmentation techniques implemented include Gaussian noise, time shift, frequency
shift, phase perturbations, time dropout, channel dropout, channel shuffle, bandstop filter,
and channel symmetry Rommel et al. (2022).

• T-TIME Li et al. (2023): Uses ensemble learning where multiple classifiers predict each
unlabeled test EEG sample, updating classifiers via conditional entropy minimization and
adaptive marginal distribution regularization.

• DOT-MDA (Ju & Guan, 2025): A recent geometric deep learning method that uses Opti-
mal Transport to directly align distributions of EEG covariance matrices on Riemannian
manifolds. This provides a direct comparison against another principled alignment strategy.

• OTTA Wimpff et al. (2024): Integrats Euclidean Alignment or Riemannian Alignment
techniques with entropy minimization of BN finetuning to reduce cross-subject domain
shifts.
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Pre-training and test-time adaptation configurations The SincAdaptNet was pre-trained on train
set using the AdamW optimizer with a learning rate of 1e-3, a batch size of 32, for 100 epochs. For
fair comparison, all TTA methods (except CSP and EEGNet) used SincAdaptNet as the backbone
and applied EA preprocessing. SincAdaptNet processes EEG trials s ∈ RB×1×C×T through:
(1) Spatial filtering via 2D convolution (kernel_size = (C, 1), Fspat = 16 outputs), (2) Temporal
filtering with Sinc FIR bandpass filters (4-30Hz) via SincConv (kernel_size = (1, 51), Fsinc = 16
outputs), (3) Layer normalization, (4) Increasing-Channel convolution with ELU activation, (5) Layer
normalization, and (6) Classifing convolution with LogSoftmax activation.

During test-time adaptation, the model was adapted using a batch size of 1, for 1 epoch. The memory
bank size was set to 1000. The convergence tolerance for Dirichlet parameter estimation was set
to ε = 1e − 3. As shown in the sensitivity analysis in Figure 4, our method is robust to moderate
variations in hyperparameters of our adaptation process. The final values for GMM components,
confidence threshold, and entropy threshold were determined based on a grid search over a reasonable
range, with the optimal values selected based on the average performance on a held-out validation
set created from the source domain subjects. This standard validation procedure ensures that the
hyperparameter tuning is fair and does not use any information from the target domain. The GMM
was configured with 8 components. The minimum confidence threshold τconf was set to 0.596, and
the maximum entropy threshold τent was set to 0.673.

The source code is available for reproducibility at https://anonymous.4open.science/r/
BTTA-DG-main-25A1. Experiments were implemented via Python 3.10 and PyTorch 2.1.0, and
ran on a server with NVIDIA TITAN V GPU and an Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz.

F TABLES OF CROSS-SUBJECT ADAPTATION ACCURACY AND STATISTICAL
SIGNIFICANCE ANALYSIS

Table 8 summarize LOSO cross-subject accuracies on SHU MI dataset for online adaptation methods.
Our BTTA-DG framework consistently outperforms all competing TTA methods. However, the
performance gain is not statistically significant. We have investigated this and believe it stems from
the lower EEG quality and higher complexity (5 sessions) of this particular dataset. This has limited
the effectiveness of the feature extractors. When the baseline feature discriminability is lower, it
becomes inherently more difficult for any TTA method to demonstrate large, statistically significant
gains.

We assess statistical significance by conducting pairwise one-way ANOVA tests between BTTA-DG
and each baseline. Table 9 , 10 and 11 list per-subject and overall ANOVA p-values comparing
BTTA-DG against each baseline. In most subjects, BTTA-DG demonstrated a significant difference
from the baseline method (p < 0.05), further validating the statistical superiority of the BTTA-DG.

Table 8: Cross-subject adaptation accuracy (%) on SHU MI dataset.
Setting Method Avg. (%)

Source
CSP 59.24
EEGNet 61.07±1.10

EEG conformer 61.36±1.65

SincAdaptNet 62.42±1.72

Online TTA

BN-adapt 62.42±1.72

Tent 56.23±2.96

PL 56.65±2.82

CoTTA 62.73±1.78

SAR 58.33±2.37

T-TIME 62.37±1.75

DOT-MDA 62.83±1.64

OTTA 63.29±1.20

BTTA-DG 64.06±1.92
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Table 9: Pairwise ANOVA p-values comparing BTTA-DG to each baseline on BNCI2014001 for
cross-subject adaptation.

Method S0 S1 S2 S3 S4 S5 S6 S7 S8 Overall

SincAdaptNet 3.5e-07 1.2e-08 8.4e-11 9.0e-01 6.2e-02 5.1e-02 2.2e-02 1.2e-04 1.7e-04 1.1e-03
BN-adapt 3.5e-07 1.2e-08 8.4e-11 9.0e-01 6.2e-02 5.1e-02 2.2e-02 1.2e-04 1.7e-04 1.1e-03
Tent 1.4e-06 6.1e-08 6.8e-04 1.6e-10 2.5e-07 6.9e-07 9.7e-12 7.6e-05 2.0e-08 4.6e-05
PL 1.5e-07 7.4e-11 2.7e-06 8.5e-07 4.6e-04 2.1e-06 1.6e-06 3.7e-03 3.9e-05 4.9e-04
CoTTA 9.5e-07 2.9e-05 1.1e-05 1.9e-01 5.7e-01 1.6e-03 8.3e-02 8.0e-03 2.9e-03 1.2e-03
SAR 9.9e-06 7.3e-05 9.0e-05 4.4e-02 3.1e-07 7.6e-05 7.2e-02 6.6e-03 3.0e-02 2.7e-04
T-TIME 1.1e-05 4.1e-05 4.4e-04 1.3e-01 2.6e-01 2.0e-07 1.3e-07 4.1e-03 1.4e-03 1.5e-03
DOT-MDA 1.0e-06 8.1e-05 8.3e-01 2.2e-01 3.0e-09 1.6e-05 1.0e-06 1.0e-09 2.7e-10 1.0e-03
OTTA 2.3e-06 4.7e-07 1.7e-08 3.8e-01 9.9e-01 1.4e-01 1.1e-03 2.4e-04 4.1e-02 4.8e-02

Table 10: Pairwise ANOVA p-values comparing BTTA-DG to each baseline on BNCI2014002 for
cross-subject adaptation.

Method S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 Overall

SincAdaptNet 4.5e-02 2.9e-10 0.00 5.8e-05 1.6e-04 3.5e-07 3.7e-09 1.0e-07 0.00 1.7e-04 9.0e-08 5.8e-04 9.4e-05 3.2e-07 4.4e-07
BN-adapt 4.5e-02 2.9e-10 0.00 5.8e-05 1.6e-04 3.5e-07 3.7e-09 1.0e-07 0.00 1.7e-04 9.0e-08 5.8e-04 9.4e-05 3.2e-07 4.4e-07
Tent 8.2e-11 1.8e-08 1.3e-04 8.9e-07 9.3e-08 1.3e-03 6.7e-04 2.0e-08 1.2e-02 6.0e-08 9.7e-08 6.0e-06 6.4e-13 1.9e-13 2.3e-07
PL 1.3e-09 6.3e-07 3.3e-01 1.6e-06 1.9e-04 5.8e-04 1.1e-05 1.5e-08 9.0e-08 6.7e-07 2.5e-03 2.0e-09 1.0e-09 1.9e-13 1.8e-05
CoTTA 3.8e-03 1.4e-05 3.3e-01 1.3e-02 5.6e-03 1.4e-03 1.1e-05 3.9e-05 1.0e+00 1.5e-02 9.9e-04 1.2e-03 8.0e-04 5.4e-03 4.1e-05
SAR 2.2e-03 3.1e-08 8.7e-02 5.4e-04 1.2e-02 1.9e-03 2.2e-05 2.6e-06 3.7e-02 2.0e-04 2.2e-07 3.1e-06 1.9e-06 4.0e-04 7.2e-06
T-TIME 5.6e-03 9.4e-05 3.7e-02 2.6e-02 7.3e-01 1.4e-04 6.8e-06 2.4e-04 5.9e-08 3.9e-06 2.6e-06 8.0e-04 6.4e-06 2.4e-05 5.9e-06
DOT-MDA 1.3e-04 1.4e-05 8.5e-01 5.2e-05 9.0e-01 4.7e-05 1.8e-06 3.1e-08 2.1e-05 9.0e-01 1.8e-05 4.9e-06 3.9e-07 2.6e-06 5.0e-04
OTTA 2.0e-02 1.0e+00 2.7e-06 2.6e-04 8.8e-03 4.8e-01 1.5e-01 6.9e-08 6.5e-02 4.2e-04 2.1e-11 3.3e-01 1.2e-01 2.3e-05 3.7e-02

Table 11: Pairwise ANOVA p-values comparing BTTA-DG to each baseline on BNCI2015001 for
cross-subject adaptation.

Method S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 Overall

SincAdaptNet 5.8e-08 4.6e-07 2.9e-02 3.8e-08 8.3e-02 6.2e-03 3.1e-02 4.8e-03 3.2e-01 2.9e-05 2.8e-05 7.4e-11 5.5e-04
BN-adapt 5.8e-08 4.6e-07 2.9e-02 3.8e-08 8.3e-02 6.2e-03 3.1e-02 4.8e-03 3.2e-01 2.9e-05 2.8e-05 7.4e-11 5.5e-04
Tent 8.2e-06 1.5e-10 2.2e-06 6.0e-14 1.1e-09 7.7e-10 4.4e-10 7.0e-11 5.5e-09 1.3e-08 8.4e-18 2.0e-21 7.0e-07
PL 1.3e-02 2.7e-02 2.7e-05 8.8e-04 1.6e-12 1.4e-07 4.2e-06 1.8e-11 9.8e-11 8.5e-08 3.0e-17 4.7e-22 8.0e-06
CoTTA 9.9e-03 3.7e-02 1.9e-01 1.3e-04 5.7e-01 1.6e-02 2.8e-02 2.9e-02 7.6e-01 2.5e-02 1.1e-07 1.8e-09 4.6e-03
SAR 1.2e-02 6.2e-03 1.5e-02 3.9e-06 6.6e-02 3.6e-01 1.1e-02 5.0e-03 5.7e-01 7.3e-04 2.0e-03 4.3e-07 1.2e-02
T-TIME 1.7e-06 7.0e-05 2.9e-03 5.4e-07 2.9e-07 1.2e-04 1.4e-01 4.2e-05 7.0e-03 5.5e-07 2.8e-03 2.7e-07 3.1e-05
DOT-MDA 1.3e-04 3.7e-05 6.6e-05 5.8e-04 1.3e-04 1.3e-04 6.6e-05 6.6e-05 9.5e-01 4.1e-05 5.1e-07 1.9e-09 1.5e-03
OTTA 1.9e-02 3.9e-07 2.1e-03 1.9e-06 4.3e-02 5.5e-14 1.3e-06 8.9e-01 2.2e-07 4.4e-02 2.2e-03 2.8e-12 5.0e-02

Table 12: Pairwise ANOVA p-values comparing BTTA-DG to each baseline on BNCI2014001 for
cross-session adaptation.

Method S0 S1 S2 S3 S4 S5 S6 S7 S8 Overall

SincAdaptNet 1.7e-01 3.2e-07 8.6e-09 3.1e-04 1.6e-03 2.2e-06 6.2e-04 1.1e-11 1.9e-06 1.8e-03
BN-adapt 1.7e-01 3.2e-07 8.6e-09 3.1e-04 1.6e-03 2.2e-06 6.2e-04 1.1e-11 1.9e-06 1.8e-03
Tent 1.6e-01 1.0e-14 6.5e-04 1.3e-11 1.1e-15 2.4e-11 1.1e-10 3.6e-02 8.7e-03 4.5e-03
PL 3.2e-06 3.8e-14 1.0e-06 4.2e-12 4.7e-05 1.7e-07 1.9e-05 1.1e-03 5.6e-02 3.0e-03
CoTTA 7.8e-01 9.8e-09 8.4e-04 3.8e-05 3.4e-03 9.4e-06 1.6e-03 2.5e-09 3.5e-03 7.2e-03
SAR 2.8e-01 1.6e-05 8.9e-04 8.3e-04 9.6e-05 3.2e-06 3.1e-04 1.3e-07 7.6e-04 3.7e-03
T-TIME 9.7e-06 1.5e-08 2.5e-05 5.6e-04 2.9e-07 9.6e-06 3.0e-04 5.4e-07 9.6e-03 4.8e-04
DOT-MDA 3.5e-08 4.8e-02 8.1e-07 3.5e-02 2.5e-07 5.1e-06 2.2e-14 4.5e-15 4.1e-09 3.1e-04
OTTA 3.1e-10 3.0e-08 6.9e-17 3.3e-02 8.4e-01 4.0e-06 1.1e-01 3.0e-13 3.0e-09 3.7e-02

G WITHIN-SUBJECT CROSS-SESSION EXPERIMENTS

To verify that BTTA-DG can adapt not only across subjects but also across sessions for the same
subject, we conducted a within-subject cross-session study on BNCI2014001. Specifically, we
pretrained SincAdaptNet on 1st session of each subject and then performed test-time adaptation
on that subject’s 2nd session, simulating session shifts on different days. Table 5 reports the
classification accuracies for cross-session adaptation. BTTA-DG achieves an average of 86.50%±
2.49%, significantly outperforming all competing TTA methods (asterisks denote p < 0.05 by
pairwise ANOVA against each baseline).

Table 12 presents the corresponding pairwise ANOVA p-values comparing BTTA-DG to each baseline
across subjects S0–S8, as well as an overall p-value computed on per-subject mean accuracies. Most
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comparison reach statistical significance, confirming that our gradient-free Bayesian calibration
maintains its advantage even under within-subject cross-session drift.

H TOPOGRAPHIC VISUALIZATION OF THE LEARNED SPATCONV KERNELS

The use of spatial convolution is a standard and effective technique in EEG deep learning models (e.g.,
EEGNet (Lawhern et al., 2018), ATCNet (Altaheri et al., 2022), EEG conformer (Song et al., 2022),
M-FANet (Qin et al., 2024), and etc.) to learn spatial filters. While EEG channel ordering is arbitrary,
the “C x 1” convolution learns a weighted sum of all channels (not only local adjacent channels),
effectively creating data-driven spatial filters that can capture relationships between physically distant
but functionally related brain regions (e.g., bilateral motor cortices). Our topographic visualizations
in Figure 6 show that the learned kernels are not limited to local neighbors but capture diverse and
physiologically meaningful scalp-wide patterns, confirming its ability to learn non-local inter-channel
relationships.

Figure 6 shows all 16 spatial kernels from SincAdaptNet’s Spat-Conv layer, rendered on a standard
10–20 montage Nomenclature (1991) scalp map. Together, these topographies span frontal, central,
parietal, and occipital cortices, demonstrating that SincAdaptNet automatically learns multiple
physiologically meaningful spatial filters—much like CSP but in a fully data-driven, end-to-end
fashion.

Figure 6: Topographic visualization of Spat-Conv kernels for SincAdaptNet trained on BNCI2014001
(22 channels). Each subplot displays one spatial kernel mapped onto the 2D electrode layout (standard
10-20 montage), where the color scale indicates the weight amplitude.
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I FIGURES OF FREQUENCY RESPONSES OF THE LEARNED SINCCONV
FILTERS

To provide a comprehensive view of how SincAdaptNet’s learnable band-pass filters operate across
all subjects, this appendix presents the complete frequency responses of each of the 24 Sinc-Conv
filters for every LOSO test fold. These figures substantiate the interpretability and effectiveness of
Sinc-Conv as a data-driven substitute for hand-crafted bandpass filtering in EEG analysis.
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Figure 7: Training set: others; test set: S1
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Figure 8: Training set: others; test set: S2
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Figure 9: Training set: others; test set: S3
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Figure 10: Training set: others; test set: S4
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Figure 11: Training set: others; test set: S5
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Figure 12: Training set: others; test set: S6
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Figure 13: Training set: others; test set: S7
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Figure 14: Training set: others; test set: S8

J FIGURES OF DIRICHLET PARAMETER DISTRIBUTION WITH GMM
CLUSTERING

To provide a comprehensive view of how our Dirichlet–GMM pipeline captures class-specific structure
in the low-dimensional embedding space across all subjects, this appendix presents the complete
scatters of Dirichlet parameter representation and GMM clustering outcome for every LOSO test fold.
These figures illustrate the stability and separability of the Dirichlet parameter representation across
test trials, and how a Gaussian mixture model (GMM) clusters these parameters into coherent groups.
This analysis validates our choice of Dirichlet projection to compactly encode prediction uncertainty
and our use of GMM to preserve both global and local neighborhood information in BTTA-DG.
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Figure 15: Training set: others; test set: S1
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Figure 16: Training set: others; test set: S2
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Figure 17: Training set: others; test set: S3
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Figure 18: Training set: others; test set: S4
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Figure 19: Training set: others; test set: S5
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Figure 20: Training set: others; test set: S6
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Figure 21: Training set: others; test set: S7
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Figure 22: Training set: others; test set: S8

K COMPUTATIONAL COMPLEXITY

This appendix summarizes the space and time complexity of BTTA-DG’s test-time pipeline, covering
Dirichlet parameter estimation, memory maintenance, and GMM-based calibration. Let M be the
size of the memory bank, |L| the number of classes (i.e., the Dirichlet dimension d = |L|), and K the
number of mixture components per class.
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Space complexity. For each trial we store only its low-dimensional Dirichlet parameter vector
α ∈ Rd

+, so the memory bank costs O(Md). GMM parameters per class add O(Kd) for means and
O(Kd) for diagonal variances (plus O(K) for weights). Since M is fixed and d ∈ {2, 4} in our
MI-EEG settings, the overall cost is minimal.

Time complexity.

• Dirichlet MLE. For a trial with T time steps, computing sufficient statistics si =
1
T

∑T
j=1 log xij costsO(Td); the fixed-point updates with Newton refinement for ψ−1 then

cost O(d Iiter), where the number of iterations Iiter is typically < 5–10 (see Appendix C).
Hence, Dirichlet projection: O(Td+ d Iiter) ≈ O(Td).

• Memory update. Appending a single vector (and evicting the oldest when full) is a queue
operation with O(1).

• GMM re-fitting. Re-fitting by EM over the memory bank has per-EM-iteration cost
O(MKd2). For IEM iterations, the per-trial overhead is O

(
IEM MKd2

)
.

Given that d ≤ 4, K is small, and M is bounded, the end-to-end overhead is negligible in practice
while enabling robust, gradient-free adaptation.

L DETAILED ANALYSIS OF CLASS IMBALANCE SENSITIVITY

The experiment on online class imbalance was designed to probe the adaptive behavior of our BTTA-
DG framework under challenging, non-uniform data distributions. The full results are presented in
Table 13.

Table 13: Performance of BTTA-DG under varying online class imbalance ratios on the BNCI2014001
dataset. As imbalance increases, the model specializes, improving minority class accuracy.
Class Ratio (0 : 1) Accuracy Class 0 (%) Accuracy Class 1 (%) Overall Accuracy (%)

1 : 1 77.01± 1.53 80.40± 1.45 78.70± 1.32
1 : 0.75 74.07± 1.44 80.45± 1.34 76.81± 1.25
1 : 0.5 69.75± 1.52 83.02± 1.42 74.17± 1.28

1 : 0.25 64.67± 1.18 85.19± 1.64 68.77± 1.19

As noted in the main text, while the overall accuracy gracefully degrades with increasing imbalance,
we observe that the accuracy for the minority class (Class 1) conversely improves as its prevalence
decreases. For the minority class, our confidence and entropy thresholds ensure that only the
high-certainty trials of the rare class are added to its memory bank. This creates a highly "pure"
and compact GMM, which becomes exceptionally good at identifying these specific, ideal minority
class trials. Conversely, the GMM for the majority class must account for a much larger and more
diverse set of trials, causing its distribution to become more diffuse. This can lead to a decrease
in its own classification accuracy as the decision boundary shifts. This finding highlights that our
method does not simply fail under imbalance; rather, it adapts by specializing its model for rare
events, demonstrating a unique and robust characteristic for real-world applications.

M DECLARATION OF LARGE LANGUAGE MODEL (LLM) USAGE

The LLM is used only for writing, editing, or formatting purposes and does not impact the core
methodology, scientific rigorousness, or originality of the research.
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