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Abstract

The Bures-Wasserstein (BW) gradient descent
method has gained considerable attention in vari-
ous domains, including Gaussian barycenter, ma-
trix recovery and variational inference problems,
due to its alignment with the Wasserstein geome-
try of normal distributions. Despite its popularity,
existing convergence analysis are often contingent
upon specific loss functions, and the exploration
of constrained settings within this framework re-
mains limited. In this work, we make an attempt
to bridge this gap by providing a general con-
vergence rate guarantee for BW gradient descent
when the Euclidean strong convexity of the loss
and the constraints is assumed. In an effort to
advance practical implementations, we also de-
rive a closed-form solution for the projection onto
BW distance-constrained sets, which enables the
fast implementation of projected BW gradient de-
scent for problems that arise in the constrained
barycenter and distributionally robust optimiza-
tion literature. Experimental results demonstrate
significant improvements in computational effi-
ciency and convergence speed, underscoring the
efficacy of our method in practical scenarios.

1. Introduction
In this work, we consider constrained optimization problems
of the form

min
Σ
f(Σ) subject to Σ ∈ C (1)
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for some function f : Rn×n → R and closed set C defined
over the space of n× n positive-definite matrices:

Sn+ := {Σ ∈ Rn×n : Σ = Σ⊤, λmin(Σ) > 0},

which have appeared in various applications, including
kernel and metric learning (Han et al., 2021; Guillaumin
et al., 2009; Suárez et al., 2021; Tsuda et al., 2005), vari-
ational inference (Blei et al., 2017; Lambert et al., 2022;
Diao et al., 2023), image processing (Lenglet et al., 2006;
Pennec, 2020), and distributionally robust optimization
(Shafieezadeh Abadeh et al., 2018; Nguyen et al., 2023;
Taşkesen et al., 2023) among others.

When endowed with a particular metric, Sn+ forms a Rie-
mannian manifold; various metrics and the corresponding
Riemannian optimization algorithms over Sn+ have been ex-
tensively studied in previous works (Pennec et al., 2006; Sra,
2012; Ha Quang et al., 2014; Lin, 2019; Han et al., 2021).

The Bures-Wasserstein (BW) distance has garnered increas-
ing attention among various metrics for its connections to
optimal transport theory and the Wasserstein metric. Within
BW geometry, the corresponding Riemannian gradient de-
scent algorithm is widely adopted for its straightforward
implementation and superior performance in handling BW
distance-related objective functions, including Gaussian
barycenter (Chewi et al., 2020; Altschuler et al., 2021), low-
rank matrix recovery (Luo & Trillos, 2022; Maunu et al.,
2023), and variational inference problems (Lambert et al.,
2022; Diao et al., 2023).

In barycenter-related problems, the global convergence of
BW gradient descent has been demonstrated by Chewi et al.
(2020); Altschuler et al. (2021). Remarkably, the barycen-
ter objective function, while strongly convex and smooth
in Euclidean geometry, lacks geodesic convexity in BW
geometry–the usual prerequisite for Riemannian gradient
convergence (Zhang & Sra, 2016; 2018; Han et al., 2021)–
making the analysis and result notably valuable.

The success of Chewi et al. (2020); Altschuler et al. (2021)
motivates us to explore whether a more general global con-
vergence result for BW gradient descent is possible under
the sole assumption of Euclidean convexity and smoothness.
In this paper, we address an even broader scenario as for-
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mulated in (1), where we assume only the Euclidean strong
convexity and smoothness of the function f , together with
the Euclidean convexity of the constraint set C. This for-
mulation can further encompass both constrained barycen-
ter problems and WDRO related problems considered in
(Nguyen et al., 2023). We summarize our contributions in
Section 1.1.

1.1. Our Contributions

Global convergence of BW gradient descent for Eu-
clidean strongly convex & smooth functions By explor-
ing the connection between BW geometry and Euclidean
geometry, we establish the global convergence of BW gradi-
ent descent for optimizing Euclidean strongly convex and
smooth objective functions, with a convergence rate that de-
pends on the eigenvalues of the resulting iterative sequence.
We also show the necessity of this eigenvalue dependency by
providing a lower bound result of the BW gradient method.
Furthermore, we provide a sufficient condition for the linear
convergence of BW gradient descent and, by applying this
condition to the barycenter problem, demonstrate that our
results imply a linear convergence rate for the barycenter
problem as shown in Chewi et al. (2020); Altschuler et al.
(2021).

Global convergence of Projected BW gradient descent
and Closed form solution for projection to BW ball We
further extend the global convergence result to the setting
with a Euclidean convex set constraint, resulting in prob-
lems with both geodesically non-convex objectives and con-
straints. Besides the general convergence analysis, for the
specific BW ball constraint set, we establish the existence of
a closed-form solution for the projection under the BW dis-
tance—a contrast to scenarios under Euclidean distance.
This closed-form solution enables efficient implementa-
tion of the projected BW gradient method for BW ball-
constrained problems, including constrained BW barycenter
problems and least-favorable distribution seeking problems
that arise in Wasserstein distributionally robust optimization
literature (Nguyen et al., 2023). We further provide experi-
mental results on several applications of the projected BW
gradient descent to show its superiority in both computa-
tional complexity and convergence rate.

1.2. Related Works

Optimization over Riemannian Manifolds Our problem
setting lies in the more general Riemannian optimization
context, where non-Euclidean convexity and smoothness
are defined, and optimization algorithms are analyzed under
such conditions. Non-asymptotic convergence of (stochas-
tic) projected Riemannian gradient descent and other first-
order methods has been well-studied when both the objec-
tive function and the constraint set are geodesically convex

(Udriste, 2013; Zhang & Sra, 2016; 2018; Kim & Yang,
2022; Weber & Sra, 2023). In this paper, our main focus
is on the setting where both the objective function and the
constraint set are not geodesically convex, and geodesic
convexity under BW distance is difficult to verify. Although
there are results for non-convex Riemannian optimization,
the general theory primarily concerns convergence to station-
ary points (Han & Gao, 2021; Criscitiello & Boumal, 2023).
To the best of our knowledge, a general global convergence
result under geodesic non-convexity is only considered in
Boumal et al. (2019), whose result is not applicable in BW
geometry1.

Convergence Analysis of the BW Gradient Descent Al-
gorithms Non-asymptotic convergence of the BWGD
algorithm for unconstrained problems has been studied
for general geodesically convex functions in (Han et al.,
2021) and in specific problems, including Bures-Wasserstein
barycenters (Chewi et al., 2020; Altschuler et al., 2021), Bu-
res–Wasserstein geometric median (Altschuler et al., 2021),
variational inference (Lambert et al., 2022; Diao et al.,
2023), and low-rank matrix sensing (Luo & Trillos, 2022;
Maunu et al., 2023). To the best of our knowledge, the
convergence of projected BWGD for constrained problems
has not been studied in previous literature.

Optimization with the BW Ball Constraint The
BW ball-constrained optimization problems have arisen
in Wasserstein distributionally robust optimization lit-
erature (Kuhn et al., 2019; Gao & Kleywegt, 2023),
especially in finding the least-favorable distributions
(Shafieezadeh Abadeh et al., 2018; Nguyen et al., 2023;
Taşkesen et al., 2023). Previous works attempt to solve
such problems based on Euclidean optimization algorithms.
Since the projection operator to the BW ball under the Eu-
clidean norm is computationally expensive, the Frank-Wolfe
algorithm is adopted in (Shafieezadeh Abadeh et al., 2018;
Nguyen et al., 2023; Taşkesen et al., 2023). It is also worth
noting that there are several works studying general con-
strained optimization problems and the optimality condi-
tions for optimizing over Wasserstein spaces (Lanzetti et al.,
2022; Yue et al., 2021).

2. Backgrounds
Notations We use A ≻ 0 to denote A is positive definite.
And A ≻ B to denote A − B ≻ 0. For matrices A,B
and Σ ≻ 0, we denote ⟨A,B⟩ = tr(A⊤B) and ⟨A,B⟩Σ =
tr(A⊤ΣB). We use a ≲ b to denote a ≤ cb for some
absolute constant c.

Moreover, throughout the paper, we assume that the consid-
ered function f : Rn×n → R is symmetric in the sense

1See also the remark under Proposition 3.7.
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Concept Euclidean Geometry BW Geometry

Squared distance d2(Σ,Σ′) ∥Σ− Σ′∥2F tr
(
Σ+ Σ′ − 2(Σ1/2Σ′Σ1/2)1/2

)
Tangent space TΣ and ⟨·, ·⟩Σ Sn, ⟨A,B⟩Σ = tr(AB) Sn, ⟨A,B⟩Σ = tr(AΣB)

Geodesic joining Σ,Σ′ tΣ′ + (1− t)Σ, t ∈ [0, 1]
(
(1− t)I + tTΣΣ′

)
Σ
(
(1− t)I + tTΣΣ′

)
, t ∈ [0, 1]

Exp map and its inverse expΣ(·), logΣ(·) expΣ(S) = Σ + S, logΣ(Σ
′) = Σ′ − Σ expΣ(S) = (I + S)Σ(I + S), logΣ(Σ

′) = TΣΣ′ − I

β-smoothness f(Σ′) ≤ f(Σ) + ⟨Df(Σ),Σ′ − Σ⟩+ β
2 ∥Σ− Σ′∥2F f(Σ′) ≤ f(Σ) + 2⟨Df(Σ), TΣΣ′ − I⟩Σ + β

2 d
2(Σ,Σ′)

α-strong convexity f(Σ′) ≥ f(Σ) + ⟨Df(Σ),Σ′ − Σ⟩+ α
2 ∥Σ− Σ′∥2F f(Σ′) ≥ f(Σ) + 2⟨Df(Σ), TΣΣ′ − I⟩Σ + α

2 d
2(Σ,Σ′)

gradient update in (6) Σ+ ← Σ− ηDf(Σ) Σ+ ←
(
I − 2ηDf(Σ)

)
Σ
(
I − 2ηDf(Σ)

)
Table 1. Formulas of geometric concepts for BW and Euclidean Geometry of Sn

+, where TΣΣ′ is defined in (5) and Df is the Euclidean
gradient of f . A part of results in this table is reproduced from those in table 2.1 of Diao (2023).

that f(M) = f(M⊤) for all M ∈ Rn×n. For a gen-
eral function f , we can adapt it to our setting by defining
f̃(M) := 1

2 (f(M) + f(M⊤)) for all M . Such a replace-
ment will not alter its minimum point Σ⋆ when Σ⋆ ≻ 0, see
also Luo & Trillos (2022).

2.1. Riemannian Manifold and Geodesic Convexity

In this section, we introduce the notation in general Rie-
mannian manifold and geodesic convexity & smoothness.
To keep the readability and fluency of the article, we just
provide the minimal concepts that we will use in the main
text, and we refer interested readers for (Absil et al., 2008;
Bacak, 2014; Zhang & Sra, 2016; Boumal, 2023) for more
detailed treatment.

On a general manifoldM, a Riemannian metric is a smooth,
bilinear, symmetric positive definite function defined on
the tangent space Tx at any point x ∈ M, denoted ⟨·, ·⟩x.
A geodesic on the manifold γ : [0, 1] → M is a curve
that is locally the shortest path and has zero acceleration.
For x ∈ M and u ∈ Tx, the value of the exponential
map expx(·) : Tx → M at u is given by γ(1), where γ
is the geodesic satisfying γ(0) = x and γ′(0) = u. The
logarithmic map logx(·) :M→ Tx is defined as the inverse
of the exponential map.

And for a differentiable function f overM, we define the
following concept of geodesic strong convexity and smooth-
ness:
Definition 2.1. A function f :M→ R is said to be geodesi-
cally α-strongly convex if for any x, x′ ∈M, it holds that

f(x′) ≥ f(x)+ ⟨∇f(x), logx(x′)⟩x+
α

2
dM(x, x′)2, (2)

with∇f(x) ∈ Tx the Riemannian gradient of f at x.
Definition 2.2. A function f :M→ R is said to be geodesi-
cally β-smooth if for any x, x′ ∈M, it holds that

f(x′) ≤ f(x)+ ⟨∇f(x), logx(x′)⟩x+
β

2
dM(x, x′)2, (3)

with∇f(x) ∈ Tx the Riemannian gradient of f at x.

Definition 2.3. A function f : M → R is said to be Eu-
clideanL-Lipschitz if for any x ∈M, its Euclidean gradient
Df(x) satisfies

∥Df(x)∥ ≤ L. (4)

2.2. BW and Euclidean Geometry over Positive Definite
Matrices

In this section, we introduce the Riemannian geometry of
Sn+ with the BW distance and the Euclidean distance. As in
the previous section, we just provide the minimal concepts
that we will use in the main text, and we refer interested
readers to Appendix A of Altschuler et al. (2021) and sec-
tion 2 of Diao (2023) for more detailed treatment.

The BW distance defined over Sn+ is given by

dBW(Σ,Σ′) =
√

tr
(
Σ+ Σ′ − 2(Σ1/2Σ′Σ1/2)1/2

)
.

The BW distance is intimately connected to the concept of
optimal transport, in that the Wasserstein-2 distance between
Gaussian distributions N (0,Σ) and N (0,Σ′) is precisely
the BW distance between the covariance matrices Σ and Σ′.

On the other hand, the Euclidean distance defined over Sn+
is straightforwardly determined by the Frobenius norm of
the matrix difference:

d∥·∥F
(Σ,Σ′) = ∥Σ− Σ′∥F .

This means that there are Riemannian manifold structures
defined over Sn+ for which the geodesic distances correspond
to dBW and d∥·∥F

, respectively. We present the related ge-
ometric quantities and the conditions for smoothness and
convexity under these structures in Table 1, where we intro-
duce the following transformation:

TΣΣ′ := Σ−1/2(Σ1/2Σ′Σ1/2)1/2Σ−1/2, (5)

which can be interpreted as the optimal transport map from
N (0,Σ) to N (0,Σ′).

Additionally, within the context of the smooth and convex
conditions presented in Table 1, we employ the identity
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∇BWf(Σ) = 2Df(Σ) between Euclidean gradient Df and
the Riemannian gradient ∇BWf under BW geometry.

2.3. Projected BW Gradient Descent Update

In this paper, we aim to study the convergence of projected
Riemannian gradient descent iteration described in Algo-
rithm 1 for solving (1).

Algorithm 1 Projected BW Gradient Descent
Input: Objective function f , constraint set C, Initial point

Σ0, step size η, time-horizon T .
for t = 0, 1, 2, . . . , T do

Σ+
t ← expΣt

(−η∇f(Σt)), (6)

Σt+1 ← PC(Σ
+
t ). (7)

The update rule in (6) can be viewed as a generalization of
the gradient descent update to a Riemannian manifold and
simplifies to the standard gradient descent update in the case
of flat geometry, as indicated in the last row of Table 1. The
projection step in (7) solves the problem

min
Σ
d(Σ,Σ+

t ) subject to Σ ∈ C,

where d is the geodesic distance induced by the manifold’s
geometry. The explicit form of the general update equation
(6) within the Bures-Wasserstein geometry is presented in
the last row of Table 1.

3. Analysis of BW Gradient Descent for
Unconstrained Problems

We would first consider the unconstrained case, whose anal-
ysis is relatively straightforward, as a warm-up, we will
then extend the idea of analysis to the constrained setting
in the next section. From now on, we set∇f = ∇BWf and
d = dBW for simplicity of notation.

For a Euclidean strongly convex and smooth f , we would
show the convergence of BWGD based on the following
general fact, as shown in (Chewi et al., 2020; Altschuler
et al., 2021)
Definition 3.1 (Polyak-Łojasiewicz inequality). We say a
function f satisfies the µ-Polyak-Łojasiewicz (PL) inequal-
ity at Σ, if it holds that

µ
(
f(Σ)− f(Σ⋆)

)
≤ ∥∇f(Σ)∥2Σ. (8)

Definition 3.2 (Descent condition). We say a function f sat-
isfies the ζ-descent condition at Σ under the BWGD stepsize
η, if it holds that for Σ and Σ+ = expΣ

(
− η∇f(Σ)

)
,

f(Σ+)− f(Σ) ≤ −ζ∥∇f(Σ)∥2Σ (9)

for some ζ > 0.

In particular, a straightforward fact, by the update formula
of Riemannian gradient, is that the descent condition holds
with η ≤ 2

β and ζ = η − βη2

2 when f is β-geodesically
smooth.

It is easy to verify that the PL inequality and the descent
condition together can lead to a contraction guarantee:

Proposition 3.3. Suppose function f satisfies µ-PL inequal-
ity and the ζ-descent condition at Σ, then it holds that

f(Σ+)− f(Σ⋆) ≤ (1− ζµ) (f(Σ)− f(Σ⋆))

Based on Proposition 3.3, we would divide the proof con-
traction result into verifying the PL inequality (8) and the
descent condition for f .

VERIFYING THE PL INEQUALITY

Verifying the PL inequality is rather straightforward based
on the tangent space structure of the BW manifold: Actually,
as long as the Euclidean PL inequality

µ̃
(
f(Σ)− f(Σ⋆)

)
≤ ∥Df(Σ)∥2. (10)

holds, we can verify by definition that (8) holds with
µPL = 4λmin(Σ)µ̃. On the other hand, we would recall
the following well-known fact in convex optimization:

Lemma 3.4. If f is Euclidean α-strongly convex, then (10)
holds with µ̃ = 2α.

Thus the α-Euclidean convexity together with Lemma 3.4
implies the 8αλmin(Σ)-PL inequality of f at every Σ.

VERIFYING THE DESCENT CONDITION

To verify the descent condition at Σ, we aim to relate the
expansion in (3) at Σ under Euclidean geometry to its coun-
terpart in BW geometry.

For the squared distance term, the following equivalence
between the BW distance and the Frobenius norm has been
established by Altschuler et al. (2021)2:

Lemma 3.5 ((Altschuler et al., 2021), Remark 5). For every
Σ,Σ′ ∈ Sn+, λminI ⪯ Σ,Σ′ ⪯ λmaxI , we have

4λmind
2(Σ,Σ′) ≤ ∥Σ− Σ′∥2F ≤ 5λmaxd

2(Σ,Σ′)

It remains to relate the first-order term ⟨Df(Σ),Σ′ − Σ⟩ to
⟨∇f(Σ), logΣ(Σ′)⟩Σ. To this end, we introduce a lemma
that captures the difference in geometry between the tra-
ditional Euclidean space and the BW geometry, which is

2We have also provided an alternative proof of the second
inequality of Lemma 3.5 in Appendix F, with a minor improvement
on the absolute constant.
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essential for understanding the behavior of optimization
algorithms when transitioning from Euclidean to BW geom-
etry:

Lemma 3.6. Given any two symmetric positive definite
matrices Σ,Σ′ ∈ Sn+ and a symmetric matrix g ∈ Rn×n,
we have

|⟨g,Σ− Σ′⟩ − ⟨2g, logΣ(Σ′)⟩Σ| ≤ ∥g∥ · d2(Σ,Σ′).

Given the identity 2Df(Σ) = ∇BWf(Σ), Lemma 3.6 sug-
gests that∣∣⟨Df(Σ),Σ− Σ′⟩ − ⟨∇f(Σ), logΣ(Σ′)⟩Σ

∣∣
≤ ∥Df∥ · d2(Σ,Σ′).

This lemma indicates that the difference between the direc-
tional derivatives in the Euclidean and BW geometries is
bounded by a term proportional to the squared BW distance.
By combining this result with Lemma 3.5, we can provide a
geodesic smoothness guarantee for f :

Proposition 3.7. If function f is Euclidean β-smooth and
Euclidean L-Lipschitz, then it holds that for any Σ,Σ′

f(Σ′) ≤ f(Σ) + ⟨∇f(Σ), logΣ(Σ′)⟩Σ +
β′

2
d2(Σ,Σ′)

with β′ = 5βmax{∥Σ∥, ∥Σ′∥}+ 2L.

Noticing that when η ≤ 1
20β∥Σ∥+16L , we have

∥Σ+∥ ≤ ∥(I − η∇f)∥2∥Σ∥ ≤ 4∥Σ∥,

Then we have by Proposition 3.7,

f(Σ+) ≤ f(Σ)− η∥∇f∥2Σ +
20β∥Σ∥+ 2L

2
η2∥∇f∥2Σ

≤ f(Σ)− η

2
∥∇f∥2Σ.

(11)
Remark 3.8. It is worth noting that the result in Lemma 3.6
and Proposition 3.7 can be interpreted as a special case that
verifies condition A3 in (Boumal et al., 2019) within the
BW geometry. Similarly, Lemma 4 in (Boumal et al., 2019),
which ensures geodesic smoothness from Euclidean smooth-
ness, serves a more general analogous to Proposition 3.7.
However, Lemma 4 in (Boumal et al., 2019) assumes that
the considered manifold is a sub-manifold of Euclidean
space that inherits the Euclidean inner product, which is not
the case in our setting. Therefore, new arguments utilizing
the properties of the BW distance are provided in the proofs
of Lemma 3.6 and Proposition 3.7.

Now combining Proposition 3.1, Lemma 3.4 and 11 we
have the following contraction guarantee of BW gradient
descent:

Theorem 3.9. At every Σ ∈ Sn+, if we select η ≤
1

20β∥Σ∥+16L , then it holds that

f(Σ+)− f(Σ⋆) ≤
(
1− αλmin(Σ)

16
η
)(
f(Σ)− f(Σ⋆)

)
In contrast to the classical linear convergence rates achieved
by gradient descent for strongly convex and smooth func-
tions, our contraction result introduces an additional de-
pendence on λmin(Σ), which may slow down the conver-
gence rate as λmin(Σ)→ 0. It is therefore worth discussing
whether this dependency can be removed. In fact, we have
the following claim:

Proposition 3.10. There exists a Euclidean strongly convex
and smooth objective function f and an absolute constant
c > 0 so that for every step-size η > 0 there exists a
initial point Σ0 so that the BWGD iteration starting from
Σ0 satisfies maxk λmax(Σk)/λmin(Σk) = 1 and

lim inf
k

λ−1
min(Σk) log

(
f(Σk)− f(Σ⋆)
f(Σk+1)− f(Σ⋆)

)
≤ c.

This demonstrates that even if every matrix in the sequence
is well-conditioned, the convergence rate may still depend
on the minimal eigenvalue.

To explain Proposition 3.10, if we omit the lim inf on the
left-hand side for convenience and take the exponential of
both sides of the inequality in Proposition 3.8, we obtain the
following expression:

f(Σk+1)− f(Σ⋆) ≥ exp(−cλmin(Σk))(f(Σk)− f(Σ⋆))
≥ (1− cλmin(Σk))(f(Σk)− f(Σ⋆)),

where we have used exp(−t) ≥ 1− t in the second inequal-
ity. This inequality implies that the contraction factor at
the k-th step is lower bounded by (1− cλmin(Σk)), which
depends on λmin(Σk) in a manner similar to our conver-
gence rate result in Theorem 3.9. This indicates that our
dependency on λmin(Σ) is indeed tight.

Finally, it is worth mentioning that, based on Theorem 3.9,
we can obtain the following linear convergence result by
imposing a boundedness assumption on the eigenvalues of
the iteration sequence generated by the BW gradient descent
update:

Corollary 3.11. Suppose there exists constants 0 < λmin <
λmax < +∞ so that for the sequence {Σk}∞k=1 gener-
ated by the BW gradient update satisfies λminI ⪯ Σk ⪯
λmaxI for all k, then it holds that when selecting η ≤

2
20βλmax+16L ,

f(Σk)− f(Σ⋆) ≤ (1− αλmin

16
)kf(Σ0).
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In particular, for the Gaussian barycenter problem, Lemma 1
in Altschuler et al. (2021) demonstrates that the eigenvalue
upper and lower bounds required in Corollary 3.11 exist un-
der mild assumptions (see also Section A for more detailed
discussions). Thus, our result also implies a linear conver-
gence rate for unconstrained Gaussian barycenter problems.

4. Analysis of BW Gradient Descent for
Constrained Problems

4.1. Closed Form Projection to the BW Ball

Considering the computational feasibility of the projection
operator is crucial when applying projected gradient meth-
ods. In the BW ball constrained problems, we need to con-
sider the projection of any Σ onto the BW ballW(Σ0, ρ),
which is given by the following problem:

min
Σ̃∈W(Σ0,ρ)

d2(Σ, Σ̃)

with W(Σ0, ρ) := {Σ′ : d2(Σ′,Σ0) ≤ ρ2}.
(12)

Although (12) is a convex problem in Euclidean geometry
due to the convexity of the squared BW distance, making
it computationally feasible, solving it directly results in an
n-dimensional semidefinite program (Appendix I.3), which
can be relatively slow compared to projection-free methods.
Our first observation is that problem (12) can be solved with
a closed-form solution.

Proposition 4.1 (Closed form projection to BW ball). The
problem (12) attains its minimizer PW(Σ) at

γ2Σ+ (1− γ)2Σ0 + (1− γ)γ
(
Σ0TΣ0Σ +ΣTΣΣ0

)
(13)

where γ = 1 when d2(Σ,Σ0) ≤ ρ2, and γ = ρ
d(Σ,Σ0)

when
d2(Σ,Σ0) > ρ2.

In the following text, we denote W(Σ0, ρ) by W , when
there is no ambiguity. We have two remarks about the
Proposition 4.1:

Computational Cost of the Projection We aim to eval-
uate the computational expense of the projection in com-
parison with the linear oracle employed in projection-free
optimization methods. Specifically, when the Frank-Wolfe
method is applied to minimizing some objective function
−f overW , its each iteration necessitates solving the fol-
lowing sub-problem within the BW ball:

max
Σ∈W
⟨Σ,∇f(Σ)⟩ (14)

When∇f(Σ) ⪯ 0—a condition holds in the least-favorable
distribution seeking problems as in Shafieezadeh Abadeh
et al. (2018); Nguyen et al. (2023); Taşkesen et al. (2023)—
is satisfied, Taşkesen et al. (2023) has shown that (14) has a
quasi closed-form solution, which can be obtained by taking

matrix inversion and solving a one-dimensional convex prob-
lem, which can be solved highly efficiently via bisection.
By contrast, the projection described in (4.1) includes a sin-
gular value decomposition operation when computing TΣΣ0

,
which has a cost on par with matrix inversion, but no longer
needs the one-dimensional optimization. Consequently, in
this case, the computational cost of each projected gradient
update is always not slower than that of the projection-free
methods.

On the other hand, in the general scenario where∇f(Σ) is
not necessarily positive definite (for example, in the con-
strained barycenter problem), although Proposition A.2 of
(Taşkesen et al., 2023) still shows that Equation (14) has a
quasi-closed form solution, its associated one-dimensional
problem is strictly more challenging than in the case where
∇f(Σ) ⪯ 0. Consequently, the bisection algorithm guaran-
tee, developed by the authors, no longer holds, which may
lead to a less efficient method for solving Equation (14).
In comparison, our closed-form projection approach is still
valid in such scenarios, thus offering superior computational
efficiency.

Inconsistency between BW Projection and Euclidean
Gradient Update Since our focus is on a Euclidean con-
vex objective function, it is natural to inquire if the BW
projection (12) can be smoothly incorporated into the Eu-
clidean gradient update process. Specifically, whether the
update step Σt+1 ← PW(Σt − η∇F (Σt)) can have the
desired global convergence guarantee. However, we demon-
strate numerically that applying classical projected gradi-
ent descent (GD) convergence results to this setting is not
straightforward. In section 5, our simulations using Eu-
clidean gradient descent (EGD) update with projection (12)
fail to converge to the global minimum, despite the objective
function being strongly convex and smooth in the Euclidean
sense.

4.2. Properties of the BW Projection onto Euclidean
Convex Sets

In this section, we present several properties of the BW
projection onto a general Euclidean convex set C. It is
important to emphasize that while solving the projection
problem is convex in the context of Euclidean geometry, the
projected set C generally exhibits non-convexity in terms of
geodesic distance within BW geometry (Bhatia et al., 2017).
Our first result is the variational characterization of the BW
projection
Proposition 4.2. If C is a Euclidean convex closed subset
of Sn+, then for any Σ ≻ 0, we have Σ̃ ∈ PC(Σ) if and only
if it holds

⟨logΣ̃(Σ), logΣ̃(Σ
′)⟩Σ̃

≤ −1

2
⟨logΣ̃(Σ),Σ

′ + Σ̃− 2Σ̃TΣ̃,Σ′⟩
(15)
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for every Σ′ ∈ C. In particular, we have

⟨logPC(Σ)(Σ), logPC(Σ)(Σ
′)⟩PC(Σ)

≤ 1

2
∥logΣ PC(Σ))∥d2(Σ′, PC(Σ))

(16)

Remark 4.3. When compared with the projection property
for geodesically convex sets, as stated in the following
lemma:

Lemma 4.4 ((Walter, 1974), Lemma 2). If C is a geodesi-
cally convex and closed set, then for any Σ′ ∈ C,

⟨logPC(Σ)(Σ), logPC(Σ)(Σ
′)⟩PC(Σ) ≤ 0. (17)

Unlike in (17), the right-hand side term in (15) might be
positive due to the geodesic non-convexity of C. The mag-
nitude of the right-hand side term can be interpreted as an
indicator of how closely C approaches geodesic convexity.
Furthermore, the inequality 16, which controls this magni-
tude, implies that it will converge to zero at a cubic rate as
both d(Σ, PC(Σ)) and d(PC(Σ),Σ′) approach zero.

4.3. Convergence Analysis of Projected BW Gradient
Descent

In this section, we provide our main results on the conver-
gence of the projected BW gradient descent method for
Euclidean strongly convex and smooth objective functions
with the Euclidean convex constraint sets.

While it is also possible to derive the one-step contraction
result as in Theorem 3.9, for the sake of analytical sim-
plicity, we assume that the following bounded eigenvalue
condition holds to derive the linear convergence guarantee
as in Corollary 3.11. As will be demonstrated in section A,
this condition can indeed be verified in both the constrained
barycenter problem and the least-favorable distribution seek-
ing problem, which are the foundational examples motivat-
ing our study.

Assumption 4.5. There exists constants 0 < λmin <
λmax < +∞ so that for the sequence {Σk}∞k=1 generated
by the projected BW gradient update satisfies λminI ⪯
Σk ⪯ λmaxI for all k. We denote κ = λmax

λmin
.

One implication of Assumption 4.5, when combined with
Proposition 3.7, is that if the function f is Euclidean β-
smooth and L-Lipschitz, then it is geodesically (5βλmax +
2L)-smooth under the BW geometry. For simplicity, we
denote β′ = 5βλmax + 2L in this section.

In the presence of the constraint set, the PL inequality and
geodesic smoothness no longer guarantee global conver-
gence of projected BW gradient descent due to the projec-
tion operator. Motivated by the classical approach as seen
in Nesterov (2013); Bubeck et al. (2015), we define the fol-
lowing alternative to the gradient to measure the increment

produced by each projected BW gradient descent update:

gC(Σ) :=
1

η
logΣ(Σ

+),Σ+ := PC (expΣ(−η∇BWf(Σ))) .

The quantity gC(Σ) describes the direction of the increment
of the BW gradient descent (BWGD) update after projec-
tion. It can be seen that when the projection operator is not
invoked, we have gC(Σ) = −∇BWf(Σ). We will show the
convergence result by establishing the following variant of
the PL inequality and the descent condition for gC(Σ):

µ
(
f(Σ)− f(Σ⋆)

)
≤ ∥gC(Σ)∥2Σ, (18)

f(Σ+)− f(Σ) ≤ −ζ∥gC(Σ)∥2Σ. (19)

By firstly applying (19) to f(Σ+) − f(Σ), then invoking
(18), it is straightforward to verify the following one-step
contraction result holds:

Lemma 4.6. Suppose (18) and (19) holds at some Σ with
η, µ, ζ, then we have

f(Σ+)− f(Σ⋆) ≤ (1− µζ)(f(Σ+)− f(Σ⋆))

Thus it is sufficient to verify (18) and (19).

4.3.1. VERIFYING THE PL INEQUALITY

For the condition (18), we have the following result:

Lemma 4.7. As long as Assumption 4.5 is satisfied, we have
the condition (18) holds with

µ̃ ≳

(
(β′ + 1)κ5

α
Lρ2κmax{λ−1

min, λ
−1/2
min }(η

−1+η3)

)−1

The proof of Lemma 4.7 is technical and lengthy; therefore,
it is deferred to the appendix to maintain the readability
and flow of the text. It is also noteworthy that, compared
to the PL coefficient in the unconstrained case, the result
in Lemma 4.7 exhibits a worse dependency on problem
parameters. This is due to the increased difficulty in dealing
with the projection and the constraint set when analyzing
projected BW gradient descent.

4.3.2. VERIFYING THE DESCENT CONDITION

To verify the descent condition, firstly noticing that by
Proposition 3.7, we have

f(Σ+)− f(Σ) ≤ ⟨∇f(Σ), logΣ(Σ+)⟩Σ +
β′η2

2
∥g(Σ)∥2Σ,

thus it is sufficient to show that there exists some large
enough c so that ⟨∇f(Σ), logΣ(Σ+)⟩Σ ≤ −c∥g(Σ)∥2Σ. If
we denote Σ̃ := expΣ(−η∇f(Σ)), then we can check the
decomposition

η
(
⟨∇f(Σ), logΣ(Σ+)⟩Σ + η∥gC(Σ)∥2Σ

)
7
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= ⟨TΣ+,Σ̃ − TΣ+,ΣTΣ,Σ̃, logΣ+
(Σ)⟩Σ+︸ ︷︷ ︸

:=I1

+ ⟨logΣ+
(Σ̃), logΣ+

(Σ)⟩Σ+︸ ︷︷ ︸
:=I2

.

For I1, we have

|I1| ≤ η∥TΣ+,Σ̃ − TΣ+,ΣTΣ,Σ̃∥Σ+∥gC(Σ)∥Σ

For I2, we have by Proposition 4.2,

|I2| ≤
1

2
|⟨logΣ+

(Σ̃),Σ+ +Σ− 2Σ+TΣ+,Σ⟩|

≤
√
κLη3∥gC(Σ)∥2Σ,

where the second line is by (16) and the following inequali-
ties:

λ
1/2
min∥logΣ+

(Σ̃)∥ ≤ d(Σ+, Σ̃) ≤ d(Σ, Σ̃) ≤ λ1/2maxLη

Now combining our results for I1, I2 and the decomposition,
we have

f(Σ+)− f(Σ) ≤ (
β′η2

2
+
√
κLη2 − η)∥gC(Σ)∥2Σ

+ ∥TΣ+,Σ̃ − TΣ+,ΣTΣ,Σ̃∥Σ+∥gC(Σ)∥Σ.

While the first term is guaranteed to be less than or equal to
−η2∥gC(Σ)∥

2
Σ for η ≤ 1

4 min{(
√
κL)−1, β′−1/2}, we need

to demonstrate that the second term can be dominated by
the first for a sufficiently small η.

To this end, we establish the following general second-order
bound for the optimal transport maps. This bound is de-
rived through perturbation analysis of the Lyapunov equa-
tion (Hewer & Kenney, 1987) and may be of independent
interest:

Lemma 4.8. For any matrices A, B, and C satisfying
λminI ⪯ A,B,C ⪯ λmaxI , the following inequality holds:

∥TABTBC − TAC∥A ≤ 8κλ
−1/2
min d(A,B)d(B,C).

This lemma provides a quantitative measure of the deviation
between the direct transport map TAC and the composi-
tion of two successive transport maps TAB and TBC , with
respect to the metric induced by matrix A. Specifically,
applying it with A = Σ+, B = Σ, C = Σ̃ leads to

∥TΣ+,Σ̃ − TΣ+,ΣTΣ,Σ̃∥Σ+∥gC(Σ)∥Σ

≤8κλ−1/2
min d(Σ+,Σ)d(Σ̃,Σ)∥gC(Σ)∥Σ

Now noticing that

d(Σ+,Σ)d(Σ̃,Σ) ≤ λ1/2maxLη
2∥gC(Σ)∥Σ.

Thus the second term is bounded by 8κ3/2Lη2∥gC(Σ)∥2Σ,
in particular letting η ≤ 1

32κ3/2L
, we have then

f(Σ+)− f(Σ) ≤ −η
4
∥gC(Σ)∥2Σ.

We can summarize the above result as the following:
Lemma 4.9. As long as Assumption 4.5 is satisfied and

η ≤ 1

4
min

{
(
√
κL)−1, β′−1/2

, (4κ3/2L)−1

}
,

we have then the descent condition (19) holds with ζ = η/4.

4.3.3. LINEAR CONVERGENCE RESULT

Combining Lemma 4.7 and Lemma 4.9, we have the follow-
ing linear convergence guarantee of projected BW gradient
descent:
Theorem 4.10. As long as Assumption 4.5 is satisfied and

η ≤ 1

4
min

{
(
√
κL)−1, β′−1/2

, (4κ3/2L)−1

}
,

thus with µ̃ specified in Lemma 4.7, we have

f(Σk)− f(Σ⋆) ≲ (1− ηµ̃/16)k
(
f(Σ0)− f(Σ⋆)

)
.

5. Numerical Results
In this section, we provide the convergence behavior of our
projected BWGD algorithm under two different scenarios:
WDRO-MMSE and constrained Gaussian barycenter. The
detailed introduction and assumption verification of these
two problems are in Appendix A.

For comparison, we also experiment with frank-wolfe (FW),
fully adaptive frank-wolfe (FAFW), projected BWGD with
heuristic Armijo search (Armijo BWGD), and Euclidean
gradient descent (EGD) with projection (12).

For the WDRO-MMSE problem, we aim to solve the fol-
lowing problem:

min
Σx,Σw

− tr
(
Σx − ΣxH

⊤(HΣxH
⊤ +Σw

)−1
HΣx

)
s.t. Σx ∈ W(Σ̂x, ρx),Σw ∈ W(Σ̂w, ρw).

where dimension n = 200, Wasserstein radii ρx = ρw =√
n, Σ̂x = UxΛxU

T
x , Σ̂w = UwΛwU

T
w with Ux, Uw the

orthonormal eigenvector ofQx+QTx , Qw+Q
T
w andQx, Qw

are sampled from standard normal distribution on Rn×n,
Λx and Λw are diagonal matrices with elements uniformly
sampled form [1, 5] and [1, 2].

For constrained barycenter, we aim to solve:

min
Σ∈W(Σ̂,ρ)

N∑
i=1

βid
2(Σ,Σi).
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Figure 1. WDRO-MMSE Figure 2. Constrained Barycenter

where n = 30, ρ = 4
√
n,N = 50,

∑N
i=1 βi = 1. And

βi =
αi∑N
i=1 αi

with αi generated from αi ∼ U(0, 1), Σ̂ =

UΛxU
T , Σ̂i = UiΛiU

T
i with U,Ui generated the same way

as in WDRO-MMSE and elements of Λx and Λw are from
[1, 2] and [0.1, 100].

We run 5 experiments for WDRO-MMSE and 1 experiment
for constrained barycenter and plot the surrogate duality gap
(Appendix I.4) as the convergence criteria.

Figure 1 shows the result of WDRO-MMSE, and Figure 2
shows the result of the constrained barycenter. When choos-
ing the vanilla step size, the projected BWGD is much faster
than Frank-Wolfe. By incorporating the Armijo search tech-
nique Iusem (2003) into projected BWGD, we can achieve
comparable results in WDRO-MMSE and perform signifi-
cantly superior to FAFW in constrained barycenter, where
FAFW shows fluctuation due to its dependency on three
hyper-parameters. We leave the theoretical proof of conver-
gence of Armijo BWGD to potential future directions.

Moreover, we comment that EGD exhibits poor convergence
behavior and numerically shows the inconsistency between
our BW projection and the Euclidean gradient descent as
we mentioned in section 4.

Regarding the potential applications of the BWGD algo-
rithm beyond the BW ball constraint, we added a new exper-
iment involving the Wasserstein barycenter problem with
the matrix interval constraint, as discussed in Weber & Sra
(2022; 2023). A detailed introduction and the results of this
experiment are presented in Appendix J.

We have provided the Matlab code to reproduce our numeri-
cal results3 in https://github.com/Junyifannnn/ProjBWGD.

3require MOSEK as the SDP solver

6. Conclusion
In this work, we have established the convergence criteria
of the projected BWGD under Euclidean strong convexity
and smoothness. The key idea of our proof lies in drawing
the connection between the Euclidean PL inequality and
smoothness to their geodesic analogs, which may be of in-
dependent interest. Moreover, an analytical formula for the
BW ball projection under the BW distance is provided and
used to implement our algorithm in several numerical ex-
amples. We hope our study and the provided tools can lead
to more insight into optimization under the BW distance
and its connection to Euclidean geometry. Several ques-
tions are left for future study, including similar convergence
guarantees when replacing Euclidean strong convexity and
smoothness with weaker convexity and Lipschitz continu-
ity, and the stochastic optimization analogue of our current
results.
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A. Background Examples
In this section, we provide two problems that fit our general framework and have their own importance in their area.

(Constrained) Gaussian Barycenter Problem In the BW barycenter problem, we are given a mixture distribution P over
mean-zero Gaussian distributions, and our objective is to find the barycenter distribution

µ⋆ ∈ argminµ

∫
W 2(µ, µ0)dP (µ0). (20)

Proposition 15 in Chewi et al. (2020) demonstrates that if the covariance matrices Σ(µ0) of all µ0 ∈ supp(P ) are uniformly
bounded above and below by constants 0 < κl ≤ κu < +∞ : κlI ⪯ Σ(µ0) ⪯ κuI, then µ⋆ must also be Gaussian.
Consequently, problem (20) simplifies to finding the optimal covariance matrix

Σ⋆ ∈ argminΣ∈Sn+

∫
W 2(Σ,Σ0)dP (Σ0). (21)

When it is crucial to maintain a predefined proximity to a certain distribution( for instance, if we are working with a series of
medical images where the barycenter should not deviate significantly from the standard human anatomy), a hard constraint
on the Wasserstein distance is introduced, leading to the following constrained barycenter problem:

Σ⋆ ∈ argminΣ∈BW(Σ̃;ρ)

∫
BW2(Σ,Σ0)dP (Σ0), (22)

with BW(Σ̃; ρ) denoting the set of covariance matrices within the Wasserstein distance ρ from a specified matrix Σ̃.

WDRO-MMSE Problem In the MMSE problem, one needs to estimate unknown parameter x ∈ Rn based on its noisy
measurement

y = Hx+ w ∈ Rm

where w is the random noise and the observation matrix H ∈ Rm×n is assumed to be known. The quality of an estimator
ψ : Rm → Rn is measured by the mean squared error risk:

R(ψ, x) = EPy|x

[
∥x− ψ(y)∥2

]
,

and when x is given from some prior distribution Px, the MMSE problem aims to find

ψ⋆ = min
ψ

EPx
[R(ψ, x)]. (23)

The WDRO MMSE aims to find the robust version of (23), where both Py|x and Px lies in the Wasserstein ambiguity sets P
and the learner wants to optimize the worst-case performance

ψ⋆ = min
ψ

max
Px,Py|x∈P

EPx
[R(ψ, x)]. (24)

In particular, if we consider the case that both Px and Py|x are Gaussian and P is given by the Wasserstein ball, then it has
been shown in Nguyen et al. (2023)(24) can be solved by first finding the least-favorable distribution P ⋆x , P

⋆
y|x, then solving

(23) with P ⋆x , P
⋆
y|x. And Theorem 3.5 of Nguyen et al. (2023) shows the least-favorable distribution seeking problem can be

formulated as the following BW ball constrained problem

min
Σx,Σw

− tr
(
Σx − ΣxH

⊤(HΣxH
⊤ +Σw)

−1HΣx
)

s.t. Σx ∈ W(Σ̂x, ρx),Σw ∈ W(Σ̂w, ρw) (25)

While this formulation involves an optimization problem over two positive-definite matrices, each subject to an independent
BW ball constraint, our theory and algorithm have been developed for a single positive-definite matrix. However, it is
relatively straightforward to consider the product geometry and extend our framework, provided that the objective function
is jointly strongly convex and smooth with respect to both Σx and Σw.

We would show that both examples satisfies Assumption 4.5 (see Appendix I)
Proposition A.1. The constrained barycenter problem satisfies Assumption 4.5

Proposition A.2. The WDRO MMSE problem satisfies Assumption 4.5

12
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B. Proof of Proposition 4.1
Consider the following BW-ball projection problem:

g(Σ̂, X) = min
S∈Sp

+

d(S,X),

s.t. d2(S, Σ̂) ≤ ρ2.

which is equivalent to

g(Σ̂, X) = min
S∈Sp

+

tr(S) + tr(X)− 2tr
(√

X
1
2SX

1
2

)
,

s.t. tr(S) + tr(Σ̂)− 2tr
(√

Σ̂
1
2SΣ̂

1
2

)
≤ ρ2.

With Lagrangian function and Slater’s condition, we have

g(Σ̂, X) = min
S∈Sp

+

max
γ≥0

tr(S) + tr(X)− 2tr
(√

X
1
2SX

1
2

)
+ γ(tr(S) + tr(Σ̂)− 2tr

(√
Σ̂

1
2SΣ̂

1
2

)
− ρ2)

= max
γ≥0

min
S∈Sp

+

tr(S) + tr(X)− 2tr
(√

X
1
2SX

1
2

)
+ γ(tr(S) + tr(Σ̂)− 2tr

(√
Σ̂

1
2SΣ̂

1
2

)
− ρ2)

= max
γ≥0

γ(tr(Σ̂)− ρ2) + min
S∈Sp

+

⟨S, (1 + γ)I⟩ − 2tr
(√

X
1
2SX

1
2

)
− 2γtr

(√
Σ̂

1
2SΣ̂

1
2

)
We first solve the subproblem

min
S∈Sp

+

⟨S, (1 + γ)I⟩ − 2tr
(√

X
1
2SX

1
2

)
− 2γtr

(√
Σ̂

1
2SΣ̂

1
2

)
. (26)

Taking derivative with respect to S, the optimal S satisfies

(1 + γ)I = X
1
2

(√
X

1
2SX

1
2

)− 1
2X

1
2 + γΣ̂

1
2

(√
Σ̂

1
2SΣ̂

1
2

)− 1
2 Σ̂

1
2 .

which is equivalent to

S =
1

1 + γ

(
S

1
2XS

1
2

) 1
2 +

γ

1 + γ

(
S

1
2 Σ̂S

1
2

) 1
2 .

This equation is a special Wasserstein barycenter problem with explicit solution Bhatia et al. (2017)

S =
1

(1 + γ)2
X +

γ2

(1 + γ)2
Σ̂ +

γ

(1 + γ)2
(
XTXΣ̂ + Σ̂TΣ̂X

)
. (27)

Combine (26), (27),

max
γ≥0

γ(tr(Σ̂)− ρ2) + min
S∈Sp

+

⟨S, (1 + γ)I⟩ − 2tr
(√

X
1
2SX

1
2

)
− 2γtr

(√
Σ̂

1
2SΣ̂

1
2

)
=max

γ≥0
γ(tr(Σ̂)− ρ2)− 1

1 + γ
tr(X)− γ2

1 + γ
tr(Σ̂)− γ

1 + γ
tr
(
XTXΣ̂ + Σ̂TΣ̂X

)
.

Taking derivative with respect to γ, we have

(1 + γ)2 =
d2(X, Σ̂)

ρ2
.

If d(X, Σ̂) > ρ, γ = d(X,Σ̂)
ρ − 1, otherwise γ = 0.

Hence the solution of Bures-Wasserstein projection Ŝ

Ŝ = argminS∈Sp
+

d(S,X),

13
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s.t. d2(S, Σ̂) ≤ ρ2.

has closed-form solution

Ŝ =

{
ρ2

d2(X,Σ̂)
X + (1− ρ

d(X,Σ̂)
)2Σ̂ + (1− ρ

d(X,Σ̂)
) ρ

d(X,Σ̂)

(
XTXΣ̂ + Σ̂TΣ̂X

)
, d(X, Σ̂) > ρ,

X, d(X, Σ̂) ≤ ρ.

C. Proof of Proposition 4.2
Noticing that for given Σ̂,Σ0, the projection problem

min
Σ∈Sd++

d2(Σ,Σ0) s.t. d2(Σ, Σ̂) ≤ ρ

is a convex optimization problem in Euclidean geometry. If we denote f(Σ) := d2(Σ,Σ0) and C the Σ̂-centered BW ball
with radius ρ, we have the minimizer PC(Σ0) of above problem satisfies the characterization

⟨Df(PC(Σ0)), PC(Σ0)− Σ⟩ ≤ 0, ∀Σ ∈ C.

Noticing that

Df(Σ) = DΣd
2(Σ,Σ0) = − logΣ(Σ0),

we have by (29)

⟨Df(PC(Σ0)), PC(Σ0)− Σ⟩ = ⟨logPC(Σ0)(Σ0),Σ− PC(Σ0)⟩
= 2⟨logPC(Σ0)(Σ0), logPC(Σ0)(Σ)⟩PC(Σ0)

+ ⟨logPC(Σ0)(Σ0),Σ+ PC(Σ0)− 2PC(Σ0)TPC(Σ0),Σ⟩.

That leads to the following characterization equation of the BW ball projection:

⟨logPC(Σ0)(Σ0), logPC(Σ0)(Σ)⟩PC(Σ0) ≤ −
1

2
⟨logPC(Σ0)(Σ0),Σ+ PC(Σ0)− 2PC(Σ0)TPC(Σ0),Σ⟩︸ ︷︷ ︸

:=κ(Σ0,Σ)

(28)

D. Proof of Lemma 3.6
For any symmetric G, we have

⟨G,Σ′ − Σ⟩ = ⟨G,Σ(Σ−1Σ′ − I)⟩
= ⟨G, 2Σ(TΣ,Σ′ − I)⟩+ ⟨∇G,Σ

(
Σ−1Σ′ + I − 2TΣ,Σ′

)
⟩

= ⟨2G, logΣ(Σ′)⟩Σ + ⟨G,Σ′ − Σ+ 2Σ− 2ΣTΣ,Σ′⟩,
(29)

that shows the identity, to show the inequality, just noticing that for any A symmetric, B ⪰ 0 we have
∣∣tr(AB)

∣∣ ≤ ∥A∥tr(B)
and the fact (

Σ′ − Σ+ 2Σ− 2ΣTΣ,Σ′
)
+

(
Σ′ − Σ+ 2Σ− 2ΣTΣ,Σ′

)⊤ ⪰ 0

are shown by

Σ+ Σ′ − ΣTΣ,Σ′ − TΣ,Σ′Σ

=Σ−1/2(Σ2 +Σ1/2Σ′Σ1/2 − Σ3/2TΣ,Σ′Σ1/2 − Σ1/2TΣ,Σ′Σ3/2)Σ−1/2

=Σ−1/2(Σ− Σ1/2TΣ,Σ′Σ1/2)(Σ− Σ1/2TΣ,Σ′Σ1/2)Σ−1/2 ⪰ 0.

14
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E. Verifying The PL Inequality
To verify the PL inequality, we would first establish a dominant result of ∥gC(Σ)∥2Σ with respect to the distance-to-optimal
d(Σ,Σ⋆) :

Proposition E.1. Suppose f is Euclidean L-Lipschitz,α-strongly convex,and β-smooth, C is Euclidean convex and
Assumption 4.5 is satisfied, then it holds that

d2(Σ,Σ⋆) ≤
(
(2 +

10βκ

2α
)η2 +

25κ5

4α
· λ−2

min

)
∥gC(Σ)∥2Σ

On the other hand, we have the following lemma resulted in the non-negative curvature of the BW geometry (Chewi et al.,
2020; Altschuler et al., 2021):

Lemma E.2. For any A,B,C ≻ 0, it holds that

dBW(A,B) ≤ ∥logC(A)− logC(B)∥C (30)

If we denote θ1 = 2+ 10βκ
2α , θ2 = 25κ5

4α ·λ
−2
min, then applying the non-negative curvature property in (30) with A = Σ⋆, B =

Σ+, C = Σ implies

2⟨logΣ(Σ+), logΣ(Σ
⋆)⟩Σ ≤ d2(Σ,Σ⋆) + d2(Σ,Σ+) ≲ (θ1η

2 + θ2)∥gC(Σ)∥2Σ, (31)

where in the second line we have used Proposition E.1 and the fact ∥gC(Σ)∥2Σ = η2d2(Σ,Σ+).

On the other hand, noticing that by Euclidean convexity of f , we have

f(Σ)− f(Σ⋆) ≤ ⟨Df(Σ),Σ⋆ − Σ⟩
≤ ⟨∇f(Σ), logΣ(Σ⋆)⟩Σ
+ ∥Df(Σ)∥d2(Σ,Σ⋆),

where in the second inequality we have used Proposition 3.6. Since the second term in above inequality can be bounded by
O(L(θ1η

2+θ2)∥gC(Σ)∥2Σ by the Lipschtiz property of f and the Proposition E.1, it remains to bound ⟨∇f(Σ), logΣ(Σ⋆)⟩Σ
to show the PL condition, actually, we can bound the gap between ⟨∇f(Σ), logΣ(Σ⋆)⟩Σ and ⟨logΣ(Σ+), logΣ(Σ

⋆)⟩Σ in
the following statement:

Lemma E.3. Under the same condition as in Proposition E.1, we have

|⟨∇f(Σ), logΣ(Σ⋆)⟩Σ +
1

η
⟨logΣ(Σ+), logΣ(Σ

⋆)⟩Σ|

≤ 256(η + 1)Lmax{λ−1
min, λ

−1/2
min }ρ

2κ(2θ1η
2 + 2θ2)∥gC(Σ)∥2Σ.

Now applying (31) and Lemma E.3, we have there exists some absolute constant c0 so that (18) holds with

µ = c0

(
θ2η

−1 + (η + 1)Lmax{λ−1
min, λ

−1/2
min }ρ

2κ(θ1η
2 + θ2)

)−1

∥gC(Σ)∥2Σ.

Moreover, noticing that

(η + 1)(θ1η
2 + θ2) ≤ 4(θ1 + θ2)(η

3 + 1) ≤ 8(θ1 + θ2)(η
3 + η−1)

and (θ1 + θ2) ≤ 256 (β′+1)κ5

α we get there exists some absolute constant c′0 so that

µ = c′0
(β′ + 1)κ5

α
Lρ2κmax{λ−1

min, λ
−1/2
min }(η

−1 + η3)

15
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E.1. Proof of Proposition E.1

Proof. Noticing that by Euclidean convexity, we have

⟨Df(Σ⋆),Σ⋆ − Σ⟩ ≤ 0,∀Σ ∈ C.

Thus it holds that

f(Σ+) ≥ f(Σ⋆) + ⟨Df(Σ⋆),Σ+ − Σ⋆⟩+ α

2
∥Σ+ − Σ⋆∥2F

≥ f(Σ⋆) + 2αλmind
2(Σ+,Σ⋆),

Thus it holds that d2(Σ+,Σ⋆) ≤ ∆+

2αλmin
for ∆+ := f(Σ+)− f(Σ⋆).

On the other hand, we have

∆+ ≤ αλmind
2(Σ+, Y ) +

(5βλmax

2
+

25κ5

8αλmin
· 1
η2
d2(Σ+,Σ)

)
(32)

That leads to

d2(Σ+,Σ⋆) ≤
(5βκ
2α

+
25κ5

8α
· λ−2

min ·
1

η2
)
d2(Σ+,Σ).

which then implies the desired result by

d2(Σ,Σ⋆) ≤ 2d2(Σ,Σ+) + 2d2(Σ+,Σ⋆)

≤
(
2 +

10βκ

2α
+

25κ5

4α
· λ−2

min ·
1

η2
)
d2(Σ+,Σ)

≤
(
(2 +

10βκ

2α
)η2 +

25κ5

4α
· λ−2

min

)
∥gC(Σ)∥2Σ

Proof of (32): For any Y ∈ C, the characterization of projection implies that

−⟨logΣ+(Σ̃),Σ+ − Y ⟩ ≤ 0.

on the other hand, the Euclidean convexity implies

f(Σ+)− f(Y ) = f(Σ+)− f(Σ) + f(Σ)− f(Y )

≤ ⟨Df(Σ),Σ+ − Σ⟩+ β

2
∥Σ+ − Σ∥2F − ⟨Df(Σ), Y − Σ⟩ − α

2
∥Σ− Y ∥2F

≤ ⟨Df(Σ),Σ+ − Y ⟩+ β

2
∥Σ+ − Σ∥2F

= −1

η
⟨logΣ(Σ̃),Σ+ − Y ⟩+ β

2
∥Σ+ − Σ∥2F

≤ −1

η
⟨logΣ(Σ̃)− logΣ+(Σ̃),Σ+ − Y ⟩+ β

2
∥Σ+ − Σ∥2F

≤ 1

η
∥logΣ(Σ̃)− logΣ+(Σ̃)∥F ∥Σ+ − Y ∥F +

5βλmax

2
d2(Σ+,Σ)

≤ 5
√
2

2η
κ5/2d(Σ+,Σ)d(Σ+, Y ) +

5βλmax

2
d2(Σ+,Σ)

≤ µλmind
2(Σ+, Y ) +

(5βλmax

2
+

25κ5

8αλmin
· 1
η2
d2(Σ+,Σ)

)
Where we use Cauchy-Schwarz inequality in the last line. Setting Y = Σ⋆ leads to the result.
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E.2. Proof the Proposition E.3

Denoting Σ̃ := expΣ(−η∇f(Σ)), then

In fact, we have by (29),

−η⟨∇f(Σ), logΣ(Σ⋆)⟩Σ = ⟨logΣ(Σ̃), logΣ(Σ⋆)⟩Σ
= ⟨logΣ(Σ+), logΣ(Σ

⋆)⟩Σ + ⟨logΣ(Σ̃)− logΣ(Σ
+), logΣ(Σ

⋆)⟩Σ︸ ︷︷ ︸
:=R

,

and the residual term R can be further written as

R = ⟨TΣ,Σ̃ − TΣ,Σ+ , logΣ(Σ
⋆)⟩Σ

= ⟨TΣ+,ΣTΣ,Σ̃ − I, TΣ+,Σ

(
TΣ,Σ⋆ − I

)
⟩Σ+

= ⟨TΣ+,ΣTΣ,Σ̃ − TΣ+,Σ̃ + logΣ+(Σ̃), TΣ+,ΣTΣ,Σ⋆ − TΣ+,Σ + I − I⟩Σ+

= −⟨logΣ+(Σ̃), logΣ+(Σ)⟩Σ+ + ⟨TΣ+,ΣTΣ,Σ̃ − TΣ+,Σ̃, TΣ+,ΣTΣ,Σ⋆ − TΣ+,Σ⟩Σ+︸ ︷︷ ︸
:=R1

+ ⟨logΣ+(Σ̃), logΣ+(Σ⋆)⟩Σ+ + ⟨logΣ+(Σ̃), TΣ+,ΣTΣ,Σ⋆ − TΣ+,Σ⋆⟩Σ+︸ ︷︷ ︸
:=R2

That leads to

|⟨∇f(Σ), logΣ(Σ⋆)⟩Σ +
1

η
⟨logΣ(Σ+), logΣ(Σ

⋆)⟩Σ|

≤ 1

η

(
R1 +R2

)
+

1

η
⟨logΣ+(Σ̃), logΣ+(Σ⋆)− logΣ+(Σ)⟩Σ+

Now we would provide bounds for each term above case by case:

Bounding ⟨logΣ+(Σ̃), logΣ+(Σ))⟩Σ+ :

By the projection characterization (28), we have

1

η
⟨logΣ+(Σ̃), logΣ+(Σ))⟩Σ+ ≤ − 1

2η
⟨logΣ+(Σ̃),Σ+ +Σ− 2Σ+TΣ+,Σ⟩

≤ 1

2η
λ
−1/2
min (Σ+) ∥logΣ+(Σ̃)∥Σ+︸ ︷︷ ︸

=d(Σ+,Σ̃)

d2(Σ+,Σ)

≤ 1

2η
λ
−1/2
min d(Σ, Σ̃)d2(Σ+,Σ)

≤ L

2
λ
−1/2
min (Σ+)∥logΣ(Σ+)∥2Σ.

i.e.
1

η
⟨logΣ+(Σ̃), logΣ+(Σ))⟩Σ+ ≤ Lη2

2
λ
−1/2
min (Σ+)∥gC(Σ)∥2Σ. (33)

Bounding ⟨logΣ+(Σ̃), logΣ+(Σ⋆)⟩Σ+ :

By the projection characterization (28),we have

⟨logΣ+(Σ̃), logΣ+(Σ⋆))⟩Σ+ ≤ −1

2
⟨logΣ+(Σ̃),Σ+ +Σ⋆ − 2Σ+TΣ+,Σ⋆⟩

≤ 1

2
λ
−1/2
min (Σ+)∥logΣ+(Σ)∥Σ+

d2(Σ+,Σ⋆)

17



On the Convergence of Projected BW Gradient Descent under Euclidean Strong Convexity

≤ Lη

2
λ
−1/2
min d2(Σ+,Σ⋆)

≤ Lηλ−1/2
min

(
d2(Σ+,Σ) + d2(Σ,Σ⋆)

)
≤ Lηλ−1/2

min

(
η2∥gC(Σ)∥2Σ + (θ1η

2 + θ2)∥gC(Σ)∥2Σ
)

i.e.
1

η
⟨logΣ+(Σ̃), logΣ+(Σ⋆))⟩Σ+ ≤ Lλ−1/2

min (2θ1η
2 + θ2)∥gC(Σ)∥2Σ (34)

Bounding R1: We have

R1 ≤ ∥TΣ+,ΣTΣ,Σ̃ − TΣ+,Σ̃∥Σ+ · ∥TΣ+,ΣTΣ,Σ⋆ − TΣ+,Σ∥Σ+

≤ 64ηκ2λ−1
mind(Σ

+,Σ)d(Σ, Σ̃) · d(Σ+,Σ)d(Σ,Σ⋆)

≤ 64ηLκ2λ−1
mind

2(Σ+,Σ)d(Σ,Σ⋆)

thus with d(Σ⋆,Σ) ≤ d(Σ⋆, Σ̂) + d(Σ, Σ̂) ≤ 2ρ,

1

η
R1 ≤ 64Lρκ2λ−1

mind
2(Σ+,Σ)d(Σ,Σ⋆)

≤ 128Lρ2η2κ2λ−1
min∥gC(Σ)∥

2
Σ (35)

Bounding R2: With the property of projection, we have

R2 = ⟨logΣ+(Σ̃), TΣ+,ΣTΣ,Σ⋆ − TΣ+,Σ⋆⟩Σ+ ≤ 8κλ
−1/2
min d(Σ+, Σ̃)d(Σ,Σ⋆)d(Σ,Σ+)

≤ 8κλ
−1/2
min d(Σ, Σ̃)d(Σ,Σ⋆)d(Σ,Σ+)

≤ 8ηLκλ
−1/2
min d(Σ,Σ⋆)d(Σ,Σ+)

thus

1

η
R2 ≤ 8Lκλ

−1/2
min d(Σ,Σ⋆)d(Σ,Σ+)

≤ 8η
√
θ1η2 + θ2Lκλ

−1/2
min ∥gC(Σ)∥

2
Σ (36)

Combining equations (33)–(36), we have

|⟨∇f(Σ), logΣ(Σ⋆)⟩Σ +
1

η
⟨logΣ(Σ+), logΣ(Σ

⋆)⟩Σ|

≤1

η

(
R1 +R2

)
+

1

η
⟨logΣ+(Σ̃), logΣ+(Σ⋆)− logΣ+(Σ)⟩Σ+

≤
(
8η

√
θ1η2 + θ2Lκλ

−1/2
min + 128Lρ2η2κ2λ−1

min + Lλ
−1/2
min (2θ1η

2 + θ2) +
Lη2

2
λ
−1/2
min

)
∥gC(Σ)∥2Σ

≤
(
8η

√
θ1η2 + θ2Lκλ

−1/2
min + 128Lρ2η2κ2λ−1

min + Lλ
−1/2
min (2θ1η

2 + 2θ2)

)
∥gC(Σ)∥2Σ

≤
(
8η

√
θ1η2 + θ2Lκλ

−1/2
min + 256Lmax{λ−1

min, λ
−1/2
min }ρ

2κ(2θ1η
2 + 2θ2)

)
∥gC(Σ)∥2Σ

≤256
(
(η + 1)Lmax{λ−1

min, λ
−1/2
min }ρ

2κ(2θ1η
2 + 2θ2)

)
∥gC(Σ)∥2Σ,

that leads to the desired result.
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F. Proof of Lemma 3.5
The first inequality has been shown in Altschuler et al. (2021), and we will provide a new proof of the second inequality
with sharper constants:

By TABATAB = B,

tr
(
(A+B +ATA,B + TA,BA)(A+B −ATA,B − TA,BA)

)
=tr(A2 +B2 − 2A2T 2

A,B)

=∥A−B∥2F + 2tr(ATA,BATA,B)− 2tr(A2T 2
A,B). (37)

Since

tr(ATA,BATA,B)− tr(A2T 2
A,B)

=tr
(
A(TA,BA−ATA,B)TA,B

)
=tr

(
A(TA,BA−ATA,B)(TA,B − I)

)
=tr

(
(TA,B − I)A(TA,B − I)A

)
+ tr

(
(TA,B − I)A2(I − TA,B)

)
≥(λmin − λmax)tr((TA,B − I)A(TA,B − I))
=(λmin − λmax)d

2(A,B). (38)

where in the second equation we have used tr(ATA,BA−A2TA,B) = 0. Combining (37), (38), we have

4λmaxd
2(A,B)

=4λmaxtr(A+B −ATA,B − TA,BA)
≥tr

(
(A+B +ATA,B + TA,BA)(A+B −ATA,B − TA,BA)

)
=∥A−B∥2F + 2tr(ATA,BATA,B)− 2tr(A2T 2

A,B)

≥∥A−B∥2F + (λmin − λmax)d
2(A,B)

(39)

Hence

∥A−B∥2F ≤ (5λmax − λmin)d
2(A,B).

In third line of (39), we use that for matrix C,D, λmin(C)I ⪯ C ⪯ λmax(C)I and D ⪰ O,

λmin(C)tr(D) ≤ tr(CD) ≤ λmax(C)tr(D).

Obviously A+ B + ATA,B + TA,BA ⪯ 4λmaxI . And we also require matrix A+ B − ATA,B − TA,BA to be positive
semi-definite, which can be shown via

A+B −ATA,B − TA,BA
=A−1/2(A2 +A1/2BA1/2 −A3/2TA,BA

1/2 −A1/2TA,BA
3/2)A−1/2

=A−1/2(A−A1/2TA,BA
1/2)(A−A1/2TA,BA

1/2)A−1/2 ⪰ O.

F.1. Proof of ∥TA,C − TB,C∥F ≲ d(A,B).

Notice that

∥TA,C − TB,C∥F = ∥TA,C(TC,B − TC,A)TB,C∥F
≤ ∥TA,C∥2∥TB,C∥2∥(TC,B − TC,A)∥F
≤ κ∥(TC,B − TC,A)∥F
≤ κ∥C−1/2

(
(C1/2BC1/2)1/2 − (C1/2AC1/2)1/2

)
C−1/2∥F

≤ κλ−1
min∥(C

1/2BC1/2)1/2 − (C1/2AC1/2)1/2∥F . (40)
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Where we use ∥TA,C∥2 ≤
√
κ, ∥TA,B∥2 ≤

√
κ. (Appendix C, Lemma 2 (Altschuler et al., 2021)).

Consider polar decomposition:

B1/2C1/2 = U1P1, A
1/2C1/2 = U2P2.

where U1, U2 are unitary matrices and P1, P2 are positive semi-definite matrices.

Then

∥(C1/2BC1/2)1/2 − (C1/2AC1/2)1/2∥F = ∥P1 − P2∥F . (41)

From Theorem 5.1 in Mathias (1993),

∥P1 − P2∥F ≤
√
2∥B1/2C1/2 −A1/2C1/2∥F

≤
√
2∥C1/2∥2∥B1/2 −A1/2∥F

≤
√
2

2
κ1/2∥B −A∥F . (42)

And hence by combining (40), (41), (42)

∥TA,C − TB,C∥F ≤
√
2

2
κ3/2λ−1

min∥B −A∥F .

G. Proof of Lemma 4.8
Noticing that,

(TAB − I)(TBC − I)− (TABTBC − TAC) = (TBB − TBC)− (TAB − TAC) = f(B)− f(A)

with f(X) defined as

f(X) := TXB − TXC .

Thus we have

d2(A,B)d2(B,C) = tr
(
(TAB − I)A(TAB − I)

)
tr
(
(TBC − I)B(TBC − I)

)
≥ tr

(
(TBC − I)(TAB − I)A(TAB − I)(TBC − I)B

)
≥ λmintr((TBC − I)(TAB − I)A(TAB − I)(TBC − I)). (43)

And

tr((TBC − I)(TAB − I)A(TAB − I)(TBC − I))
=tr((TBC − I)(TAB − I)A(TABTBC − TAC + f(B)− f(A)))
≥tr

(
(TABTBC − TAC + f(B)− f(A))A(TABTBC − TAC)

)
− ∥f(B)− f(A)∥2A − ∥(TBC − I)(TAB − I)∥2A

≥(1− α)tr
(
(TABTBC − TAC)A(TABTBC − TAC)

)
− α∥f(B)− f(A)∥2A − ∥(TBC − I)(TAB − I)∥2A (44)

where α is a constant, and we will specify its value in the following proof. Denoting g(X) = Xf(X), then

∥f(B)− f(A)∥2A = tr
(
(f(B)− f(A)⊤A(f(B)− f(A)

)
≤ λ−1

mintr
(
[(A−B)f(B) +Bf(B)−Af(A)]⊤[(A−B)f(B) +Bf(B)−Af(A)]

)
= λ−1

mintr
(
[(A−B)f(B)︸ ︷︷ ︸

:=D1

+ g(B)− g(A)︸ ︷︷ ︸
:=D2

]⊤[(A−B)f(B) + g(B)− g(A)]
)

= λ−1
min

(
tr(D⊤

1 D1) + 2tr(D⊤
2 D1) + tr(D⊤

2 D2)
)
. (45)
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Since it holds directly that

∥D1∥2F ≤ ∥f(B)∥22∥A−B∥2F
≤ ∥TB,C − I∥2F ∥A−B∥2F
≤ (5λmax − λmin)λ

−1
mind

2(B,C)d2(A,B)

≤ 5κd2(B,C)d2(A,B) (46)

we need only show that ∥D2∥F ≲ d(A,B)d(B,C).

By the mean-value inequality, we have for any matrix M1,M2 ∈ Rn×n and smooth ψ : Rn×n → Rn×n

∥ψ(M1)− ψ(M2)∥F ≤ sup
M∈γ
∥Dψ(M)∥op∥∥M1 −M2∥F . (47)

where γ := {t ∈ [0, 1] : tM1 + (1 − t)M2} and ∥Dψ∥op := max∥E∥F=1∥Dψ(E)∥F . Thus we need only show that
∥Dg(M)∥op ≲ d(B,C).

Noticing that

g(X) = XTXB −XTXC = TBXB − TCXC

and

TBXB = B−1/2(B1/2XB1/2)1/2B1/2, TCXC = C−1/2(C1/2XC1/2)1/2C1/2

Denote ZB = B1/2XB1/2, ZC = C1/2XC1/2 we have

dg(X)

dX
=

d

dX
TBXB −

d

dX
TCXC

=B−1/2 d

dX
(B1/2XB1/2)1/2B1/2 − C−1/2 d

dX
(C1/2XC1/2)1/2B1/2

=
d(ZB)

1/2

dZB
B − d(ZC)

1/2

dZC
C

=

(
d(ZB)

1/2

dZB
− d(ZC)

1/2

dZC

)
B +

d(ZC)
1/2

dZC
(B − C).

From Moral & Niclas (2018), we have

∥d(ZC)
1/2

dZC
∥op ≤

1

2
λ
−1/2
min (ZC) ≤

1

2
λ−1
min.

Hence

∥d(ZC)
1/2

dZC
(B − C)∥F ≤ ∥

d(ZC)
1/2

dZC
∥op∥B − C∥F ≤

√
5

2
κ1/2λ

−1/2
min d(B,C).

And for any matrix E, according to Moral & Niclas (2018), we have(
d(ZB)

1/2

dZB
− d(ZC)

1/2

dZC

)
E

=

∫ ∞

0

e−t(B
1/2XB1/2)1/2Ee−t(B

1/2XB1/2)1/2dt−
∫ ∞

0

e−t(C
1/2XC1/2)1/2Ee−t(C

1/2XC1/2)1/2dt

=DB −DC ,

where DB =
∫∞
0
e−t(B

1/2XB1/2)1/2Ee−t(B
1/2XB1/2)1/2dt, DC =

∫∞
0
e−t(C

1/2XC1/2)1/2Ee−t(C
1/2XC1/2)1/2dt, by defi-

nition, DB , DC satisfy the Lyapunov equations:

(B1/2XB1/2)1/2DB +DB(B
1/2XB1/2)1/2 = −E
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(C1/2XC1/2)1/2DC +DC(C
1/2XC1/2)1/2 = −E

Hence (
− (B

1
2XB

1
2 )

1
2

)
(DB −DC) + (DB −DC)

(
− (B

1
2XB

1
2 )

1
2

)
= E + (B1/2XB1/2)1/2DC +DC(B

1/2XB1/2)1/2

=
(
(B1/2XB1/2)1/2 − (C1/2XC1/2)1/2

)
DC +DC

(
(B1/2XB1/2)1/2 − (C1/2XC1/2)1/2

)
.

Then DB −DC satisfies a Lyapunov equation, and

DB −DC =

∫ ∞

0

e−t(B
1/2XB1/2)1/2

((
(B1/2XB1/2)1/2 − (C1/2XC1/2)1/2

)
DC

+DC

(
(B1/2XB1/2)1/2 − (C1/2XC1/2)1/2

))
e−t(B

1/2XB1/2)1/2dt

Hence

∥DB −DC∥F

≤ 2∥DC∥F ∥(B1/2XB1/2)1/2 − (C1/2XC1/2)1/2∥F
∫ ∞

0

∥e−t(B
1/2XB1/2)1/2∥22dt

≤ 2(
1

2λmax
)2∥(B1/2XB1/2)1/2 − (C1/2XC1/2)1/2∥F

≤
√
2

4
κ1/2λ−2

max∥B − C∥F

≤
√
10

4
κ1/2λ−3/2

max d(B,C).

Therefore

∥dg(X)

dX
∥F = ∥

(
d(ZB)

1/2

dZB
− d(ZC)

1/2

dZC

)
B +

d(ZC)
1/2

dZC
(B − C)∥F

≤ ∥B∥2∥
(
d(ZB)

1/2

dZB
− d(ZC)

1/2

dZC

)
∥op + ∥

d(ZC)
1/2

dZC
(B − C)∥F

≤ (

√
10

4
κ1/2λ−1/2

max +

√
5

2
κ1/2λ

−1/2
min )d(B,C)

≤
√
5κ1/2λ

−1/2
min d(B,C).

Then by mean-value theorem

∥D2∥F = ∥g(A)− g(B)∥F ≤
√
5κ1/2λ

−1/2
min d(B,C)∥A−B∥F

≤ 5κd(A,B)d(B,C) (48)

With (45), (46), (48),

λmin∥f(B)− f(A)∥2A ≤ 2(∥D1∥2F + ∥D2∥2F )
≤ 60κ2d2(A,B)d2(B,C). (49)

Meanwhile, we have

∥(TBC − I)(TAB − I)∥2A ≤ ∥(TBC − I)∥2F d2(A,B)

≤ λ−1
mind

2(A,B)d2(B,C) (50)

With (49), (50), (44), we have

λmin(1− α)∥TABTBC − TAC∥2A ≤ (2 + 60ακ2)d2(A,B)d2(B,C).
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Let α = 1
2 , we have

∥TABTBC − TAC∥A ≤ 2
√
1 + 15κ2λ

−1/2
min d(A,B)d(B,C)

≤ 8κλ
−1/2
min d(A,B)d(B,C).

H. Proof of Proposition 3.10
Consider the following minimization problem

min
A∈Sn+

1

2
∥A∥2F

Its corresponding BWGD update is Σk+1 = (I − ηΣk)Σk(I − ηΣk). Consider starting with Σ0 = 1
η I , then each Σk

is also a diagonal matrix with element (Σk)ii. Noted that (Σk)ii = λmin(Σk), hence for each (Σk)ii, we have update
(Σk+1)ii = (1− η(Σk)ii)2 · (Σk)ii ≥ (1− ηλmin(Σk))

2 · (Σk)ii. Hence

λ−1
min(Σk) log

(
f(Σk)− f(Σ⋆)
f(Σk+1)− f(Σ⋆)

)
= λ−1

min(Σk) log
( ∥Σk∥2F
∥Σk+1∥2F

)
≤ 2λ−1

min(Σk) log(
1

1− ηλmin(Σk)
)

Hence

lim inf
k

λ−1
min(Σk) log

(
f(Σk)− f(Σ⋆)
f(Σk+1)− f(Σ⋆)

)
≤ 2.

I. Details of Examples
I.1. Proof of Proposition A.1

Our proof relies on the following result on the projection operator:

Lemma I.1. Suppose some Σ is projected to the BW ballW(Σ̂, ρ), and if there exists some λmin, λmax so that λminI ⪯
Σ, Σ̂ ⪯ λmaxI , then it holds that λmaxI ⪯ PW(Σ) ⪯ λminI.

Proof of Lemma I.1. From the explicit form of projection (13), we only need to prove 2λmaxI ⪯ ΣTΣ,Σ̂+Σ̂TΣ̂,Σ ⪯ 2λminI ,
which can be shown by

λ(ΣTΣ,Σ̂ + Σ̂TΣ̂,Σ) = λ(Σ
1
2 (Σ

1
2 Σ̂Σ

1
2 )

1
2Σ− 1

2 +Σ− 1
2 (Σ

1
2 Σ̂Σ

1
2 )

1
2Σ

1
2 )

= λ((Σ
1
2 Σ̂Σ

1
2 )

1
2 +Σ−1(Σ

1
2 Σ̂Σ

1
2 )

1
2Σ)

And λ(Σ−1(Σ
1
2 Σ̂Σ

1
2 )

1
2Σ) = λ((Σ

1
2 Σ̂Σ

1
2 )

1
2 ) ∈ [λmin, λmax].

Proof. In Lemma 1 of Altschuler et al. (2021), it has been shown that when the mixture measure P is supported over
covariance with eigenvalue at range [λmin, λmax], then at every time-step t, if Σt ⪰ λmin/4, then Σ̃t := expΣt

(−∇f(Σt))
with η ≲ κ−1 will also satisfy Σ̃t ⪰ λmin/4.

In our case, we can set

λmin := min{λmin(P ),
1

4
σmin(Σ̂)}, λ′max := max{λmax(P ),

1

4
σmax(Σ̂)}, κ = λ′max/λ

′
min

Then applying Lemma I.1 and the above result leads to the desired result.
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I.2. Proof of Proposition A.2

Proof. Firstly, noticing that the upper bound λmax exists directly by the boundedness of the BW ball, thus it remains to
show the existence of λmin: By Lemma A.7 in Nguyen et al. (2023), we have the gradient for both Σx and Σw are negative
definite, thus as long as the initialization Σx,k ⪰ Σ̂x, we have Σx,k+1 ⪰ Σ̂x also holds by(

I − η∇xF (Σx,k)
)
Σx,k

(
I − η∇xF (Σx,k)

)
⪰ Σ̂x

and Lemma I.1. The proof for Σw is nearly the same.

I.3. SDP formulation of the BW Projection

By Proposition 2.3 in Nguyen et al. (2023), the BW distance between two matrices Σ,Σ′ can be equivalently formulated as
the solution of the SDP problem:

min
D∈Rn×n

tr
(
Σ+ Σ′ − 2D

)
,

subject to
[
Σ D
D⊤ Σ′

]
⪰ 0.

(51)

On the other hand, the Lemma D.1 of Taşkesen et al. (2023) shows that the constrained setW := {Σ : d(Σ, Σ̂) ≤ ρ} can be
written as {

Z ∈ Sn+,∃Ez ∈ Sn+ with tr(Z + Σ̂− 2Ez) ≤ ρ2,
[
Σ̂1/2ZΣ̂1/2 Ez

Ez I

]
⪰ 0

}
(52)

Combining (51) and (52), we have for any Σ, Σ̂, ρ, let

D⋆, E⋆z , Z
⋆ =argminD∈Rn×n,E∈Sn+,Z∈Sn+

tr
(
Σ+ Z − 2D

)
,

subject to
[
Σ D
D⊤ Z

]
⪰ 0,

[
Σ̂1/2ZΣ̂1/2 Ez

Ez I

]
⪰ 0, tr(Z + Σ̂− 2Ez) ≤ ρ2,

(53)

Then Z⋆ is the desired projection of Σ to Σ̂ centeredW.

I.4. Surrogate dual gap

The following materials are basically from section 6.1 in Nguyen et al. (2023).

We consider constrained optimization problems of the following form (1)

min
M∈C

f(M) (54)

and we assume access to an inexact oracle F : C → C, such that for any Σ ∈ C

⟨F (Σ)− Σ, Df(Σ)⟩ ≤ δmin
z∈C
⟨z − Σ, Df(Σ)⟩.

where δ ∈ [0, 1] is a precision parameter. Obviously, if δ > 0, when Σ solve the (54), −⟨F (Σ)−Σ, Df(Σ)⟩ = 0. Hence in
k-th iteration, the surrogate duality gap gk = −⟨F (Σk)− Σk, Df(Σk)⟩ can be regarded as the criteria of convergence.

Especially, when C is the BW ball C := {Σ ∈ Sn+ | d(Σ, Σ̂) ≤ ρ} and the Euclidean gradient Df(Σ) ⪯ 0, Nguyen et al.
(2023) finds that the dual of the linear oracle subproblem is equivalent to solving a univariate algebraic equation, which can
be solved efficiently via a bisection algorithm with given δ.

I.5. Armijo search strategy

As discussed in Iusem (2003), there are two types of Armijo search strategies for determining the step sizes in projected
gradient descent (PGD): the Armijo search along the feasible direction and the Armijo search along the boundary of the
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Figure 3. Case 1: Unconstrained minimizer lies inside C Figure 4. Case 2: Unconstrained minimizer lies outside C

constrained set C. Here, we adopt the latter strategy, which we will refer to as the Armijo search for simplicity. Specifically,
we consider PGD with iteration described as xk+1 = PC(x

k − βkDf(xk)). Given β̄ > 0, σ ∈ (0, 1), in k-th iteration, the
Armijo search strategy finds βk = β̄2−l(k), where

l(k) =
{
j ∈ N | f(zk,j) ≤ f(xk)− σDf(xk)⊺(xk − zk,j)

}
with zk,j = PC(x

k − β̄2−jDf(xk)). (55)

For projected BWGD algorithm with iteration described as Σk+1 = PC(expΣk(−βk∇f(Σk))), we replace those under
Euclidean geometry with BW space counterparts. Then projected BWGD with Armijo search finds βk = β̄2−l(k), where

l(k) =
{
j ∈ N | f(Zk,j) ≤ f(Σk) + σ⟨∇f(Σk), logΣk(Zk,j)⟩Σk

}
with Zk,j = PC(expΣk(−β̄2−j∇f(Σk))). (56)

J. Supplementary Experiment
In this section, we introduce the Wasserstein barycenter problem with the matrix interval constraint, as discussed in Weber &
Sra (2022; 2023). Additionally, we compare the convergence speeds of the projected BWGD algorithm and the Riemannian
Frank-Wolfe (RFW) algorithm, proposed in Weber & Sra (2023), for this problem.

J.1. Problem Formulation and BW Projection

In this problem, we aim to minimize the objective function

min
Σ∈C

N∑
i=1

βid
2 (Σ,Σi)

with the matrix interval constraint set C := {Σ | A ⪯ Σ ⪯ B} for two pre-determined matrices A ⪯ B and
∑N
i=1 βi = 1.

For such a constraint set, as far as we know, an analytical projection of a matrix Σ to C

min
Σ̃∈C

d2(Σ, Σ̃),

does not exist. Thus we propose to compute the projection by solving for Z⋆ in the following SDP:

Z⋆, D⋆ =argminZ∈Sn+,D∈Rn×n tr
(
Σ+ Z − 2D

)
,

subject to
[
Σ D
D⊤ Z

]
⪰ 0, B − Z ⪰ 0, Z −A ⪰ 0.

(57)

J.2. Experiment Setting

Within the proposed projection operation, we compare the projected BWGD algorithm and the RFW algorithm in the
following two different cases:
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• Case 1: The unconstrained minimum lies within the interior of the interval (i.e., the constrained optimum also lies in
the interior of the interval).

• Case 2: The unconstrained minimum lies outside the interval (i.e., the constrained optimum lies on the boundary of the
interval).

More precisely, denote AM(β; {Σi}) as the arithmetic mean of all N matrices, defined as

AM(β; {Σi}) =
N∑
i=1

βiΣi.

We consider the matrix interval constraints in two cases as follows:

In Case 1, we consider the same setting as discussed in Weber & Sra (2022; 2023), where A = αlI with αl =
min1≤i≤N λmin(Σi) and B = AM(β; {Σi}). It has been shown in Bhatia et al. (2018; 2019) that these A and B serve as
natural lower and upper bounds for the Wasserstein barycenter, indicating that the unconstrained minimum lies within the
interval’s interior.

In Case 2, we set A = αlI with αl = λmin (AM(β; {Σi})) and B = αuI with αu = 1
N

∑N
i=1 λi (AM(β; {Σi})).

Numerical results indicate that the constrained optimum lies on the boundary of the interval.

In both cases, we set n = 60, N = 20, βi = 1
N ,∀i = 1, · · · , N and generate the matrices {Σi} following the same method

as described in Weber & Sra (2022). For more details, please refer to Weber & Sra (2022) and the code. It should be noted
that solving the SDP in equation (57) is required in each iteration of BWGD, which can be time-consuming. Figure 3 and
Figure 4 show the result of Case 1 and Case 2 respectively, demonstrating that the BWGD algorithm outperforms the RFW
algorithm.
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