
Federated Fine-Tuning of Vision Foundation Models via Probabilistic Masking

Vasileios Tsouvalas 1 Yuki M Asano 2 Aaqib Saeed 1

Abstract
Foundation Models (FMs) have revolutionized
machine learning with their adaptability and
high performance across tasks; yet, their inte-
gration into Federated Learning (FL) is chal-
lenging due to substantial communication over-
head from their extensive parameterization. We
present DeltaMask, a novel method that effi-
ciently fine-tunes FMs in FL at an ultra-low bi-
trate, well below 1 bpp. DeltaMask employs
stochastic masking to detect highly effective sub-
networks within FMs and leverage stochasticity
and sparsity in client masks to compress updates
into a compact grayscale image using probabilis-
tic filters, deviating from traditional weight train-
ing approaches. Our comprehensive evaluations
across various datasets and architectures demon-
strate DeltaMask efficiently achieves bitrates
as low as 0.09 bpp, enhancing communication ef-
ficiency while maintaining FMs performance, as
measured on 8 datasets and 5 pre-trained models
of various network architectures.

1. Introduction
Federated learning (FL) enables collaborative training of
neural network models directly on edge devices (referred
to as clients), locally with on-device data (Konečný et al.,
2016). Despite its appealing properties for users’ privacy, FL
requires constant models’ updates transfer between server
and clients, which poses a challenge in terms of communi-
cation efficiency. This becomes even more critical when the
clients are resource-constrained edge devices, which oper-
ate under limited transmission bandwidth and strict energy
constraints. Recent advances in FL have led to a variety
of methods aimed at enhancing communication efficiency,
particularly by reducing the data volume exchanged in each
federated round. These strategies often employ gradient
compression techniques, including sparsification (Lin et al.,
2020; Aji & Heafield, 2017), quantization (Alistarh et al.,

1Eindhoven University of Technology 2University of
Amsterdam. Correspondence to: Vasileios Tsouvalas
<v.tsouvalas@tue.nl>.

Published at ICML 2024 Workshop on Foundation Models in the
Wild. Copyright 2024 by the author(s).

-75% Bitrate

Figure 1. DeltaMask (Ours) vs. state-of-the-art communication-
efficient FL techniques with pre-trained CLIP ViT-B/32.

2017; Vargaftik et al., 2022; 2021), and low-rank approx-
imation (Mohtashami et al., 2022; Mozaffari et al., 2022),
which are pivotal in streamlining data transmission.

Similarly, the “Lottery Ticket Hypothesis” (Frankle &
Carbin, 2019) has paved the way for FL training regimes
that diverge from traditional weight updates. Here, the focus
has shifted toward identifying and cultivating high-potential
subnetworks within randomly initialized neural models (Li
et al., 2021; Vallapuram et al., 2022; Li et al., 2020; Isik
et al., 2023). Such subnetworks demonstrate good perfor-
mance without the need for extensive weight adjustments,
offering a viable path to minimize FL communication over-
head. FedMask (Li et al., 2021) and FedPM (Isik et al.,
2023), which learn binary masks on top of random dense
networks, are shown to reduce bitrate from 32 to 1 bit-
per-parameter (bpp). However, jointly learning effective
subnetworks in large, randomly initialized models, severely
affect training duration and model convergence.

Leveraging the advancements in self-supervised learning,
vision Foundation Models (FMs) have brought signifi-
cant advancement across various machine learning do-
mains with their remarkable representation quality. Mod-
els like CLIP (Radford et al., 2021) and DINOv2 (Oquab
et al., 2023) demonstrate rapid adaptability to diverse tasks,
achieving unmatched performance in several downstream
applications. Notably, recent developments have seen vi-
sion FMs, such as the ViT models, expand to billions of

1

Federated Fine-Tuning of Vision Foundation Models via Probabilistic Masking

parameters (Dehghani et al., 2023), exemplifying the scale
and complexity of modern FMs. In turn, and as an alter-
native to traditional fine-tuning, masking strategies have
emerged (Mallya et al., 2018; Zhao et al., 2020) in a cen-
tralized setting, where selective binary masks are learned
on top of frozen pre-trained weights, matching the perfor-
mance of full fine-tuning. Nevertheless, the high parameter
count of FMs inhibits their straightforward expansion into
decentralized settings due to the substantial communication
overhead (Zhuang et al., 2023), even at a bitrate of 1 bpp,
thereby limiting their potential to tap into the valuable data
available in distributed environments.

To bridge the gap between the high-performance potential
of Foundation Models (FMs) and the practical constraints
of federated settings, we introduce DeltaMask, an ap-
proach designed to fine-tune FMs to various downstream
tasks in federated settings with significantly reduced bitrate
requirements (see Fig.1). Inspired by the sparse mask up-
dates between subsequent federated rounds, which naturally
occur due to the rapid adaptability of FMs, our approach
combines stochastic masking with probabilistic filters to
find high-performing subnetworks within pre-trained FM,
while operating in an ultra-low bitrate regime. This paves
the way for fine-tuning FMs in federated settings without
the massive communication burden caused by their large
number of parameters, crucial for scenarios where niche,
sensitive data must remain local yet is immensely valuable
for learning, such as in healthcare applications. Concisely,
the main contributions of our work are as follows:

• We present a simple, yet effective, method
termed DeltaMask, to fine-tune FMs in FL in a
highly communication-efficient manner.

• We combine stochastic binary masks with probabilistic fil-
ters to compactly communicate mask updates and reduce
bitrate bpp below 0.1.

• Our evaluation across 8 datasets and 5 pre-trained mod-
els demonstrate DeltaMask’s effectiveness to fine-tune
FMs compared to existing FL techniques.

2. Methodology
Overview. We present the general DeltaMask training
pipeline. First, clients initialize a neural network pwinit

with the weight vector winit ∈ Rd, from the pre-trained
foundation model. The weight vector winit is kept fixed
and never modified during training. DeltaMask collabo-
ratively trains a probabilistic mask θ ∈ [0, 1]d, such that the
function Lẇ minimize its error rate on a given downstream
task (ẇ = m⊙ winit). In every round t, the server samples
a set Kt participants (|Kt|=K out of N clients), who train
their local probability masks θk,t on their locally stored
datasets Dk (of |Dk| samples).

Instead of communicating the stochastic binary mask m,

we reduce the required bits-per-parameter (bpp) by only
communicating key updates (position indexes set ∆) be-
tween the received and trained mask. We represent ∆ using
probabilistic filters (see Appx. B for formal definition) and
transmit the fingerprint set H (hashed filter’s entries) to
the server as a single gray-scaled image. On server-side,
reconstruction of client masks mk,t is feasible via fast mem-
bership checks using the probabilistic filter. The server then
aggregates these local masks to complete the tth round.

Compressing Mask Updates. Our approach utilizes a local
training scheme for probability masks, where clients aim to
learn a binary mask via stochastic mask training. In brief,
clients receive a global probability mask θg,t−1 at round
t, where each client k performs local training and updates
the mask via back-propagation. To satisfy θk,t ∈ [0, 1]d

without clipping, we apply a sigmoid operation over the
mask’s unbounded mask scores sk,t ∈ Rd. Then, clients
can utilize a binary mask mk,t, i.e, sampled from Bern(θk,t)
and aim to minimize L(p ˙wk,t

, Dk) over their locally stored
data, Dk, after which they back-propagate to update sk,t.

To enable ultra-low bitrate levels, DeltaMask leverages
the inherent sparsity in consecutive mask updates across
rounds. For a given round t, we deterministically sam-
ple a binary mask mg,t−1 from the received mask distri-
bution, Bern(θg,t−1), using a publicly shared seed. This
ensures uniformity of the binary mask among all clients
(mg,t−1

i = mg,t−1
j for any i, j ∈ K). Instead of communi-

cating mk,t, we catalog the index positions of differences be-
tween mg,t−1 and mk,t, creating a set of index differences,
∆k,t. As mask update sparsity increases during training, we
introduce a topκ ranking that selects κ% of ∆k,t based on
their relative entropy between mg,t−1 and mk,t. This intro-
duces importance sampling into the communication scheme,
similar to (Chatterjee & Diaconis, 2017; Havasi et al., 2018),
minimizing distributed mean estimation error by providing
essential updates early in training and conveying detailed
information of mk,t later on without significantly increas-
ing bitrate due to the growing sparsity of subsequent mask
differences. Using Kullback–Leibler (KL) divergence as a
measure of entropy, ∆k,t is defined as:

∆k,t = Sort
KL(θk,t,θg,t−1)

{
i |mg,t−1

i ̸= mk,t
i ,∀i ∈ d

}
[1 : K], (1)

where d is the dimension of the probability mask m, and
K represents the number of elements to be retained in the
sorted set, determined as κ% of |Dk|.

Next, we use a binary fuse filter with 8 bit-per-entry (bpe)
to extract a fingerprint array Hk,t from ∆k,t (see Eq. 3),
transitioning from 32-bit indexes to ≈ 8-bit hashed entries.
We further encode Hk,t into a “pseudo gray-scale” image
using lossless PNG-like compression, chosen for its wide
availability on edge devices, which leverages non-uniform
distributions of entries inH to reduce the bitrate. The result-

2

Federated Fine-Tuning of Vision Foundation Models via Probabilistic Masking

ing image, Ak,t, efficiently encapsulates mask updates in a
visual, compressed format suitable for server transmission.

Bayesian Aggregation of Compressed Masks. After local
training at round t, the server creates a new global probabil-
ity mask from the received clients’ gray-scale images, Ak, t.
Specifically, for each client k, the server decompresses Ak, t
to extract Hk,t, then uses it to estimate the set of indexes
(∆̂) in mg,t−1 that need updating via a membership query
across all possible indexes of mg,t−1, as follows:

∆̂k,t = {i |Member (i) = true,∀i ∈ d} (2)

The clients’ stochastic binary sample mask mk,t can be con-
structed by a simple “bit-flip” of mg,t−1 in the positions
derived from ∆̂k,t. The server can then compute the esti-
mated aggregated probability mask θ̄g,t = 1

K

∑
k∈K mk,t,

which is an unbiased estimation of the underlying probabil-
ity mask θg,t = 1

K

∑
k∈K θk,t using (Ferreira et al.) or a

similar strategy (see Appx. C). In contrast to FedPM (Isik
et al., 2023) and HideNseek (Vallapuram et al., 2022), our
method enables better control over the model generaliza-
tion versus bitrate during FL training stage by adjusting
the bpe of the binary fuse filters (see Fig.4b). Further-
more, DeltaMask benefits from a bounded estimation
error (see Appx. D). Our algorithm can be found in Appx. A.

3. Experiments
Datasets and FL Settings. We conduct experiments across
8 diverse image classification datasets. Note that we focus
solely on classification tasks in this work to directly com-
pare with similar approaches (Kostopoulou et al., 2021; Isik
et al., 2023; Li et al., 2021; Vargaftik et al., 2022; 2021);
yet DeltaMask poses no restriction on the underlying
downstream task. We utilize popular ViT architectures pre-
trained in self-supervised manner, such as CLIP (Radford
et al., 2021), DINOv2 (Oquab et al., 2023), where, we
learn a mask only for the last 5 transformer blocks, similar
to (Zhao et al., 2020). We use a cosine scheduler for topκ
mechanism starting from κ=0.8. Due to limited space, our
full experimental setup can be seen in Appx. F.1.

Baselines. We evaluate DeltaMask in terms of ac-
curacy, bitrate (bits-per-parameters), computational com-
plexity and total volume of communicated data between
client and server. From the domain of gradient compres-
sion techniques, we incorporate EDEN (Vargaftik et al.,
2022), DRIVE (Vargaftik et al., 2021), QSGD (Alis-
tarh et al., 2017), and FedCode (Khalilian et al., 2023)
into our evaluation. Additionally, we consider DeepRe-
duce (Kostopoulou et al., 2021) as a baseline owing to
its analogous use of bloom filter-based compressor. From
the threshold-based masking strategies in FL, we compare
DeltaMaskagainst threshold-based masking strategies in
FL, including FedMask (Li et al., 2021) (without initial
pruning) and FedPM (Isik et al., 2023), which leverages

stochastic masking concepts. We use a fixed number of
rounds across all baselines to facilitate a direct comparison
of data transfer volumes for fine-tuning FMs, as inferred
from the reported bitrates (lower is better).

3.1. Results

Bitrate-Accuracy Trade-Off. We focus on non-IID data
distribution among clients using Dir(0.1) over classes
(Cp ≈ 0.2). Furthermore, the number of clients (N) set
to 30, while we consider partial participation with ρ=0.2
(meaning that in each round ρ ·N = 6 clients are randomly
selected). As depicted in Fig.2, DeltaMask achieves
significant reductions in communication costs compared
to the considered baselines — consistently across all
datasets. Among the baselines, EDEN requires the least
bandwidth, while FedPM attains the highest accuracy; nev-
ertheless, DeltaMask reliably matches the accuracy of
FedPM with significant bitrate reduction. This notable im-
provement in bitrate over FedPM indicates that mask up-
dates entail significant overhead. Transmitting only essen-
tial information via binary fuse filters leads to considerable
reductions in bpp (up to 9× less) without compromising
on model accuracy. Compared to DeepReduce — which
utilizes Bloom filters to transmit the updates — our method
underscores the importance of accurate mask reconstruction,
as Bloom filters are prone to a higher false positive rate for
the same number of hash functions and bits per entry. Due
to limited space, we provide additional experiments across
various models and federated settings in Appx. F.2-F.5.

Data Volume & Computational Cost Improvements. We
evaluate DeltaMask’s impact on computational resources
at both client and server levels, and its communication ef-
ficiency relative to total transmitted data. Using CLIP on
CIFAR-100 with N=10, we measure encoding and decod-
ing times for various gradient compression schemes. For
FedMask and FedPM, we omit arithmetic encoding to en-
sure comparable execution times. All tests are conducted
on a CPU, excluding aggregation in decoding time measure-
ments. Data volume is normalized to full fine-tuning size,
reporting the volume needed to reach within 1% of peak
accuracy, to illustrate both communication efficiency and
convergence speed analysis.

Among the methods in Fig.3, FedCode is the most
communication-efficient in data volume; yet exhibiting the
longest encoding times and the lowest model performance.
DeepReduce, using a Bloom-based compressor, struggles
with scalability due to longer execution times. In con-
trast,DeltaMask offers significant improvements in filter
construction and query times. FedMask and FedPM balance
data volume and execution time, with FedPM leading in
accuracy. Surprisingly, DeltaMask, while using slightly
more data than FedCode, provides quicker encoding, crucial
for resource-limited devices, and matches FedPM’s high

3

Federated Fine-Tuning of Vision Foundation Models via Probabilistic Masking

0.25 0.50 0.75 1.00

60

80

100

To
p

-1
 A

cc
u

ra
cy

DeepReduce

FedMask

EDEN
FedPMDeltaMask

CIFAR-10

0.5 1.0 1.5

DeepReduce

FedMask
EDEN

FedPMDeltaMask

CIFAR-100

0.2 0.4 0.6 0.8 1.0

DeepReduce

FedMask

EDEN
FedPMDeltaMask

SVHN

0.2 0.4 0.6 0.8 1.0

DeepReduce

FedMask

EDEN
FedPMDeltaMask

EMNIST

0.2 0.4 0.6 0.8 1.0
Bitrate (bpp)

60

80

100

To
p

-1
 A

cc
u

ra
cy

DeepReduce
FedMask

EDEN
FedPMDeltaMask

Fashion-MNIST

0.2 0.4 0.6 0.8 1.0
Bitrate (bpp)

DeepReduce
FedMask

EDEN
FedPM

DeltaMask

EuroSAT

0.25 0.50 0.75 1.00 1.25
Bitrate (bpp)

DeepReduce
FedMask

EDEN FedPMDeltaMask

Food-101

0.5 1.0 1.5
Bitrate (bpp)

DeepReduce
FedMask

EDEN FedPM

DeltaMask

Cars196

DeepReduce FedMask EDEN FedPM DeltaMask

Figure 2. Evaluation of DeltaMask (Ours) in terms of average bitrate (bits-per-parameter) during FL training using Dir(0.1) over
classes (Cp ≈ 0.2 / non-IID settings) for CLIP ViT-B/32. Federated parameters are set to N=30, R=300, ρ=0.2, and E=1.

FedCode

DeepReduce

DRIV
E

EDEN

FedM
ask

FedPM

Delta
M

ask
0

1

2

3

R
el

at
iv

e
D

at
a

V
ol

u
m

e 1e 2

64.32

71.52

72.02 68.59

70.64 75.56

74.82

(a) Relative Data Volume.

FedCode

DeepReduce

DRIV
E

EDEN

FedM
ask

FedPM

Delta
M

ask

10 1

100

101

Ex
ec

u
ti

on
 t

im
e

(s
)

in
 lo

g
 s

ca
le

Encode
Decode

(b) Encode/Decode time (CPU).
Figure 3. Evaluation of DeltaMask (Ours) in terms of (a) data
volume and (b) encoding/decoding time (with baselines), required
to reach 1% of peak performance of CLIP ViT-B/32 on CIFAR-
100. Data volume normalized over full fine-tuning data size.

accuracy with significantly less communicated data. This
makes DeltaMask an effective choice for environments
with computational and communication constraints. An
in-depth analysis on common edge devices is in Appx. F.6.

Adjusting Bitrate in DeltaMask. We ablate fundamental
components in DeltaMask: the mechanism for sorting
mask update indexes and our choice of probabilistic filter,
assessing their impact on accuracy and bitrate. Using CLIP
ViT-B/32 with N=10 under full participation, Fig.4a com-
pares our entropy-based topκ sorting with random sampling.
The consistent performance gap highlights the importance
of importance sampling. Increasing κ does not linearly
enhance accuracy, peaking at κ=0.8. This suggests topκ
effectively filters noise by prioritizing updates with higher

0.10 0.15 0.20 0.25 0.30
Bitrate (bpp)

62

64

66

68

70

72

To
p

-1
 A

cc
u

ra
cy

=0.4
=0.5
=0.6
=0.7

=0.8
=0.9
=1.0

kl_div random

(a) topκ percentages

0.2 0.3 0.4 0.5 0.6

Bitrate (bpp)

71.0

71.5

72.0

72.5

73.0

73.5

74.0

74.5

To
p

-1
 A

cc
u

ra
cy

Xor8
Xor16
Xor32

BFuse8
BFuse16
BFuse32

(b) Probabilistic filters

Figure 4. Impact of topκ mechanism and probabilistic filter choice
in DeltaMask performance in CIFAR-100 under IID settings.

certainty, reducing bitrate by transmitting less data. We
also evaluate various probabilistic filters, focusing on bits-
per-entry (bpe) from 8 to 32. Binary fuse filters (BFuse)
generally outperform XoR filters in reducing bitrate with-
out compromising accuracy, as shown in Fig.4b. Impor-
tantly, DeltaMask enables adjustable bitrate based on bpe,
accommodating resource heterogeneity in FL.

4. Conclusions
We introduce DeltaMask, an FL technique for effi-
ciently fine-tuning FMs under low bitrate constraints us-
ing stochastic masking and probabilistic filters for mask
updates. Our evaluation shows DeltaMask’s effective-
ness across various datasets and FMs, achieving signifi-
cant communication reductions with performance compara-
ble to traditional fine-tuning. Besides communication effi-
ciency, DeltaMask can provide personalized FMs in FL,
while it can be expanded to adapt a single FM to multiple
tasks, each with its unique masks.

Acknowledgement
V.T’s research is funded by the DAIS project, which has received
funding from KDTJU under grant agreement No 101007273.

4

Federated Fine-Tuning of Vision Foundation Models via Probabilistic Masking

References
Aji, A. F. and Heafield, K. Sparse communication for distributed

gradient descent. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing. Associ-
ation for Computational Linguistics, 2017. doi: 10.18653/v1/
d17-1045. URL https://doi.org/10.18653%2Fv1%
2Fd17-1045.

Alistarh, D., Grubic, D., Li, J., Tomioka, R., and Vojnovic, M.
Qsgd: Communication-efficient sgd via gradient quantization
and encoding, 2017.

Appleby, A. Murmurhash3. https://github.com/
aappleby/smhasher/wiki/MurmurHash3, 2016. Ac-
cessed: 13/11/2023.

Chatterjee, S. and Diaconis, P. The sample size required in impor-
tance sampling, 2017.

Dehghani, M., Djolonga, J., Mustafa, B., Padlewski, P., Heek, J.,
Gilmer, J., Steiner, A., Caron, M., Geirhos, R., Alabdulmohsin,
I., Jenatton, R., Beyer, L., Tschannen, M., Arnab, A., Wang, X.,
Riquelme, C., Minderer, M., Puigcerver, J., Evci, U., Kumar,
M., van Steenkiste, S., Elsayed, G. F., Mahendran, A., Yu, F.,
Oliver, A., Huot, F., Bastings, J., Collier, M. P., Gritsenko, A.,
Birodkar, V., Vasconcelos, C., Tay, Y., Mensink, T., Kolesnikov,
A., Pavetić, F., Tran, D., Kipf, T., Lučić, M., Zhai, X., Keysers,
D., Harmsen, J., and Houlsby, N. Scaling vision transformers
to 22 billion parameters, 2023.

Ferreira, P. A., da Silva, P. N., Gottin, V., Stelling, R., and Calmon,
T. Bayesian signsgd optimizer for federated learning.

Frankle, J. and Carbin, M. The lottery ticket hypothesis: Finding
sparse, trainable neural networks, 2019.

Graf, T. M. and Lemire, D. Binary fuse filters: Fast and smaller
than xor filters. ACM J. Exp. Algorithmics, 27, mar 2022. ISSN
1084-6654. doi: 10.1145/3510449. URL https://doi.
org/10.1145/3510449.

Havasi, M., Peharz, R., and Hernández-Lobato, J. M. Minimal ran-
dom code learning: Getting bits back from compressed model
parameters, 2018.

Isik, B., Pase, F., Gunduz, D., Weissman, T., and Zorzi, M. Sparse
random networks for communication-efficient federated learn-
ing, 2023.

Khalilian, S., Tsouvalas, V., Ozcelebi, T., and Meratnia, N. Fed-
code: Communication-efficient federated learning via transfer-
ring codebooks, 2023.

Konečný, J., McMahan, H. B., Yu, F. X., Richtarik, P., Suresh,
A. T., and Bacon, D. Federated learning: Strategies for im-
proving communication efficiency. In NIPS Workshop on
Private Multi-Party Machine Learning, 2016. URL https:
//arxiv.org/abs/1610.05492.

Kostopoulou, K., Xu, H., Dutta, A., Li, X., Ntoulas, A., and Kalnis,
P. Deepreduce: A sparse-tensor communication framework for
distributed deep learning, 2021.

Le, Y. and Yang, X. Tiny imagenet visual recognition challenge.
CS 231N, 7(7):3, 2015.

Li, A., Sun, J., Wang, B., Duan, L., Li, S., Chen, Y., and Li, H.
Lotteryfl: Personalized and communication-efficient federated
learning with lottery ticket hypothesis on non-iid datasets, 2020.

Li, A., Sun, J., Zeng, X., Zhang, M., Li, H., and Chen, Y. Fedmask:
Joint computation and communication-efficient personalized
federated learning via heterogeneous masking. SenSys ’21, pp.
42–55, New York, NY, USA, 2021. Association for Computing
Machinery. ISBN 9781450390972. doi: 10.1145/3485730.
3485929. URL https://doi.org/10.1145/3485730.
3485929.

Lin, Y., Han, S., Mao, H., Wang, Y., and Dally, W. J. Deep
gradient compression: Reducing the communication bandwidth
for distributed training, 2020.

Mallya, A., Davis, D., and Lazebnik, S. Piggyback: Adapting a
single network to multiple tasks by learning to mask weights,
2018.

Mohtashami, A., Jaggi, M., and Stich, S. U. Masked training of
neural networks with partial gradients, 2022.

Mozaffari, H., Shejwalkar, V., and Houmansadr, A. Frl: Federated
rank learning, 2022.

Oquab, M., Darcet, T., Moutakanni, T., Vo, H., Szafraniec, M.,
Khalidov, V., Fernandez, P., Haziza, D., Massa, F., El-Nouby,
A., Assran, M., Ballas, N., Galuba, W., Howes, R., Huang, P.-Y.,
Li, S.-W., Misra, I., Rabbat, M., Sharma, V., Synnaeve, G., Xu,
H., Jegou, H., Mairal, J., Labatut, P., Joulin, A., and Bojanowski,
P. Dinov2: Learning robust visual features without supervision,
2023.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agar-
wal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., Krueger,
G., and Sutskever, I. Learning transferable visual models from
natural language supervision. In ICML, 2021.

Ramanujan, V., Wortsman, M., Kembhavi, A., Farhadi, A., and
Rastegari, M. What’s hidden in a randomly weighted neural
network?, 2020.

Shysheya, A., Bronskill, J., Patacchiola, M., Nowozin, S., and
Turner, R. E. Fit: Parameter efficient few-shot transfer learn-
ing for personalized and federated image classification. arXiv
preprint arXiv:2206.08671, 2022.

Vallapuram, A. K., Zhou, P., Kwon, Y. D., Lee, L. H., Xu, H.,
and Hui, P. Hidenseek: Federated lottery ticket via server-side
pruning and sign supermask, 2022.

Vargaftik, S., Basat, R. B., Portnoy, A., Mendelson, G., Ben-Itzhak,
Y., and Mitzenmacher, M. Drive: One-bit distributed mean
estimation, 2021.

Vargaftik, S., Basat, R. B., Portnoy, A., Mendelson, G., Itzhak,
Y. B., and Mitzenmacher, M. EDEN: Communication-efficient
and robust distributed mean estimation for federated learning.
In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu,
G., and Sabato, S. (eds.), Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings
of Machine Learning Research, pp. 21984–22014. PMLR, 17–
23 Jul 2022. URL https://proceedings.mlr.press/
v162/vargaftik22a.html.

5

https://doi.org/10.18653%2Fv1%2Fd17-1045
https://doi.org/10.18653%2Fv1%2Fd17-1045
https://github.com/aappleby/smhasher/wiki/MurmurHash3
https://github.com/aappleby/smhasher/wiki/MurmurHash3
https://doi.org/10.1145/3510449
https://doi.org/10.1145/3510449
https://arxiv.org/abs/1610.05492
https://arxiv.org/abs/1610.05492
https://doi.org/10.1145/3485730.3485929
https://doi.org/10.1145/3485730.3485929
https://proceedings.mlr.press/v162/vargaftik22a.html
https://proceedings.mlr.press/v162/vargaftik22a.html

Federated Fine-Tuning of Vision Foundation Models via Probabilistic Masking

Wang, H., Sreenivasan, K., Rajput, S., Vishwakarma, H.,
Agarwal, S., Sohn, J.-y., Lee, K., and Papailiopoulos, D.
Attack of the tails: Yes, you really can backdoor federated
learning. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan,
M., and Lin, H. (eds.), Advances in Neural Information
Processing Systems, volume 33, pp. 16070–16084. Curran
Associates, Inc., 2020. URL https://proceedings.
neurips.cc/paper_files/paper/2020/file/
b8ffa41d4e492f0fad2f13e29e1762eb-Paper.
pdf.

Zhao, M., Lin, T., Mi, F., Jaggi, M., and Schütze, H. Masking
as an efficient alternative to finetuning for pretrained language
models. In Webber, B., Cohn, T., He, Y., and Liu, Y. (eds.),
Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 2226–2241, On-
line, November 2020. Association for Computational Linguis-
tics. doi: 10.18653/v1/2020.emnlp-main.174. URL https:
//aclanthology.org/2020.emnlp-main.174.

Zhou, H., Lan, J., Liu, R., and Yosinski, J. Deconstructing lottery
tickets: Zeros, signs, and the supermask, 2020.

Zhuang, W., Chen, C., and Lyu, L. When foundation model
meets federated learning: Motivations, challenges, and future
directions. arXiv preprint arXiv:2306.15546, 2023.

6

https://proceedings.neurips.cc/paper_files/paper/2020/file/b8ffa41d4e492f0fad2f13e29e1762eb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/b8ffa41d4e492f0fad2f13e29e1762eb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/b8ffa41d4e492f0fad2f13e29e1762eb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/b8ffa41d4e492f0fad2f13e29e1762eb-Paper.pdf
https://aclanthology.org/2020.emnlp-main.174
https://aclanthology.org/2020.emnlp-main.174

Federated Fine-Tuning of Vision Foundation Models via Probabilistic Masking

A. DeltaMask Algorithm
We provide the pseudocode for DeltaMask in Algorithm 1. For completeness, we also provide the Bayesian Aggregation of compressed
masks in Algorithm 2.

Algorithm 1 DeltaMask

1: Server initialize global model G with pretrained model weights winit.
2: Server initialize mask weights θg,0 ∈ Rd and Beta priors αg,0=βg,0=λ0.
3: for r = 1, . . . , R do
4: Randomly select K clients to participate in round t
5: for each client k ∈ K in parallel do
6: Sample binary server mask mg,t−1 ∼ Bernt−1(θ

g,t−1)
7: θk,t ← ClientUpdate(θg,t−1)
8: Sample binary mask mk,t ∼ Bern(θk,t)
9: ∆′k,t← Sort {i |mk,t ̸= mg,t−1}i∈d [1 : K] ▷ // See Equation 4

10: Hk,t ←
⋃

i∈∆′k,t ϕ(i) ▷ // See Equation 1
11: PNGk,t ← Ψ(Hk,t)
12: end for
13: for each client k ∈ K do
14: Hk,t ← Ψ−1(PNGk,t)

15: ∆̂′k,t← {i |Member (i) = true}i∈d ▷ // See Equation 5

16: mk,t ←mg,t−1XOR F ▷ // F is 1 in all positions of ∆̂′k,t and 0 otherwise
17: end for
18: θg,t← BayesAgg({mk,t}k∈K , t, ρ)
19: end for
20:
21: procedure CLIENTUPDATE(θ)
22: for epoch e = 1, 2, . . . , E do
23: for batch b ∈ Dk do
24: Sample a binary mask m ∼ Bern(θ)
25: θ← θ − η∇θ (LCE (y, pm⊙winit (y|xb)))
26: end for
27: end for
28: return θ
29: end procedure

Algorithm 2 BayesAgg

1: Inputs: Clients’ updates {mk,t}k∈K , federated round t, and client participation ρ.
2: Output: Global probability mask θg,t.
3: if t % (1ρ) = 0 then
4: αg,t−1 = βg,t−1 = λ0

5: end if
6: magg,t ← 1

K

∑
k∈K mk,t

7: αg,t = αg,t−1 +magg,t

8: βg,t = βg,t−1 +K · 1−magg,t

9: θg,t = αg,t

αg,t+βg,t

10: return θg,t

B. Probabilistic Filters
Probabilistic filters are data structures that map a universe of keys, denoted as U , of varying bit lengths, to fixed-size bit values, thereby
compacting real-world data representations effectively. They achieve this by using hash functions to transform and store data in a

7

Federated Fine-Tuning of Vision Foundation Models via Probabilistic Masking

uniformly distributed array, known as the fingerprints H. This compact representation H facilitates efficient membership checking, with
an adjustable rate of false positives — where a non-member might be incorrectly identified as a member — while ensuring zero false
negatives. There are multiple variations of probabilistic filters, we focus on binary fuse filters (BFuse) (Graf & Lemire, 2022), which are
known for their exceptional space efficiency and computational effectiveness. These filters offer a space efficiency of 8.62 bits per entry
and a low false positive rate (up to 2−32).

Formally, an µ-wise BFuse utilizes m distinct hash functions hj : {0, 1, . . . , 2n − 1} → {1, 2, . . . , l}, for j = 1, . . . , µ, where l denotes
the size of the fingerprints array, H. Let f : N → {0, 1, . . . , 2n − 1} be the fingerprint generation function, mapping each key to an n-bit
value. For a given set of keys U , we can compute the fingerprint array H as:

H =
⋃
k∈U

ϕ(k) =
⋃
k∈U

(
m⋃

j=1

{hj(f(k))}

)
(3)

Here, ϕ(k) computes the set of m locations in H for each key k in U . Once H is constructed, we can perform a membership check as:

Member(x) =

{
true,

⊕m
j=1 H [hj(f(x))] = f(x)

false, otherwise
(4)

where,
⊕m

j=1 H[·] represents the bitwise XOR operation performed on the array values of H, indicated by the hash functions hj(f(x)).
The Member(·) function returns true if the result of the XOR operation over H matches the fingerprint f(x), suggesting that x is likely
a member of the set, and false in all other occasions. Note that while computing a large number of hashes may seem daunting, not all
hashing algorithms are computationally intensive. For example, BFuse use MurmurHash3 (Appleby, 2016), which is computationally
efficient and exhibits exceptional properties for hashing large data structures into space-efficient arrays (e.g., uniform hash distribution
and randomness).

C. Stochastic Mask Training
Unlike the thresholding mechanisms (Li et al., 2021; Vallapuram et al., 2022; Mozaffari et al., 2022) that creates binary masks by clipping
mask scores s ∈ Rd, stochastic mask training (Isik et al., 2023), involves drawing a binary mask m ∈ {0, 1}d from the underlying
mask’s probability θ using the Bernoulli distribution (noted as m ∼ Bern(θ)). To generate θ from the unbounded mask scores s, a
sigmoid transformation is applied (i.e., θ = Sigmoid(s)). Hence, m is used during the forward pass to compute the loss L(·), and θ is
subsequently updated through back-propagation. As the values of s remain unbounded, it allows for an unbiased estimation of the true
aggregate of the local clients’ mask probabilities through Bayesian aggregation (Ferreira et al.). Specifically, it refines the global model
at round t in federated setting by treating the stochastic mask’s probability θg,t as a Beta distribution Beta(αg,t, βg,t), with αg,t and
βg,t initialized to λ0. These parameters are updated with the aggregated local binary masks from participating clients (denoted as θ̄g,t),
computed as αg,t = αg,t−1 + θ̄g,t and βg,t = βg,t−1 +K · 1d − θ̄g,t. The aggregated probability mask is then calculated by:

θg,t =
αg,t − 1

αg,t + βg,t − 2
, (5)

where the division is performed element-wise division. For best performance, α and β are periodically reset to λ0 = 1 at a rate inverse to
the participation rate p (Isik et al., 2023). It’s important to note that while the model’s weight values remain unchanged, the binary mask
m selectively activates neurons by element-wise multiplication with the initialized model weights winit, denoted as ˙wk,t = mk,t ⊙ winit.

D. Distributed Mean Estimation Error Analysis
We now provide proof of the upper bound on the estimation error of DeltaMask. Recall that we use probabilistic filters to reconstruct
clients’ binary masks, mk,t ∼ Bern(θk,t) on server-side, which introduce an independent (across both clients and mask dimensions)
“bit-flip” error probability 2−p (p referring to the false positive rate of the filter). We refer to these reconstructed masks as m′k,t. Here, our
true mean is θ̄g,t = 1

K

∑
k∈Kt

θtk, while our estimate is ˆ̄θg,t = 1
K

∑
k∈Kt

m′k,t. Furthermore, we use capital letters to refer to random
variables, while small letters refer to their deterministic quantities. We can then compute the error as follows:

8

Federated Fine-Tuning of Vision Foundation Models via Probabilistic Masking

EMk,t∼Bern(θk,t)∀k∈K

[∥∥∥θ̄g,t − ˆ̄θg,t
∥∥∥2
2

]
=

d∑
i=1

E
M

k,t
i ∼Bern(θk,t

i)∀k∈K

[(
θ̄g,t − ˆ̄θk,t

)2]
(6)

=

d∑
i=1

E
M

k,t
i ∼Bern(θk,t

i)∀k∈K

[(
1

K

∑
k∈K

(
M ′k,t

i − θk,ti

))2]
(7)

=
1

K2

d∑
i=1

E
M

k,t
i ∼Bern(θk,t

i)∀k∈K

[(∑
k∈K

(
M ′k,t

i − θk,ti

))2]
(8)

=
1

K2

d∑
i=1

∑
k∈K

E
M

k,t
i ∼Bern(θk,t

i)

[(
M ′k,t

i − θk,ti

)2]
(9)

=
1

K2

d∑
i=1

∑
k∈K

(
E
M

k,t
i ∼Bern(θk,t

i)

[
(M ′k,t

i)2
]

−2θk,ti E
M

k,t
i ∼Bern(θk,t

i)

[
M ′k,t

i

]
+ (θk,ti)2

) (10)

=
1

K2

d∑
i=1

∑
k∈K

(θk,ti − (θk,ti)2)− 4 · (2−p)(θk,ti − (θk,ti)2) + 2−p (11)

≤ d

4K
(12)

We begin by expressing the expected squared L2 norm of the error ˆ̄θg,t and θ̄g,t in (7). From (7) to (8), we use the definitions of
ˆ̄θg,t = 1

K

∑
k∈Kt

m′k,t and θ̄g,t = 1
K

∑
k∈Kt

θtk. To move from (9) to (10), we use the fact that M ′k,t and M ′l,t are independent for

k ̸= l; thus the expected value of cross-product terms in the expansion of squared sum of is zero. At (11), we utilize the fact that M ′k,t
i

is a Bernoulli variable (meaning (M ′k,t
i)2 = M ′k,t

i) and introduce the “bit-flip” error probability 2−p due to the probabilistic filters;
thus its expected value is E[(M ′k,t

i] = (1− 2−p)θk,ti + 2−pθk,ti . Finally, in (13), given that the variance of a Bernoulli random variable
is maximized when the probability of success is 0.5, and that the flipping process does not change this maximum possible variance
– as 2−p << 1 given p ∈ {8, 16, 32} –we concluded that the upper bound of the expected squared error is d

4K
, where d is the number

of dimensions and K is the number of clients. It is important to note that our probabilistic filter-based encoding provides the same
upper-bound estimation error as (Isik et al., 2023); yet, it can achieve significant reductions in terms of required bpp for transmitting
masks.

E. Privacy Implications of DeltaMask
In FL, protecting privacy is essential, as model updates might inadvertently expose client data (Wang et al., 2020). DeltaMask employs
probabilistic filters like binary fuse filters for stochastic mask updates, enhancing data privacy due to their reliance on multiple hashing
operations sensitive to initial conditions. Establishing an initial seed through a secure channel with the server — leveraging a public-private
key pairing — we mitigate the risk of eavesdropping on client updates to performing model inversion attacks. Crucially, the probabilistic
filters’ false positive rate, akin to an independent bit-flipping probability, functions as a local differential privacy safeguard. While
providing absolute privacy guarantees is not the primary objective of DeltaMask, its hashing operations inherently boost privacy, a
beneficial side effect. We leave further exploration of this to future work.

F. Additional Experiments
F.1. Additional Experimental Details

Training Parameters: For our experiments, clients completed 1 local epoch per round with a batch size of 64 and Adam optimizer with a
learning rate of 0.1. We adopted Bayesian aggregation, resetting the prior every 1

ρ
rounds, where ρ is the participation rate (as per (Isik

et al., 2023)). In scenarios where ρ is less than 1.0, client selection in each round was randomized. In most experiments, we set κ to
0.8, except for those detailed in Fig.4a. We conducted 100 federated rounds for experiments with ρ=1 (both IID and non-IID settings)
and increased the number of rounds to 200 and 300 for IID and non-IID experiments, respectively, when ρ << 1. Unless otherwise
mentioned, we employed CLIP ViT-B/32 for experiments involving CLIP. We perform 3 independent runs and report the average accuracy
on test-set in all our experiments.

Weight Initialization: The neural network pwinit is initialized using weights winit = (winit,1, winit,2, . . . , winit,d) ∈ Rd derived from a pre-
trained foundation model, yet, the classification head for downstream tasks is randomly initialized. This means that while the pre-trained

9

Federated Fine-Tuning of Vision Foundation Models via Probabilistic Masking

backbone offers high-quality features useful across various tasks, the randomly initialized classifier head significantly influences the
model’s overall performance. Prior research has sampled weights from a uniform distribution around the Kaiming initialization to find
highly-performing subnetworks on randomly initialized network (Isik et al., 2023; Zhou et al., 2020; Ramanujan et al., 2020; Zhou et al.,
2020). However, as we focus on pre-trained models, we allow the classification head to adapt during a single round of linear probing,
where the rest of the model remains frozen. This yields more stable results and rapid convergence. For a fair comparison, we employ
identical weights initialization methods across all considered baselines. We also investigate scenarios with extremely low bitrates, where,
linear probing is not feasible in Appx. F.7.

Baselines Configuration: For FedMask, we set a binary threshold τ (masking with mi=1 if θi ≥ τ , and 0 otherwise) in the range [0.4,
0.6] for IID and [0.2, 0.0] for non-IID experiments, aligning with (Isik et al., 2023). In EDEN, a 1-bit gradient compression scheme was
used to match the bitrate (bpp) of other baselines. Notably, EDEN’s compression is model-dependent but yields nearly constant bpp
reductions across all experiments. From DeepReduce compression, we discard the values’ compression stage (as we deal we binary
masks), and utilize only the Bloom filter-based index compression using the P0-policy (Kostopoulou et al., 2021). Here, binary masks
were learned via stochastic mask training ((Isik et al., 2023)), ensuring operation near the 1 bpp regime and facilitating clear comparison
with DeltaMask. For our comparison with FedPM, we use identical settings albeit the compression scheme with probabilistic filters
of DeltaMask, to clearly illustrate the benefits of our approach. We conducted our experiments on NVIDIA A10 GPUs on an internal
cluster server, using 2 GPUs per one run.

F.2. Additional Experiments in IID settings

In this section, we present additional experiments conducted under IID settings with varying participation rates (ρ). To ensure a fair
comparison, we included both Linear Probing, which involves adapting a single linear classifier atop the (frozen) pre-trained model, and
full Fine-tuning, wherein only the layers modified in DeltaMask are fine-tuned. In Table 1, apart from report models’ accuracies across
tasks, we include the average bpp and accuracy across all tasks for a concise comparison.

Table 1. Performance evaluation of DeltaMask (Ours) in terms of average bitrate (bits-per-parameter) during FL training using Dir(10)
over classes (Cp≈1.0 / IID settings) for CLIP ViT-B/32. Federated parameters are set to N=30 and E=1. For ρ < 1, clients are randomly
selected.

Method CIFAR-10 CIFAR-100 SVHN EMNIST Fashion-MNIST EuroSAT Food-101 Cars196 Avg. Acc Avg. bpp

ρ = 0.2

Linear Probing 92.12 ± 0.007 67.23 ± 0.011 59.70 ± 0.016 89.89 ± 0.008 89.05 ± 0.010 94.81 ± 0.009 67.58 ± 0.014 59.87 ± 0.016 77.51 -
Fine-tuning 94.38 ± 0.013 76.12 ± 0.019 91.88 ± 0.012 94.02 ± 0.018 92.54 ± 0.009 97.61 ± 0.015 85.73 ± 0.017 66.98 ± 0.011 87.48 32

FedMask 85.32 ± 0.033 61.38 ± 0.057 68.71 ± 0.046 81.32 ± 0.024 84.32 ± 0.044 92.01 ± 0.025 62.28 ± 0.037 57.12 ± 0.029 74.06 1.0
EDEN 87.11 ± 0.006 65.89 ± 0.009 79.16 ± 0.008 86.36 ± 0.006 85.21 ± 0.012 91.24 ± 0.010 69.59 ± 0.012 62.07 ± 0.011 78.33 0.703
DeepReduce 86.71 ± 0.071 64.98 ± 0.091 60.32 ± 0.061 84.42 ± 0.044 84.09 ± 0.057 92.37 ± 0.041 64.91 ± 0.043 55.72 ± 0.078 73.61 1.123
FedPM 90.31 ± 0.016 74.66 ± 0.019 87.03 ± 0.017 91.42 ± 0.021 89.79 ± 0.013 95.57 ± 0.015 74.80 ± 0.014 62.19 ± 0.017 83.22 0.946

DeltaMask 89.52 ± 0.021 74.01 ± 0.033 86.86 ± 0.024 92.27 ± 0.027 89.68 ± 0.014 94.94 ± 0.019 74.09 ± 0.029 61.56 ± 0.030 82.87 0.197

ρ = 1.0

Linear Probing 93.97 ± 0.004 74.11 ± 0.009 59.26 ± 0.011 89.40 ± 0.008 89.47 ± 0.005 95.35 ± 0.003 76.64 ± 0.009 61.72 ± 0.012 79.99 -
Fine-tuning 94.50 ± 0.010 77.35 ± 0.009 92.72 ± 0.012 94.89 ± 0.010 92.98 ± 0.013 98.24 ± 0.011 86.72 ± 0.009 67.23 ± 0.014 88.08 32

FedMask 90.84 ± 0.028 70.64 ± 0.057 74.32 ± 0.039 84.22 ± 0.031 88.64 ± 0.029 95.09 ± 0.038 68.46 ± 0.034 61.59 ± 0.039 79.23 1.0
EDEN 93.15 ± 0.009 72.02 ± 0.010 86.67 ± 0.007 91.55 ± 0.009 90.40 ± 0.012 95.34 ± 0.010 80.02 ± 0.004 63.98 ± 0.008 84.14 0.691
DeepReduce 88.17 ± 0.034 68.59 ± 0.069 62.34 ± 0.056 86.92 ± 0.073 85.44 ± 0.031 94.12 ± 0.043 67.92 ± 0.075 58.42 ± 0.041 76.53 1.089
FedPM 93.58 ± 0.014 75.56 ± 0.011 88.76 ± 0.013 93.45 ± 0.015 92.10 ± 0.009 96.45 ± 0.019 83.45 ± 0.013 65.23 ± 0.014 86.07 0.872

DeltaMask 93.50 ± 0.019 74.82 ± 0.023 87.95 ± 0.021 92.52 ± 0.019 91.27 ± 0.023 95.64 ± 0.017 82.73 ± 0.024 64.94 ± 0.026 85.44 0.151

In Table 1, we note that DeltaMask achieves significant reductions in bitrate, while maintaining performance on par with fine-tuning.
This is particularly evident in scenarios with ρ less than 1, where DeltaMask ability to reduce bitrate without compromising on accuracy
highlights its effectiveness in federated learning environments with varying levels of client participation.

F.3. Additional Experiments in non-IID settings

In this section, we provide additional experiments performed under non-IID settings, where we varied the participation rate (ρ). Similar
to F.2, we include both Linear Probing and Fine-tuning for a rigorous evaluation. We report our findings in Table 2, where we also report
the average bpp and accuracy across all tasks for a concise comparison of our baselines.

Table 2 reveals a notable improvement in DeltaMask performance, especially when the participation ratio ρ is less than 1, with only a
2% accuracy difference compared to fine-tuning. This is a critical observation, since non-IID data distributions coupled with partial client
participation closely mirror the conditions of real-world federated settings. Furthermore, our analysis shows that methods using stochastic
mask training, such as DeepReduce and FedPM, yield better final model accuracy under non-IID conditions than traditional compression
schemes like EDEN or hard-thresholding masking techniques like FedMask. Interestingly, the CLIP ViT-B/32 model excels in non-IID
scenarios, underscoring the robust generalization abilities of pre-trained foundation models, which are particularly advantageous in
non-IID federated environments. This emphasizes the importance of adapting these models for edge computing, capitalizing on their
capability to effectively handle diverse and complex data distributions.

10

Federated Fine-Tuning of Vision Foundation Models via Probabilistic Masking

Table 2. Performance evaluation of DeltaMask (Ours) in terms of average bitrate (bits-per-parameter) during FL training using Dir(0.1)
over classes (Cp≈0.2 / non-IID settings) for CLIP ViT-B/32. Federated parameters are set to N=30 and E=1. For ρ < 1, clients are
randomly selected.

Method CIFAR-10 CIFAR-100 SVHN EMNIST Fashion-MNIST EuroSAT Food-101 Cars196 Avg. Acc Avg. bpp

ρ = 0.2

Linear Probing 84.51 ± 0.019 49.04 ± 0.022 43.16 ± 0.020 82.41 ± 0.035 86.29 ± 0.024 91.63 ± 0.022 51.54 ± 0.021 47.92 ± 0.038 67.06 -
Fine-tuning 92.59 ± 0.024 70.20 ± 0.037 87.39 ± 0.036 92.00 ± 0.057 88.25 ± 0.039 95.56 ± 0.029 79.38 ± 0.034 60.11 ± 0.051 83.19 32

FedMask 83.14 ± 0.059 51.66 ± 0.119 51.78 ± 0.049 83.75 ± 0.078 85.91 ± 0.073 90.05 ± 0.074 53.19 ± 0.063 51.37 ± 0.105 68.86 1.0
EDEN 87.87 ± 0.037 64.62 ± 0.106 81.06 ± 0.081 86.73 ± 0.050 86.75 ± 0.055 90.22 ± 0.062 72.55 ± 0.056 58.71 ± 0.034 78.56 0.715
DeepReduce 86.07 ± 0.097 64.39 ± 0.088 82.92 ± 0.071 85.14 ± 0.084 83.91 ± 0.067 86.12 ± 0.117 52.92 ± 0.055 49.72 ± 0.110 73.90 1.173
FedPM 90.70 ± 0.045 67.42 ± 0.095 87.51 ± 0.079 89.77 ± 0.095 88.42 ± 0.092 93.57 ± 0.067 76.80 ± 0.076 59.06 ± 0.098 81.64 0.948

DeltaMask 90.32 ± 0.083 66.90 ± 0.051 87.36 ± 0.093 89.09 ± 0.047 86.91 ± 0.067 93.54 ± 0.101 76.39 ± 0.086 58.52 ± 0.102 81.13 0.233

ρ = 1.0

Linear Probing 91.46 ± 0.026 71.96 ± 0.025 46.03 ± 0.017 84.57 ± 0.031 87.13 ± 0.018 92.98 ± 0.016 68.70 ± 0.028 54.03 ± 0.032 74.61 -
Fine-tuning 93.61 ± 0.048 75.49 ± 0.052 90.10 ± 0.063 93.13 ± 0.037 91.06 ± 0.041 97.02 ± 0.034 84.71 ± 0.013 64.93 ± 0.063 86.26 32

FedMask 88.42 ± 0.051 63.04 ± 0.081 64.32 ± 0.073 86.41 ± 0.039 86.39 ± 0.044 91.67 ± 0.031 68.04 ± 0.050 54.39 ± 0.089 75.34 1.0
EDEN 92.14 ± 0.043 71.65 ± 0.060 86.28 ± 0.057 90.87 ± 0.046 89.94 ± 0.034 93.26 ± 0.035 78.79 ± 0.083 61.18 ± 0.027 83.01 0.703
DeepReduce 87.33 ± 0.052 67.19 ± 0.061 83.19 ± 0.048 85.71 ± 0.082 84.52 ± 0.075 92.12 ± 0.060 69.11 ± 0.092 60.31 ± 0.094 78.69 1.092
FedPM 92.99 ± 0.045 74.34 ± 0.023 89.35 ± 0.025 92.65 ± 0.098 91.33 ± 0.041 95.37 ± 0.048 83.69 ± 0.076 63.65 ± 0.074 85.42 0.901

DeltaMask 92.84 ± 0.083 73.69 ± 0.051 89.01 ± 0.085 91.92 ± 0.089 91.27 ± 0.055 94.54 ± 0.103 83.48 ± 0.081 63.47 ± 0.096 85.03 0.191

F.4. Experiments in ImageNet datasets

In this section, we extend our evaluation in more complex tasks to assess the effectiveness of DeltaMask to fine-tune FMs in federated
settings in a communication-efficient manner under datasets of larger complexity. For this, we perform experiments on Tiny-ImageNet (Le
& Yang, 2015) with both CLIP ViT-B/32 and CLIP ViT-L/14. The results, reported on Table 3 showcase that DeltaMask can effectively
fine-tune FMs in more complex tasks, such as ImageNet datasets, while maintaining the same efficiency in terms of bpp.

Table 3. Evaluation of DeltaMask using Dir(10.0) over classes (Cp≈1.0 / IID settings) across CLIP architectures in Tiny-ImageNet (Le
& Yang, 2015).

Method CLIP ViT-B/32 CLIP ViT-L/14

Accuracy Avg. bpp Accuracy Avg. bpp

Fine-tuning 86.12 32 89.02 32
FedPM 84.22 0.871 87.04 0.862
DeltaMask (Ours) 83.76 0.201 86.57 0.218

F.5. Generalization across Neural Architectures and Pre-training Strategies

Here, we evaluate DeltaMask ability to work across various neural architectures pre-trained in a different self-supervised manner. We
train masks for downstream task adaptation in a communication-constrained FL environment. For this, we perform experiments with
N=10 on additional (larger) ViT architectures, namely CLIP-Large and DINOv2-Large, as well as a pure convolution-based architecture,
ConvMixer-768/32 on CIFAR-100 as a downstream classification task. In all experiments, we mask the last 5 blocks, as discussed in Sec. 3.
From Table 4, DeltaMask demonstrates robust adaptability across diverse pre-trained architectures in a FL setup with communication
constraints. Notably, DeltaMask performance on large ViT architectures yield accuracies near those of fine-tuning, notably with CLIP
ViT-L/14 slightly surpassing it. This is significant, considering the communication efficiency depicted by the average bitrate, which
remains close to 0.2 bpp across all architectures. ConvMixer-768/32 also adapts well with DeltaMask, showing a modest accuracy
reduction while meeting communication constraints. These results reinforce our method’s suitability across diverse architectures, allowing
for communication-efficient downstream task adaptation of FMs in a federated setting.

Table 4. Evaluation of DeltaMask using Dir(10.0) over classes (Cp≈1.0 / IID settings) across architectures and pre-training strategies.
Federated parameters are set to N=10, ρ=1 and E=1.

Metric CLIP ViT-B/32 CLIP ViT-L/14 DINOv2-Base DINOv2-Small ConvMixer-768/32

Fine-tuning 77.35 ± 0.009 89.07 ± 0.012 75.01 ± 0.007 65.55 ± 0.019 78.52 ± 0.009
DeltaMask (Ours) 75.82 ± 0.023 89.48 ± 0.031 73.36 ± 0.027 63.01 ± 0.033 75.31 ± 0.021

Avg. bpp 0.207 ± 0.001 0.225 ± 0.002 0.197 ± 0.001 0.214 ± 0.001 0.251 ± 0.001

11

Federated Fine-Tuning of Vision Foundation Models via Probabilistic Masking

F.6. DeltaMask Efficiency on Edge Devices

In this section, we evaluate the runtime resource demands—computation and energy—of our probabilistic filter compression on three
popular embedded platforms: NVIDIA Jetson Nano (4GB), Raspberry Pi 4 (4GB), and Coral Dev Board (1GB). These platforms were
selected for their widespread use and capability to run machine learning tasks at the edge. To measure energy consumption, we used a
Raspberry Pi 4 equipped with a Current/Power Monitor HAT, monitoring each device’s energy use with a 0.1 Ohm sampling resistor. Our
tests, conducted over 5 runs, record the average runtime (in milliseconds) and energy usage (in nano Joules) for different probabilistic
filters with varying bits per entry (8, 16, and 32), as detailed in Table 5.

Table 5. Average energy and latency benchmarking of the considered probabilistic filters across different devices. The CPU execution
time (ms) and estimated energy consumption (nJ) per entry is computed over 10M entries.

Filter Metric Raspberry Pi 4 Coral Dev Board Jetson Nano

Xor8
CPU Execution Time (ms) 0.942 ± 0.0165 1.682 ± 0.0059 0.479 ± 0.0001
Energy Consumption (nJ) 3.223 ± 0.0023 2.826 ± 0.0011 2.334 ± 0.0012

Xor16
CPU Execution Time (ms) 0.955 ± 0.0250 1.683 ± 0.0008 0.502 ± 0.0001
Energy Consumption (nJ) 4.052 ± 0.0032 3.580 ± 0.0003 3.386 ± 0.0016

Xor32
CPU Execution Time (ms) 0.978 ± 0.0278 1.701 ± 0.0006 0.539 ± 0.0005
Energy Consumption (nJ) 6.292 ± 0.0021 4.732 ± 0.0008 4.692 ± 0.0023

BFuse8
CPU Execution Time (ms) 0.587 ± 0.0059 1.144 ± 0.0035 0.289 ± 0.0013
Energy Consumption (nJ) 2.045 ± 0.0019 1.979 ± 0.0015 1.829 ± 0.0023

BFuse16
CPU Execution Time (ms) 0.590 ± 0.0066 1.183 ± 0.0029 0.282 ± 0.0002
Energy Consumption (nJ) 3.262 ± 0.0020 2.898 ± 0.0017 2.157 ± 0.0033

BFuse32
CPU Execution Time (ms) 0.612 ± 0.0054 1.201 ± 0.0017 0.301 ± 0.0002
Energy Consumption (nJ) 4.021 ± 0.0026 3.771 ± 0.0022 3.263 ± 0.0012

From the results, we clearly notice that all filter variants demand limited computational resources, both in terms of execution time and
energy requirements. BFuse8 is particularly notable for its efficiency, requiring only an average execution time of 0.673 milliseconds
and consuming just 1.95 nano Joules of energy across the considered devices. This underscores the practicality of our probabilistic
filter-based compression scheme in federated settings, where devices are often constrained by limited computational capabilities and strict
energy budgets. Additionally, our analysis shows that even with an increase in the bits-per-entry (bpe) parameter, the rise in execution
time and energy consumption is quite modest. This is particularly noteworthy given the simultaneous improvement in the false positive
rate, which is inversely proportional to 2−bpe. This pattern suggests a beneficial trade-off between accuracy and resource utilization,
reinforcing the adaptability and effectiveness of our approach in federated learning scenarios that prioritize computational efficiency and
energy conservation.

F.7. Comparing Classifier Heads in DeltaMask

In DeltaMask, we enable the classification head to adapt in a single linear probing round, while freezing the rest of the model. This
approach produces more stable outcomes and quicker convergence than previous methods (Isik et al., 2023; Zhou et al., 2020; Ramanujan
et al., 2020; Zhou et al., 2020) that used Kaiming initialization to identify high-performing subnetworks in randomly initialized networks.
Although the classification head typically has fewer parameters, scenarios requiring extremely low bitrates make transmitting even a
single round’s floating-point weights impractical. In this section, we explore such situations, investigating different alternatives for the
classifier layer. Specifically, we replace the linear classifier with a Gaussian Naive Bayes classifier from FiT (Shysheya et al., 2022),
specifically FIT-LDA. This classifier is data-driven, with a minimal number of learnable parameters (2 float-point values), making it
ideal for our purpose. In our analysis, we utilize CLIP ViT-B/32, masking the last five transformer blocks and compare DeltaMaskFiT

against both a single-round trained linear classifier (DeltaMaskLP) and a Kaiming initialized (frozen) classifier (DeltaMaskHe).

Table 6. Evaluating Classifier Initialization Schemes in DeltaMask. Comparing Average Bitrate and Accuracy in FL Training using
Dir(10) over classes (Cp≈1.0 / IID settings) for CLIP ViT-B/32. Federated parameters are set to N=30 and E=1.

Method CIFAR-10 CIFAR-100 SVHN EMNIST Fashion-MNIST EuroSAT Food-101 Cars196 Avg. Acc Avg. bpp

Fine-tuning 94.50 ± 0.010 77.35 ± 0.009 92.72 ± 0.012 94.89 ± 0.010 92.98 ± 0.013 98.24 ± 0.011 86.72 ± 0.009 67.23 ± 0.014 88.08 32

DeltaMaskHe 90.28 ± 0.052 67.34 ± 0.069 84.09 ± 0.063 87.32 ± 0.081 87.69 ± 0.034 93.22 ± 0.073 78.05 ± 0.028 58.74 ± 0.084 80.84 0.143
DeltaMaskFiT 93.42 ± 0.023 71.17 ± 0.041 86.31 ± 0.039 92.09 ± 0.021 89.87 ± 0.026 95.53 ± 0.019 81.71 ± 0.033 60.01 ± 0.029 83.76 0.145
DeltaMaskLP 93.50 ± 0.019 74.82 ± 0.023 87.95 ± 0.021 92.52 ± 0.019 91.27 ± 0.023 95.64 ± 0.017 82.73 ± 0.024 64.94 ± 0.026 85.44 0.151

12

Federated Fine-Tuning of Vision Foundation Models via Probabilistic Masking

From Table 6, we notice that DeltaMaskLP outperforms other initialization methods by over 2% without significantly increasing
the bitrate, while FiT can be an effective alternative to Kaiming initialization, increasing accuracy by ≈3%. More importantly, these
findings highlight the importance of appropriate classifier layer initialization during fine-tuning of foundation models in downstream tasks.
However, we demonstrate that a single fine-tuning round of the classifier layer, with the remaining model frozen, is an effective strategy
with minimal impact on the communicated bitrate.

13

