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Fig. 1. We present a system for capturing, registering, and visualizing panoramic time-lapse in uncontrolled settings using a hand-held mobile phone. Left:
a visualization (described more in Section 4) of the Alignment Graph for thousands of construction site images taken over more than a year. The central
node, marked 𝑋 , defines an image plane for our time-lapse, to which all other images are registered by chaining together high-confidence homographies
between image pairs. The width of the edges visualized here is proportional to the number of images that use a given homography in registration. Our method
successfully registers images with few or no correspondences by finding paths through other images. For example, session 𝐷 is taken at night with snowfall
but registers with 𝑋 by chaining together matches to sessions taken before and after twilight and during the day (𝐶 and 𝐸). Right (top): Three aligned
panoramas taken of one hiking trail over three different seasons. Right (bottom): a composite of panoramas for a different hiking trail, where the composite
transitions from Winter on the left through Fall and Spring to Summer on the right.

This paper explores how to record, explore, and visualize long-term changes
in an environment—at the scale of days, months, and even years—based on
data that a single user can conveniently capture using the mobile phone they
already carry. Our strategy involves making the data capture process as quick
and convenient as possible so that it is easy to integrate into daily routines.
This strategy yields large unstructured panoramic image datasets, which we
process using novel registration and scene reconstruction approaches. Our
central contribution lies in demonstrating pocket time-lapse as a novel ap-
plication, made possible through several key technical contributions. These
include a novel method for quickly and robustly registering thousands of un-
structured panoramic images, a novel reconstruction technique for rendering
time-lapse and performing state-of-the-art intrinsic image decomposition,
and several large hand-captured datasets that span multiple years of data
collection, totaling over 6k separate capture sessions and 50k images.
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1 INTRODUCTION
Most smartphone users carry a pocket-sized camera with them
almost everywhere they go. However, most of the pictures we take
focus on sudden salient events, leaving slower, more subtle visual
changes in our environment comparatively under-sampled. This
paper focuses on a simple but powerful idea: How can we leverage
the mobile phone we already carry to capture and visualize slower,
long-term changes in our environment? Answering this question
has broad implications—not just for personal photography, but for
many other applications that rely on long-term visual observation
in uncontrolled settings, including scientific fieldwork, agriculture,
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construction, and structural health monitoring. With this broad
range of applications in mind, we spent several years collecting
what we call pocket time-lapse. The idea of pocket time-lapse is
to use a mobile phone to capture consistent panoramic viewpoints
of a scene over long periods by integrating quick and convenient
data capture into users’ daily routines. Over time, we collect and
register this data to reconstruct a time-lapse, offering a powerful
way to visualize long-term changes in the scene.

1.1 Challenges
At first glance, pocket time-lapse may seem like a straightforward
extension of panoramic image capture. Were this true, one might
expect casually hand-captured time-lapse to be common, especially
in public or uncontrolled environments where setting up a fixed
camera or tripod is impossible. However, hand-captured time-lapse
is extremely rare, and most examples are limited to popular land-
marks based on data harvested from large Internet photo collections
(e.g. Lin et al. [2023]; Martin-Brualla et al. [2015b]). Our work aims
to make it easy for anyone to capture time-lapse of environments
they frequently visit using devices they already carry. This proves
to be challenging for several reasons:
• Long-Term Data Capture: To record long-term phenomena, we
need to capture data regularly and frequently for months or even
years at a time, requiring a significant longitudinal effort.

• Registration: Pocket time-lapse data is difficult to register for sev-
eral reasons. First, the number of images that need to be registered
is orders of magnitude greater than what existing panorama tools
are designed for. Second, panoramic data makes feature triangula-
tion impossible, precluding strategies used by more scalable 3D
registration tools like COLMAP [Schönberger and Frahm 2016]
to filtering image matches. Third, sudden and significant visual
changes (e.g., night and day, sudden snow cover) frequently result
in unreliable matches even between consecutive capture sessions,
causing sequential registration strategies to fail.

• Reconstruction & Visualization: Pocket time-lapse sampling
tends to be much sparser and less uniform than traditional time-
lapse, and different visual phenomena of interest often happen
at very different timescales. All of this makes reconstruction and
visualization especially difficult.

These challenges are tightly interconnected. For example, registra-
tion would be easier with multi-view data, and reconstruction would
be easier with denser temporal sampling, but both would require
additional effort to capture—effort that may need to be sustained for
years on end. The potential and nature of using foundation models
in reconstruction also presents a tradeoff between fidelity and po-
tential accuracy. To navigate these tradeoffs, it helps to keep clear
goals and potential applications in mind.

1.2 Applications & Contributions
Pocket time-lapse has many potential applications beyond personal
photography, with many of its most compelling use cases being
in fields where data collection cannot (or should not) be replaced
with plausible hallucination. For example, in construction, structural
health monitoring, agriculture, or environmental science, where
manual data collection is already common and accuracy is crucial.
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Fig. 2. Capture Process:Weuse a custom panoramic capture app to acquire
data. The user selects their target from a gallery to begin capture. A reference
view is displayed as an overlay on the screen to help capture an initial
primary sample image. Each time they capture a photo, the overlaid image
is replaced with the newly captured one to help gauge overlap between
consecutive photos. Our registration pipeline later aligns and stitches these
images offline. The image on the right shows a stitched panorama, with the
region taken from the primary sample marked in blue.

In this paper, we focus on the collection, registration, and visualiza-
tion of data that supports these types of applications, noting that
generative reconstruction conditioned on scarcer data offers increas-
ingly compelling alternative tradeoffs for use cases that focus more
exclusively on visual appeal.
Our work represents an extensive effort spanning several years.

To support regular and frequent capture without placing an unrea-
sonable burden on users, we developed a simple mobile application
to quickly capture panoramic data from consistent viewpoints. We
used this application to routinely capture data of several subjects
over a roughly three-year period, collecting over 50k images of 17
subjects spread over 6k unique capture sessions. Parallel to this
effort, we developed a scalable registration pipeline that can quickly
register thousands of panoramic images from uncontrolled dynamic
environments (e.g., construction sites and hiking trails) while adjust-
ing to significant changes in lighting and weather. Finally, we built
tools and techniques for exploring and visualizing this unstructured
data, as well as performing intrinsic image decomposition on cap-
tured subjects, which we demonstrate on a wide range of difficult
and unique scenes. Our app, code and data will be made available
at https://pocket-timelapse.github.io.

2 RELATED WORK

2.1 Traditional & Computational Time-Lapse
Time-lapse videos are traditionally recorded by taking numerous
photos at short, regular intervals with a static camera, typically fixed
on a tripod throughout the duration of the scene capture. Time-lapse
captured in this way is considered a gold standard for data quality,
as it provides pre-aligned images with dense, uniform temporal
sampling. However, it can be impractical or expensive due to the
need to leave a camera in place for extended periods, which is often
impossible in public settings. Traditional time-lapse also tends to
exhibit significant temporal aliasing. Previous work has focused
on removing this aliasing by filtering out high frequencies from
the time-lapse Rubinstein et al. [2011]. Matusik et al. [2004] use
time-lapse data to represent images as a product of the reflectance
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field and the incoming illumination but cannot disentangle the two.
Sunkavalli et al. [2007] can implicitly remove transient objects (e.g.,
people) but is limited to fixed viewpoints and clear-sky conditions.

2.2 Internet Photo Collections
Matzen and Snavely [2014], Martin-Brualla et al. [2015a,b], and Lin
et al. [2023], reconstruct 3D scenes over time from heavily captured
Internet photo collections. Reliance on Internet photo collections
limits such techniques almost exclusively to popular tourist attrac-
tions, for which many photos can be found online. These methods
rely heavily on large 3D reconstructions and assume that scene ge-
ometry is constant over time. Finally, these methods require multi-
view data and rely on 3D reconstructions that are much slower and
more expensive to compute than our approach.

2.3 Generative Models
In recent years, incredible progress has been made in generative
models. Results produced by these methods are visually impressive
but favor plausibility over accuracy, making them prone to hallu-
cination. TLGAN [Härkönen et al. 2022] uses a GAN conditioned
on time to disentangle time-lapse sequences in a way that allows
control of overall trends, seasons, and day-night cycles. However,
as we show, TLGAN struggles to reconstruct plausible shadows
and the correct season, especially with sparse data. Methods such
as Geyer et al. [2024] and Chen et al. [2023] use diffusion models
for video generation. However, these approaches also hallucinate,
and consistency is difficult to enforce. Preventing hallucination in
generative models remains an open problem.

2.4 Guided Photography Systems
With specific capture goals in mind, researchers have studied AR-
based guidance for creative photography. For example, Adams et al.
[2008] interactively visualizes a coverage mapmade from panoramic
images in viewfinders. Recent works from the HCI community, such
as E et al. [2020, 2021]; Kim and Lee [2019], have explored ways to
improve image composition with picture-in-picture, image overlays,
edge visualization, or virtual frames. In line with our goal, Yan et al.
[2022] addresses the challenge of handheld time-lapse photography
using AR guidance. However, their work focused on capture and
did not explore reconstruction. In comparison, our work addresses
panoramic capture over a very long timescale and deals with 1-2
orders of magnitude more images per scene. This makes capture
and registration significantly more challenging.

3 DATA CAPTURE & ORGANIZATION
We explored different capture procedures over the years and found
that the best balance of convenience and data quality involved
capturing 2D panoramic data with a custom iOS app we designed
to make data collection as efficient as possible. The user lines up an
initial shot based on an overlay visualizing some reference view of
the time-lapse, then they optionally rotate their phone in different
directions to capture some number of additional images that can be
stitched into a panorama later on (see Figure 2). A single session
of capture can be completed in just a few seconds with one hand,
making it easy to integrate into regular routines. This speed and
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Fig. 3. Registration Methods: Left: We show the graph structure of each
registration baseline compared to the structure computed by our method.
Right: Alignments of the same session — captured at night after snowfall,
when few of the central node’s features could be matched — registered using
each approach. All-to-one (top) fails to find accurate feature matches, while
sequential-session (middle) has accumulated drift error from the reference
image. Our method (bottom) correctly registers the session by chaining
high-confidence transformations derived from other images in the dataset.

convenience was critical to sustaining frequent use over three years
of data collection.
We call the sequence of images taken between one opening and

closing of the application’s camera view a session. Our overlay
guidance helps ensure that every session’s first image covers roughly
the same field of view in a scene.We call this first image the primary
sample for that session, and each subsequent image a secondary
image. Section 4 describes a way to derive primary samples for data
not captured using this process based on node centrality. Following
this pattern is simple, helps ensure data quality, and allows for very
efficient computation of feature matches during registration.

A significant advantage of pocket time-lapse over Internet photos
is that collecting the data oneself yields more reliable labels. In
addition to a timestamp for every image, we use GPS to pull local
weather information and calculate the sun’s angle during capture.
We can use this to, for example, filter for images taken on sunny days,
and subsequently train a reconstruction of the scene conditioned
on the sun’s angle, enabling us to control shadows (see Figure 6).

4 GRAPH BASED REGISTRATION & STITCHING

4.1 Existing Approaches
Our approach to registration is easiest to understand by first ex-
amining how existing solutions fail. Notably, we did not set out
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to make registration a technical contribution to this work. Instead,
we began using existing panoramic registration tools before dis-
covering their limitations as our datasets grew more extensive and
varied. For time-lapse, we cannot simply stitch each session into
a panorama independently, as this results in a different frame of
reference for every session. To create a single time-lapse, we need to
register all images across all sessions with a common frame, which
is the source of our scaling problem. Software like Adobe Photoshop
[Adobe Inc. 2023] offers no way to constrain panorama stitching
to a specific image plane, and its automatic stitching pipeline ap-
pears to have quadratic complexity, causing it to crash when given
about 200 images (far short of the thousands we need). SfM tools
like COLMAP [Schönberger and Frahm 2016] are designed to scale
for multi-view data but rely on 3D feature triangulation to filter
correspondences, causing them to fail on panoramic datasets. We
also tried Hugin / Panorama Tools but found it frequently failed
across different sessions. The best-performing baselines to converge
on our data were two different strategies based on OpenCV. Both
strategies use the image plane of the first primary sample as the
reference coordinate system for the time-lapse:
• All-to-one registration: All primary samples are aligned with
the first primary. All secondary samples are then aligned with
their respective aligned primaries.

• Sequential-session registration: We iterate through the ses-
sions chronologically. Each session’s primary is registered against
the last session to return an alignment successfully. Each sec-
ondary is then aligned with its aligned primary.

Each of these strategies has problems. All-to-one registration fre-
quently fails due to insufficient matches between a later session
and the reference session, often due to scene or lighting changes.
Sequential-session registration suffers from accumulated drift error
over many sessions. We introduce a technique derived from anal-
ysis of an alignment graph built over captured images, which can
efficiently and accurately align > 10𝑘 images, clearly outperforming
existing methods.

4.2 The Alignment Graph
We can represent each of our OpenCV-based strategies as a graph
structure, where the alignment of two images corresponds to a path
between two nodes (see Figure 3). Our registration strategy builds
on this graph interpretation to overcome the problems observed in
our baseline approaches. This approach is inspired by graph-based
registration strategies used for multi-view data in SfM tools like
COLMAP, but we are the first to our knowledge to apply such an
approach to scaling panoramic registration.
Given 𝑛 images {𝐼1, 𝐼2, ...𝐼𝑛}, our task is to compute the trans-

formed images {𝐼𝑐1 , 𝐼
𝑐
2 , ...𝐼

𝑐
𝑛} expressed in some common coordinate

system 𝐼𝑐 . For notation, superscripts indicate the coordinate system
each image is expressed in, so input images with a matching su-
perscript and subscript are equivalent. For panoramic data, we can
represent the transformation 𝐻

𝑗
𝑖
: 𝐼 𝑖

𝑖
↦→ 𝐼

𝑗
𝑖
as a homography. Our

registration method works by first building an alignment graph
with nodes representing input images and edges representing homo-
graphies between those images. As shown in Fig. 1, our Alignment
Graph spans across a variety of illuminations and seasons.

4.2.1 Graph Construction. We start by running feature tracking and
matching in COLMAP. In practice, we customize the matching pro-
cess for speed (see below), but this customization is optional. The re-
sults of geometric verification are stored as a two_view_geometries
table in the COLMAP database, which we load and decode as the
input for graph construction. We begin by adding an edge for every
image pair classified as a homography. We then assign a match
score to each edge equal to its inlier count divided by the maximum
number of inliers across all edges. We treat the reciprocal of this
match score as an edge length for further analysis.

4.2.2 Reference Frame Selection & Registration: Registration bene-
fits from selecting a reference frame 𝐼𝑐 that matches a large propor-
tion of the dataset well. We estimate this as the node with the lowest
average minimal path length to other nodes in the graph, which we
calculate by finding the maximum closeness centrality among all
nodes [Freeman 1978]. We then register each individual image by
finding the shortest path from it to our central node in the graph
and taking the ordered product of homographies corresponding to
each edge in this path. Fig. 1 visualizes the sub-network of edges
that contribute to the registration of nodes in our Garage A dataset.
The topology of this sub-network shows how our alignment graph
leverages indirect correspondences to reliably register images even
when they share little or no reliable matches.

4.2.3 Cutsom Matching. Our registration pipeline does not require
labeling primary and secondary images, but having this information
can help make registration much faster by employing a strategy
analogous to sequential matching for video in Schönberger and
Frahm [2016]. We leverage known temporal relationships between
images to keep the number of image pairs computed linear in the
total number of images rather than quadratic. Firstly, we include all
matches between images from the same capture session (across our
data, roughly eight samples per session on average). Next, we include
matches between each sample and a neighborhood of samples in
time: each primary is matched with the primaries of 20 previous and
subsequent sessions, and each secondary is matched with all the
samples from the last and subsequent four sessions. Finally, we select
a uniform subsampling of 25 primary images that are matched with
all the primaries. This selection of matches could likely be reduced
further, but these settings are already quite effective. For example,
on our largest dataset (Balcony 1), they result in computing less
than one percent of possible image pairs. Prior to this strategy,
we used COLMAP’s vocabulary tree-based matching, which starts
by indexing input images for a nearest-neighbor search. In our
experiments, our custom matching finished in less time than it took
to build this index.

4.3 Stitching
We stitch one panorama for each capture session. The main chal-
lenges we encounter here are fairly standard: variable exposure
and white balance in scenes with high dynamic range and some
issues with lens distortion and vignetting. We address these in two
ways. The first is by calibrating our camera with a standard radial
distortion model and undistorting images prior to processing. The
second has to do with how we blend images. Most of the captured
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Fig. 4. Data Exploration Widget: Our Jupyter Notebook widget allows
one to visualize a time-lapse’s factors of variation by axes such as sun angle,
time of day, and day of the year. It allows users to add custom labels like
weather, divide subsets of data.

field of view is seen by pixels from more than one input image,
which we can take advantage of for exposure and blending. We add
a linear encoding of the transformed images within a session, one
at a time, in the order they were captured. Each time we add a new
image, we calculate an adjustment for exposure and white balance
based on the average per-channel ratio of incoming pixel values to
any previously added values that overlap within the output frame.
Pixels closer to the optical axis of the lens tend to have less distor-
tion and vignetting. To take advantage of this, we apply a radial
falloff from the optical center of each image in RGBA space before
adding it to the frame. Once all images have been added, we divide
each pixel by its alpha channel to homogenize the resulting image.
Doing this ensures that our output image will give greater weight
to input pixels with less distortion. As a final step, we splat an extra
copy of the primary sample with a substantial radial falloff in alpha
using an over operator to minimize the chances of blending artifacts
near the center of our panoramic field of view. While it is simple
and heuristic, the speed and robustness of our approach are a great
strength when stitching tens of thousands of images.

5 EXPLORING CONVENIENCE SAMPLED DATA
To capture frequent data over very long periods of time, pocket
time-lapse works best when integrated into a user’s daily routines.
For example, our Garage A dataset was captured by a user from
the garage where they park their car during work hours. As they
primarily capture data when arriving or leaving work, most samples
are separated by a gap of 8-15 hours. On the other hand, our Baseball
Field 1 dataset was captured by a user from a window between
their office, a nearby kitchenette, and the bathroom. This capture
intensity yielded a much better sampling of different sun angles, as

they moved between these places at various times throughout most
days. We built a custom interactive Jupyter widget to help visualize
and explore such patterns, shown in Figure 4. This interface lets us
visualize the distribution of samples along various axes like season
and time of day and filter by specific criteria to create a time-lapse
focused on specific visual changes.

6 RECONSTRUCTION
The range of visual changes present in multiple years of data can be
quite extensive, with many changes happening simultaneously and
at very different rates. Our challenge here is to balance temporal
filtering against the preservation of well-sampled changes. One
solution is to use nearest-neighbor interpolation, which preserves
all captured detail at the expense of significant temporal aliasing.
Another is to apply a low-pass temporal filter to blur under-sampled
phenomena in the scene. We propose a third option, inspired by 3D
Gaussian splatting [Kerbl et al. 2023], that improves on these two
basic strategies in a few key ways:
• Rather than choosing a single temporal filter per image, we fit
local Gaussians over our labels to local parts of the output field
of view. This lets us adapt temporal filtering locally to patterns
in different parts of a scene.

• We reconstruct our scene over periodic domains of season and
sun angle. For subjects that do not undergo significant long-term
geometric changes, this lets us combine samples from multiple
years to reconstruct daily and seasonal changes. We also use
local weather data pulled for each capture session to condition
on estimated cloud cover, which strongly impacts the presence
of hard shadows.

• We additionally solve for a factorization of the scene into re-
flectance and shading, which can provide useful information for
both reconstruction and analysis.

We call our reconstruction method time splatting.

6.1 Time Splatting
6.1.1 Intrinsic Images. To separate a scene into geometry and shad-
ing changes, we turn to the classic approach of intrinsic image de-
composition from image sequences [Barrow and Tenenbaum 1978;
Weiss 2001]. Given an image at time step 𝑡 , denoted as 𝐼 (𝑡), the
decomposition can be represented as a per-pixel product of an RGB
reflectance 𝑅(𝑡) and a single-channel shading image 𝑆 (𝑡).

𝐼 (𝑡) = 𝑅(𝑡) · 𝑆 (𝑡) (1)

Ideally, 𝑅(𝑡) should contain geometry changes, such as falling leaves
or construction, while 𝑆 (𝑡) should contain illumination changes,
such as shadows.

6.1.2 Label Conditioning. To better constrain our problem, we con-
dition 𝑆 on additional labels. First, since the shading image varies
with the direction of lighting, we condition it on the sun’s an-
gle—represented using azimuth and altitude (𝜃𝑡 , 𝜙𝑡 ), derived from
the timestamp 𝑡 and the GPS location. Prior works have demon-
strated the usefulness of sun angle for analyzing outdoor scenes
[Lalonde et al. 2010; Liu et al. 2020]. Optionally, we can also con-
dition 𝑆 on an estimated percentage of cloud cover,𝑤𝑡 , which we
pull from a local weather API for each session. Our intrinsic image

5



SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada Eric Chen, Žiga Kovačič, Madhav, Aggarwal, and Abe Davis

decomposition is then formulated by the equation:

𝐼 (𝑡) = 𝑅(𝑡) · 𝑆 (𝑡, 𝜃𝑡 , 𝜙𝑡 ,𝑤𝑡 ) . (2)

6.1.3 3D Gaussian Splatting (PriorWork). Building on the 3D Gauss-
ian splatting code provided by Kerbl et al. [2023], we proceed by
fitting 𝑅 and 𝑆 with 2D Gaussians such that their product equals
our input image, as shown in Figure 5. For 3D view-synthesis, Kerbl
et al. [2023] reconstructs images with a set of 3D Gaussians pro-
jected into the synthesized view. Using an over operator, images
are reconstructed by alpha-compositing the projected Gaussians
according to their depth. The projected Gaussians in their work
are described by a mean 𝜇x ∈ R2, and covariance Σx ∈ R2×2 in
image space, with alpha values given in terms of Gaussian 𝐺 for
pixel coordinates x ∈ R2:

Δx = x − 𝜇x, 𝐺 (Δx) = exp
(
−1
2
Δx𝑇 Σ−1x Δx

)
. (3)

During training, they use gradient-based optimization to fit the
Gaussians to input images. Gaussians are split, cloned, and pruned
adaptively based on a set of heuristics.

6.1.4 Time Splatting (Our Method). Our method starts by forgoing
the initial 3D reconstruction and projection of Kerbl et al. [2023]
and directly initializes Gaussians in image space. To extend the
domain of these Gaussians to include a set t ∈ R𝑑 of additional
labels (including time at a minimum), we redefine each Gaussian as
the product of an image-space Gaussian and a Gaussian with one
dimension for each newly added label:

Δx = x − 𝜇x, Δt = t − 𝜇t (4)

𝐺 (Δx,Δt) = exp
(
−1
2
Δx𝑇 Σ−1x Δx

)
exp

(
−1
2
Δt𝑇 Σ−1t Δt

)
. (5)

For the reflectance image, we set t as a normalized scalar repre-
senting absolute timestamps 𝑡 ∈ [0, 1]. For the shading image, we
use the label vector t = (𝑡, 𝜃𝑡 , 𝜙𝑡 ,𝑤𝑡 ) ∈ R𝑑 . We parameterize the
𝑑-dimensional covariance Σt efficiently using the Σt = 𝐿𝐷𝐿𝑇 de-
composition, where 𝐿 is a unitriangular matrix, and 𝐷 is a diagonal
matrix with positive entries.

6.1.5 Change-Driven Densification. To adapt to varying rates of
change in the scene, we initialize the amount of Gaussians in pixel
and time space proportional to the rate of change. To address po-
tential label noise, we add normally-distributed noise to the labels
during training, with variance proportional to the distances between
each sample and its nearest neighbors. This reduces aliasing artifacts
from elongated or over-smoothed Gaussians.

6.1.6 Tone Mapping. Finally, similar to Martin-Brualla et al. [2021];
Rückert et al. [2021], to control for changes in auto-exposure and
white balance we add an additional per-camera exposure termwhich
maps a camera embedding 𝑐𝑖 to a scalar: 𝐿𝑒𝑥𝑝 (𝑐𝑖 ), and a three-
channel white balance term, which is a function of other labels:
𝐿𝑤𝑏 (𝑡, 𝜃𝑡 , 𝜙𝑡 ,𝑤𝑡 ). During test time, we set 𝐿𝑒𝑥𝑝 to be the average
camera embedding. Our final image is given by the equation:

𝐼 (𝑡, 𝑐𝑖 ) = 𝑅(𝑡) · 𝑆 (𝑡, 𝜃𝑡 , 𝜙𝑡 ,𝑤𝑡 ) · 𝐿𝑤𝑏 (𝑡, 𝜃𝑡 , 𝜙𝑡 ,𝑤𝑡 ) · 𝐿𝑒𝑥𝑝 (𝑐𝑖 ). (6)

We implement 𝐿𝑤𝑏 and 𝐿𝑒𝑥𝑝 with small two-layer neural networks
and initialize their outputs to 1 before training.

Table 1. Compute Times for the Entire Registration and Stitching Pro-
cess.We recorded the compute times for running our method’s registration
and stitching process for four of our major datasets. All data was processed
on a consumer laptop (M3 MacBook Pro).

Dataset No. Images Compute Time

Balcony 1 10140 6 h 47 min
Balcony 2 5570 3 h 8 min
Baseball Field 1 7986 5 h 5 min
Stream 1 791 0 h 28 min

6.1.7 Scene Relighting. The intrinsic decomposition offered by time
splatting lets us relight any time-lapse by combining the shading
reconstructed for one set of labels with the reflectance reconstructed
for others. For example, in Fig 6, our method can generate faithful
one-day time lapses as the time changes from sunrise to sunset. As
shown in Fig 9, our method can even factor out reflectance and
shading from nighttime photos.

6.1.8 Real-Time Rendering. Time splatting can be trained com-
pletely on a consumer laptop. After training, a user can interactively
explore the time-lapses along each label dimension. On a Dell XPS
15 with a Nvidia GTX 1050Ti Mobile GPU, time splatting takes 20
minutes to train for 5000 iterations and can be rendered at 25-30
FPS.

7 RESULTS

7.1 Registration
Image registration is challenging for pocket time-lapse both because
of the number of images and the dramatic changes in appearance
over time. As stated in Section 4, we were unable to scale existing
registration tools like Photoshop to even our smaller datasets. In-
stead, we compare our alignment-graph strategy with the two other
OpenCV-based matching baselines described in Section 4: all-to-one
registration, and sequential-session registration. Each method is
quantitatively evaluated for how many sessions it is able to register.
On the Garage A dataset, with all-to-one registration, only 53%

of sessions are successfully registered due to significant changes in
the scene over time. With sequential-session registration, 98% of
sessions register, but these suffer from significant drift error, which
causes distortion and a large rotation of the scene over the course
of the time-lapse (see supplemental). Our alignment graph strategy
successfully registers > 99% of sessions with minimal drift error,
leading to significantly better alignment. Visualizing the alignment
graph topology in Figure 1, we see that this is accomplished by
chaining together high-confidence alignments from non-sequential
sessions. For example, night sessions (D and E) are registered with
day sessions (C and X) by way of sessions taken at twilight, sunrise
or sunset (E and B). This leads to robust and efficient registration
even with 10𝑘 images spanning dramatic changes of appearance. To
our knowledge, our approach is the only one capable of successfully
registering data of this difficulty and scale.

6
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Fig. 5. Time Splatting:We reconstruct a time-lapse from sparse samples by fitting a reflectance image and a shading image with 2D Gaussians. Their product
is optimized to reconstruct the original samples. To control for changes in appearance over time, we condition the reflectance image on a time step. To control
for changes in shading, we condition the shading image on a vector of the time step, sun angle, and cloudiness. Finally, we apply a white balance and exposure
adjustment to the predicted (grayscale) shading image to account for differences in auto-exposure and lighting. As shown above, our method is able to contain
lighting phenomena such as shadows entirely in the shading image.

Table 2. Reconstruction Metrics. We compare the reconstruction quality
for unseen test images between time splatting and TLGAN [Härkönen et al.
2022]. Our method outperforms TLGAN across all metrics. Because TLGAN
was not designed to interpolate such sparse data, it can often hallucinate,
reducing its reconstruction quality. On the other hand, time splatting stays
true to training data, as demonstrated by the better reconstruction metrics.

Dataset Baseball Field Subset (70 Images) Balcony 1 (815 Images)
Metric PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Ours 20.49 0.74 0.22 18.85 0.74 0.27
TLGAN 15.52 0.41 0.36 16.47 0.50 0.31

7.2 Time Splatting
7.2.1 Reconstruction. We first compare howwell our time-splatting
method can reconstruct unseen images in a time-lapse against TL-
GAN [Härkönen et al. 2022]. Even when trained on only 70 images,
we observe that our method produces realistic reconstructions. TL-
GAN, on the other hand, as seen in Figure 7, incorrectly hallucinates
shadows (top row) and seasons (bottom row), generating reconstruc-
tions of winter instead of summer. Highlighted in yellow, TLGAN
also synthesizes the construction incorrectly. time splatting recon-
structions stay close to ground truth images, accurately preserving
the season as well as the positions of shadows. Quantitatively, as
seen in Table 2, we outperform TLGAN across all reconstruction
metrics. These results hold true for both a small “mini time-lapse"
of 70 images and a larger one of 815 images.

7.2.2 Intrinsic Images. A unique property of time splatting is how
it can obtain intrinsic images for scene relighting. We compare in-
trinsic images obtained from time splatting with predictions from
Ordinal Shading [Careaga and Aksoy 2023], a state-of-the-art intrin-
sic image decomposition technique. As seen in the top row of Figure
10, Ordinal Shading incorrectly predicts the reflectance image of
nighttime photos. On the other hand, our method succeeds in pre-
dicting a sunlight-independent reflectance. Additionally, as seen in
the bottom row, our method completely removes shadows from the

reflectance image. Contrary to this, the Ordinal Shading approach
leaves a strong residue of shadows in the reflectance image.

We tested time splatting on a dozen datasets that each vary in the
size and content they present. In Figure 11, we show decompositions
of sample images, which demonstrate that our method is able to
successfully tackle challenging reconstruction scenarios such as
flowing water, heavy foliage, hard shadows, and low light or night
photography. Specifically, we can separate most of the illumination
information into the shading image and predict a faithful reflectance.
Our method can even reconstruct bloom effects, as shown in the
Balcony example in Figure 11.

7.3 Limitations
Our work helps reduce the inconvenience of capturing and regis-
tering data, but pocket time-lapse still requires prolonged effort to
create, and the value of collected data is susceptible to gaps in user
behavior. Better support for collaborative capture could help with
these challenges.
Time splatting amounts to locally-adaptive temporal filtering,

which can help reduce distracting temporal aliasing. This strategy
visualizes uncertainty caused by undersampling as blur, which may
be useful in some contexts, but is not very visually compelling. The
gap in visual fidelity between this approach and one that builds on
visual foundation models is likely to grow with time, motivating the
exploration of more hybrid approaches that strike different balances
between uncertainty and visual fidelity.

8 CONCLUSION
This paper represents the prolonged exploration of two powerful
ideas: pocket time-lapse as a type of photography, and convenience
sampling as a strategy for realizing that mode of photography. The
scale and duration of data, captured on at least 565 unique days,
provides a fascinating examination of how pocket time-lapse can
integrate with daily routines.

In the process of this exploration, we developed several tools that
make these applications more compelling, and we anticipate that

7
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these tools will find many uses in the photography and computer
graphics communities. Our alignment graph registration method
can be used to efficiently register thousands of time-lapse images,
and time splatting allows one to explore time-lapse data in a new
way. That being said, recent progress in generative models points
to many new opportunities to explore with pocket time-lapse data.
Nonetheless, a major takeaway from our exploration is how

pocket time-lapse offers a unique and often surprising picture of the
photographer’s environment. With this in mind, we are particularly
excited to see what others will do with these tools and ideas in the
future.
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Fig. 6. Relighting a scene across a single day: By multiplying a single reflectance image with shading images predicted for various times of day, we can
change the shading and shadows of the scene. This demonstrates that most of the shading information is in the shading image instead of the reflectance.
Because we control for white balance, we can also synthesize lighting effects like the golden hour, as shown in the Morning Shading example.

Ground Truth TLGANTime Splatting

Fig. 7. Reconstruction Comparison: Our method is able to closely recon-
struct ground truth images from an input time lapse. On the other hand,
generative methods such as TLGAN [Härkönen et al. 2022] may hallucinate
the training data. In the top example, TLGAN struggles to reconstruct the
shadow. In the bottom example, TLGAN synthesizes the wrong season, as
shown by trees without leaves. Highlighted in yellow, TLGAN also does not
synthesize the construction correctly.

Fig. 8. Time Splatting for Traditional Time-Lapse: To demonstrate the
applicability of time splatting to traditional time-lapses, we perform intrinsic
image decompositions on the SkyFinder [Mihail et al. 2016] dataset. Time
splatting separates seasonal information like snow in the reflectance image
and lighting effects in the shading image.

12:30 AM - Shading Image9:36 AM - Shading Image

12:30 AM - Reconstruction9:36 AM - Reconstruction

August 24, 2023 - Re�ectance Image

Fig. 9. Panoramic Intrinsic Image Decomposition: Time splatting de-
composes a time-lapse into intrinsic images, allowing one to visualize how
reflectance and shading change through time. These results are generated
from training on 166 images across 4 months.
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Fig. 10. Intrinsic Image Decomposition Comparison. Top: Compared to Ordinal Shading [Careaga and Aksoy 2023], a state-of-the-art intrinsic decompo-
sition method, our method faithfully predicts the reflectance of night time photos. Bottom: Time splatting also manages to predict a reflectance image with
close to no encoded shadow information, which [Careaga and Aksoy 2023] fails to achieve. Note: We provide additional comparisons to [Li and Snavely 2018]
and [Das et al. 2022] in the supplemental material, both of which our method outperforms.

Fig. 11. Intrinsic Images Across Several Datasets:We have extensively tested time splatting on a dozen of the collected datasets that vary in size from
around 70 images to over 1,000 images. Our results demonstrate that time splatting performs well in a variety of challenging conditions such as shadows, low
light, heavy foliage, and running water.

10
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S1 THE POCKET TIME-LAPSE DATASETS
One of our main contributions is presenting a diverse collection of
datasets amounting to over 50k time-lapse images. To additionally
enrich the datasets, we use our image registration method to com-
bine the primaries and secondaries into panoramic images, which
amount to almost 6k photos. Further statistics about the datasets
can be seen in Table S3. The datasets were captured by a single
individual using their mobile phone, demonstrating how useful ev-
eryday activities and habits can be in capturing data of commonly
visited scenes. These routines can be used to identify trends in the
distribution of data captures, which we can use to visualize various
changes and progressions in the data.
The datasets represent diverse scenery ranging from modern

glass buildings to balcony views and waterfalls. Each represents
unique challenges when attempting to visualize specific trends in
the data, such as seasonal changes, construction site progressions,
and daily shadow movements. Combined with our time splatting
method, which closely reconstructs accurate time-lapse data and can
effectively isolate changes in structure and lighting, we use sampling
patterns in our captured datasets to isolate and reconstruct smooth
and accurate time-lapses of desired trends/changes.

S2 CONVENIENCE SAMPLING

S2.1 “Mini Time-Lapse"
Another less common type of convenience sampling that does not
rely on routine is one we informally call "mini time-lapse," where the
user captures several sessions during a period where they happen
to be near a subject with the intent of seeing what those sessions
look like when played back in sequence. This pattern was relatively
uncommon for User A, with the most notable exceptions found in
the Balcony 1 and Balcony 2 datasets, which were captured from the
balcony of User A’s former apartment. There were a small number
of occasions, always on weekends, where User A spent a significant
amount of time on the balcony engaged in some other activity but
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“Mini Time-Lapse” in the Balcony 1 Dataset

“Sometime I would sit out on 
the balcony on weekends to 

read or drink co�ee, and I 
would capture a session 

every few minutes that I was 
out there to see what it 
looked like in the app”

Fig. S12. “Mini Time-Lapse" When a user decides to capture a cluster
of sessions in a short period with the intent of seeing what they look like
played in sequence.

stopping periodically to capture a new session every few minutes.
These occasions yielded some of our data’s densest and cleanest
sampling. Taken as separate subsets and registered with our tool,
these image clusters make for a relatively compelling time-lapse
even when shown in sequence with no reconstruction. We did not
initially intend to capture this type of data, as it felt very similar to
that of a traditional time-lapse. However, these short bursts of data
yield interesting opportunities for reconstruction when combined
with the intrinsic image decompositions we describe in Section 6.

S3 ADDITIONAL RESULTS

S3.1 Panorama Stitching
As stated in the main text, Hugin, an open-source panorama stitch-
ing tool, often distorted images or created blurry results. Contrary
to Hugin, our method correctly registers the correspondences be-
tween the images. Our alignment graph-based panorama stitching
method performs significantly better than previous methods under
challenging conditions.

Fig. S13. Panorama Stitching with Hugin: Our new alignment graph-
based panorama stitching method performs significantly better than previ-
ous methods under challenging conditions. Contrary to Hugin, our method
correctly registers the correspondences between the images.

S3.2 Traditional Time-Lapses
Time splatting can be applied to not only pocket time-lapses, but
traditional time-lapses as well. In Figure 8, we use time splatting
to create an intrinsic image decomposition on a scene from the
SkyFinder dataset [Mihail et al. 2016]. The reflectance images con-
tain seasonal information like snow, while the shading images con-
tain lighting effects from the sky and lamps. For a video, please refer
to the included HTML gallery.
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Scene No. Primaries No. Secondaries No. Panos Total Images Day Range Start Date End Date

Baseball Field 1 1197 6789 1144 7986 665 Mar. 2022 Present
Baseball Field 2 577 3458 577 4035 424 Nov. 2022 Present
Baseball Field 3 618 3933 618 4551 607 May. 2022 Present
Balcony 1 934 9206 934 10140 482 May. 2022 Aug. 2023
Balcony 2 754 4816 752 5570 482 May. 2022 Aug. 2023
Waterfall 1 104 1224 104 1328 597 May. 2022 Present
Garage A 223 2162 529 2385 270 Apr. 2023 Present
Garage E 101 1045 93 1146 185 Jul. 2023 Present
Home Garage 166 1499 166 1665 117 Jun. 2023 Oct. 2023
Glass Building 372 2730 372 3102 556 Jul. 2022 Present
Trail 1 79 1008 79 1087 599 May. 2022 Present
Trail 2 93 997 92 1090 581 May. 2022 Dec. 2023
Trail 3 94 1070 92 1164 581 May. 2022 Dec. 2023
Stream 1 102 689 102 791 605 May. 2022 Present
Stream 2 103 802 103 905 605 May. 2022 Present
Tree Petals 269 1558 268 1827 607 May. 2022 Present
Construction 280 2132 279 2412 521 Apr. 2022 Oct. 2023

Total 6078 45118 5897 51192
Table S3. Dataset Statistics:We plan to share over 50k time-lapse images across diverse subjects. All images were captured by a single person on a mobile
phone. Each dataset consists of primary images, which are all aligned to the center of a subject, and secondary images, which are images taken around the
primary images. Using our image registration method, we align the primaries and secondaries into panoramic time-lapses. The majority of the datasets span
over one year, allowing one to visualize cycles of seasons.

Fig. S14. [Das et al. 2022] also fails to predict faithful reflectance images
from night photos. In contrast, our method is able to extract a reflectance
image that is essentially the same as the one extracted from a daytime
photo.

Fig. S15. Our method is able to correctly disentangle shadows from the
reflectance image in different lighting and geometry conditions too.

S3.3 More Intrinsic Image Decomposition Baselines
In addition to comparing time splatting to the state-of-the-art Or-
dinal Shading image decomposition method [Careaga and Aksoy
2023], we provide comparisons with [Li and Snavely 2018] and [Das
et al. 2022] on the image decomposition task, two older CNN-based
intrinsic image decomposition methods. Neither method can fully
disentangle shadows from the shading images nor decompose night-
time photos well.
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Fig. S18. [Weiss, 2001] is limited to predicting single channel intrinsics and
can only predict one albedo for a given sequence of images. On a dataset
with high geometric variability it fails to predict meaningful albedos. Our
method is able to predict time-varying albedos, avoiding that problem.

Fig. S16. Our image is able to correctly disentangle even very hard shadows
from the reflectance image, whereas [Li and Snavely 2018] does not.

Fig. S17. Our method correctly predicts the reflectance image from a night-
time image, whereas [Li and Snavely 2018] is unable to disentangle the dark
from the reflectance image.

We also compare our method to a classical baseline, [Weiss 2001],
which performs intrinsic image decomposition on image sequences
but only performs gray-scale images. The major difference between
[Weiss 2001] and our method is that [Weiss 2001] can only predict
one albedo image for the entire image sequence, while we can predict
albedos that vary in time. This causes [Weiss 2001] to fail for scenes
with changing geometry, such as construction.

S3.4 HTML Video Gallery
The supplementary material also includes an HTML gallery of linear
interpolations through the time lapses and reconstruction results
from time splatting. The linear interpolations are generated by inter-
polating the panoramas sequentially with a Gaussian weight. The
time splatting results demonstrate how we can interpolate across
different axes in time, such as through seasons and through sunrise
to sunset on a single day.
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Fig. S19. Our method is able to correctly disentangle shadows from the reflectance image, completely containing it in the shading image. [Li and Snavely
2018] and [Das et al. 2022] fail to disentangle shadows, with the reflectance image containing visible shadows.

S4
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