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Abstract

Current state-of-the-art Named Entity Recognition systems commonly
leverage an architecture that integrates BERT with Conditional Random
Fields. Nevertheless, BERT is inherently constrained in capturing compre-
hensive global contextual semantics due to its Masked Language Modeling
pre-training objective. To address this limitation, A novel “point—line—
plane” contextual fusion framework is proposed. Within this paradigem,
the [CLS] token functions as a “plane” that provides a compressed global
representation, while the attention weights between the [CLS] token and
individual tokens form a “line”, which captures semantic topological re-
lationships. These multi-grained features are subsequently incorporated
into token representations via a Graph Neural Network, considerably en-
riching their contextual expressiveness. Furthermore, we introduce a Dy-
namic Linear-Chain CRF that adaptively models label transitions using
attention-mechanized probability estimates, thereby overcoming the inflex-
ibility of conventional CRFs. Extensive experiments on multiple benchmark
datasets demonstrate that our approach consistently and significantly sur-
passes competitive baselines, achieving a notable 3.91 point gain in F1-
score.

1 INTRODUCTION

Named Entity Recognition (NER) is a core task in natural language processing (NLP)
that identifies and classifies named entities such as people, organizations, and locations in
unstructured text (Nadeau & Seking (2007)). As a fundamental component of the NLP
pipeline, NER underpins a wide range of downstream applications, including information
extraction, question answering, and knowledge graph construction. The task involves two
key steps: entity span detection, which identifies the boundaries of an entity, and entity
type classification, which assigns its semantic category (Luo et al] (2019)).

Early NER research relied on rule-based and statistical learning methods (Grishman &
Sundheim ([1996), Nadeau & Seking (2007)). While effective in their time, these approaches
were limited by their reljance on handcrafted features and shallow semantic understanding
(Augenstein et al) (2017), Bengio et al] (2003)). The field was revolutionized by the ad-
vent, of Transformer-based pre-trained language models (PLMs), such as BERT (Vaswani
et al] (2017), Devlin et al) (2019)) These models leverage self-attention mechanisms to gen-
erate rich, contextualized representations, significantly advancing the state of the art in
NER. Architectures that combine PLMs with a Conditional Random Field (CRF) layer,
like BERT-CRF, have become standard baselines, marrying the_semantic power of Trans-
formers with the global sequence decoding capabilities of CRFs (Devlin et al| (2019),Huang
et al) (2015)).

Despite their success, current PLM-based models for NER face several notable challenges.
The pre-training objective, typically Masked Language Modeling (MTL.M), can lead to incom-
plete contextual semantics for the fine-grained NER task(Meng et al| (2024)). Furthermore,
the pretraining—finetuning divergence introduces a_representation shift that can degrade
model performance and generalization (Villena et al) (2024), Cui et al) (2020)). Finally,
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while CRFs enhance decoding, their static transition structure is rigid and fails to adapt to
the specific semantic correlations present in different input sentences (Wang & Ji (2022)).

To address these limitations, we propose a novel Point-Line—Plane Fusion Framework for
NER (PLP-NER). Our framework is designed to enrich semantic representation, improve
structural adaptability, and enhance model generalization. Our key contributions are as
follows:

o Multi-level Contextual Fusion: 1. We introduce a point—line—plane mechanism that
effectively integrates token-level, pairwise, and global representations, enriched by
graph neural networks, to capture more comprehensive semantic relationships.

e Dynamic Sequence Decoding: We design a dynamic linear-chain CRF that computes
input-specific transition probabilities, enabling more flexible and context-sensitive
label prediction.

e Masking-based Embedding Strategy:3.We employ a novel masking mechanism dur-
ing training to mitigate the pretraining—finetuning divergence, thereby improving
the model’s robustness and generalization.

Extensive experiments on multiple benchmark datasets demonstrate that our framework
consistently outperforms strong baselines, achieving an average Fl-score improvement of
3.91 points. These results confirm the effectiveness of our approach in pushing the bound-
aries of NER performance.

Experimental results on multiple standard NER benchmarks demonstrate that the proposed
contextual information fusion mechanism consistently achieves significant performance im-
provements over current SOTA methods. Specifically, our approach yields Fl-score gains
of 3.91 percentage points across several datasets, comprehensively validating its effective-
ness in enhancing model performance and robustness, as well as advancing capabilities in
semantic representation, structural adaptability, and generalization.
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Figure 1: Point-Line-Plane Fusion Frame Diagram
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2 RELATED WORK

The field of Named Entity Recognition (NER) has undergone a significant evolution, pro-
gressing from early rule-based systems to sophisticated deep learning and pre-trained models.

2.1 Main Approaches In NER.

2.1.1 Rule-based and Statistical Models.

Early NER. systems were largely based on handcrafted rules, dictionaries, and lexicons (Gr-
ishman & Sundheim ([1996G)). While precise for specific domains, these methods were labor-
intensive to develop, brittle, and lacked the generalization capacity needed for diverse text.
The field subsequently moved toward statistical models, which framed NER._as a_sequence
labeling task. Probabilistic models like Hidden Markov Models (HMMs) (Rabiner (1989)),
Maximum Entropy Models (MEMs) (Berger et al! (1996)), and, most notably, Conditional
Random Fields (CRFs) (Lafferty et al! (001)) became standard. CRFs were particularly ef-
fective due to their ability to model global dependencies and avoid the strong independence
assumptions of HMMs. However, these models were still limited by their reliance on shallow,
manually engineered features and struggled to capture long-range semantic context.

2.1.2 Neural Representation Learning

The advent of deep learning introduced a paradigm shift by enabling models to learn features
automatically. Recurrent. Neural Networks (RNNs), particularly Long Short-Term Memory
(LSTM)(Hochreiter & Schmidhuber (1997)) networks, proved adept at capturing sequential
dependencies. The BiLSTM-CRF architecture (Huang et al| (2015)) became a popular and
powerful model, combining the sequential feature learning of a bidirectional LSTM with
the global sequence decoding of a CRF. This combination improved consistency in label
predictions and handled out-of-vocabulary words more robustly, Other neural architectures,
such as Convolutional Neural Networks (CNNs) (Ma & Hovy (2016)), were also used to
extract local features from character and word embeddings. Despite these improvements,
these models still faced limitations in capturing global, document-level context due to the
nature of their sequential processing.

2.1.3 Pre-trained Language Models (PLMs)

The most significant recent breakthrough in NER has been the adoption of large-scale pre-
trained language models (PLMs) based on_the Transformer architecture (NVaswani et al.
(2017)). Models like BERT (Devlin et al) (2019)), RoBERTa (Liu et al} (2019)), and Span-
BERT (Joshi et al) (2020)) are pre-trained on massive text corpora to learn deep, contex-
tualized representations, which can then be fine-tuned for downstream tasks like NER. The
standard BERT-CRF architecture, which uses BERT as an encoder to produce rich con-
textual embeddings and a CRF layer for structured prediction, has become the dominant
discriminative approach in the field. These models have set new state-of-the-art results
across a wide range of NER benchmarks.

2.2 Recent Trends and Limitations

While PLMs have propelled NER to new heights, several active research areas aim to address
their remaining limitations. One direction is exploring generative approaches, which frame
NER. as a text-to-text tagk using models like T5 (Raffel et al. (2019)) or GPT (Brown et al.
(2020)) ([Yan et al) (2021)). These methods can handle complex nested and discontinuous
entities but often come with high computational costs and remain less widely adopted than
discriminative models. Another trend is retrieval-augmented NER, which uses external
knowledge bases to enrich entity representations and handle low-resource or unseen entities
(Lewis et al] (2020)).

Despite their effectiveness, current PLM-based models still face challenges related to se-
mantic fusion and domain adaptability. Fine-tuning a pre-trained model on a new domain
can lead to a pretraining—finetuning divergence, where the representations shift, hurting
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performance (Liu et al| (2021))). Furthermore, the static nature of standard CRF transition
probabilities limits their ability to capture fine-grained, input-specific semantic correlations.
Our work builds upon the powerful BERT-CRF framework and introduces novel mechanisms
to address these specific challenges through multi-level contextual fusion, dynamic decoding,
and a masking-based training strategy.

3 METHODOLOGY

3.1 Preliminaries

NER is a sequence labeling task. Given an input sequence X = (21, 2,...,%,), the objective
is to predict the corresponding label sequence Y = (y1,¥2,...,yn). Our approach is built
upon the well-established BERT+CRF framework, which models the conditional probability
of the label sequence P(Y | X) by maximizing its likelihood. The training process involves
minimizing the negative log-likelihood loss:

L(O,p,T)=—logP(Y" | X,0,p,T)=— |score(Y*, X;0,0,T) —log Z exp(score(Y, X;0,0,T))
YeY(X)
(1)
The sequence score is defined as the sum of emission and transition scores:

n n—1

score(Y, X;0,p,T) = ZEW (Bo(z; | X)) + Z Ty i (2)

i=1 i=1

Here, By(-) denotes the token representation from BERT, E,(-) is the emission score func-
tion, and Ty, ., is the transition score from a static, learnable matrix 7". This framework
serves as our foundational baseline due to its effectiveness in balancing semantic represen-
tation and structured decoding.

3.2 Point-Line-Plane Contextual Fusion

While BERT+CREF is powerful, it suffers from insufficient contextual fusion. The represen-
tations from BERT, trained with objectives like MLM and NSP, often lack a comprehensive
understanding of global semantic structure. To address this, we propose the Point—Line—
Plane (PLP) Contextual Fusion mechanism, which draws an analogy from geometry to
enhance structured semantic modeling.

o Semantic Points: We treat each token embedding, By(z; | X), as a semantic point,
representing the local contextual semantics of an individual token.

o Semantic Plane: The [CLS] token, By(CLS | X), serves as a semantic plane, pro-
viding a compressed representation of the global context.

o Semantic Lines: The attention weights between the [CLS] token and each word to-
ken, ag(x; | X) = Attng(CLS — z; | X), are conceptualized as semantic lines. They
explicitly capture the topological relationship between local and global contexts.

This framework can be viewed as a simplified Graph Neural Network (GNN) where the
[CLS] node is a central hub for all other token nodes. Our approach enhances the emission
score function E, of the CRF to incorporate these multi-level representations, resulting in
a new functional form:

Ei = f (Bo(xi|X), By(CLS|X), ag(wi| X)) (3)

This function enriches each token’s representation with global and structural information
before it is passed to the CRF. We implement this fusion using a two-stage Multi-Layer
Perceptron (MLP):

f(-) = MLP (MLP (By(CLS|X) & ag(xi| X)) & Bp(zi| X)) (4)
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Figure 2: Geometric schematic diagram of Point-Line-Plane integration modeling based on

transformer architecture.

where @ denotes vector concatenation. This two-stage process ensures a deeper integration
of global and structural information into the token-level representations.

To further enhance the robustness of boundary detection, we introduce Neighborhood En-
hancement based on our observation that attention weights between adjacent tokens and
the [CLS] token provide strong cues for entity boundaries and label consistency. We modify

the fusion function to incorporate these neighborhood features:
This new function explicitly leverages local interaction patterns to inform the model, en-

hancing its ability to handle complex entity boundaries.
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Figure 3: Statistical Results of Differences in Attention Scores Between Entity Boundary
and Internal Tokens Towards the CLS Token and Sample Line Chart Display.

3.3 Dynamic Linear-Chain CRF

Standard CRFs use a static transition matrix 7" that encodes global, corpus-level statistics.
This rigidity makes it difficult to adapt to a specific sentence’s context, leading to suboptimal
predictions for complex or ambiguous transitions. To overcome this, we propose a Dynamic
Linear-Chain CRF that modifies transition scores based on local, input-specific features.

Our attention visualization analysis reveals that attention patterns show high consistency
within entities and sharp changes at boundaries (see Figure ). Motivated by this, we use
the attention scores of adjacent tokens to the [CLS] token as features for dynamic transition
adjustments. We define a mapping function gg : R? — R3 to produce a 3-dimensional vec-

tor v; = (glign(si), ggd(si), gg“t(si)), where s; = [Attn(z;, cls| X)), Attn(x,;41, cls| X)]. These
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components are designed to correct transitions within entities (g'"), across entity boundaries
(g*4), and between non-entities (g°ut).

To apply these corrections, we define a label transition index function x : ¥ xY — {0, 1, 2},
which assigns an index to each type of transition (e.g., 'B-PER’ to 'I-PER’ is an ’in-entity’
transition). The dynamic transition score is then defined as:

2
Dﬁ(y“ yi+1) = Tyiyi+1 + Z Uik I [K:(yiv yiJrl) = k} (6)
k=0
This function modifies the base transition score Tj,,,,, with a context-dependent correction
v; 1. We apply symmetric clipping to keep these dynamic adjustments within a small, stable
range, preventing the model from becoming unstable while still allowing for fine-grained
adjustments.

The overall sequence score becomes:
n n—1
score(Y, X) = Y ery + 3 Dy, i) (7)
i=1 i=1
This hierarchical approach of "feature encoding - index mapping - dynamic correction”
ensures that our model can adapt its transition probabilities to the specific context of each
sequence, significantly improving its generalization capacity.

3.4 Training Objective

To mitigate the pretraining—finetuning mismatch and improve the robustness of our model,
we incorporate a second objective. Similar to BERT’s original training, we add an auxiliary
Masked Language Modeling (MLM) loss. During training, we randomly mask 15% of the
input tokens and train the model to reconstruct them. This auxiliary task forces the model
to maintain its pre-trained semantic understanding, reducing the representation shift that
often occurs during fine-tuning. Our final optimization objective is a combination of the
primary NER loss and the auxiliary MLM loss:

L0, 0,8, T) = Lnex(0, 0, 8,T) + Linim (0) (8)
This joint training strategy leverages the best of both worlds, ensuring that the model
remains sensitive to fine-grained token-level semantics while optimizing for the primary
NER task.

4 EXPERIMENT

4.1 Datasets

To rigorously evaluate the effectiveness and generalization of the proposed method, we con-
duct experiments on four representative Chinese and English NER benchmarks—specifically
including CoNLL2003 (English general-domain), WNUT17 (English low-resource), MSRA
(Chinese general-domain), and CLUENER (Chinese domain-specific)—which span general-
domain, low-resource, and domain-specific settings.

4.2 TImplementation Details

We adopt the F1 score as the evaluation metric to assess model performance, defined as

follows:

Fl y Precision x Recall Procisi TP Recall TP
- recision = ———————— e
Precision + Recall’ oM T rp M T TP L FN

where TP, FP, and F'N denote true positives, false positives, and false negatives, respec-
tively.

All experiments are implemented based on the BERT+CRF framework. We utilize the
Hugging Face Transformers library to load pretrained models and tokenizers. Training
is conducted on two NVIDIA GPUs, with the core hyperparameters and configurations
summarized as follows:
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Table 1: Statistics of Benchmark Datasets for NER Evaluation
Dataset Language Train/Dev /Test Entity Categories

CoNLL-2003 English 14,987 / 3,466 / Person,Organization,Location,
3,684 MISC
WNUT2017  English 1,000 / 128 / 1,283  Person,Location,Organization,
Product,Event,Corporation

MSRA Chinese 46,364 / - / 4,365 Person,Location,Organization
CLUENER  Chinese 10,748 / 1,343 / Address,Book,Company,Game,
1,345 Government,Movie,Name, Orga-

nization,Position,Scene

Table 2: Hyperparameter Settings

Parameter Value
Maximum sequence length 512
Batch size per GPU 12
Optimizer AdamW

Learning rate for BERT backbone 3e-5
Learning rate for dynamic CRF layer 1le-3
Learning rate for masking task le-3
Maximum training epochs 10

4.3 Results And Analyse

Table 3: Experimental Results on CoNLL-2003, WNUT-2017, MSRA, and CLUENER

Dataset /F1 CoNLL2003 WNUT2017 MSRA CLUENER
SOTA
BERT+MRC+DSC(Li et_all (2020)) 93.95 - 96.72  77.56
ACE+dogcument-context(Wang et al| (2020)) 94.60 - - -
W2NER(L et all (2021)) 93.07 _ 96.10 -
Baseline
BERT+CRF 93.95 60.14 94.41 80.76
Ours
PLP-NER 94.51 60.53 95.85 81.57
+MASK 94.60 61.09 96.15  82.27
+NE 94.93 61.39 96.93  84.12
+DY 95.07 60.77 96.89 84.67

We conducted a systematic comparison of our innovative model with baseline models, rep-
resentative historical methods, and the current SOTA NER models. As shown in Table E,
we employ the macro-average F1 score on the test set as the quantitative evaluation met-
ric for model performance. The experimental results demonstrate that the PLPA model
consistently exhibits superior performance across all benchmark datasets.

It is noteworthy that the introduction of the Dynamic Linear-Chain CRF resulted in slight
fluctuations in performance on the WNUT-17 dataset. This could be attributed to the
relatively small size of the dataset, where the complex dynamic transition matrix increases
the risk of overfitting. Nevertheless, our model still significantly outperforms the baseline
methods under this setup. Particularly, on the fine-grained entity recognition benchmark
CLUENER, the PLPA model achieves a substantial 3.91 percentage points improvement.
This breakthrough can be attributed to two key factors: firstly, the current SOTA methods
for this dataset still leave considerable room for improvement in fine-grained entity recog-
nition; secondly, the attention-based scoring mechanism we propose effectively models the
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boundary features of multi-class fine-grained entities, a task that existing methods struggle
with due to their limited ability to perceive such complex boundary patterns.

Overall, a comprehensive analysis of the experimental results reveals that our proposed
model demonstrates significant advantages in terms of generalization, robustness, and recog-
nition accuracy. In particular, in the context of fine-grained entity recognition, the model’s
robust capability to model complex boundary patterns provides new insights and power-
ful tools for advancing NER technology, showcasing its considerable research value and
application potential.

4.4 Ablation

As shown in Table E, the stepwise ablation experiments verify the incremental contribution
of each component:

o PLP-NER (base).  Delivers consistent gains over BERT+CRF across four
benchmarks (CoNLL-2003, WNUT-2017, MSRA, CLUENER), lifting F1 by
+0.56/40.39/+1.44/40.81, indicating that point-line-plane fusion improves token-
, span-, and structure-level interactions.

o +MASK. Provides further steady improvements of +0.09/40.56/+0.30/4-0.70 over
PLP-NER, mitigating the train—test mismatch and enhancing generalization.

o +NE. Yields the largest incremental gains, especially on MSRA (+40.78) and
CLUENER (+1.85), highlighting the importance of local context for boundary de-
tection.

o +DY. Achieves the best overall F1 on CoNLL-2003 (95.07), MSRA (96.89), and
CLUENER (84.67); on WNUT-2017, +DY is slightly lower than +NE (60.77 vs.
61.39) yet remains 4+0.63 above BERT+CRF.

Overall, the ablation trend suggests that (i) multi-granularity fusion (PLP-NER) establishes
a strong foundation, (ii) regularized training (+MASK) yields stable gains, (iii) local context
(+NE) is crucial for hard boundaries, and (iv) label-dependent dynamics (+DY) provide
the final push to state-of-the-art performance on three datasets.

5 CONCLUSION

In this paper, we present an enhanced BERT-CRF framework that integrates semantic
fusion, dynamic structural modeling, and training strategies, achieving significant gains in
accuracy and robustness across multiple NER benchmarks.
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