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Abstract

In the sequential decision making setting, an agent aims to achieve systematic
generalization over a large, possibly infinite, set of environments. Such environ-
ments are modeled as discrete Markov decision processes with both states and
actions represented through a feature vector. The underlying structure of the en-
vironments allows the transition dynamics to be factored into two components:
one that is environment-specific and another one that is shared. Consider a set
of environments that share the laws of motion as an illustrative example. In this
setting, the agent can take a finite amount of reward-free interactions from a subset
of these environments. The agent then must be able to approximately solve any
planning task defined over any environment in the original set, relying on the above
interactions only. Can we design a provably efficient algorithm that achieves this
ambitious goal of systematic generalization? In this paper, we give a partially
positive answer to this question. First, we provide the first tractable formulation of
systematic generalization by employing a causal viewpoint. Then, under specific
structural assumptions, we provide a simple learning algorithm that allows us to
guarantee any desired planning error up to an unavoidable sub-optimality term,
while showcasing a polynomial sample complexity.

1 Introduction

Whereas recent breakthroughs have established Reinforcement Learning (RL) [37] as a powerful tool
to address a wide range of sequential decision making problems, the curse of generalization [24]
is still a main limitation of commonly used techniques. RL algorithms deployed on a given task
are usually effective in discovering the correlation between an agent’s behavior and the resulting
performance from large amounts of labeled samples [19, 26]. However, those algorithms are usually
unable to discover basic cause-effect relations between the agent’s behavior and the environment
dynamics. Crucially, the aforementioned correlations are oftentimes specific to the task at hand,
and they are unlikely to be of any use for addressing different tasks or environments. Instead, some
universal causal relations generalize over the environments, and once learned they can be exploited
for solving any task. Let us consider as an illustrative example an agent interacting with a large set of
physical environments. While each of these environments can have its specific dynamics, we expect
the basic laws of motion to hold across the environments, as they encode general causal relations.
Once they are learned, there is no need to discover them again from scratch when facing a new task,
∗Equal contribution. Correspondence to: <mirco.mutti@polimi.it>, <rdesanti@ethz.ch>.
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Table 1: Sample complexity overview.

Target K (discrete MDP) K (tabular MDP)

Causal Structure Estimation Pr(Ĝ 6= Gε) ≤ δ O
(
n log(d2

SdA/δ)/ε
2
)

O
(

log(S2A/δ)/ε2
)

Bayesian Network Estimation Pr(‖P̂G − PG‖1 ≥ ε) ≤ δ Õ
(
d3
Sn

3Z+1/ε2
)

Õ
(
S222Z/ε2

)

Systematic Generalization Pr(V ∗1 − V π1 ≥ ελ + ε) ≤ δ Õ(MH6d3
SZ

2n5Z+3/ε2) Õ(MH6S4A2Z2/ε2)

or an unseen environment. Even if the dynamics over these relations can change, such as moving
underwater is different than moving in the air, or the gravity can change from planet to planet, the
underlying causal structure still holds. This knowledge alone often allows the agent to solve new
tasks in unseen environments by taking a few, or even zero, interactions.

We argue that we should pursue this kind of generalization in RL, which we call systematic general-
ization, where learning universal causal relations from interactions with a few environments allows
us to approximately solve any task in any other environment without further interactions. Although
this problem setting might seem overly ambitious or even far-fetched, in this paper we provide the
first tractable formulation of systematic generalization, thanks to a set of structural assumptions that
are motivated by a causal viewpoint. The problem formulation is partially inspired by reward-free
RL [20], in which the agent can take unlabelled interactions with an environment to learn a model
that allows approximate planning for any reward function. Here, we extend this formulation to a
large, potentially infinite, set of reward-free environments, or a universe, the agent can freely interact
with. We consider discrete environments, such that both their states and actions can be described
through vectors of discrete features. Crucially, these environments share a common causal structure
that explains a significant portion, but not all, of their transition dynamics. Can we design a provably
efficient algorithm that guarantees an arbitrarily small planning error for any possible task that can be
defined over the set of environments, by taking reward-free interactions with a generative model?

In this paper, we provide a partially positive answer to this question by presenting a simple but
principled causal model-based approach (see Figure 1). This algorithm interacts with a finite subset
of the universe to learn the causal structure underlying the set of environments in the form of a causal
dependency graph G [43]. Then, the causal transition model, which encodes the dynamics that is
common across the environment, is obtained by estimating the Bayesian network PG over G [9] from
a mixture of the environments. Finally, the causal transition model is employed by a planning oracle
to provide an approximately optimal policy for a latent environment and a given reward function.
We can show that this simple recipe, with a sample complexity that is polynomial in all the relevant
quantities of the problem, allows achieving any desired planning error up to an unavoidable error term.
The latter is inherent to the setting, which demands generalization over an infinite set of environments,
and cannot be overcome without additional samples from the test environment.

The contributions of this paper include (see Table 1 for a summary of the sample complexity rates):

• The first tractable formulation of the systematic generalization problem in RL, thanks to structural
assumptions motivated by causal considerations (§ 3);

• A simple provably efficient algorithm to learn systematic generalization over an infinite set of
environments with a polynomial sample complexity (§ 4.1);

• The sample complexity of estimating the causal structure underlying a discrete MDP (§ 4.2);
• The sample complexity of estimating the Bayesian network underlying a discrete MDP (§ 4.3).

With this work we aim to connect several active research areas on reward-free RL [20], model-based
RL [37], factored MDPs [35], causal RL [49], experimental design [17], independence testing [5], in
a general framework where individual progresses can be enhanced beyond the sum of their parts.

2 Preliminaries

We start with some basic notions about graphs, causality, and Markov decision processes that will be
useful thereafter. We will denote a set of integers {1, . . . , a} as [a], and the probability simplex over
the space A as ∆A. For a factored space A = A1 × . . .×Aa and a set of indices Z ⊆ [a], which
we call a scope, we denote the scope operator as A[Z] :=

⊗
i∈Z Ai, in which

⊗
denotes a cardinal

product. For any A ∈ A, we denote with A[Z] the vector (Ai)i∈Z . For singletons we write A[i]
as a shorthand for A[{i}]. Given two probability measures P and Q over a discrete space A, their
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Figure 1: High-level illustration of the causal model-based approach to systematic generalization.

L1-distance is ‖P −Q‖1 =
∑
A∈A |P (A)−Q(A)|, and their Kullback-Leibler (KL) divergence is

dKL(P ||Q) =
∑
A∈A P (A) log(P (A)/Q(A)). We denote by UA the uniform distribution over A.

Graphs We define a graph G as a pair G := (V, E), where V is a set of nodes and E ⊆ N ×N
is a set of edges between them. We call G a directed graph if all of its edges E are directed (i.e.,
ordered pairs of nodes). We also define the in-degree of a node to be its number of incoming edges:
degreein(A) = |{(B,A) : (B,A) ∈ E,∀B}|. G is said to be a Directed Acyclic Graph (DAG) if it is
a directed graph without cycles. We call G a bipartite graph if there exists a partitionX∪Y = V such
that none of the nodes in X and Y are connected by an edge, i.e., E ∩ (X ×X) = E ∩ (Y ×Y ) = ∅.
For any subset of nodes S ⊂ V , we define the subgraph induced by S as G[S] := (S,E[S]), in which
E[S] = E ∩ (S × S). The skeleton of a graph G is the undirected graph that is obtained from G by
replacing all the directed edges in E with undirected ones. Finally, the graph edit distance between
two graphs is the minimum number of graph edits (addition or deletion of either a node or an edge)
necessary to transform one graph into the other.

Causal Graphs and Bayesian Networks For a set X of random variables, we represent the causal
structure over X with a DAG GX = (X , E),2 which we call the causal graph of X . For each pair
of variables A,B ∈ X , a directed edge (A,B) ∈ GX denotes that B is conditionally dependent on
A. For every variable A ∈ X , we denote as Pa(A) the causal parents of A, i.e., the set of all the
variables B ∈ X on which A is conditionally dependent, (B,A) ∈ GX . A Bayesian network [10]
over the set X is defined as N := (GX , P ), where GX specifies the structure of the network, i.e., the
dependencies between the variables in X , and the distribution P : X → ∆X specifies the conditional
probabilities of the variables in X , such that P (X ) =

∏
Xi∈X Pi(Xi|Pa(Xi)).

Markov Decision Processes A tabular episodic Markov Decision Process (MDP) [33] is defined
asM := (S,A, P,H, r), where S is a set of |S| = S states, A is a set of |A| = A actions, P is a
transition model such that P (s′|s, a) gives the conditional probability of the next state s′ having taken
action a in state s, H is the episode horizon, r : S ×A → [0, 1] is a deterministic reward function.

The strategy of an agent interacting withM is represented by a non-stationary, stochastic policy, a
collection of functions (πh : S → ∆A)h∈[H] where πh(a|s) denotes the conditional probability of
taking action a in state s at step h. The value function V πh : S → R associated to π is defined as the
expected sum of the rewards that will be collected, under the policy π, starting from s at step h, i.e.,

V πh (s) := Eπ
[ H∑

h′=h

r(sh′ , ah′)
∣∣∣ sh = s

]
.

For later convenience, we further define PV πh+1(s, a) := Es′∼P (·|s,a)[V
π
h+1(s′)] and V π1 :=

Es∼P [V π1 (s)]. We will write V πM,r to denote V π1 in the MDP M with reward function r (if not
obvious from the context). For an MDPM with finite states, actions, and horizon, there always
exists an optimal policy π∗ that gives the value V ∗h (s) = supπ V

π
h (s) for every s, a, h. The goal of

the agent is to find a policy π that is ε-close to the optimal one, i.e., V ∗1 − V π1 ≤ ε.
Finally, we define a discrete Markov decision process asM := ((S, dS , n), (A, dA, n), P,H, r),
where S,A, P,H, r are specified as before, and where the states and actions spaces admit additional
structure, such that every s ∈ S can be represented through a dS-dimensional vector of discrete
features taking value in [n], and every a ∈ A can be represented through a dA-dimensional vector
of discrete features taking value in [n]. Note that any tabular MDP can be formulated under this
alternative formalism through one-hot encoding by taking n = 2, dS = S, and dA = A.

2We will omit the subscript X whenever clear from the context.
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3 Problem Formulation

In our setting, a learning agent aims to master a large, potentially infinite, set U of environments
modeled as discrete MDPs without rewards,

U :=
{
Mi = ((S, dS , n), (A, dA, n), Pi, µ)

}∞
i=1

,

which we call a universe. The agent can draw a finite amount of experience by interacting with
the MDPs in U. From these interactions alone, the agent aims to acquire sufficient knowledge to
approximately solve any task that can be specified over the universe U. Specifically, a task is defined
as any pairing of an MDPM ∈ U and a reward function r, whereas solving it refers to providing
a slightly sub-optimal policy via planning, i.e., without taking additional interactions. We call this
problem systematic generalization, which we can formalize as follows.
Definition 1 (Systematic Generalization). For any latent MDP M ∈ U and any given reward
function r : S ×A → [0, 1], the systematic generalization problem requires the agent to provide a
policy π, such that V ∗M,r − V πM,r ≤ ε up to any desired sub-optimality ε > 0.

Since the set U is infinite, we clearly require additional structure to make the problem feasible. On the
one hand, the state space (S, dS , n), action space (A, dA, n), and initial state distribution µ are shared
acrossM ∈ U. The transition dynamics Pi is instead specific to each MDPMi ∈ U. However,
we assume the presence of a common causal structure that underlies the transition dynamics of the
universe, and relates the single transition models Pi.

3.1 The Causal Structure of the Transition Dynamics

The transition dynamics of a discrete MDP gives the conditional probability of next state features s′
given the current state-action features (s, a). To ease the notation, from now on we will denote the
state-action features with a random vector X = (Xi)i∈[dS+dA], in which each Xi is supported in [n],
and the next state features with a random vector Y = (Yi)i∈[dS ], in which each Yi is supported in [n].

For each environmentMi ∈ U, the conditional dependencies between the next state features Y and
the current state-action features X are represented through a bipartite dependency graph Gi, such that
(X[z], Y [j]) ∈ Gi if and only if Y [j] is conditionally dependent on X[z]. Clearly, each environment
can display its own dependencies, but we assume there is a set of dependencies that represent general
causal relationships between the features, and that appear in anyMi ∈ U. In particular, we call the
intersection G := ∩∞i=0Gi the causal structure of U, which is the set of conditional dependencies that
are common across the universe. In Figure 2, we show an illustration of such a causal structure. Since
it represents universal causal relationships, the causal structure G is time-consistent, i.e., G(h) = G(1)

for any step h ∈ [H], and we further assume that G is sparse, which means that the number of features
X[z] on which a feature Y [j] is dependent on is bounded from above.
Assumption 1 (Z-sparseness). The causal structure G is Z-sparse if max

j∈[dS ]
degreein(Y [j]) ≤ Z.

Given a causal structure G, and without losing generality,3 we can express each transition model Pi
as Pi(Y |X) = PG(Y |X)Fi(Y |X), in which PG is the Bayesian network over the causal structure G,
whereas Fi includes environment-specific factors affecting the conditional probabilities.4 Since it
represents the conditional probabilities due to universal causal relations in U, we call PG the causal
transition model of U. Thanks to the structure G, this model can be further factored as

PG(Y |X) =

dS∏

j=1

Pj(Y [j]|X[Zj ]), (1)

where the scopes Zj are the set of indices z such that (X[z], Y [j]) ∈ G, i.e. the causal parents of Y [j].
In Figure 3, we show an illustration of the causal transition model and its factorization. Similarly to
the underlying structure G, the causal transition model PG is also time-consistent, i.e., P (h)

G = P
(1)
G

for any step h ∈ [H]. For the purpose of this work, we assume that the causal transition model is
non-vacuous and that it explains a significant part of the transition dynamics ofMi ∈ U.

3Note that one can always take PG(Y |Z) = 1, ∀(X,Y ) to avoid shared structure on the transition dynamics.
4The parameters in Fi are numerical values such that Pi remains a well-defined probability measure.
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Figure 2: Causal structure G of U.
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Pj(Y [j] | X[Zj ])

Figure 3: Causal transition model PG of U.

Assumption 2 (λ-sufficiency). Let λ ∈ [0, 1] be a constant. The causal transition model PG is
causally λ-sufficient if supX ‖PG(·|X)− Pi(·|X)‖1 ≤ λ, ∀Pi ∈Mi ∈ U.

Notably, the parameter λ controls the amount of the transition dynamics that is due to the universal
causal relations G (λ = 0 means that PG is sufficient to explain the transition dynamics of any
Mi ∈ U, whereas λ = 1 implies no shared structure between the transition dynamics of the
Mi ∈ U). In this paper, we argue that learning the causal transition model PG is a good target for
systematic generalization and we provide theoretical support for this claim in § 4.

3.2 A Class of Training Environments

Even if the universe U admits the structure that we presented in the last section, it is still an infinite
set. Instead, the agent can only interact with a finite subset of discrete MDPs

M := {Mi = ((S, dS , n), (A, dA, n), Pi, µ)}Mi=1 ⊂ U,

which we call a class of size M . Crucially, the causal structure G is a property of the full set U, and if
we aim to infer it from interactions with a finite class M, we have to assume that M is informative
enough on the universal causal relations of U.

Assumption 3 (Diversity). Let M ⊂ U be class of size M . We say that M is causally diverse if
G = ∩Mi=1Gi = ∩∞i=1Gi.5

Analogously, if we aim to infer the causal transition model PG from interactions with the transition
models Pi of the single MDPs Mi ∈ M, we have to assume that M is balanced in terms of the
conditional probabilities displayed by its components, so that the factors that do not represent
universal causal relations even out while learning.

Assumption 4 (Evenness). Let M ⊂ U be class of size M . We say that M is causally even if
∀j ∈ [dS ], Ei∼U[M]

[
Fi(Y [j]|X)

]
= 1.

Whereas in this paper we assume that M is diverse and even by design, we leave as future work the
interesting problem of selecting such a class from active interactions with U, which would add to our
problem formulation flavors of active learning and experimental design [18, 25, 17].

3.3 Learning Systematic Generalization

Before addressing the sample complexity of systematic generalization, it is worth considering the
kind of interactions that we need in order to learn the causal transition model PG and its underlying
causal structure G. Especially, thanks to the peculiar configuration of the causal structure G, i.e., a
bipartite graph in which the edges are necessarily directed from the state-action features X to the
next state features Y , as a causation can only happen from the past to the future, learning the skeleton
of G is equivalent to learning its full structure. Crucially, learning the skeleton of a causal graph does
not need specific interventions, as it can be done from observational data alone [18].

Proposition 1. The causal structure G of U can be identified from purely observational data.

5W.l.o.g., we assume that the indices i ∈ [M ] refers to the Mi ∈ M, and i ∈ (M,∞) to the Mi ∈ U \M.
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In this paper, we will consider the online learning setting with a generative model for estimating G
and PG from sampled interactions with a class M of size M . A generative model allows the agent to
set the state of an MDP before sampling a transition, instead of drawing sequential interactions from
the process. Finally, analogous results to what we obtain here can apply to the offline setting as well,
in addition to convenient coverage assumptions on the dataset.

4 Sample Complexity Analysis

We provide a sample complexity analysis of the problem, which stands as a core contribution of this
paper along with the problem formulation itself (§ 3). First, we consider the sample complexity of
systematic generalization (§ 4.1). Then, we provide ancillary results on the estimation of the causal
structure (§ 4.2) and the Bayesian network (§ 4.3) of an MDP, which can be of independent interest.

4.1 Sample Complexity of Systematic Generalization with a Generative Model

We have access to a class M of discrete MDPs within a universe U, from which we draw interactions
with a generative model P (X). We aim to solve the systematic generalization problem as described
in Definition 1. This problem requires to provide, for any combination of a (latent) MDPM∈ U, and
a given reward function r, a planning policy π̂ such that V ∗M,r−V π̂M,r ≤ ε. Especially, can we design
an algorithm that guarantees this requirement with high probability by taking a number of samples K
that is polynomial in ε and the relevant parameters of M? Here we give a partially positive answer
to this question, by providing a simple but provably efficient algorithm that guarantees systematic
generalization over U up to an unavoidable sub-optimality term ελ that we will later specify.

Algorithm 1 Causal Transition Model Estimation

Input: class of MDPs M, error ε, confidence δ
let K ′ = C ′

(
d2
SZ

2n log(2Md2
SdA/δ)

/
ε2
)

set the generative model P (X) = UX
for i = 1, . . . ,M do

let Pi(Y |X) the transition model ofMi ∈M
Ĝi ← Causal Structure Est. (Pi, P (X),K ′)

end for
let Ĝ = ∩Mi=1Ĝi
let K ′′ = C ′′

(
d3
Sn

3Z+1 log(4dSn
Z/δ)

/
ε2
)

let PM(Y |X) be the mixture 1
M

∑M
i=1 Pi(Y |X)

P̂Ĝ ← Bayesian Network Est. (PM, Ĝ,K ′′)
Output: causal transition model P̂Ĝ

The algorithm implements a model-based ap-
proach into two separated components. The
first component, for which we report the pseu-
docode in Algorithm 1, is the procedure that
actually interacts with the class M to ob-
tain a principled estimation P̂Ĝ of the causal
transition model PG of U. The second, is a
planning oracle that takes as input a reward
function r and the estimated causal transi-
tion model, and returns an optimal policy π̂
operating on P̂Ĝ as an approximation of the
transition model Pi of the true MDPMi.6

First, we provide the sample complexity of
the causal transition model estimation (Algo-
rithm 1), which in turn is based on repeated
causal structure estimations (Algorithm 3) to
obtain Ĝ, and an estimation procedure of the Bayesian network over Ĝ (Algorithm 2) to obtain P̂Ĝ .

Lemma 4.1. Let M = {Mi}Mi=1 be a class of M discrete MDPs, let δ ∈ (0, 1), ε > 0. The Alg. 1
returns a causal transition model P̂Ĝ such that Pr(‖P̂Ĝ − PG‖1 ≥ ε) ≤ δ with a sample complexity

K = O
(
Md3

SZ
2n3Z+1 log

( 4Md2SdAn
Z

δ

)/
ε2
)
.

An analogous result can be derived for the tabular MDP setting, as stated by the following lemma.
Lemma 4.2. Let M = {Mi}Mi=1 be a class of M tabular MDPs. The result of Lemma 4.1 reduces to

K = O
(
MS2Z222Z log

(
4MS2A2Z

δ

)/
ε2
)
.

Having established the sample complexity of the causal transition model estimation, we can now
show how the learned model P̂Ĝ allows us to approximately solve, via a planning oracle, any task
defined by a combination of a latent MDPMi ∈ U and a given reward function r.

6Note that we do not lose generality here, as the planning oracle can be substituted with a principled
approximate planning solver [see 20, Section 3.3].
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Algorithm 3 MDP Causal Structure Estimation

Input: sampling model P (Y |X), generative
model P (X), batch parameter K
draw (xk, yk)Kk=1

iid∼ P (Y |X)P (X)

initialize Ĝ = ∅
for each pair of nodes Xz, Yj do

compute the independence test I(Xz, Yj)

if dependent add (Xz, Yj) to Ĝ
end for
Output: causal dependency graph Ĝ

Algorithm 2 MDP Bayesian Network Estimation

Input: sampling model P (Y |X), depen-
dency graph G, batch parameter K
let K ′ = dK/dSnZe
for j = 1, . . . , dS do

let Zj the scopes (X[Zj ], Y [j]) ⊆ G
initialize the counts N(X[Zj ], Y [j]) = 0

for each value x ∈ [n]|Zj | do
for k = 1, . . . ,K ′ do

draw y ∼ P (Y [j]|X[Zj ] = x)
increment N(X[Zj ] = x, Y [j] = y)

end for
end for
compute P̂j(Y [j]|X[Zj ]) =

N(X[Zj ],Y [j])
K′

end for
let P̂G(Y |X) =

∏dS
j=1 P̂j(Y [j]|X[Zj ])

Output: Bayesian network P̂G

To provide this result in the discrete MDP set-
ting, we have to further assume that the transition
dynamics Pi of the target MDPMi admits factor-
ization analogous to (1), such that we can write
Pi(Y |X) =

∏dS
j=1 Pi,j(Y [j]|X[Z

′

j ]), where the
scopes Z

′

j are given by the environment-specific
causal structure Gi, which we assume to be 2Z-sparse (Assumption 1).

Theorem 4.3. Let δ ∈ (0, 1) and ε > 0. For a latent discrete MDPM ∈ U, and a given reward
function r, a planning oracle operating on the causal transition model P̂Ĝ as an approximation ofM
returns a policy π̂ such that Pr

(
V ∗Mi,r

− VMi,r ≥ ελ + ε
)
≤ δ, where ελ = 2λH3dSn

2Z+1, and
P̂Ĝ is obtained from Algorithm 1 with δ′ = δ and ε′ = ε

2H3nZ+1 .

Without the additional factorization of the environment-specific transition model, the result of
Theorem 4.3 reduces to the analogous for the tabular MDP setting.

Corollary 4.4. LetM a tabular MDP, the result of Th. 4.3 holds with ελ = 2λSAH3, ε′ = ε
2SAH3 .

Theorem 4.3 and Corollary 4.4 establish the sample complexity of systematic generalization
through Lemma 4.1 and Lemma 4.2 respectively. For the discrete MDP setting, we have that
Õ(MH6d3

SZ
2n5Z+3) are required, which reduces to Õ(MH6S4A2Z2) in the tabular setting. Un-

fortunately, we are only able to obtain systematic generalization up to an unavoidable sub-optimality
term ελ. This error term is related to the λ-sufficiency of the causal transition model (Assumption 2),
and it accounts for the fact that PG cannot fully explain the transition dynamics of eachM ∈ U,
even when it is estimated exactly. This is inherent to the ambitious problem setting, and can be only
overcome with additional interactions with the test MDPM.

4.2 Sample Complexity of Learning the Causal Structure of a Discrete MDP

As a byproduct of the main result in Theorem 4.3, we can provide a sample complexity result for the
problem of learning the causal structure G underlying a discrete MDPM with a generative model.
We believe that this problem can be of independent interest, mainly in consideration of previous work
on causal discovery of general stochastic processes [e.g., 43], for which we refine known results to
account for the structure of an MDP, which allows for a tighter analysis of the sample complexity.

Instead of the exact dependency graph G, which can include dependencies that are too weak to be
detected with a finite number of samples, we only address the dependencies above a given threshold.

Definition 2. We call Gε ⊆ G the ε-dependency subgraph of G if it holds, for each pair (A,B) ∈ G
distributed as PA,B , (A,B) ∈ Gε if and only if infQ∈{∆A×∆B} ‖PA,B −Q‖1 ≥ ε.

Before presenting the result, we state the existence of a principled independence testing procedure.

Lemma 4.5 ([13]). There exists an (ε, δ)-independence tester I(A,B) for distributions PA,B on
[n]× [n], which returns yes if A,B are independent, no if infQ∈{∆A×∆B} ‖PA,B −Q‖1 ≥ ε, both
with probability at least 1− δ and sample complexity O(n log(1/δ)/ε2).
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Figure 4: Estimation errors of key quantities as a function of the number of samples.

We can now provide an upper bound to the number of samples required by a simple estimation
procedure to return an (ε, δ)-estimate Ĝ of the causal dependency graph G.
Theorem 4.6. LetM be a discrete MDP with an underlying causal structure G, let δ ∈ (0, 1), and
let ε > 0. The Algorithm 3 returns a dependency graph Ĝ such that Pr(Ĝ 6= Gε) ≤ δ with a sample
complexity K = O

(
n log(d2

SdA/δ)/ε
2
)
.

Corollary 4.7. LetM a tabular MDP. The result of Th. 4.6 reduces to K = O
(

log(S2A/δ)/ε2
)
.

4.3 Sample Complexity of Learning the Bayesian Network of a Discrete MDP

We present as a standalone result an upper bound to the sample complexity of learning the parameters
of a Bayesian network PG with a fixed structure G. Especially, we refine known results [e.g., 9] by
considering the specific structure G of an MDP. If the structure G is dense, the number of parameters
of PG grows exponentially, making the estimation problem mostly intractable. Thus, we consider a
Z-sparse G (Assumption 1), as in previous works [9]. Then, we can provide a polynomial sample
complexity for the problem of learning the Bayesian network PG of a an MDPM.
Theorem 4.8. LetM be a discrete MDP, let G be its underlying causal structure, let δ ∈ (0, 1), and
let ε > 0. The Algorithm 2 returns a Bayesian network P̂G such that Pr(‖P̂G − PG‖1 ≥ ε) ≤ δ with
a sample complexity K = O

(
d3
Sn

3Z+1 log(dSn
Z/δ)/ε2

)
.

Corollary 4.9. LetM a tabular MDP. The result of Th. 4.8 reduces toK = O
(
S222Z log(S2Z

δ )/ε2
)
.

5 Numerical Validation

We empirically validate the theoretical findings of this work by experimenting on a synthetic example
where each environment is a person, and the MDP represents how a series of actions the person can
take influences their weight (W ) and academic performance (A). As actions we consider hours of
physical training (P ), hours of sleep (S), hours of study (St), amount of vegetables in the diet (D),
and the amount of caffeine intake (C). The obvious use-case for such a model would be a tracking
device that monitors how the actions of a person influence their weight and academic performance
and provides personalized recommendations to reach the person’s goals. While the physiological
responses of different individuals can vary, there are some underlying mechanisms shared by all
humans, and therefore deemed causal in our terminology. Examples of such causal links are the
dependency of weight on the type of diet, and the dependency of academic performance on the
number of hours of study. Other links, such as the dependency of weight on the amount of caffeine,
are present in some individuals, but are generally not shared and therefore not causal. For simplicity,
all variables are treated as discrete with possible values 0 (below average), 1 (average) or 2 (above
average). See Appendix B for an illustration of the domain and details on how transition models of
different environments are generated. A class M of 3 environments is used to estimate the causal
transition model. All experiments are repeated 10 times and report the average and standard deviation.

Causal Structure Estimation We first empirically investigate the graph edit distance between
estimated and ground-truth causal structures, i.e., GED(G, Ĝ), as a function of number of samples
(K ′ in Algorithm 1). The causal structure is estimated by obtaining the causal graph for each training
environment (using a series of independence tests), and taking the intersection of their edges. As
expected, as we increase the number of samples, the distance converges to zero, and we can perfectly
recover the causal graph (Figure 4a).

8



Causal Transition Model Estimation Figure 4b presents the L1-distance between the estimate
and ground truth causal transition model, as a function of the total number of samples (K ′ +K ′′ in
Algorithm 1). As the number of samples grows, the L1-distance shrinks, converging at around 0.05,
an estimation error due to the environments not respecting the evenness assumption.

Value Function Estimation Finally, we investigate whether we can approximate the optimal value
function for a new unseen environment. From Figure 4c, we observe that our algorithm is able to
approximate the optimal value function up to a small error with a reasonable number of samples.

6 Related Work

Causal Discovery and Bayesian Networks On a technical level, our work is related to previous
efforts on the sample complexity of causal discovery [43] and Bayesian network estimation [15, 9, 3].
None of these works is related to the specific MDP setting. In this paper, we account for the peculiar
structure of the MDP to get sharper rates w.r.t. a blind application of previous results.

Reward-Free RL The reward-free RL formulation [20] is essentially akin to a particular case of our
systematic generalization framework (Definition 1) in which the set of MDPs is a singleton U = {M}
instead of an infinite set of MDPs sharing a causal structure. Recent works have proposed provably
efficient algorithms for reward-free RL, both in tabular [20, 22, 29, 50] and continuous settings
with structure [44, 48, 34]. It is worth investigating how our sample complexity result compare to
an approach that performs reward-free exploration independently for each MDP over a large set
U. Let |U| = U , from [20, Theorem 4.1] we know that the agnostic reward-free approach would
require at least Ω(UH3S2A/ε2) samples to obtain systematic generalization up to an ε threshold
over a set of tabular MDPs U. This compares favorably with our Õ(MH6S4A2/ε2) complexity (see
Corollary 4.4) whenever U is small, but leveraging the inner structure of U becomes crucial as U
grows to infinity, while M remains constant. However, our approach pays this further generality with
the additional error term ελ, which is unavoidable. Finally, it is an interesting direction for future
work to establish whether the additional factors in S,A,H w.r.t. reward-free RL are also unavoidable.

Hidden Structures in RL Previous works have considered learning an hidden structure of the
MDP for sample efficient RL, such as [14, 30, 31, 1]. Their focus is on learning latent representations
of states assuming a linear structure in the MDP. This is orthogonal to our work, which instead targets
the causal structure shared by infinitely many MDPs, while assuming access to the state features.
Other works [e.g., 21, 4, 47] study the impact of structural properties of the MDP assuming access to
the features. Our structural assumption is strictly more general than the linear structures they consider,
but their work could provide useful inspiration to extend our results beyond discrete settings.

Model-Based RL The model-based RL [37] methodology prescribes learning an approximate
model of transition dynamics in order to learn an optimal policy. Theoretical works [e.g., 19, 2]
generally concern with the estimation of the approximate value functions obtained through the learned
model, rather than the estimation of the model itself. A notable exception is the work in [39], which
targets point-wise high probability guarantees on the model estimation as we do in Lemma 4.1, 4.2.
However, they address the model estimation of a single tabular MDP M, instead of the shared
transition dynamics of an infinite set of MDPs U that we target in this paper.

Factored MDPs The factored MDP formalism [23] allows encoding transition dynamics that are
the product of multiple independent factors. This is closely related to how we define the causal
transition model as a product of independent factors in (1), which can be seen as a factored MDP.
Previous works have considered learning in factored MDPs, either assuming full knowledge of the
factorization [11, 46, 38, 40], or by estimating its structure from data [36, 42, 6, 32, 35]. To the
best of our knowledge, none of the existing works have considered the factored MDP framework in
combination with a reward-free setting and systematic generalization, which bring unique challenges
to the identification of the underlying factorization and the estimation of the transition factors.

Causal RL Previous works [49, 41, 16] have also addressed model-based RL from a causal
perspective. The motivations behind [49] are especially similar to ours. However, they have come to
different structural assumptions, which lead to non-overlapping results. To the best of our knowledge,
we are the first to prove a polynomial sample complexity for causal model-based RL in systematic
generalization. Finally, [27] shows how to exploit a known causal representation of the MDP for
sample efficient RL, which can complement our work on how to learn such a representation.
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A Proofs

Proofs of Section 3.3

Proposition 1. The causal structure G of U can be identified from purely observational data.

Proof. First, recall that with observational data alone, a causal graph can be identified up to its
Markov equivalence class [18]. This means that its skeleton and v-structure are properly identified,
meanwhile determining the edge orientations requires interventional data in the general case. Since
in the considered causal graph G the edges orientations are determined a priori (as they follow the
direction of time), the causal graph can be entirely determined by using only observational data.

Proofs of Section 4.1: Causal Transition Model Estimation

Before reporting the proof of the main result in Theorem 4.3, it is worth considering a set of lemmas
that will be instrumental to the main proof.

First, we provide an upper bound to the L1-norm between the Bayesian network PG over a given
structure G and the Bayesian network PGε over the structure Gε, which is the ε-dependency subgraph
of G as defined in Definition 2.

Lemma A.1. Let G a Z-sparse dependency graph, and let Gε its corresponding ε-dependence
subgraph for a threshold ε > 0. The L1-norm between the Bayesian network PG over G and the
Bayesian network PGε over Gε can be upper bounded as

‖PG − PGε‖1 ≤ dSZε.

Proof. The proof is based on the fact that every edge (Xi, Yj) such that (Xi, Yj) ∈ G and (Xi, Yj) /∈
Gε corresponds to a weak conditional dependence (see Definition 2), which means that ‖PYj |Xi −
PYj‖1 ≤ ε.
We denote with Zj the scopes of the parents of the node Y [j] in G, i.e., PaG(Y [j]) = X[Zj ], and
with Zj,ε the scopes of the parents of the node Y [j] in Gε, i.e., PaGε(Y [j]) = X[Zj,ε]. As a direct
consequence of Definition 2, we have Zj,ε ⊆ Zj for any j ∈ dS , and we can write

PG(Y |X) =

dS∏

j=1

Pj(Y [j] | X[Zj ]) =

dS∏

j=1

Pj(Y [j] | X[Zj,ε], X[Zj \ Zj,ε]),

PGε(Y |X) =

dS∏

j=1

Pj(Y [j] | X[Zj,ε]).

Then, we let Zj \ Zj,ε = [I] overwriting the actual indices for the sake of clarity, and we derive

‖PG − PGε‖1

≤
dS∑

j=1

∥∥∥Pj(Y [j] | X[Zj,ε],∪Ii=1X[i])− Pj(Y [j] | X[Zj,ε])
∥∥∥

1
(2)

≤
dS∑

j=1

I∑

i′=1

∥∥∥Pj(Y [j] | X[Zj,ε],∪Ii=i′X[i])− Pj(Y [j] | X[Zj,ε],∪Ii=i′+1X[i])
∥∥∥

1
(3)

≤
dS∑

j=1

I∑

i′=1

ε ≤ dSZε, (4)

in which we employed the property ‖µ−ν‖1 ≤ ‖
∏
i µi−

∏
i νi‖1 ≤

∑
i ‖µi−νi‖1 for the L1-norm

between product distributions µ =
∏
i µi, ν =

∏
i νi to write (2), we repeatedly applied the triangle

inequality ‖µ− ν‖1 ≤ ‖µ− ρ‖1 + ‖ρ− ν‖1 to get (3) from (2), we upper bounded each term of the
sum in (3) with ε thanks to Definition 2, and we finally employed the Z-sparseness Assumption 1 to
upper bound I with Z in (4).
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Next, we provide a crucial sample complexity result for a provably efficient estimation of a Bayesian
network P̂Ĝ over an estimated ε-dependency subgraph Ĝ, which relies on both the causal structure
estimation result of Theorem 4.6 and the Bayesian network estimation result of Theorem 4.8.

Lemma A.2. LetM be a discrete MDP, let M = {M} be a singleton class, let δ ∈ (0, 1), and let
ε > 0. The Algorithm 1 returns a Bayesian network P̂Ĝ such that Pr(‖P̂Ĝ − PG‖1 ≥ ε) ≤ δ with a
sample complexity

K = O

(
d3
SZ

2n3Z+1 log
( 4d2SdAn

Z

δ

)

ε2

)
.

Proof. We aim to obtain the number of samples K = K ′ +K ′′ for which Algorithm 1 is guaranteed
to return a Bayesian network estimate P̂Ĝ over a causal structure estimate Ĝ such that Pr(‖P̂Ĝ −
PG‖1 ≥ ε) ≤ δ in a setting with a singleton class of discrete MDPs. First, we derive the following
decomposition of the error

‖P̂Ĝ − PG‖1 ≤ ‖P̂Ĝ ± PĜ ± PGε′ − PG‖1 ≤ ‖P̂Ĝ − PĜ‖1 + ‖PĜ − PGε′‖1 + ‖PGε′ − PG‖1 (5)

in which we employed the triangle inequality ‖µ− ν‖1 ≤ ‖µ− ρ‖1 + ‖ρ− ν‖1. Then, we can write

Pr
(
‖P̂Ĝ−PG‖1 ≥ ε

)
≤ Pr

(
‖P̂Ĝ − PĜ‖1 ≥

ε

3

)

︸ ︷︷ ︸
Bayesian network estimation (?)

+Pr
(
‖PĜ − PGε′‖1 ≥

ε

3

)

︸ ︷︷ ︸
causal structure estimation (•)

+Pr
(
‖PGε′ − PG‖1 ≥

ε

3

)

︸ ︷︷ ︸
Bayesian network subgraph (�)

through the decomposition (5) and a union bound to isolate the three independent sources of error
(?), (•), (�). To upper bound the latter term (�) with 0, we invoke Lemma A.1 to have dsZε′ ≤ ε

3 ,
which gives ε′ ≤ ε

3dSZ
. Then, we consider the middle term (•), for which we can write

Pr

(
‖PĜε′ − PGε′‖1 ≥

ε

3

)
≤ Pr

(
Ĝ 6= Gε

)
. (6)

We can now upper bound (•) ≤ δ/2 through (6) by invoking Theorem 4.6 with threshold ε′ = ε
3dSZ

and confidence δ′ = δ
2 , which gives

K ′ = C ′
(
d

4/3
S Z4/3n log1/3(2d2

SdA/δ)

ε4/3
+
d2
SZ

2n log1/2(2d2
SdA/δ) + log(2d2

SdA/δ)

ε2

)
. (7)

Next, we can upper bound (?) ≤ δ/2 by invoking Theorem 4.8 with threshold ε′ = ε
3 and confidence

δ′ = δ
2 , which gives

K ′′ = C ′′
(
d3
Sn

3Z+1 log(4dSn
Z/δ)

ε2

)
. (8)

Finally, through the combination of (7) and (8), we can derive the sample complexity that guarantees
Pr(‖P̂Ĝ − PG‖1 ≥ ε) ≤ δ under the assumption ε4/3 � ε2, i.e.,

K = K ′ +K ′′ ≤
d3
SZ

2n3Z+1 log
(

4d2SdAn
Z

δ

)

ε2
,

which concludes the proof.

Whereas Lemma A.2 is concerned with the sample complexity of learning the Bayesian network of
a singleton class, we can now extend the result to account for a class M composed of M discrete
MDPs.

Lemma 4.1. Let M = {Mi}Mi=1 be a class of M discrete MDPs, let δ ∈ (0, 1), ε > 0. The Alg. 1
returns a causal transition model P̂Ĝ such that Pr(‖P̂Ĝ − PG‖1 ≥ ε) ≤ δ with a sample complexity

K = O
(
Md3

SZ
2n3Z+1 log

( 4Md2SdAn
Z

δ

)/
ε2
)
.
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Proof. We aim to obtain the number of samples K = MK ′ + K ′′ for which Algorithm 1 is
guaranteed to return a Bayesian network estimate P̂Ĝ over a causal structure estimate Ĝ such that
Pr(‖P̂Ĝ − PG‖1 ≥ ε) ≤ δ in a setting with a class of M discrete MDPs. First, we can derive an
analogous decomposition as in (5), such that we have

Pr
(
‖P̂Ĝ−PG‖1 ≥ ε

)
≤ Pr

(
‖P̂Ĝ − PĜ‖1 ≥

ε

3

)

︸ ︷︷ ︸
Bayesian network estimation (?)

+Pr
(
‖PĜ − PGε′‖1 ≥

ε

3

)

︸ ︷︷ ︸
causal structure estimation (•)

+Pr
(
‖PGε′ − PG‖1 ≥

ε

3

)

︸ ︷︷ ︸
Bayesian network subgraph (�)

through a union bound. Crucially, the terms (?), (�) are unaffected by the class size, which leads to
K ′′ = (8) by upper bounding (?), and ε′ ≤ ε

3dSZ
by upper bounding (�), exactly as in the proof of

Lemma A.2. Instead, the number of samples K ′ has to guarantee that (•) = Pr(‖PĜ − PGε′‖1 ≥
ε/3) ≤ δ/2, where the causal structure Gε′ is now the intersection of the causal structures of the
single class componentsMi, i.e., Gε′ = ∩Mi=1Gε′,i. Especially, we can write

(•) = Pr
(
‖PĜ − PGε′‖1 ≥

ε

3

)
≤ Pr

(
Ĝ 6= Gε′

)
≤ Pr

( M⋃

i=1

Ĝi 6= Gε′,i
)
≤

M∑

i=0

Pr
(
Ĝi 6= Gε′,i

)
,

(9)
through a union bound on the estimation of the single causal structures Ĝi. Then, we can upper bound
(•) ≤ δ/2 through (9) by invoking Theorem 4.6 with threshold ε′ = ε

3dSZ
and confidence δ′ = δ

2M ,
which gives

K ′ = C ′
(
d

4/3
S Z4/3n log1/3(2Md2

SdA/δ)

ε4/3
+
d2
SZ

2n log1/2(2Md2
SdA/δ) + log(2Md2

SdA/δ)

ε2

)
.

(10)
Finally, through the combination of (10) and (8), we can derive the sample complexity that guarantees
Pr(‖P̂Ĝ − PG‖1 ≥ ε) ≤ δ under the assumption ε4/3 � ε2, i.e.,

K = MK ′ +K ′′ ≤
Md3

SZ
2n3Z+1 log

(
4Md2SdAn

Z

δ

)

ε2
,

which concludes the proof.

It is now straightforward to extend Lemma 4.1 for a class M composed of M tabular MDPs.
Lemma 4.2. Let M = {Mi}Mi=1 be a class of M tabular MDPs. The result of Lemma 4.1 reduces to

K = O
(
MS2Z222Z log

(
4MS2A2Z

δ

)/
ε2
)
.

Proof. To obtainK = MK ′+K ′′, we follows similar steps as in the proof of Lemma 4.1, to have the
usual decomposition of the event Pr(‖P̂Ĝ − PG‖1 ≥ ε) in the (?), (•), (�) terms. We can deal with
(�) as in Lemma 4.1 to get ε′ ≤ ε

3SZ . Then, we upper bound (•) ≤ δ/2 by invoking Corollary 4.7
(instead of Theorem 4.6) with threshold ε′ = ε

3SZ and confidence δ′ = δ
2M , which gives

K ′ = C ′
(
S4/3Z4/3 log1/3(2MS2A/δ)

ε4/3
+
S2Z2 log1/2(2MS2A/δ) + log(2MS2A/δ)

ε2

)
. (11)

Similarly, we upper bound (?) ≤ δ/2 by invoking Corollary 4.9 (instead of Theorem 4.5) with
threshold ε′ = ε

3 and confidence δ′ = δ
2 , which gives

K ′′ =
18S222Z log(4S2Z/δ)

ε2
. (12)

Finally, we combine 11 with 12 to obtain

K = MK ′ +K ′′ ≤ MS2Z222Z log
(

4MS2A2Z

δ

)

ε2
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Proofs of Section 4.1: Planning

Theorem 4.3. Let δ ∈ (0, 1) and ε > 0. For a latent discrete MDPM ∈ U, and a given reward
function r, a planning oracle operating on the causal transition model P̂Ĝ as an approximation ofM
returns a policy π̂ such that Pr

(
V ∗Mi,r

− VMi,r ≥ ελ + ε
)
≤ δ, where ελ = 2λH3dSn

2Z+1, and
P̂Ĝ is obtained from Algorithm 1 with δ′ = δ and ε′ = ε

2H3nZ+1 .

Proof. Consider the MDPs with transition model P and P̂Ĝ . We refer to the respective optimal
policies as π∗ and π̂∗. Moreover, since the reward r is fixed, we remove it from the expressions for
the sake of clarity, and refer with V̂ to the value function of the MDP with transition model P̂Ĝ . As
done in [20, Theorem 3.5], we can write the following decomposition with V ∗ := V π

∗
,

Es1∼P
[
V ∗1 (s1)− V π̂1 (s1)

]
≤
∣∣∣Es1∼P

[
V ∗1 (s1)− V̂ π̂∗1 (s1)

]∣∣∣
︸ ︷︷ ︸

evaluation error

+Es1∼P
[
V̂ ∗1 (s1)− V̂ π̂∗1 (s1)

]

︸ ︷︷ ︸
≤ 0 by def.

+ Es1∼P
[
V̂ π̂
∗

1 (s1)− V̂ π̂1 (s1)
]

︸ ︷︷ ︸
optimization error

+
∣∣∣Es1∼P

[
V̂ π̂1 (s1)− V π̂1 (s1)

]∣∣∣
︸ ︷︷ ︸

evaluation error

≤ 2nZ+1H3ε′︸ ︷︷ ︸
ε

+ 2n2Z+1dSH
3λ︸ ︷︷ ︸

ελ

where in the last step we have set to 0 the approximation due to the planning oracle assumption, and
we have bounded the evaluation errors according to Lemma A.3. In order to get 2nZ+1H3ε′ = ε we
have to set ε′ = ε

2nZ+1H3 . Considering the sample complexity result in Lemma 4.1 the final sample
complexity will be

K = O

(
M d3

S Z
2 n3Z+1 log

( 4Md2SdAn
Z

δ

)

(ε′)2

)
= O

(
4 M d3

S Z
2 n5Z+3 H6 log

( 4Md2SdAn
Z

δ

)

ε2

)
.

Lemma A.3. Under the preconditions of Theorem 4.3, with probability 1−δ, for any reward function
r and policy π, we can bound the value function estimation error as follows.

∣∣∣Es∼P
[
V̂ π1,r(s)− V π1,r(s)

]∣∣∣ ≤ nZ+1H3ε′︸ ︷︷ ︸
ε

+n2Z+1dSH
3λ︸ ︷︷ ︸

ελ

(13)

where V̂ is the value function of the MDP with transition model P̂Ĝ , ε′ is the approximation error
between P̂Ĝ and PG studied in Lemma 4.1, and λ stands for the λ-sufficiency parameter of PG .

Proof. The proof will be along the lines of that of Lemma 3.6 in [20]. We first recall [8, Lemma
E.15], which we restate in Lemma A.5. In this proof, we consider an environment specific true
MDPM with transition model P , and an MDP M̂ that has as transition model the estimated causal
transition model P̂Ĝ . In the following, the expectations will be w.r.t. P . Moreover, since the reward r
is fixed, we remove it from the expressions for the sake of clarity. We can start deriving

∣∣∣Es∼P
[
V̂ π1 (s)− V π1 (s)

]∣∣∣ ≤
∣∣∣EX

[ H∑

h=1

(P̂Ĝ − P )V̂ πh+1(X)
]∣∣∣

≤ EX
[ H∑

h=1

∣∣∣(P̂Ĝ − P )V̂ πh+1(X)
∣∣∣
]

=

H∑

h=1

EX
∣∣∣(P̂Ĝ − P )V̂ πh+1(X)

∣∣∣. (14)
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We now bound a single term within the sum above as follows

EX
∣∣∣(P̂Ĝ − P )V̂ πh+1(X)

∣∣∣ = EX
∣∣∣(P̂Ĝ − PG + PG − P )V̂ πh+1(X)

∣∣∣

= EX
∣∣∣(P̂Ĝ − PG)V̂ πh+1(X) + (PG − P )V̂ πh+1(X)

∣∣∣

≤ EX

[∣∣∣(P̂Ĝ − PG)V̂ πh+1(X)
∣∣∣+
∣∣∣(PG − P )V̂ πh+1(X)

∣∣∣
]

= EX
∣∣∣(P̂Ĝ − PG)V̂ πh+1(X)

∣∣∣+ EX
∣∣∣(PG − P )V̂ πh+1(X)

∣∣∣. (15)

We can now bound each term. Let us start considering the first one

EX
∣∣∣(P̂Ĝ − PG)V̂ πh+1(X)

∣∣∣

= EX
∣∣∣P̂Ĝ V̂ πh+1(X)− PG V̂ πh+1(X)

∣∣∣

= EX
∣∣∣
∑

Y

P̂Ĝ(Y |X)V̂ πh+1(Y )−
∑

Y

PG(Y |X)V̂ πh+1(Y )
∣∣∣

= EX
∣∣∣
∑

Y

P̂Ĝ(Y |X)EX′∼π
[
r(X ′) + P̂Ĝ V̂

π
h+2(X ′)

]

−
∑

Y

PG(Y |X)EX′∼π
[
r(X ′) + PG V̂

π
h+2(X ′)

]∣∣∣

= EX
∣∣∣
∑

Y

(
P̂Ĝ(Y |X)− PG(Y |X)

)
EX′∼π

[
r(X ′)

]

+
∑

Y

P̂Ĝ(Y |X)EX′∼π
[
P̂Ĝ V̂

π
h+2(X ′)

]
−
∑

Y

PG(Y |X)EX′∼π
[
PG V̂

π
h+2(X ′)

]∣∣∣

≤ EX
∣∣∣
∑

Y

(
P̂Ĝ(Y |X)− PG(Y |X)

)∣∣∣ (16)

+ EX
∣∣∣
∑

Y

P̂Ĝ(Y |X)EX′∼π
[
P̂Ĝ V̂

π
h+2(X ′)

]
−
∑

Y

PG(Y |X)EX′∼π
[
PG V̂

π
h+2(X ′)

]∣∣∣.

We can now bound the first term of (16)

EX
∣∣∣
∑

Y

(
P̂Ĝ(Y |X)− PG(Y |X)

)∣∣∣

= EX

∣∣∣∣∣
∑

Y

( dS∏

j=1

P̂j(Y [j]|X[Zj ])−
dS∏

j=1

Pj(Y [j]|X[Zj ])
)∣∣∣∣∣

≤ EX

[∑

Y

dS∑

j=1

∣∣∣P̂j(Y [j]|X[Zj ])− Pj(Y [j]|X[Zj ])
∣∣∣
]

=
∑

X

PπG (X)

[∑

Y

dS∑

j=1

∣∣∣P̂j(Y [j]|X[Zj ])− Pj(Y [j]|X[Zj ])
∣∣∣
]

=
∑

Y

dS∑

j=1

∑

X[Zj ]

PπG (X[Zj ])
∣∣∣P̂j(Y [j]|X[Zj ])− Pj(Y [j]|X[Zj ])

∣∣∣. (17)

Due to the uniform sampling and Z-sparseness assumptions, we have PG(X[Zj ]) = 1
nZ

, hence

max
π†

Pπ
†

G (X[Zj ])

PG(X[Zj ])
≤ 1

PG(X[Zj ])
= nZ .
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Therefore, we have Pπ
†

G (X[Zj ]) ≤ nZ · PG(X[Zj ]). Replacing this in (17) and marginalizing over
Y \Y [j] we obtain

EX
∣∣∣
∑

Y

(
P̂Ĝ(Y |X)− PG(Y |X)

)∣∣∣

= nZ
ds∑

j=1

∑

Y [j]

∑

X[Zj ]

∣∣∣P̂j(Y [j]|X[Zj ])− Pj(Y [j]|X[Zj ])
∣∣∣PG(X[Zj ])

≤ nZ
dS∑

j=1

∑

Y [j]

ε′

dS

∑

X[Zj ]

PG(X[Zj ])

= nZ+1ε′,

where ε′

dS
is the approximation term of each component. By plugging this bound into (16) we get

EX
∣∣∣(P̂Ĝ − PG)V̂ πh+1(X)

∣∣∣

≤ nZ+1ε′ + EX
∣∣∣
∑

Y

P̂Ĝ(Y |X)EX′∼π
[
P̂Ĝ V̂

π
h+2(X ′)

]
−
∑

Y

PG(Y |X)EX′∼π
[
PG V̂

π
h+2(X ′)

]∣∣∣

≤
H∑

i=h+1

i · nZ+1ε′

≤ H2nZ+1ε′

where in the last step we have recursively bounded the right terms as in (24). By considering 2Z-
sparseness, λ-sufficiency, and that the transition model P factorizes, we can apply the same procedure
to bound the second term of equation (15) as

EX
∣∣∣(PG − P )V̂ πh+1(X)

∣∣∣ ≤ H2nZ+1dSλ.

Therefore, the initial expression in (14) becomes
∣∣∣Es∼P

[
V̂ π1 (s)− V π1 (s)

]∣∣∣ ≤
H∑

h=1

EX
∣∣∣(P̂Ĝ − P )V̂ πh+1(X)

∣∣∣ (18)

≤
H∑

h=1

[nZ+1H2ε′ + n2Z+1dSH
2λ] (19)

≤ nZ+1H3ε′︸ ︷︷ ︸
ε

+n2Z+1dSH
3λ︸ ︷︷ ︸

ελ

. (20)

Corollary 4.4. LetM a tabular MDP, the result of Th. 4.3 holds with ελ = 2λSAH3, ε′ = ε
2SAH3 .

Proof. Consider the MDPs with transition model P and P̂Ĝ . We refer to the respective optimal
policies as π∗ and π̂∗. Moreover, since the reward r is fixed, we remove it from the expressions for
the sake of clarity, and refer with V̂ to the value function of the MDP with transition model P̂Ĝ . As
done in [20, Theorem 3.5], we can write the following decomposition with V ∗ := V π

∗

Es1∼P
[
V ∗1 (s1)− V π̂1 (s1)

]
≤
∣∣∣Es1∼P

[
V ∗1 (s1)− V̂ π̂∗1 (s1)

]∣∣∣
︸ ︷︷ ︸

evaluation error

+Es1∼P
[
V̂ ∗1 (s1)− V̂ π̂∗1 (s1)

]

︸ ︷︷ ︸
≤ 0 by def.

+ Es1∼P
[
V̂ π̂
∗

1 (s1)− V̂ π̂1 (s1)
]

︸ ︷︷ ︸
optimization error

+
∣∣∣Es1∼P

[
V̂ π̂1 (s1)− V π̂1

︸ ︷︷ ︸
evaluation error

(s1)
]∣∣∣

≤ 2SAH3ε′︸ ︷︷ ︸
ε

+ 2SAH3λ︸ ︷︷ ︸
ελ
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where in the last step we have set to 0 the approximation due to the planning oracle assumption, and
we have bounded the evaluation errors according to Lemma A.4. In order to get 2SAH3ε′ = ε we
have to set ε′ = ε

2SAH3 . Considering the sample complexity result in Lemma 4.2 the final sample
complexity will be

K = O

(
M S2 Z2 22Z log

(
4MS2A2Z

δ

)

(ε′)2

)
= O

(
4M S4 A2 H6 Z2 22Z log

(
4MS2A2Z

δ

)

ε2

)
.

Lemma A.4. Under the preconditions of Corollary 4.4, with probability 1 − δ, for any reward
function r and policy π, we can bound the value function estimation error as follows.

∣∣∣Es∼P
[
V̂ π1,r(s)− V π1,r(s)

]∣∣∣ ≤ SAH3ε′︸ ︷︷ ︸
ε

+SAH3λ︸ ︷︷ ︸
ελ

(21)

where V̂ is the value function of the MDP with transition model P̂Ĝ , ε′ is the approximation error
between P̂Ĝ and PG studied in Lemma 4.1, and λ stands for the λ-sufficiency parameter of PG .

Proof. The proof will be along the lines of that of Lemma 3.6 in [20]. We first recall [8, Lemma
E.15], which we restate in Lemma A.5. In this proof, we consider an environment specific true
MDPM with transition model P , and an MDP M̂ that has as transition model the estimated causal
transition model P̂Ĝ . In the following, the expectations will be w.r.t. P . Moreover, since the reward r
is fixed, we remove it from the expressions for the sake of clarity. We can start deriving

∣∣∣Es∼P
[
V̂ π1 (s)− V π1 (s)

]∣∣∣ ≤
∣∣∣Eπ

[ H∑

h=1

(P̂Ĝ − P )V̂ πh+1(sh, ah)
]∣∣∣

≤ Eπ
[ H∑

h=1

∣∣∣(P̂Ĝ − P )V̂ πh+1(sh, ah)
∣∣∣
]

=

H∑

h=1

Eπ
∣∣∣(P̂Ĝ − P )V̂ πh+1(sh, ah)

∣∣∣.

We now bound a single term within the sum above as follows

Eπ
∣∣∣(P̂Ĝ − P )V̂ πh+1(sh, ah)

∣∣∣ ≤
∑

s,a

∣∣∣(P̂Ĝ − P )V̂ π(s, a)
∣∣∣Pπ(s, a)

=
∑

s,a

∣∣∣(P̂Ĝ − P )V̂ π(s, a)
∣∣∣Pπ(s)π(a|s)

≤ max
π′

∑

s,a

∣∣∣(P̂Ĝ − P )V̂ π(s, a)
∣∣∣Pπ(s)π′(a|s)

= max
ν:S→A

∑

s,a

∣∣∣(P̂Ĝ − P )V̂ π(s, a)
∣∣∣Pπ(s)1{a = ν(s)},

where in the last step we have used the fact that there must exist an optimal deterministic policy.
Due to the uniform sampling assumption, we have P (s, a) = 1

SA , hence

max
π†

Pπ
†
(s, a)

P (s, a)
≤ 1

P (s, a)
= SA.
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Therefore, Pπ†(s, a) ≤ SA · P (s, a). Moreover, notice that, since π′ is deterministic we have
Pπ(s) = Pπ

′
(s) = Pπ

′
(s, a) ≤ SA · P (s, a). Replacing it in the expression above we get

Eπ
∣∣∣(P̂Ĝ − P )V̂ πh+1(sh, ah)

∣∣∣ ≤ SA ·
∑

s,a

∣∣∣(P̂Ĝ − P )V̂ πh+1(s, a)
∣∣∣P (s)1{a = ν(s)}

≤ SA ·
∣∣∣(P̂Ĝ − P )V̂ πh+1(s, a)

∣∣∣

≤ SA ·
∣∣∣(P̂Ĝ − PG)V̂ πh+1(s, a)

∣∣∣+ SA ·
∣∣∣(PG − P )V̂ πh+1(s, a)

∣∣∣ (22)

≤ SA ·
H∑

i=h+1

i · ε′ + SA ·
H∑

i=h+1

i · λ

≤ SAH2ε′ + SAH2λ (23)

where ε′ is the approximation error between P̂Ĝ and PG studied in Lemma 4.1, and in the second-to-
last step we have used the following derivation

∣∣∣(P̂Ĝ − PG)V̂ πh+1(s, a)
∣∣∣

=
∣∣∣P̂Ĝ V̂ πh+1(s, a)− PG V̂ πh+1(s, a)

∣∣∣ (24)

=
∣∣∣
∑

s′

P̂Ĝ(s′|s, a)V̂ πh+1(s′)−
∑

s′

PG(s′|s, a)V̂ πh+1(s′)
∣∣∣

=
∣∣∣
∑

s′

P̂Ĝ(s′|s, a)Ea′∼π
[
r(s′, a′) + P̂Ĝ V̂

π
h+2(s′, a′)

]

−
∑

s′

PG(s′|s, a)Ea′∼π
[
r(s′, a′) + PG V̂

π
h+2(s′, a′)

]∣∣∣

=
∣∣∣
∑

s′

(
P̂Ĝ(s′|s, a)− PG(s′|s, a)

)
Ea′∼π

[
r(s′, a′)

]

+
∑

s′

P̂Ĝ(s′|s, a)Ea′∼π
[
P̂Ĝ V̂

π
h+2(s′, a′)

]
−
∑

s′

PG(s′|s, a)Ea′∼π
[
PG V̂

π
h+2(s′, a′)

]∣∣∣

≤ ε′ +
∣∣∣
∑

s′

P̂Ĝ(s′|s, a)Ea′∼π
[
P̂Ĝ V̂

π
h+2(s′, a′)

]
−
∑

s′

PG(s′|s, a)Ea′∼π
[
PG V̂

π
h+2(s′, a′)

]∣∣∣

= ε′ +
∣∣∣
∑

s′

P̂Ĝ(s′|s, a)Ea′∼π
[∑

s′′

P̂Ĝ(s′′|s′, a′)Ea′′∼π
[
r(s′′, a′′) + P̂Ĝ V̂

π
h+3(s′′, a′′)

]]

−
∑

s′

PG(s′|s, a)Ea′∼π
[∑

s′′

PG(s′′|s′, a′)Ea′′∼π
[
r(s′′, a′′) + PG V̂

π
h+3(s′′, a′′)

]]∣∣∣

≤ ε′ +
∑

s′,s′′,a′

∣∣∣P̂Ĝ(s′|s, a)P̂Ĝ(s′′|s′, a′)− PG(s′|s, a)PG(s′′|s′, a′)
∣∣∣
1

+ . . .

≤ ε′ +
∑

s′,s′′,a′

[∣∣∣P̂Ĝ(s′|s, a)− PG(s′|s, a)
∣∣∣
1

+
∣∣∣P̂Ĝ(s′′|s′, a′)− PG(s′′|s′, a′)

∣∣∣
1

]
+ . . .

≤ ε′ + 2ε′ + . . .

Hence, due to this recursive unrolling, we have

∣∣∣(P̂Ĝ − PG)V̂ πh+1(s, a)
∣∣∣ ≤

H∑

i=h+1

iε′ ≤ H2ε.

Notice that the same argument holds also for the second term of (22), replacing ε′ with λ.
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By plugging the result in equation (23) into the initial expression we get

∣∣∣Es∼P
[
V̂ π1 (s)− V π1 (s)

]∣∣∣ ≤
H∑

h=1

Eπ
∣∣∣(P̂Ĝ − P )V̂ πh+1(sh, ah)

∣∣∣

≤
H∑

h=1

SAH2ε′ + SAH2λ

= SAH3ε′ + SAH3λ.

In the following we restate [8, Lemma E.15] for the case of a stationary transition model.

Lemma A.5. For any two MDPsM′ andM′′ with rewards r′ and r′′ and transition models P ′ and
P ′′, the difference in value functions V ′, V ′′ w.r.t. the same policy π can be written as:

V ′h(s)− V ′′h (s) = EM′′,π
[ H∑

i=h

[r′(si, ai)− r′′(si, ai) + (P ′ − P ′′)V ′i+1(si, ai)] | sh = s
]
. (25)

Proofs of Section 4.2

We provide the proof of the sample complexity result for learning the causal structure of a discrete
MDP with a generative model.

Theorem 4.6. LetM be a discrete MDP with an underlying causal structure G, let δ ∈ (0, 1), and
let ε > 0. The Algorithm 3 returns a dependency graph Ĝ such that Pr(Ĝ 6= Gε) ≤ δ with a sample
complexity K = O

(
n log(d2

SdA/δ)/ε
2
)
.

Proof. We aim to obtain the number of samples K for which Algorithm 3 is guaranteed to return
a causal structure estimate Ĝ such that Pr(Ĝ 6= Gε) ≤ δ in a discrete MDP setting. First, we can
upper bound the probability of the bad event Pr(Ĝ 6= Gε) in terms of the probability of a failure in
the independence testing procedure I(Xz, Yj) for a single pair of nodes Xz ∈ Gε, Yz ∈ Gε, i.e.,

Pr(Ĝ 6= Gε) ≤ Pr
( dS+dA⋃

z=1

dS⋃

j=1

test I(Xz, Yj) fails
)
≤
dS+dA∑

z=1

dS∑

j=1

Pr

(
test I(Xz, Yj) fails

)
,

(26)
where we applied an union bound to obtain the last inequality. Now we can look at the probability
of a single independence test failure. Especially, for a provably efficient independence test (the
existence of such a test is stated by Lemma 4.5, whereas the Algorithm 2 in [13] reports an actual
testing procedure), we have Pr(test I(Xz, Yj) fails) ≤ δ′, for any choice of δ′ ∈ (0, 1), ε′ > 0, with
a number of samples

K ′ = C

(
n log1/3(1/δ′)

(ε′)4/3
+
n log1/2(1/δ′) + log(1/δ′)

(ε′)2

)
, (27)

where C is a sufficiently large universal constant [13, Theorem 1.3]. Finally, by letting ε′ = ε,
δ′ = δ

d2SdA
and combining (26) with (27), we obtain Pr(Ĝ 6= Gε) with a sample complexity

K = O

(
n log(d2

SdA/δ)

ε2

)
,

under the assumption ε2 � ε4/3, which concludes the proof.

The proof of the analogous sample complexity result for a tabular MDP setting (Corollary 4.7) is a
direct consequence of Theorem 4.6 by letting n = 2, dS = S, dA = A.
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Proofs of Section 4.3

We first report a useful concentration inequality for the L1-norm between the empirical distribution
computed over K samples and the true distribution [45, Theorem 2.1].
Lemma A.6 ([45]). Let X1, . . . , XK be i.i.d. random variables over [n] having probabilities
Pr(Xk = i) = Pi, and let P̂K(i) = 1

K

∑K
k=1 1(Xk = i). Then, for every threshold ε > 0, it holds

Pr

(
‖P̂K − P‖1 ≥ ε

)
≤ 2 exp(−Kε2/2n).

We can now provide the proof of the sample complexity result for learning the Bayesian network of a
discrete MDP with a given causal structure.
Theorem 4.8. LetM be a discrete MDP, let G be its underlying causal structure, let δ ∈ (0, 1), and
let ε > 0. The Algorithm 2 returns a Bayesian network P̂G such that Pr(‖P̂G − PG‖1 ≥ ε) ≤ δ with
a sample complexity K = O

(
d3
Sn

3Z+1 log(dSn
Z/δ)/ε2

)
.

Proof. We aim to obtain the number of samples K for which Algorithm 2 is guaranteed to return a
Bayesian network estimate P̂G such that Pr(‖P̂G − PG‖1 ≥ ε) ≤ δ in a discrete MDP setting. First,
we note that

Pr
(
‖P̂G − PG‖1 ≥ ε

)
≤ Pr

( dS∑

j=1

‖P̂j − Pj‖1 ≥ ε
)

(28)

≤ Pr
(

1

dS

dS∑

j=1

‖P̂j − Pj‖1 ≥
ε

dS

)
(29)

≤ Pr
( dS⋃

j=1

‖P̂j − Pj‖1 ≥
ε

dS

)
(30)

≤
dS∑

j=1

Pr

(
‖P̂j − Pj‖1 ≥

ε

dS

)
, (31)

in which we employed the property ‖µ−ν‖1 ≤ ‖
∏
i µi−

∏
i νi‖1 ≤

∑
i ‖µi−νi‖1 for the L1-norm

between product distributions µ =
∏
i µi, ν =

∏
i νi to write (28), and we applied a union bound to

derive (31) from (30). Similarly, we can write

Pr
(
‖P̂j − Pj‖1 ≥

ε

dS

)
≤ Pr

( ⋃

x∈[n]|Zj |

‖P̂j(·|x)− Pj(·|x)‖1 ≥
ε

dSn|Zj |

)
(32)

≤
∑

x∈[n]|Zj |

Pr

(
‖P̂j(·|x)− Pj(·|x)‖1 ≥

ε

dSn|Zj |

)
(33)

≤
∑

x∈[n]|Zj |

Pr

(
‖P̂j(·|x)− Pj(·|x)‖1 ≥

ε

dSnZ

)
(34)

by applying a union bound to derive (33) from (32), and by employing Assumption 1 to bound |Zj |
with Z in (34). We can now invoke Lemma A.6 to obtain the sample complexity K ′ that guarantees
Pr(‖P̂j(·|x)− Pj(·|x)‖1 ≥ ε′) ≤ δ′, i.e.,

K ′ =
2n log(2/δ′)

(ε′)2
=

2 d2
S n

2Z+1 log(2dSn
Z/δ)

ε2
,

where we let ε′ = ε
dSnZ

, δ′ = δ
dSnZ

. Finally, by summing K ′ for any x ∈ [nm]|Zj | and any j ∈ [dS ],
we obtain

K =
∑

j∈[dS ]

∑

x∈[n]|Zj |

K ′ ≤ 2 d3
S n

3Z+1 log(2dSn
Z/δ)

ε2
,

which proves the theorem.
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To prove the analogous sample complexity result for a tabular MDP we can exploit a slightly tighter
concentration on the KL divergence between the empirical distribution and the true distribution in
the case of binary variables [12, Theorem 2.2.3]7, which we report for convenience in the following
lemma.

Lemma A.7 ([12]). Let X1, . . . , XK be i.i.d. random variables over [2] having probabilities
Pr(Xk = i) = Pi, and let P̂K(i) = 1

K

∑K
k=1 1(Xk = i). Then, for every threshold ε > 0, it holds

Pr

(
dKL

(
P̂K ||P

)
≥ ε
)
≤ 2 exp(−Kε).

We can now provide the proof of Corollary 4.9.

Corollary 4.9. LetM a tabular MDP. The result of Th. 4.8 reduces toK = O
(
S222Z log(S2Z

δ )/ε2
)
.

Proof. We aim to obtain the number of samples K for which Algorithm 2 is guaranteed to return a
Bayesian network estimate P̂G such that Pr(‖P̂G − PG‖1 ≥ ε) ≤ δ in a tabular MDP setting. We
start by considering the KL divergence dKL(P̂G ||PG). Especially, we note

dKL
(
P̂G ||PG

)
=
∑

X,Y

P̂G(X,Y ) log
P̂G(X,Y )

PG(X,Y )

=
∑

X,Y

P̂G(X,Y ) log

∏S
j=1 P̂j(Y [j]|X[Zj ])

∏S
j=1 Pj(Y [j]|X[Zj ])

=
∑

X,Y

P̂G(X,Y )

S∑

j=1

log
P̂j(Y [j]|X[Zj ])

Pj(Y [j]|X[Zj ])
=

S∑

j=1

dKL
(
P̂j ||Pj

)
.

Then, for any ε′ > 0 we can write

Pr
(
dKL

(
P̂G ||PG

)
≥ ε′

)
≤ Pr

( S⋃

j=1

dKL
(
P̂j ||Pj

)
≥ ε′

S

)
(35)

≤
S∑

j=1

Pr

(
dKL

(
P̂j ||Pj

)
≥ ε′

S

)
(36)

≤
S∑

j=1

Pr

( ⋃

x∈[2]|Zj |

dKL
(
P̂j(·|x)||Pj(·|x)

)
≥ ε′

S2|Zj |

)
(37)

≤
S∑

j=1

∑

x∈[2]|Zj |

Pr

(
dKL

(
P̂j(·|x)||Pj(·|x)

)
≥ ε′

S2|Zj |

)
(38)

≤
S∑

j=1

∑

x∈[2]|Zj |

Pr

(
dKL

(
P̂j(·|x)||Pj(·|x)

)
≥ ε′

S2Z

)
, (39)

in which we applied a first union bound to get (36) from (35), a second union bound to get (38)
from (37), and Assumption 1 to bound |Zj | with Z in (39). We can now invoke Lemma A.7 to obtain
the sample complexity K ′′ that guarantees Pr(dKL(P̂j(·|x)||Pj(·|x)) ≥ ε′′) ≤ δ′′, i.e.,

K ′′ =
log(2/δ′′)

ε′′
=
S2Z log(2S2Z/δ′)

ε′
,

where we let ε′′ = ε′

S2Z
, and δ′′ = δ′

S2Z
for any choice of δ′ ∈ (0, 1). By summing K ′′ for any

x ∈ [2]|Zj | and and j ∈ [S], we obtain the sample complexityK ′ that guarantees Pr(dKL(P̂G ||PG) ≥
7Also reported in [28, Example 1].
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ε′) ≤ δ′, i.e.,

K ′ =

S∑

j=1

∑

x∈[2]|Zj |

K ′′ ≤ S222Z log(2S2Z/δ′)
ε′

. (40)

Finally, we employ the Pinsker’s inequality ‖P̂G − PG‖1 ≤
√

2dKL(P̂G ||PG) [7] to write

Pr
(
dKL(P̂G ||PG) ≥ ε′

)
= Pr

(√
2dKL(P̂G ||PG) ≥

√
2ε′
)
≥ Pr

(
‖P̂G − PG‖1 ≥

√
2ε′
)
,

which gives the sample complexity K that guarantees Pr(‖P̂G − PG‖1 ≥ ε) ≤ δ by letting ε′ = ε2

2
and δ′ = δ in (40), i.e.,

K =
2S222Z log(2S2Z/δ)

ε2
.

B Numerical Validation

Let A, W , P , S, D, C and St represent academic performance, weight, physical activity, sleep, diet
and study respectively. We start by defining the causal transition model as follows:

A ∼ N (µA, σ)

W ∼ N (µW , σ)

µA = A+ 0.2D + 0.5S + 0.8St− 0.8

µW = W − 0.5D − 0.5P + 1

σ = 0.1

The transition model for a specific environment is then generated by adding independent white noise
to each coefficient in the above equations for µA and µW , including the ones not shown because set
to 0:

µA = (1 + ε1)A+ ε2W + ε3P + (0.2 + ε4)D + (0.5 + ε5)S + ε6C + (0.8 + ε7)St− 0.8

µW = ε8A+ (1 + ε9)W + (−0.5 + ε10)P + (−0.5 + ε11)D + ε12S + ε13C + ε14St+ 0.8

εi ∼ N (0, 0.1) ∀i ∈ {1 . . . 14}

A

W

S

St

C

D

P

A

W

1 week

causal edge e ∈ G environment specific edge e /∈ G

Figure 5: Bayesian network for a specific environment (person) of our synthetic example. Grey edges
are causal and therefore shared by other environments in the same universe U, while blue dashed
edges are environment-specific dependencies.

25


	Introduction
	Preliminaries
	Problem Formulation
	The Causal Structure of the Transition Dynamics
	A Class of Training Environments
	Learning Systematic Generalization

	Sample Complexity Analysis
	Sample Complexity of Systematic Generalization with a Generative Model
	Sample Complexity of Learning the Causal Structure of a Discrete MDP
	Sample Complexity of Learning the Bayesian Network of a Discrete MDP

	Numerical Validation
	Related Work
	Proofs
	Numerical Validation

